Noncommutativity and Physics: Spacetime Quantum Geometry
Bayrischzell, May 25-28, 2012

Equivariant dimensional reduction over noncommutative spaces

Giovanni Landi

Trieste

Dimensional reduction over the quantum sphere
and non-abelian q-vortices
G. L., R.J. Szabo

Commun. Math. Phys. 308 (2011)

Holomorphic structures on the quantum projective line M. Khalkhali, G. L., W.D. van Suijlekom Int'l Mathematics Research Notices (2010),
generalizes work by: Alvarez-Consul, Bradlow, Garcia-Prada,

Equivariant dimensional reduction :

A systematic procedure for including internal fluxes on S / R (instantons and/or monopoles of R-fields)
'symmetric' (equivariant) for S

Vortices and gauge fields ; Taubes,

The Ginzburg-Landau equations for vortices is related to the four dimensional Yang-Mills equations via reduction:
any $S O(3)$ symmetric solution to the $S U(2) \mathrm{Y}-\mathrm{M}$ eqs on $\mathbb{R}^{2} \times S^{2}$
yields a solution to the $G-L$ eqs on \mathbb{R}^{2} and vice versa.

Equivariant dimensional reduction :
R-instantons and/or monopoles 'symmetric' (equivariant) for S
S-equivariant complex vector bundles over M_{d}

$$
B \longrightarrow M_{d}=M_{4} \times S / R
$$

correspond (1 to 1) to R-equivariant bundles over M_{4},

$$
E \longrightarrow M_{4}
$$

S acts trivially on M_{d}; standard left translation action on S / R

In general the reduction yields rise quiver gauge theories on M_{4}

A simple example: Complex projective line
$G=U(k), \quad S=S U(2)$ and $R=U(1) \quad \Rightarrow S^{2} \simeq S U(2) / U(1)$
Embedding $S \hookrightarrow G$ results into decomposing $U(k) \rightarrow \prod_{i=0}^{m} U\left(k_{i}\right)$,
$k=\sum_{i=0}^{m} k_{i}$, associated with the $(m+1)$-dim I.R. of $S U(2)$

Gauge theory on $M \times S^{2}$, reduces to into $k_{i} \times k_{j}$ blocks

$$
A(x, y)=A(x)+a(y)+\Phi(x) \bar{\beta}(y)+\Phi^{\dagger}(x) \beta(y)
$$

$a=\oplus_{i=0}^{m} a_{m-2 i}, \quad a_{m-2 i}$ charge $m-2 i$ monopole connection
and $\Phi(x)$ is a collection of Higgs fields

Dimensional reduction generates a 4-dim Higgs potential,

$$
\begin{aligned}
& V(\Phi)= \\
& \frac{g^{2}}{2} \operatorname{tr}_{k}\left(\frac{1}{4 g^{2} r^{2}}\left(\begin{array}{cccc}
m \mathbf{1}_{k_{0}} & 0 & \cdots & 0 \\
0 & (m-2) \mathbf{1}_{k_{1}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & -m \mathbf{1}_{k_{m}}
\end{array}\right)-\left[\Phi, \Phi^{\dagger}\right]\right)^{2}
\end{aligned}
$$

whose minimization gives a vacuum structure depending on the monopole charges $p_{i}=m-2 i$

For example: the Ginsburg-Landu action functional

$$
G L(A, \Phi)=\int_{\mathbb{R}^{2}} \operatorname{tr}\left(-\frac{1}{4} F^{2}+D \Phi^{\dagger} D \Phi+\lambda\left(\Phi^{\dagger} \Phi-1\right)^{2}\right)
$$

as mentioned self-duality equation are vortex equations:

$$
\star F=\mathrm{id}_{\mathcal{E}_{0}}-\Phi \circ \Phi^{*} \quad \text { and } \quad D \Phi=0
$$

