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F-theory

?? F-Theory is definded by various dualities/limits.
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The basic idea of F-Theory

?? F-Theory geometrizes the SL(2,Z) self-duality of type IIB
string theory by interpreting it as the modular group of an
auxiliary torus.

τ(z) / SL(2,Z)

BB

Picard Lefschetz monodromy

3 3

~

SL(2,Z) monodromy

D7−branes ~ divisors ~ codim  =2
R
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F-Theory and type IIB

?? The whole fibration has to be a Calabi-Yau 4-fold.

B

monodromy

3

4

B3

CYT
2

?? Brane stacks ∼ singularities encode non-abelian gauge
groups, matter, etc...

?? More groups and reps. than in perturbative IIB string
theory are possible→ F-Theory GUTs .

?? There exists a (weak coupling) limit in which F-Theory
reduces to type IIB.
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F-Theory and M-Theory

The auxiliary torus becomes physical in M-theory

?? M-theory on CY4 is dual to type IIB on B3 in the limit of
vanishing fibre volume: ‘F-theory limit’.
This is a decompactification limit on the type IIB side !

?? Non-abelian gauge bosons arise from massless
M2-branes on vanishing cycles.

Fluxes
?? G4 on CY4 in M-Theory↔ F2 and G3.
?? These fluxes should not break Lorentz symmetry
→ G4 must have ‘one leg along the fibre’.

?? In homology, this means G4 should not intersect the fibre
or divisors in the base.

?? Supersymmetry demands that G4 is of type (2,2).
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F-Theory and Heterotic E8 × E8.

F-Theory on a K 3 fibred CY4 is dual to the heterotic string on
an elliptically fibred CY3.

CY

B

CY

π π

4 3

F het

2

K3 T
2

?? On CY3 on can use the spectral cover/divisor to construct
gauge bundles.

?? hetE8×E8 ↔ F-Theory duality makes similar techniques
availiable in F-Theory GUTs.

?? This is used a lot in ‘local’ model building...
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Geometry of gauge groups

?? Let’s focus on a stack of branes with some non-abelian
gauge group on some divisor S of the base.

?? Resolving the singularity, we obtain a fibration of some
ALE space over S.

?? Similiar in spirit to hetE8×E8 ↔ F-Theory duality:
Fibration of P1s ∼ spectral cover.

patch of CY 4 brane
in B3

ALE

Fluxes: Can write G4 ∼ ω ∧ F2, or use heterotic analogue,...
[Donagi, Wijnholt; Marsano et al.;...]

More sophisticated global approach: [Grimm et al.]
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Our work

We started from the question:

Can we construct supersymmetric G4 fluxes and tell which
F2 they correspond to in a global setting ?

In particular
?? G4 is of type (2,2). Can we find the dual cycles

algebraically ?
?? Do we need to go to a singular CY4 first ?

Why is this interesting ?
?? fluxes are needed for chirality.
?? needed for moduli stabilization.
?? want to compute D3-brane (M2-brane) tadpole.
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our favourite toy: K3

?? Consider CY4 = K 3′ × K 3, with K 3 elliptic.
(all branes are points in K 3 and fill K 3′)

?? We are interested in G4 = F ′2 ∧ γ, such that both F ′2 and γ
are of type (1,1) and integral.

?? This means γ ∈ Pic(K 3) ≡ H2(K 3,Z) ∩ H1,1(K 3).

Elliptic fibrations can be described by a Weierstrass model:

y2 = x3 + f4xz4 + g6z6

in a P2
1,2,3 (z, x , y) bundle over the base B (for K3: B = P1).

In this case Pic = 〈base, fibre〉 → Not the right thing !

How can we enlarge the Picard group ?

(This is well-known in general. We want to start from the
Weierstrass model, however !)
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K3: the trick

The Weierstrass model can be reparametrized and rewritten as

Y−Y+ + z6a6 = XQ .

where Y± = y ± 1
2z3a3 , Q = X (X + 1

4z2b2) + 1
2z4b4 .

Adjusting f4,g6 such that a6 ≡ 0, our K 3 gains an extra cycle

σ = {Y± = 0} ∩ {X = 0} .

This cycle is dual to a (1,1) form which is not linearly
equivalent to base or fibre (σ± ∩ φ = 1, however).

