An explicit construction of *G*₄ Fluxes in F-Theory

Andreas Braun

Institut für Theoretische Physik TU Vienna

arXiv:1107.5337 together with Andrés Collinucci and Roberto Valandro.

October 26, 2011

Andreas Braun An explicit construction of G₄ Fluxes in F-Theory

< 17 ▶

Contents

- \star Introduction
- * *K*3
- $\star CY_4$
- \star Deconstruction ?

<ロト <回 > < 注 > < 注 > 、

æ

$\star\,$ F-Theory is definded by various dualities/limits.

< ∃⇒

< 17 ▶

The basic idea of F-Theory

★ F-Theory geometrizes the SL(2, Z) self-duality of type IIB string theory by interpreting it as the modular group of an auxiliary torus.

F-Theory and type IIB

⋆ The whole fibration has to be a Calabi-Yau 4-fold.

- Brane stacks ~ singularities encode non-abelian gauge groups, matter, etc...
- \star More groups and reps. than in perturbative IIB string theory are possible \rightarrow F-Theory GUTs .
- There exists a (weak coupling) limit in which F-Theory reduces to type IIB.

F-Theory and M-Theory

The auxiliary torus becomes physical in M-theory

Andreas Braun An explicit construction of G₄ Fluxes in F-Theory

< 🗇 >

F-Theory and M-Theory

The auxiliary torus becomes physical in M-theory

- ★ M-theory on CY₄ is dual to type IIB on B₃ in the limit of vanishing fibre volume: 'F-theory limit'. This is a decompactification limit on the type IIB side !
- Non-abelian gauge bosons arise from massless M2-branes on vanishing cycles.

The auxiliary torus becomes physical in M-theory

- ★ M-theory on CY₄ is dual to type IIB on B₃ in the limit of vanishing fibre volume: 'F-theory limit'.
 This is a decompactification limit on the type IIB side !
- Non-abelian gauge bosons arise from massless M2-branes on vanishing cycles.

Fluxes

- \star G_4 on CY_4 in M-Theory \leftrightarrow F_2 and G_3 .
- * These fluxes should not break Lorentz symmetry $\rightarrow G_4$ must have 'one leg along the fibre'.
- \star In homology, this means G_4 should not intersect the fibre or divisors in the base.
- * Supersymmetry demands that G_4 is of type (2, 2).

F-Theory and Heterotic $E_8 \times E_8$.

F-Theory on a K3 fibred CY_4 is dual to the heterotic string on an elliptically fibred CY_3 .

프 🖌 🛪 프 🛌

< 🗇 🕨 <

F-Theory and Heterotic $E_8 \times E_8$.

F-Theory on a K3 fibred CY_4 is dual to the heterotic string on an elliptically fibred CY_3 .

・ 同 ト ・ ヨ ト ・ ヨ ト …

F-Theory and Heterotic $E_8 \times E_8$.

F-Theory on a K3 fibred CY_4 is dual to the heterotic string on an elliptically fibred CY_3 .

- ★ On CY₃ on can use the spectral cover/divisor to construct gauge bundles.
- ★ het_{*E*₈×*E*₈ ↔ F-Theory duality makes similar techniques available in F-Theory GUTs.}
- * This is used a lot in 'local' model building...

Geometry of gauge groups

- \star Let's focus on a stack of branes with some non-abelian gauge group on some divisor *S* of the base.
- \star Resolving the singularity, we obtain a fibration of some ALE space over S.
- ★ Similiar in spirit to het_{*E*₈×*E*₈} ↔ F-Theory duality: Fibration of \mathbb{P}^1 s ~ spectral cover.

Geometry of gauge groups

- \star Let's focus on a stack of branes with some non-abelian gauge group on some divisor *S* of the base.
- \star Resolving the singularity, we obtain a fibration of some ALE space over S.
- ★ Similiar in spirit to het_{*E*₈×*E*₈} ↔ F-Theory duality: Fibration of \mathbb{P}^1 s ~ spectral cover.

Fluxes: Can write $G_4 \sim \omega \wedge F_2$, or use heterotic analogue,... [Donagi, Wijnholt; Marsano et al.;...] More sophisticated *global* approach: [Grimm et al.]

Andreas Braun An explicit construction of G₄ Fluxes in F-Theory

Can we construct supersymmetric G_4 fluxes and tell which F_2 they correspond to in a *global* setting ?

Andreas Braun An explicit construction of G₄ Fluxes in F-Theory

・ 同 ト ・ ヨ ト ・ ヨ ト

Can we construct supersymmetric G_4 fluxes and tell which F_2 they correspond to in a *global* setting ?

