Exercise Sheet 10 (String theory, LVA Nr. 136.005) due June 20

Exercise 16: Consider the three-dimensional round sphere on which the string is defined (other directions are considered trivial) as follows:
a) the metric is given by:

$$
G_{\mu \nu} d X^{\mu} d X^{\nu}=R^{2}\left(d \psi^{2}+\sin ^{\psi}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right)
$$

b) the antisymmetric B-field is given by

$$
B_{\mu \nu} d X^{\mu} \wedge d X^{\nu}=R^{2}(\psi-\sin \psi \cos \psi) \sin \theta d \theta \wedge d \phi
$$

- Show that

$$
\begin{equation*}
\frac{1}{4 \pi^{2} l_{s}^{2}} \int_{S^{3}} H \in \mathbb{Z}, \quad H=d B \tag{1}
\end{equation*}
$$

and $R^{2} / l^{2}=k \in \mathbb{Z}$.

- Show that $\beta^{G}=\beta^{B}=0$ and the central charge is

$$
c=\beta^{\Phi}=3-\frac{6}{k}+\mathcal{O}\left(1 / k^{2}\right)
$$

Exercise 17: Show that varying the effective closed string action (taken from the lecture) and using

$$
\delta R=\left(R_{\mu \nu}-\nabla_{\mu} \nabla_{\nu}\right) \delta G^{\mu \nu}+G_{\mu \nu} \square \delta G^{\mu \nu}
$$

one obtains the beta-functions as the equations of motion.

