Exercise 9: The Virasoro algebra

- Show that the Virasoro generators,

$$
\begin{equation*}
L_{n}=-\frac{1}{2} \sum_{k} \alpha_{k} \cdot \alpha_{n-k} \tag{1}
\end{equation*}
$$

satisfy the classical Poisson brackets

$$
\begin{equation*}
\left\{L_{m}, L_{n}\right\}_{P B}=i(m-n) L_{m+n} \tag{2}
\end{equation*}
$$

- Consider 2π periodic functions $f(\theta)$. Reparametrizations

$$
\begin{equation*}
\theta \rightarrow \theta+a(\theta) \tag{3}
\end{equation*}
$$

are generated by

$$
\begin{equation*}
D=i a(\theta) \frac{\partial}{\partial \theta} . \tag{4}
\end{equation*}
$$

Show that the elements of the basis of such generators,

$$
\begin{equation*}
i e^{-i n \theta} \frac{\partial}{\partial \theta} \tag{5}
\end{equation*}
$$

form the same Virasoro algebra, eq.(2). Here, there is commutator of two such transformations acting on an arbirary function instead of the Poisson bracket.