In particular

* G_4 is of type (2, 2). Can we find the dual cycles algebraically ?

Can we construct supersymmetric G_4 fluxes and tell which F_2 they correspond to in a *global* setting ?

In particular

- * G_4 is of type (2,2). Can we find the dual cycles algebraically ?
- * Do we need to go to a singular CY_4 first ?

Can we construct supersymmetric G_4 fluxes and tell which F_2 they correspond to in a *global* setting ?

In particular

- * G_4 is of type (2,2). Can we find the dual cycles algebraically ?
- * Do we need to go to a singular CY_4 first ?

Why is this interesting ?

Can we construct supersymmetric G_4 fluxes and tell which F_2 they correspond to in a *global* setting ?

In particular

- * G_4 is of type (2,2). Can we find the dual cycles algebraically ?
- * Do we need to go to a singular CY_4 first ?

Why is this interesting ?

- ★ fluxes are needed for chirality.
- * needed for moduli stabilization.
- * want to compute D3-brane (M2-brane) tadpole.

< ≣ >

* Consider $CY_4 = K3' \times K3$, with K3 elliptic. (all branes are points in K3 and fill K3')

< ∃ →

- * Consider $CY_4 = K3' \times K3$, with K3 elliptic. (all branes are points in K3 and fill K3')
- * We are interested in $G_4 = F'_2 \wedge \gamma$, such that both F'_2 and γ are of type (1, 1) and integral.
- ★ This means $\gamma \in \text{Pic}(K3) \equiv H^2(K3, \mathbb{Z}) \cap H^{1,1}(K3)$.

(同) (正) (正)

- * Consider $CY_4 = K3' \times K3$, with K3 elliptic. (all branes are points in K3 and fill K3')
- * We are interested in $G_4 = F'_2 \wedge \gamma$, such that both F'_2 and γ are of type (1, 1) and integral.
- ★ This means $\gamma \in \text{Pic}(K3) \equiv H^2(K3, \mathbb{Z}) \cap H^{1,1}(K3).$

Elliptic fibrations can be described by a Weierstrass model:

$$y^2 = x^3 + f_4 x z^4 + g_6 z^6$$

in a $\mathbb{P}^2_{1,2,3}(z, x, y)$ bundle over the base *B* (for K3: $B = \mathbb{P}^1$).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- * Consider $CY_4 = K3' \times K3$, with K3 elliptic. (all branes are points in K3 and fill K3')
- * We are interested in $G_4 = F'_2 \wedge \gamma$, such that both F'_2 and γ are of type (1, 1) and integral.
- ★ This means $\gamma \in Pic(K3) \equiv H^2(K3, \mathbb{Z}) \cap H^{1,1}(K3)$.

Elliptic fibrations can be described by a Weierstrass model:

$$y^2 = x^3 + f_4 x z^4 + g_6 z^6$$

in a $\mathbb{P}^2_{1,2,3}(z, x, y)$ bundle over the base *B* (for K3: $B = \mathbb{P}^1$).

In this case $Pic = \langle base, fibre \rangle \rightarrow Not$ the right thing !

イロン 不良 とくほう 不良 とうほ

- * Consider $CY_4 = K3' \times K3$, with K3 elliptic. (all branes are points in K3 and fill K3')
- * We are interested in $G_4 = F'_2 \wedge \gamma$, such that both F'_2 and γ are of type (1, 1) and integral.
- ★ This means $\gamma \in \text{Pic}(K3) \equiv H^2(K3, \mathbb{Z}) \cap H^{1,1}(K3).$

Elliptic fibrations can be described by a Weierstrass model:

$$y^2 = x^3 + f_4 x z^4 + g_6 z^6$$

in a $\mathbb{P}^2_{1,2,3}(z, x, y)$ bundle over the base *B* (for K3: $B = \mathbb{P}^1$).

In this case $Pic = \langle base, fibre \rangle \rightarrow Not$ the right thing !

How can we enlarge the Picard group ?

ヘロン ヘアン ヘビン ヘビン

- * Consider $CY_4 = K3' \times K3$, with K3 elliptic. (all branes are points in K3 and fill K3')
- * We are interested in $G_4 = F'_2 \wedge \gamma$, such that both F'_2 and γ are of type (1, 1) and integral.
- ★ This means $\gamma \in \text{Pic}(K3) \equiv H^2(K3, \mathbb{Z}) \cap H^{1,1}(K3).$

Elliptic fibrations can be described by a Weierstrass model:

$$y^2 = x^3 + f_4 x z^4 + g_6 z^6$$

in a $\mathbb{P}^2_{1,2,3}(z, x, y)$ bundle over the base *B* (for K3: $B = \mathbb{P}^1$).