M a smooth manifold; $\quad \mathbb{C} P_{q}^{1}$ the quantum projective line

Characterize vector bundles over the quantum space

$$
\underline{M}:=\mathbb{C} P_{q}^{1} \times M
$$

equivariant under an action of the quantum group $\mathrm{SU}_{q}(2)$

These are finitely-generated and projective $\mathrm{SU}_{q}(2)$-equivariant modules over the algebra of functions

$$
\mathcal{A}(\underline{M})=\mathcal{A}\left(\mathbb{C} P_{q}^{1}\right) \otimes \mathcal{A}(M)
$$

Describe the dimensional reduction of invariant connections

In particular, Yang-Mills gauge theory on $\mathcal{A}(\underline{M})$ is reduced to
a type of Yang-Mills-Higgs theory on the manifold M

The equations of motion give q-deformations of known vortex equations, whose solutions possess remarkable properties

In particular de-singularization of moduli spaces
deformation parameter $\quad q \in \mathbb{R}_{>0} \quad q \simeq q^{-1}$
$\mathcal{A}\left(\mathrm{SU}_{q}(2)\right):=*$-algebra generated by a and c, with relations

$$
\begin{gathered}
U U^{*}=U^{*} U=1 \quad U=\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right) \\
a c=q c a, \quad a c^{*}=q c^{*} a, \quad c c^{*}=c^{*} c, \\
a^{*} a+c^{*} c=a a^{*}+q^{2} c c^{*}=1
\end{gathered}
$$

Hopf *-algebra structure on $\mathcal{A}\left(\mathrm{SU}_{q}(2)\right)$:

$$
\Delta U=U \otimes U \quad S(U)=U^{*} \quad \varepsilon(U)=1
$$

These dualize classical operations
$\mathcal{A}_{1}=\mathcal{A}(\operatorname{SU}(2)), \quad$ polynomial functions on $\operatorname{SU}(2)$

$$
\begin{aligned}
\Delta: \mathcal{A}_{1} \rightarrow \mathcal{A}_{1} \otimes \mathcal{A}_{1} & (\Delta f)(x \otimes y)=f(x y) \\
S: \mathcal{A}_{1} \rightarrow \mathcal{A}_{1} & (S f)(x)=f\left(x^{-1}\right) \\
\varepsilon: \mathcal{A}_{1} \rightarrow \mathbb{C} & (\varepsilon f)=f(e)
\end{aligned}
$$

A (right) $*$-action: $\quad \alpha: \mathrm{U}(1) \rightarrow \operatorname{Aut}\left(\mathcal{A}\left(\mathrm{SU}_{q}(2)\right)\right)$

$$
\begin{gathered}
\alpha_{u}\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right)=\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right)\left(\begin{array}{cc}
u & 0 \\
0 & u^{*}
\end{array}\right), \quad \text { for } \quad u \in \mathrm{U}(1) . \\
\alpha_{u}\binom{a}{c}=\binom{a}{c} u, \quad \alpha_{u}\binom{a^{*}}{c^{*}}=u^{*}\binom{a^{*}}{c^{*}}, \quad \text { for } \quad u \in \mathrm{U}(1) .
\end{gathered}
$$

The invariant elements form a subalgebra of $\mathcal{A}\left(\mathrm{SU}_{q}(2)\right)$,
the coordinate algebra $\mathcal{A}\left(\mathrm{S}_{q}^{2}\right)$ of the standard Podles sphere S_{q}^{2}

$$
\mathcal{A}\left(\mathrm{S}_{q}^{2}\right)=\mathcal{A}\left(\mathrm{SU}_{q}(2)\right)^{U(1)}
$$

the algebra inclusion

$$
\mathcal{A}\left(\mathrm{S}_{q}^{2}\right) \hookrightarrow \mathcal{A}\left(\mathrm{SU}_{q}(2)\right)
$$

is a noncommutative principal bundle
As a set of generators for $\mathcal{A}\left(\mathrm{S}_{q}^{2}\right)$ we may take

$$
B_{-}:=a c^{*}, \quad B_{+}:=c a^{*}, \quad B_{0}:=c c^{*}
$$

A natural complex structure on the 2 -sphere S_{q}^{2}
for the unique 2-dimensional $\mathrm{SU}_{q}(2)$-covariant calculus;
S_{q}^{2} becomes a quantum Riemannian sphere or $\mathrm{qpI} \mathbb{C P}{ }_{q}^{1}$

