Exercise 5: String equations of motion in conformal gauge
Derive the equations of motion of the fields X_{μ} from the Polyakov action using light-cone coordinates on the world-sheet. You may assume that that the space-time metric is trivial, $G_{\mu \nu}=\eta_{\mu \nu}$, boundary terms vanish, and that the metric on the worldsheet is in conformal gauge.

Exercise 6: Open Strings

As discussed in the lecturem, the general solution to the equations of motion for closed strings is of the form $X=X_{L}+X_{R}$, where

$$
\begin{gather*}
X_{L}=\frac{1}{2} x_{L}^{\mu}+\frac{1}{4 \pi T} p^{\mu} \sigma^{+}+\frac{i}{\sqrt{4 \pi T}} \sum_{n=-\infty, n \neq 0}^{n=\infty} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \sigma^{+}} \tag{1}\\
X_{R}=\frac{1}{2} x_{R}^{\mu}+\frac{1}{4 \pi T} p^{\mu} \sigma^{-}+\frac{i}{\sqrt{4 \pi T}} \sum_{n=-\infty, n \neq 0}^{n=\infty} \frac{1}{n} \tilde{\alpha}_{n}^{\mu} e^{-i n \sigma^{-}} . \tag{2}
\end{gather*}
$$

With

$$
\begin{align*}
\sigma^{+} & =\tau+\sigma \tag{3}\\
\sigma^{-} & =\tau-\sigma \tag{4}
\end{align*}
$$

we have $X(\tau, \sigma)=X(\tau, \sigma+2 \pi)$. Show how to construct a solution describing open strings with von Neumann boundary conditions, $\left.\partial_{\sigma} X^{\mu}\right|_{\sigma=0, \pi}=0$, from the solution above. Hint: given a periodic function in σ on the domain $0 . .2 \pi$ which is also symmetric under $\sigma \rightarrow-\sigma$, we can find a solution respecting Von Neumann boundary conditions by restricting to the interval $0 . . \pi$.

