Exercise Sheet 8 (String Theory, LVA Nr. 136.005) due 23th of may

Exercise 12: (Co)-Homology

- a)

Let \mathbb{R}^{2} be a Hilbert space and take $\vec{v}=\binom{v_{1}}{v_{2}} \in \mathbb{R}^{2}$. Consider the operator Q which acts on v as

$$
Q \vec{v}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
0 & 0
\end{array}\right)\binom{v_{1}}{v_{2}}=\vec{w} .
$$

- Check that $Q^{2}=0$.
- Describe the space of closed and exact vectors.
- Describe the cohomology

$$
\begin{equation*}
\frac{\mathcal{H}_{\text {closed }}}{\mathcal{H}_{\text {exact }}} \tag{2}
\end{equation*}
$$

- b) Consider the torus.

The boundary operator ∂ maps each submanifold to its boundary. Can you see why $\partial^{2}=0$? Describe

$$
\begin{equation*}
\frac{\operatorname{ker}(\partial)}{\operatorname{im}(\partial)} \tag{3}
\end{equation*}
$$

Can you see what happens when we replace the torus by a surface of genus n ?

n

Exercise 13: Grassmann variables
Consider the Grassmann variables $\theta_{i}, \bar{\theta}_{j}$. Any of these anticommutes with any other, so in particular $\theta_{i}^{2}=0$ and $\bar{\theta}_{i}^{2}=0$ holds for any i. Integration is defined by

$$
\begin{equation*}
\int \mathrm{d} \theta_{i}=0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int \mathrm{d} \theta_{i} \theta_{i}=1 \text { (no summation) } \tag{5}
\end{equation*}
$$

so that e.g.

$$
\begin{equation*}
\int \mathrm{d} \theta_{1} \mathrm{~d} \theta_{2} \cdots \mathrm{~d} \theta_{n} \theta_{n} \cdots \theta_{2} \theta_{1}=1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int \mathrm{d} \bar{\theta}_{1} \mathrm{~d} \theta_{1} \bar{\theta}_{1} \theta_{1}=-1 \tag{7}
\end{equation*}
$$

Show that for a hermitian matrix B

$$
\begin{equation*}
\int \mathrm{d} \bar{\theta}_{1} \mathrm{~d} \theta_{1} \mathrm{~d} \bar{\theta}_{2} \mathrm{~d} \theta_{2} \cdots \mathrm{~d} \bar{\theta}_{n} \mathrm{~d} \theta_{n} e^{-\bar{\theta}_{i} B_{i j} \theta_{j}}=\operatorname{det}(B) \tag{8}
\end{equation*}
$$