A vector space decomposition

$$
\begin{gathered}
\mathcal{A}\left(\mathrm{SU}_{q}(2)\right)=\bigoplus_{n \in \mathbb{Z}} \mathcal{L}_{n} \\
\mathcal{L}_{n}:=\mathcal{A}\left(\mathrm{SU}_{q}(2)\right) \boxtimes_{\rho_{n}} \mathbb{C} \simeq\left\{x \in \mathcal{A}\left(\mathrm{SU}_{q}(2)\right) \mid \alpha_{u}(x)=x\left(u^{*}\right)^{n}\right\}
\end{gathered}
$$

for $u \in \mathrm{U}(1)$

Each \mathcal{L}_{n} is a finitely-generated projective (right, say) $\mathcal{A}\left(\mathbb{C} P_{q}^{1}\right)$ module of rank one
module of $\mathrm{SU}_{q}(2)$-equivariant sections of a line bundles over the quantum projective line $\mathbb{C} P_{q}^{1}$ with degree (monopole charge) $-n$

Enlarging the space

For a smooth manifold M,
consider $\underline{M}:=\mathbb{C} P_{q}^{1} \times M$ with 'coordinate' algebra,

$$
\mathcal{A}(\underline{M}):=\mathcal{A}\left(\mathbb{C} P_{q}^{1}\right) \otimes \mathcal{A}(M)
$$

A coaction of $\mathrm{SU}_{q}(2)$ on $\mathcal{A}(\underline{M})$;
trivially on $\mathcal{A}(M)$ and with canonical coaction Δ_{L} on $\mathcal{A}\left(\mathbb{C P}{ }_{q}^{1}\right)$:

$$
\underline{\Delta}: \mathcal{A}(\underline{M}) \longrightarrow \mathcal{A}\left(\mathrm{SU}_{q}(2)\right) \otimes \mathcal{A}(\underline{M})
$$

A $\mathrm{SU}_{q}(2)$-equivariant right $\mathcal{A}(\underline{M})$-module $\underline{\mathcal{E}}$ carries a coaction

$$
\delta: \underline{\mathcal{E}} \longrightarrow \mathcal{A}\left(\mathrm{SU}_{q}(2)\right) \otimes \underline{\mathcal{E}}
$$

compatible with the coaction $\underline{\Delta}$ of $\mathcal{A}\left(\mathrm{SU}_{q}(2)\right)$ on $\mathcal{A}(\underline{M})$,

$$
\delta(\varphi \cdot \underline{f})=\delta(\varphi) \cdot \underline{\Delta}(\underline{f}) \quad \text { for all } \quad \varphi \in \underline{\mathcal{E}}, \underline{f} \in \mathcal{A}(\underline{M})
$$

Relate $\mathcal{A}\left(\mathrm{SU}_{q}(2)\right)$-equivariant bundles $\underline{\mathcal{E}}$ on the q. space \underline{M}
to $\mathrm{U}(1)$-equivariant bundles E over the manifold M

Proposition 1. Every finitely-generated $\mathrm{SU}_{q}(2)$-equivariant projective module $\underline{\mathcal{E}}$ over $\mathcal{A}(\underline{M})$ equivariantly decomposes as

$$
\underline{\mathcal{E}}=\bigoplus_{i=0}^{m} \underline{\mathcal{E}}_{i}=\bigoplus_{i=0}^{m} \mathcal{L}_{m-2 i} \otimes \mathcal{E}_{i}
$$

(and uniquely up to isomorphism), for some $m \in \mathbb{N}_{0}$;
\mathcal{E}_{i} are modules of sections of (usual) vector bundles E_{i} over M with trivial $\mathrm{SU}_{q}(2)$ coactions;
\mathcal{L}_{n} are the above modules of sections of $\mathrm{SU}_{q}(2)$-equivariant line bundles over $\mathbb{C P}{ }_{q}^{1}$.
(there are also morphisms $\quad \Phi_{i} \in \operatorname{Hom}_{\mathcal{A}(\underline{M})}\left(\underline{\mathcal{E}}_{i-1}, \underline{\mathcal{E}}_{i}\right)$, of $\mathcal{A}(\underline{M})$-modules, coming from the $\mathrm{SU}_{q}(2)$-coaction $)$.