In this case $Pic = \langle base, fibre \rangle \rightarrow Not$ the right thing !

How can we enlarge the Picard group ?

(This is well-known in general. We want to start from the Weierstrass model, however !)

Andreas Braun An explicit construction of G₄ Fluxes in F-Theory

K3: the trick

The Weierstrass model can be reparametrized and rewritten as

$$Y_-Y_++z^6a_6=XQ.$$

where $Y_{\pm} = y \pm \frac{1}{2}z^3 a_3$, $Q = X(X + \frac{1}{4}z^2 b_2) + \frac{1}{2}z^4 b_4$.

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

K3: the trick

The Weierstrass model can be reparametrized and rewritten as

$$Y_-Y_++z^6\overline{a_6}=XQ.$$

where $Y_{\pm} = y \pm \frac{1}{2}z^3 a_3$, $Q = X(X + \frac{1}{4}z^2 b_2) + \frac{1}{2}z^4 b_4$.

Adjusting f_4 , g_6 such that $a_6 \equiv 0$, our K3 gains an extra cycle

$$\sigma = \{ Y_{\pm} = \mathbf{0} \} \, \cap \, \{ X = \mathbf{0} \} \, .$$

This cycle is dual to a (1, 1) form which is not linearly equivalent to base or fibre ($\sigma_{\pm} \cap \phi = 1$, however).

< 回 > < 回 > < 回 > … 回

K3: the trick

The Weierstrass model can be reparametrized and rewritten as

$$Y_-Y_++z^6\overline{a_6}=XQ.$$

where $Y_{\pm} = y \pm \frac{1}{2}z^3 a_3$, $Q = X(X + \frac{1}{4}z^2 b_2) + \frac{1}{2}z^4 b_4$.

Adjusting f_4, g_6 such that $a_6 \equiv 0$, our K3 gains an extra cycle

$$\sigma = \{ Y_{\pm} = \mathbf{0} \} \cap \{ X = \mathbf{0} \}.$$

This cycle is dual to a (1, 1) form which is not linearly equivalent to base or fibre ($\sigma_{\pm} \cap \phi = 1$, however).

We find a new integral (1, 1) cycle

$$\gamma_{\pm} = \sigma_{\pm} - \beta - \mathbf{2}\phi \,.$$

which does not intersect base or fibre !

Andreas Braun An explicit construction of G₄ Fluxes in F-Theory

K3: interpretation in weak coupling limit

In the weak coupling limit, a configuration for which $a_6 \equiv 0$ can be achived by putting four *D*7-branes such that

$$\int_{\gamma_1} \Omega^{2,0}(K3) - \int_{\gamma_2} \Omega^{2,0}(K3) = 0$$
 .

Hence the (1, 1) cycle γ is given by $\gamma_1 - \gamma_2$

For fourfolds, we can do a similar trick. We simply demand that a_6 factorizes, i.e. $a_6 = \rho \tau$:

$$Y_-Y_+ + z^6 \rho \tau = XQ.$$

The fourfold gains an extra algebraic, i.e. (2,2), four-cycle

$$\sigma_{\pm} = \{ \mathbf{Y}_{\pm} = \mathbf{0} \} \, \cap \, \{ \mathbf{X} = \mathbf{0} \} \, \cap \, \{ \rho = \mathbf{0} \} \, .$$

(雪) (ヨ) (ヨ)

1

For fourfolds, we can do a similar trick. We simply demand that a_6 factorizes, i.e. $a_6 = \rho \tau$:

$$Y_-Y_+ + z^6 \rho \tau = XQ.$$

The fourfold gains an extra algebraic, i.e. (2,2), four-cycle

$$\sigma_{\pm} = \{ \mathbf{Y}_{\pm} = \mathbf{0} \} \, \cap \, \{ \mathbf{X} = \mathbf{0} \} \, \cap \, \{ \rho = \mathbf{0} \} \, .$$

(雪) (ヨ) (ヨ)

1

For fourfolds, we can do a similar trick. We simply demand that a_6 factorizes, i.e. $a_6 = \rho \tau$:

$$Y_-Y_++z^6\rho\tau=XQ.$$

The fourfold gains an extra algebraic, i.e. (2,2), four-cycle

$$\sigma_{\pm} = \{ \mathbf{Y}_{\pm} = \mathbf{0} \} \, \cap \, \{ \mathbf{X} = \mathbf{0} \} \, \cap \, \{ \rho = \mathbf{0} \} \, .$$

A cycle for the flux is (*F* is the divisor associated with z = 0)

$$G_4 \equiv \sigma_{\pm} - [\rho] \cdot F|_{X_4}$$
.

