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Equivariant dimensional reduction :

A systematic procedure for including internal fluxes on S/R

(instantons and/or monopoles of R-fields)

‘symmetric’ (equivariant) for S

Vortices and gauge fields ; Taubes , ....

The Ginzburg–Landau equations for vortices is related to the

four dimensional Yang–Mills equations via reduction:

any SO(3) symmetric solution to the SU(2) Y–M eqs on R2×S2

yields a solution to the G–L eqs on R2 and vice versa.



Equivariant dimensional reduction :

R-instantons and/or monopoles ‘symmetric’ (equivariant) for S

S-equivariant complex vector bundles over Md

B −→Md = M4 × S/R,

correspond ( 1 to 1 ) to R-equivariant bundles over M4,

E −→M4,

S acts trivially on Md ; standard left translation action on S/R

In general the reduction yields rise quiver gauge theories on M4



A simple example: Complex projective line

G = U(k), S = SU(2) and R = U(1) ⇒ S2 ' SU(2)/U(1)

Embedding S ↪→ G results into decomposing U(k)→
∏m
i=0U(ki),

k =
∑m
i=0 ki, associated with the (m+ 1)-dim I.R. of SU(2)

Gauge theory on M × S2, reduces to into ki × kj blocks

A(x, y) = A(x) + a(y) + Φ(x)β(y) + Φ†(x)β(y),

a = ⊕mi=0am−2i, am−2i charge m− 2i monopole connection



and Φ(x) is a collection of Higgs fields

Dimensional reduction generates a 4-dim Higgs potential,

V (Φ) =

g2

2
trk

 1

4g2r2


m1k0

0 · · · 0
0 (m− 2)1k1

· · · 0
... ... . . . ...
0 0 0 −m1km

− [Φ,Φ†]

2

,

whose minimization gives a vacuum structure

depending on the monopole charges pi = m− 2i



For example: the Ginsburg–Landu action functional

GL(A,Φ) =
∫
R2

tr
(
−

1

4
F2 + DΦ†DΦ + λ(Φ†Φ − 1)2

)

as mentioned self-duality equation are vortex equations:

?F = idE0
−Φ ◦Φ∗ and DΦ = 0



M a smooth manifold; CP1
q the quantum projective line

Characterize vector bundles over the quantum space

M := CP1
q ×M

equivariant under an action of the quantum group SUq(2)

These are finitely-generated and projective SUq(2)-equivariant

modules over the algebra of functions

A(M ) = A(CP1
q )⊗A(M)



Describe the dimensional reduction of invariant connections

In particular, Yang–Mills gauge theory on A(M ) is reduced to

a type of Yang–Mills–Higgs theory on the manifold M

The equations of motion give q-deformations of known vortex

equations, whose solutions possess remarkable properties

In particular de-singularization of moduli spaces



deformation parameter q ∈ R>0 q ' q−1

A(SUq(2)):= ∗-algebra generated by a and c, with relations

UU∗ = U∗U = 1 U =

(
a −qc∗
c a∗

)

ac = qca, ac∗ = qc∗a, cc∗ = c∗c,

a∗a+ c∗c = aa∗+ q2cc∗ = 1

Hopf ∗-algebra structure on A(SUq(2)):

∆U = U ⊗ U S(U) = U∗ ε(U) = 1



These dualize classical operations

A1 = A(SU(2)), polynomial functions on SU(2)

∆ : A1 → A1 ⊗A1 (∆f)(x⊗ y) = f(xy)

S : A1 → A1 (Sf)(x) = f(x−1)

ε : A1 → C (εf) = f(e)



A (right) ∗-action: α : U(1)→ Aut(A(SUq(2)))

αu

(
a −qc∗
c a∗

)
=

(
a −qc∗
c a∗

)(
u 0
0 u∗

)
, for u ∈ U(1).

αu

(
a
c

)
=

(
a
c

)
u, αu

(
a∗

c∗

)
= u∗

(
a∗

c∗

)
, for u ∈ U(1).