Lemma 2. A unitary connection $\underline{\nabla}$ on ($\underline{\mathcal{E}}, \underline{h}$) decomposes as

$$
\underline{\nabla}=\sum_{i=0}^{m}\left(\underline{\nabla}_{i}+\sum_{j<i}\left(\underline{\beta}_{j i}-\underline{\beta}_{j i}^{*}\right)\right)
$$

where:

1. Each $\underline{\nabla}_{i}$ is a unitary connection on $\left(\underline{\mathcal{E}}_{i}, \underline{h}_{i}\right)$, i.e. $\underline{h}_{i}\left(\underline{\nabla}_{i} \varphi, \psi\right)+\underline{h}_{i}\left(\varphi, \underline{\nabla}_{i} \psi\right)=\underline{\mathrm{d}}\left(\underline{h}_{i}(\varphi, \psi)\right) \quad$ for $\quad \varphi, \psi \in \underline{\mathcal{E}}_{i}$.
2. For $j \neq i$,

$$
\begin{aligned}
& \underline{\beta}_{j i} \in \operatorname{Hom}_{\mathcal{A}(\underline{M})}\left(\underline{\mathcal{E}}_{i}, \Omega^{1}\left(\underline{\mathcal{E}}_{j}\right)\right) \text { is the adjoint of }-\underline{\beta}_{i j} \text {, i.e. } \\
& \quad \underline{h}\left(\underline{\beta}_{j i} \varphi, \psi\right)+\underline{h}\left(\varphi, \underline{\beta}_{i j} \psi\right)=0 \quad \text { for } \quad \varphi \in \underline{\mathcal{E}}_{i}, \psi \in \underline{\mathcal{E}}_{j} .
\end{aligned}
$$

Integrable connections
M be a complex manifold, with standard complex structure ; a complex structure for $\mathbb{C P}_{q}^{1}$
a complex structure for $\mathcal{A}(\underline{M})=\mathcal{A}\left(\mathbb{C P}_{q}^{1}\right) \otimes \mathcal{A}(M)$.
If $\underline{\nabla}$ is a connection, the (0,2)-component of the curvature

$$
F_{\underline{\underline{Z}}}^{0,2} \in \operatorname{Hom}_{\mathcal{A}(\underline{M})}\left(\underline{\mathcal{E}}, \Omega^{0,2}(\underline{\mathcal{E}})\right), \quad \Omega^{0,2}(\underline{\mathcal{E}})=\mathcal{E} \otimes \Omega^{0,2}(\underline{M})
$$

The connection $\underline{\nabla}$ is then integrable if $F_{\underline{\nabla}}^{0,2}=0$.
In this case the pair $(\underline{\mathcal{E}}, \underline{\nabla})$ is a holomorphic vector bundle.

Gauge theory

Let $\mathcal{C}(\underline{\mathcal{E}})$ be the space of unitary connections on an $\mathrm{SU}_{q}(2)$ equivariant hermitian $\mathcal{A}(\underline{M})$-module $(\underline{\mathcal{E}}, \underline{h})$.