We find a new integral (1,1) cycle

γ± = σ± − β − 2φ .

which does not intersect base or fibre !
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K3: interpretation in weak coupling limit

K3
γ

γ
1

2

K3’

D7−branes

In the weak coupling limit, a configuration for which a6 ≡ 0 can
be achived by putting four D7-branes such that∫

γ1

Ω2,0(K 3)−
∫
γ2

Ω2,0(K 3) = 0 .

Hence the (1,1) cycle γ is given by γ1 − γ2.
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Fourfolds

For fourfolds, we can do a similar trick. We simply demand that
a6 factorizes, i.e. a6 = ρτ :

Y−Y+ + z6ρτ = XQ .

The fourfold gains an extra algebraic, i.e. (2,2), four-cycle

σ± = {Y± = 0} ∩ {X = 0} ∩ {ρ = 0} .

A cycle for the flux is (F is the divisor associated with z = 0)

G4 ≡ σ± − [ρ] · F |X4 .

It does not intersect the fibre or divisors in the base !

Note: if ρ or τ is a constant, the flux is zero.
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Discussion...

Fourfolds are similar to K 3 (and different from 3-folds) :

K 3:
?? H1,1(K 3) ∩ H2(K 3,Z) = 0 generically.
?? Enhancing the Picard group means fixing complex

structure moduli.

Fourfolds:
?? J ∧ J and Ω4,0 are both in H4 = H4

H ⊕ H4
V .

?? J ∧ J lives in HV

?? Ω (and its variations) live in H4
H , so that generically

H2,2(X ) ∩ H4
H(X ,Z) = 0.

?? Restricting the complex structure this can be non-zero→
This is precisely what happens in our case !

Note: The cycles exists throughout moduli space, they just
cease to be holomorphic. This way of discussing moduli
stabilization is not availiable in the standard case of threefolds !
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Tadpole

?? We can compute the D3-brane tadpole

−1
2

∫
CY4

G4 ∧G4 = −
∫

B3

c1(B3) ∧ [ρ][τ ]

The constraint a6 = ρτ is well known from [Collinucci, Denef,
Esole] for fluxed D7 branes.

Using this identification, we find a match with the type IIB result
for the tadpole in the weak coupling limit !
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Chirality

In F-Theory, matter arises from intersections of branes.
Over these loci, the singularity enhances.

ALE

intersection
with other brane

brane
in B3

matter

fourcycle

?? We can construct similar fluxes in situations with
intersecting branes/ non-abelian gauge groups.

?? We can then compute chirality by integrating this flux over
matter four-cycles [Hayashi et al.;Donagi, Wijnholt;...]

I =

∫
E

G4

and also find agreement with IIB in the weak coupling limit.
We can have chirality without destroying the gauge symmetry !
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G4

and also find agreement with IIB in the weak coupling limit.
We can have chirality without destroying the gauge symmetry !
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D7 deconstruction

Algebraic cycles similarly appear in the description of
D7-branes via ‘deconstruction’, i.e. as coherent sheaves
defined by an exact sequence [Denef, Collinucci, Esole]:

0 → D̄9 T−→ D9 → D7 → 0 .

?? D9, D̄9 are just vector bundles on B3.
?? Where the tachyon matrix T is invertible, the map T is onto.

The D7 branes are at det(T ) = 0, i.e. they are
determinantal varieties.

?? The construction works such that the extra algebraic cycles
are carrying fluxes.

In this description the locus of the D7-brane and the fluxes on
its worldvolume form one object.
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F-theory deconstruction ?

We can write an exact sequence of coherent sheaves

0 → E M−→ F → G → 0 ,

which encodes our Calabi-Yau fourfold together with G4 as G.
?? The matrix M is given by

M =


0 X ρ Y+

−X 0 −Y− τ
−ρ Y− 0 Q
−Y+ −τ −Q 0


?? Its Pfaffian gives CY4 in terms of the Weierstrass model.

On CY4, the rank of M goes down by two, defining a vector
bundle V of rank two.

G4 ∼ c2(V )
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Conclusions

?? We have found explicit realizations of G4 corresponding to
F2 on branes in terms of algebraic cycles in F-theory.

?? We can compute the D3-tadpoles and chirality indices.
They match with the corresponding type IIB results in the
weak coupling limit.

?? This was used by [Weigand et al] to construct chirality
inducing flux in SU(5) models.

It seems there is much more to uncover:
?? What is the precise relation to the constructions of

[Grimm et al.] or [Marsano er al.]?
?? Can G4 together with the elliptic CY4 be described as a

coherent sheaf ?
?? What is the physical meaning of M, E ,F ?
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