The invariant elements form a subalgebra of A(SUq(2)),

the coordinate algebra A(S2
q ) of the standard Podleś sphere S2

q

A(S2
q ) = A(SUq(2))U(1)



the algebra inclusion

A(S2
q ) ↪→ A(SUq(2))

is a noncommutative principal bundle

As a set of generators for A(S2
q ) we may take

B− := ac∗, B+ := ca∗, B0 := cc∗.

A natural complex structure on the 2-sphere S2
q

for the unique 2-dimensional SUq(2)-covariant calculus;

S2
q becomes a quantum Riemannian sphere or qpl CP1

q



A vector space decomposition

A(SUq(2)) =
⊕
n∈Z
Ln , (F)

Ln := A(SUq(2)) �ρn C '
{
x ∈ A(SUq(2))

∣∣∣ αu(x) = x (u∗)n
}

for u ∈ U(1)

Each Ln is a finitely-generated projective (right, say) A(CP1
q )-

module of rank one

module of SUq(2)-equivariant sections of a line bundles over the

quantum projective line CP1
q with degree (monopole charge) −n



Enlarging the space

For a smooth manifold M ,

consider M := CP1
q ×M with ‘coordinate’ algebra,

A(M ) := A(CP1
q )⊗A(M) .

A coaction of SUq(2) on A(M );

trivially on A(M) and with canonical coaction ∆L on A(CP1
q ):

∆ : A(M ) −→ A(SUq(2))⊗A(M )



A SUq(2)-equivariant right A(M )-module E carries a coaction

δ : E −→ A(SUq(2))⊗ E

compatible with the coaction ∆ of A(SUq(2)) on A(M ),

δ(ϕ · f ) = δ(ϕ) · ∆ ( f ) for all ϕ ∈ E , f ∈ A(M )

Relate A(SUq(2))-equivariant bundles E on the q. space M

to U(1)-equivariant bundles E over the manifold M



Proposition 1. Every finitely-generated SUq(2)-equivariant pro-

jective module E over A(M ) equivariantly decomposes as

E =
m⊕
i=0

E i =
m⊕
i=0

Lm−2i ⊗ Ei

( and uniquely up to isomorphism ), for some m ∈ N0;

Ei are modules of sections of (usual) vector bundles Ei over M

with trivial SUq(2) coactions;

Ln are the above modules of sections of SUq(2)-equivariant line

bundles over CP1
q .

( there are also morphisms Φi ∈ HomA(M )( E i−1, E i),

of A(M )-modules, coming from the SUq(2)-coaction ).



Lemma 2. A unitary connection ∇ on ( E , h ) decomposes as

∇ =
m∑
i=0

(
∇ i +

∑
j<i

(
β ji − β ∗ji

))
,

where:

1. Each ∇ i is a unitary connection on ( E i, h i), i.e.

h i(∇ iϕ,ψ) + h i(ϕ, ∇ iψ) = d
(
h i(ϕ,ψ)

)
for ϕ,ψ ∈ E i .

2. For j 6= i,

β ji ∈ HomA(M )( E i,Ω1( E j)) is the adjoint of −β ij, i.e.

h (β jiϕ,ψ) + h (ϕ, β ijψ) = 0 for ϕ ∈ E i , ψ ∈ E j .



Integrable connections

M be a complex manifold, with standard complex structure ;

a complex structure for CP1
q

a complex structure for A(M ) = A(CP1
q )⊗A(M).

If ∇ is a connection, the (0,2)-component of the curvature

F
0,2
∇ ∈ HomA(M )( E ,Ω0,2( E )), Ω0,2( E ) = E ⊗Ω0,2(M )

The connection ∇ is then integrable if F0,2
∇ = 0.

In this case the pair ( E , ∇ ) is a holomorphic vector bundle.



Gauge theory

Let C( E ) be the space of unitary connections on an SUq(2)-

equivariant hermitian A(M )-module ( E , h ).