The $\mathrm{Y}-\mathrm{M}$ action functional $\mathrm{YM}: \mathcal{C}(\underline{\mathcal{E}}) \rightarrow[0, \infty)$ is as usual

$$
\begin{equation*}
\mathrm{YM}(\underline{\nabla})=\left\|F_{\underline{\nabla}}\right\|_{\underline{h}}^{2} \tag{3}
\end{equation*}
$$

from a suitable L^{2}-norm $\|-\|_{\underline{h}}$ on the space $\operatorname{Hom}_{\mathcal{A}(\underline{M})}\left(\underline{\mathcal{E}}, \Omega^{p}(\underline{\mathcal{E}})\right)$

Dimensional reduction of the Yang-Mills action functional

Proposition 4.

The functional $\left.\mathrm{YM}\right|_{\mathcal{C}(\underline{\mathcal{E}})} \mathrm{SU}_{q(2)}$ on the quantum space \underline{M}, when restricted to $\mathrm{SU}_{q}(2)$-invariant unitary connections coincides with the $\mathrm{Y}-\mathrm{M}-\mathrm{H}$ functional $\mathrm{YMH}_{q, m}$ on M :

$$
\begin{aligned}
& \mathrm{YMH}_{q, m}(\nabla, \phi)=\sum_{i=0}^{m}\left(\left\|F_{\nabla_{i}}\right\|_{h_{i}}^{2}+\left(q^{2}+1\right)\left\|\nabla_{i-1, i}\left(\phi_{i}\right)\right\|_{h_{i-1, i}}^{2}\right. \\
& \left.+\left\|\phi_{i+1}^{*} \circ \phi_{i+1}-q^{2} \phi_{i} \circ \phi_{i}^{*}-q^{m-2 i+1}[m-2 i]_{q} \mathrm{id}_{\mathcal{E}_{i}}\right\|_{h_{i}}^{2}\right) \\
& \phi_{0}:=0=: \phi_{0}^{*} \quad \text { and } \quad \phi_{m+1}:=0=: \phi_{m+1}^{*}
\end{aligned}
$$

with

- $F_{\nabla_{i}}=\nabla_{i}^{2}$, the curvature of the connection $\nabla_{i} \in \mathcal{C}\left(\mathcal{E}_{i}\right)$ on M
- $\nabla_{i-1, i}$ the connection on $\operatorname{Hom}_{\mathcal{A}(M)}\left(\mathcal{E}_{i-1}, \mathcal{E}_{i}\right)$ induced by ∇_{i-1} on \mathcal{E}_{i-1} and ∇_{i} on \mathcal{E}_{i} and given by

$$
\nabla_{i-1, i}\left(\phi_{i}\right)=\phi_{i} \circ \nabla_{i-1}-\nabla_{i} \circ \phi_{i}
$$

Symbol

$$
[x]_{q}=\frac{q^{x}-q^{-x}}{q-q^{1}} \quad q \neq 1
$$

This functional restricts to a map on gauge orbits

$$
\mathrm{YMH}_{q, m}: \mathscr{C}(\underline{\mathcal{E}}) / \mathscr{U}(\underline{\mathcal{E}}) \rightarrow[0, \infty)
$$

Characterize stable critical points of the $Y-M$ functional (3) on \underline{M}, and study their reduction to configurations on M.

A Hodge operator (as a bimodule map)

$$
\underline{\star}:=\hat{\star} \otimes \star: \Omega^{p}(\underline{M}) \longrightarrow \Omega^{2(d+1)-p}(\underline{M})
$$

Lemma 5. Let $\underline{\nabla} \in \mathcal{C}(\underline{\mathcal{E}})$ be a unitary connection such that

$$
\begin{equation*}
\underline{\star} F_{\underline{\nabla}}=-F_{\underline{\nabla}} \wedge \Sigma \tag{6}
\end{equation*}
$$

for $\Sigma \in \Omega^{2 d-2}(\underline{M})$ a closed form of degree $2 d-2$.