It does not intersect the fibre or divisors in the base !

・ 同 ト ・ ヨ ト ・ ヨ ト …

For fourfolds, we can do a similar trick. We simply demand that a_6 factorizes, i.e. $a_6 = \rho \tau$:

$$Y_-Y_++z^6\rho\tau=XQ.$$

The fourfold gains an extra algebraic, i.e. (2,2), four-cycle

$$\sigma_{\pm} = \{ \mathbf{Y}_{\pm} = \mathbf{0} \} \, \cap \, \{ \mathbf{X} = \mathbf{0} \} \, \cap \, \{ \rho = \mathbf{0} \} \, .$$

A cycle for the flux is (*F* is the divisor associated with z = 0)

$$G_4 \equiv \sigma_{\pm} - [\rho] \cdot F|_{X_4}$$
.

It does not intersect the fibre or divisors in the base !

Note: if ρ or τ is a constant, the flux is zero.

Fourfolds are similar to K3 (and different from 3-folds) :

(日) → (日) → (日)

< 🗇 > <

3

Fourfolds are similar to *K*3 (and different from 3-folds) : *K*3:

- * $H^{1,1}(K3) \cap H^2(K3,\mathbb{Z}) = 0$ generically.
- * Enhancing the Picard group means fixing complex structure moduli.

프 에 에 프 어 - -

Fourfolds are similar to *K*3 (and different from 3-folds) : *K*3:

- * $H^{1,1}(K3) \cap H^2(K3,\mathbb{Z}) = 0$ generically.
- * Enhancing the Picard group means fixing complex structure moduli.

Fourfolds:

* $J \wedge J$ and $\Omega^{4,0}$ are both in $H^4 = H^4_H \oplus H^4_V$.

프 🖌 🛪 프 🛌

Fourfolds are similar to *K*3 (and different from 3-folds) : *K*3:

- * $H^{1,1}(K3) \cap H^2(K3,\mathbb{Z}) = 0$ generically.
- * Enhancing the Picard group means fixing complex structure moduli.

Fourfolds:

- $\star \quad J \wedge J \text{ and } \Omega^{4,0} \text{ are both in } H^4 = H^4_H \oplus H^4_V.$
- $\star \quad J \wedge J \text{ lives in } H_V$
- * Ω (and its variations) live in H^4_H , so that *generically* $H^{2,2}(X) \cap H^4_H(X, \mathbb{Z}) = 0.$

Fourfolds are similar to *K*3 (and different from 3-folds) : *K*3:

- * $H^{1,1}(K3) \cap H^2(K3,\mathbb{Z}) = 0$ generically.
- * Enhancing the Picard group means fixing complex structure moduli.

Fourfolds:

- $\star \quad J \wedge J \text{ and } \Omega^{4,0} \text{ are both in } H^4 = H^4_H \oplus H^4_V.$
- * $J \wedge J$ lives in H_V
- * Ω (and its variations) live in H^4_H , so that *generically* $H^{2,2}(X) \cap H^4_H(X, \mathbb{Z}) = 0.$
- \star Restricting the complex structure this can be non-zero \rightarrow This is precisely what happens in our case !

・ 同 ト ・ ヨ ト ・ ヨ ト …

Fourfolds are similar to *K*3 (and different from 3-folds) : *K*3:

- * $H^{1,1}(K3) \cap H^2(K3,\mathbb{Z}) = 0$ generically.
- * Enhancing the Picard group means fixing complex structure moduli.

Fourfolds:

- $\star \quad J \wedge J \text{ and } \Omega^{4,0} \text{ are both in } H^4 = H^4_H \oplus H^4_V.$
- * $J \wedge J$ lives in H_V
- * Ω (and its variations) live in H^4_H , so that *generically* $H^{2,2}(X) \cap H^4_H(X, \mathbb{Z}) = 0.$
- \star Restricting the complex structure this can be non-zero \rightarrow This is precisely what happens in our case !