The Y–M action functional YM : C( E )→ [0,∞) is as usual

YM(∇ ) =
∥∥∥F∇ ∥∥∥2

h
(3)

from a suitable L2-norm ‖−‖h on the space HomA(M )( E ,Ωp( E ))



Dimensional reduction of the Yang–Mills action functional

Proposition 4.
The functional YM |C( E )SUq(2) on the quantum space M , when

restricted to SUq(2)-invariant unitary connections coincides with
the Y–M–H functional YMHq,m on M :

YMHq,m(∇, φ) =
m∑
i=0

( ∥∥∥F∇i∥∥∥2

hi
+
(
q2 + 1

) ∥∥∥∇i−1,i(φi)
∥∥∥2

hi−1,i

+
∥∥∥φ∗i+1 ◦φi+1− q2 φi ◦φ∗i − q

m−2i+1 [m−2i]q idEi

∥∥∥2

hi

)
,

φ0 := 0 =: φ∗0 and φm+1 := 0 =: φ∗m+1



with

• F∇i = ∇2
i , the curvature of the connection ∇i ∈ C(Ei) on M

• ∇i−1,i the connection on HomA(M)(Ei−1, Ei) induced by ∇i−1
on Ei−1 and ∇i on Ei and given by

∇i−1,i(φi) = φi ◦ ∇i−1 −∇i ◦ φi .

Symbol

[x]q =
qx − q−x

q − q1
q 6= 1

This functional restricts to a map on gauge orbits

YMHq,m : C ( E )
/

U ( E )→ [0,∞)



Characterize stable critical points of the Y–M functional (3) on
M , and study their reduction to configurations on M .

A Hodge operator (as a bimodule map)

? := ?̂⊗ ? : Ωp(M ) −→ Ω2(d+1)−p(M )

Lemma 5. Let ∇ ∈ C( E ) be a unitary connection such that

?F∇ = −F∇ ∧Σ (6)

for Σ ∈ Ω2d−2(M ) a closed form of degree 2d− 2.

Then ∇ is a critical point of the Y–M functional and

YM(∇ ) = Top2( E ,Σ) := −
(
F∇ , ? (F∇ ∧Σ)

)
h



The functional Top2( E ,Σ) does not depend on the choice of ∇

It defines a ‘topological action’ depending only on the A(M )-

module E and the closed form Σ

Provides an a priori lower bound on the Y–M functional

The gauge invariant equation (6) is the Σ-anti-selfduality eqn

The gauge equivalence classes in C( E )
/
U( E ) of solutions are

generalized instantons or Σ-instantons



1. Deformations of holomorphic triples and stable pairs

A holomorphic triple (E0, E1, φ) on a compact Kähler manifold
(M,ω) is a pair of holomorphic vector bundles E0, E1 over M and
a holomorphic morphism

E0
φ−→ E1

With φ := φ1, we get

Fω∇0
= q2

(
idE0
−q−2 φ ◦φ∗

)
and Fω∇1

= −
(

idE1
−q2 φ∗ ◦φ

)
(♦)

The degrees of the bundles are related by

deg(E0) + q−2 deg(E1) = q2 rank(E0)− q−2 rank(E1)

Much more stringent than the undeformed stability condition



2. q-instantons

Let (M,ω) be a Kähler surface. Set E0 ' E1 =: E.

Since φ is a holomorphic section, ∇∂0,1(φ) = 0;

we have ∇0 = ∇1 =: ∇ and both equations in (♦) simplify to

Fω∇ =
(
q2 − 1

)
idE

a deformation of the hermitian Yang–Mills equation on M , and

hence of the standard anti-selfduality equations ?F∇ = −F∇
Its gauge equivalence classes of solutions called q-instantons



When M = C2, the constant shift in the moment map condition

from µC = 0 to µC = (q2 − 1) idE

induces a shift in the corresponding real ADHM equation.

NS: this modification arises in the equations which determine

instantons on a certain noncommutative deformation of R4

Here we have the same sort of resolution of instanton moduli

space via our q-deformed dimensional reduction procedure over

the quantum projective line CP1
q .



Summing up:

Characterized vector bundles over the quantum space

M := CP1
q ×M

equivariant under an action of the quantum group SUq(2)

Described the dimensional reduction of invariant connections

In particular, Yang–Mills gauge theory on A(M ) is reduced to a

type of Yang–Mills–Higgs theory on the manifold M

The equations of motion give q-deformations of known vortex

equations, whose solutions possess remarkable properties.