Then $\underline{\nabla}$ is a critical point of the $Y-M$ functional and

$$
\mathrm{YM}(\underline{\nabla})=\operatorname{Top}_{2}(\underline{\mathcal{E}}, \Sigma):=-\left(F_{\underline{\nabla}}, \underline{\star}\left(F_{\underline{\nabla}} \wedge \Sigma\right)\right)_{\underline{h}}
$$

The functional $\operatorname{Top}_{2}(\underline{\mathcal{E}}, \Sigma)$ does not depend on the choice of $\underline{\nabla}$
It defines a 'topological action' depending only on the $\mathcal{A}(\underline{M})$ module $\underline{\mathcal{E}}$ and the closed form Σ

Provides an a priori lower bound on the $\mathrm{Y}-\mathrm{M}$ functional

The gauge invariant equation (6) is the Σ-anti-selfduality eqn

The gauge equivalence classes in $\mathcal{C}(\underline{\mathcal{E}}) / \mathcal{U}(\underline{\mathcal{E}})$ of solutions are generalized instantons or \sum-instantons

1. Deformations of holomorphic triples and stable pairs

A holomorphic triple $\left(\mathcal{E}_{0}, \mathcal{E}_{1}, \phi\right)$ on a compact Kähler manifold (M, ω) is a pair of holomorphic vector bundles $\mathcal{E}_{0}, \mathcal{E}_{1}$ over M and a holomorphic morphism

$$
\mathcal{E}_{0} \xrightarrow{\phi} \mathcal{E}_{1}
$$

With $\phi:=\phi_{1}$, we get

$$
F_{\nabla_{0}}^{\omega}=q^{2}\left(\operatorname{id}_{\mathcal{E}_{0}}-q^{-2} \phi \circ \phi^{*}\right) \quad \text { and } \quad F_{\nabla_{1}}^{\omega}=-\left(\operatorname{id}_{\mathcal{E}_{1}}-q^{2} \phi^{*} \circ \phi\right)(\diamond)
$$

The degrees of the bundles are related by

$$
\operatorname{deg}\left(\mathcal{E}_{0}\right)+q^{-2} \operatorname{deg}\left(\mathcal{E}_{1}\right)=q^{2} \operatorname{rank}\left(\mathcal{E}_{0}\right)-q^{-2} \operatorname{rank}\left(\mathcal{E}_{1}\right)
$$

Much more stringent than the undeformed stability condition
2. q-instantons

Let (M, ω) be a Kähler surface. Set $\mathcal{E}_{0} \simeq \mathcal{E}_{1}=: \mathcal{E}$.

Since ϕ is a holomorphic section, $\nabla_{0,1}^{\bar{\partial}}(\phi)=0$;
we have $\nabla_{0}=\nabla_{1}=: \nabla$ and both equations in (\diamond) simplify to

$$
F_{\nabla}^{\omega}=\left(q^{2}-1\right) \mathrm{id}_{\mathcal{E}}
$$

a deformation of the hermitian Yang-Mills equation on M, and hence of the standard anti-selfduality equations $\star F_{\nabla}=-F_{\nabla}$ Its gauge equivalence classes of solutions called q-instantons

When $M=\mathbb{C}^{2}$, the constant shift in the moment map condition

$$
\text { from } \mu_{\mathcal{C}}=0 \text { to } \mu_{\mathcal{C}}=\left(q^{2}-1\right) \text { id }_{\mathcal{E}}
$$

induces a shift in the corresponding real ADHM equation.

NS: this modification arises in the equations which determine instantons on a certain noncommutative deformation of \mathbb{R}^{4}

Here we have the same sort of resolution of instanton moduli space via our q-deformed dimensional reduction procedure over the quantum projective line $\mathbb{C P}{ }_{q}^{1}$.

Summing up:

Characterized vector bundles over the quantum space

$$
\underline{M}:=\mathbb{C} P_{q}^{1} \times M
$$

equivariant under an action of the quantum $\operatorname{group} \mathrm{SU}_{q}(2)$
Described the dimensional reduction of invariant connections

In particular, Yang-Mills gauge theory on $\mathcal{A}(\underline{M})$ is reduced to a type of Yang-Mills-Higgs theory on the manifold M

The equations of motion give q-deformations of known vortex equations, whose solutions possess remarkable properties.