Note: The cycles exists throughout moduli space, they just cease to be holomorphic. This way of discussing moduli stabilization is not available in the standard case of threefolds

 \star We can compute the D3-brane tadpole

$$-rac{1}{2}\int_{CY_4}G_4\wedge G_4 = -\int_{B_3}c_1(B_3)\wedge [
ho][au]$$

<ロト <回 > < 注 > < 注 > 、

2

* We can compute the D3-brane tadpole

$$-rac{1}{2}\int_{CY_4}G_4\wedge G_4=-\int_{B_3}c_1(B_3)\wedge [
ho][au][au]$$

The constraint $a_6 = \rho \tau$ is well known from [Collinucci, Denef, Esole] for fluxed D7 branes.

Using this identification, we find a match with the type IIB result for the tadpole in the weak coupling limit !

1

Chirality

In F-Theory, matter arises from intersections of branes. Over these loci, the singularity enhances.

→ < Ξ →</p>

ъ

Chirality

In F-Theory, matter arises from intersections of branes. Over these loci, the singularity enhances.

- * We can construct similar fluxes in situations with intersecting branes/ non-abelian gauge groups.
- * We can then compute chirality by integrating this flux over matter four-cycles [Hayashi et al.;Donagi, Wijnholt;...]

$$I=\int_E G_{a}$$

and also find agreement with IIB in the weak coupling limit.

Chirality

In F-Theory, matter arises from intersections of branes. Over these loci, the singularity enhances.

- * We can construct similar fluxes in situations with intersecting branes/ non-abelian gauge groups.
- We can then compute chirality by integrating this flux over matter four-cycles [Hayashi et al.;Donagi, Wijnholt;...]

$$I=\int_E G_2$$

and also find agreement with IIB in the weak coupling limit. We can have chirality without destroying the gauge symmetry !

D7 deconstruction

Algebraic cycles similarly appear in the description of D7-branes via 'deconstruction', i.e. as coherent sheaves defined by an exact sequence [Denef, Collinucci, Esole]:

$$0 \rightarrow \bar{D9} \xrightarrow{T} D9 \rightarrow D7 \rightarrow 0$$
.

- * D9, $\overline{D9}$ are just vector bundles on B_3 .
- * Where the tachyon matrix *T* is invertible, the map *T* is onto. The D7 branes are at det(T) = 0, i.e. they are determinantal varieties.
- * The construction works such that the extra algebraic cycles are carrying fluxes.

< 回 > < 回 > < 回 > -

D7 deconstruction

Algebraic cycles similarly appear in the description of D7-branes via 'deconstruction', i.e. as coherent sheaves defined by an exact sequence [Denef, Collinucci, Esole]:

$$0 \rightarrow \bar{D9} \xrightarrow{T} D9 \rightarrow D7 \rightarrow 0$$
.

- * D9, $\overline{D9}$ are just vector bundles on B_3 .
- * Where the tachyon matrix *T* is invertible, the map *T* is onto. The D7 branes are at det(T) = 0, i.e. they are determinantal varieties.
- The construction works such that the extra algebraic cycles are carrying fluxes.

In this description the locus of the *D*7-brane and the fluxes on its worldvolume form one object.

F-theory deconstruction ?

We can write an exact sequence of coherent sheaves

$$\mathbf{0} \,
ightarrow \, \mathcal{E} \, \stackrel{M}{
ightarrow} \, \mathcal{F} \,
ightarrow \, \mathcal{G} \,
ightarrow \, \mathbf{0} \, ,$$

which encodes our Calabi-Yau fourfold together with G_4 as \mathcal{G} .

 \star The matrix *M* is given by

$$M = \begin{pmatrix} 0 & X & \rho & Y_+ \\ -X & 0 & -Y_- & \tau \\ -\rho & Y_- & 0 & Q \\ -Y_+ & -\tau & -Q & 0 \end{pmatrix}$$

Its Pfaffian gives CY₄ in terms of the Weierstrass model.
 On CY₄, the rank of M goes down by two, defining a vector bundle V of rank two.

$$G_4 \sim c_2(V)$$

▲御▶ ▲理▶ ▲理▶ 二臣

Conclusions

- * We have found explicit realizations of G_4 corresponding to F_2 on branes in terms of algebraic cycles in F-theory.
- We can compute the D3-tadpoles and chirality indices. They match with the corresponding type IIB results in the weak coupling limit.
- * This was used by [Weigand et al] to construct chirality inducing flux in SU(5) models.

It seems there is much more to uncover:

- What is the precise relation to the constructions of [Grimm et al.] or [Marsano er al.]?
- * Can G_4 together with the elliptic CY_4 be described as a coherent sheaf ?
- * What is the physical meaning of $M, \mathcal{E}, \mathcal{F}$?

(個) (日) (日) (日)