Exercise 7: Poisson brackets

Show that the Poisson brackes of the coordinates x^{μ} with themselves and the oscillators α_{n}^{μ} and $\tilde{\alpha}_{n}^{\mu}$ vanish by appropriately Fourier transforming the canonical commutation relations

$$
\begin{equation*}
\left\{\Pi^{\mu}(\sigma), X^{\nu}\left(\sigma^{\prime}\right)\right\}_{P B}=\delta\left(\sigma-\sigma^{\prime}\right) \eta^{\mu \nu}, \quad\left\{X^{\mu}(\sigma), X^{\nu}\left(\sigma^{\prime}\right)\right\}_{P B}=0, \quad\left\{\Pi^{\mu}(\sigma), \Pi^{\nu}\left(\sigma^{\prime}\right)\right\}_{P B}=0 \tag{1}
\end{equation*}
$$

Hint: try to consider only those expression that pick out the right terms for you !
Exercise 7: The Hamiltonian in terms of momentum and oscillators
Use the mode expansions of $X=X_{L}+X_{R}$ to show that the Hamiltonian, which in the two-dimensional field theory can be written as

$$
\begin{equation*}
H=\int_{0}^{2 \pi} \mathrm{~d} \sigma\left(\Pi^{\mu} \dot{X}_{\mu}-\mathcal{L}\right) \tag{2}
\end{equation*}
$$

is given by

$$
\begin{equation*}
H=\frac{-p^{\mu} p_{\mu}}{4 \pi T}-\frac{1}{2} \sum_{n=-\infty, n \neq o}^{\infty}\left(\alpha_{n} \cdot \alpha_{-n}+\tilde{\alpha}_{n} \cdot \tilde{\alpha}_{-n}\right)=L_{0}+\tilde{L}_{0} \tag{3}
\end{equation*}
$$

Hint: The Lagrangian is $\mathcal{L}=-\frac{T}{2}\left(\partial_{\tau} X^{\mu} \partial_{\tau} X_{\mu}-\partial_{\sigma} X^{\mu} \partial_{\sigma} X_{\mu}\right)$, so that $\Pi^{\mu}=-T \dot{X}^{\mu}$. Furthermore, you can compute the Hamiltonian at fixed $\tau=0$.

