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MAIN QUESTION:

How to introduce the free quantum fields covariant under de-
formed quantum Poincaré symmetries?

How to obtain deformed quantum free fields with covariant
c-number commutator?

MAIN TOOL:

Necessity of introducing the intertwiner R21 = R(2) ⊗R(1)
by using universal R-matrix R (R ≡ R12 = R(1) ⊗R(2) ≡
≡

∑
J

RJ
(1)
⊗RJ

(2)
)

U ⊗ V ←→ R21 ◦ (V ⊗ U) = (R(2)V )⊗ (R(1)U)

Covariant braided commutator:

[A, B]  [A, B]
BR

= AB −R21(BA)
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1. INTRODUCTION

Dopplicher -
Fredenhagen -
Roberts (1994-5)

Due to quantum effects the space-time
can not be measurable in classical way
- is becoming noncommutative

DFR:
canonical
space-time

algebra

[x̂µ, x̂ν] = i
κ2Σ̂µν [Σ̂µν, x̂ρ] = 0

Effectively one inserts Σ̂µν = θ
(0)
µν · 1
↑

numerical
tensor

In general case:

[xµ, xν]=0⇒ [x̂µ, x̂ν] =
i

κ2
θ
(0)
µν (κx̂)=θ

(0)
µν +

1

κ
θ
(1)
µν

ρx̂ρ+· · ·

κ-fundamental mass parameter; θ
(0)
µν , θ

(1)
µν

ρ - dimensionless.
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Two approaches to symmetries of the theories with noncom-
mutative space-time x̂µ:

a) Classical Poincaré symmetries preserved, and noncommuta-
tivity of x̂µ introduces the breaking of classical Poincaré sym-
metries (DFG (1994-5). This approach is used in the majority
of papers on NC QFT starting with Filk (1996), modification
of Wightman framework (Grosse, Lechner (2008); Buchholz,
Summers (2008) ... ). In particular

- for canonical deformation (θµν(x̂) = θ
(0)
µν = const.)

O(3, 1)→ O(2)⊗ O(1, 1) (Lorentz symmetry breaking)

- for Lie-algebraic deformation (θµν(x̂) = θ
(1)
µν

ρx̂ρ) both Lorentz
and classical translation symmetry broken.
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The parameters θ
(0)
µν , θ

(1)
µν

ρ, ... appear as the Poincaré symme-
try breaking parameters, reducing Poincaré symmetry to some
unbroken algebra (in general case any Poincaré symmetry can
be broken).

Remark: As remedy for regaining broken symmetries one con-

siders θ
(0)
µν , θ

(1)
µν

ρ as new tensorial commutative coordinates

xµ −→ (x̂µ, θ
(0)
µν , θ

(1)
µν

ρ, ...)

Then one extracts physically meaningful quantities by averaging

over arbitrary values of θ
(0)
µν , θ

(1)
µν

ρ (DFR (1994-5), Carlson et
all (2002), Okumura (2003), Da̧browski, Piacitelli (2007-2011))

Problem: the meaning of additional coordinates.
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b) One considers the space-time noncommutativity relations as
being the same in all deformed Poincaré symmetry frames

Classical Poincaré

Hopf algebra

(with primitive, symmetric

coproducts)

−−−−−→
deformed

Quantum Poincaré

Hopf algebra

(with nonsymmetric coproduct

described by universal R-matrix)

For some noncommutative space-time algebras one can find the
deformation of Poincaré symmetries providing covariance

Canonical DSR

deformation:

NC relation

(in 1994)
−→

canonically deformed

Poincaré algebra

(in 2004)

In opposite direction one can look for the NC space-time algebra
which is covariant under given quantum Poincaré algebra

κ-deformation:

κ-deformed

Poincaré algebra

(in 1991)

−→
κ-deformed Minkowski

space

(in 1993-94)
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Advantage of the approach with quantum symmetries: the NC
space-time structures covariant under quantum Hopf-algebraic
symmetries are less arbitrary

restrictions on

quantum deformations

of Poincaré symmetries

−→
restrictions on possible

deformed Minkowski

space-times
⇑ ⇑

Partial classifications:

S.L. Woronowicz +

S. Zakrzewski (1996)

−→
Partial results - for Lie-

algebraic deformations

e.g. M. Woronowicz, J.L. (2006)

If we introduce NC quantum fields the noncommutativity of

space-time (eipx→ eipx̂ ∈ M̂) is not sufficient - to get fields co-
variant under quantum Poincaré symmetries one should deform
as well the field oscillators algebra H and introduce braiding

between M̂ and Ĥ. We present the scheme with complete de-
formed covariance.
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2. NONCOMMUTATIVE FREE QUANTUM FIELDS

AND BRAIDED PRODUCT

From classical to deformed free fields:

φ(x) = 1
(2π)3

∫
d4p δ(p2 −m)eipx ·A(p)⇒

⇒ ϕ̂(x̂) = 1
(2π)3

∫
d4p δ(C2(p))eipx̂⊗Â(p)

↗ ↑ ↖
deformed mass

Casimir
noncommutative

plane waves
deformed
oscillators

For twisted deformations - mass Casimir not deformed. For
general deformation - can be modified mass Casimir as well
introduced quantum-covariant volume form.
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Deformed NC quantum field ϕ̂ belongs to the braided tensor
product

ϕ̂ ∈ M̂⊗Ĥ f̂ ∈ M̂ ĥ ∈ Ĥ

M̂ - algebra of functions on noncommutative space-time
Ĥ - algebra of deformed field oscillators
We have infinite sum (continuous integral) of tensor products

of basis functions eipx̂ and oscillators Â(p); if we consider the

product of two fields ϕ̂ one arrives at need of a braid factor

eipx̂⊗Â(q)=Ψ
M,H(Â(q)⊗eipx̂) ̸=Â(q)⊗eipx̂ ⇐ braiding (p ̸=q)

where
Ψ

M,H(ĥ⊗f̂) = (R(2)ĥ)⊗(R(1)f̂)

We need braided product of NC quantum fields ϕ̂
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Three algebras providing three sources of deformations:

(a) Algebra M̂(eipx̂, ·) of basic functions on noncommutative
space-time - can be represented homomorphically by so-called

Weyl map M̂(eipx̂, ·) W−→M(eipx, ⋆)

eipx̂ eiqx̂ = m(eipx̂ ⊗ eiqx̂)
W−→ m⋆(e

ipx ⊗ eiqx) = eipx ⋆ eiqx

We get the Weyl map of noncommutative fields (C2(p) = p2 −m2)

ϕ̂(x̂)
W−→ φ̂(x) = 1

(2π)4

∫
d4p δ(p2 −m2)eipx Â(p) ∈ H

↑
deformedbecause

M̂⊗Ĥ
W−→ 1⊗ Ĥ ≃ Ĥ
↑

classical functions

In order to consider multilocal products of fields ϕ̂(x) the Weyl
map should be generalized to bilocal products

eipx̂ eiqŷ W−→ eipx ⋆ eiqy
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(b) Algebra Ĥ(Â(p), ·) of the deformed field oscillators.

Standard field oscillators algebra Ĥ(0)(A(p), ·), which can be
written in covariant form as follows

δ(p2−m2)δ(q2−m2)[A(p), A(q)]=ϵ(p0)δ(p2−m2)δ(4)(p+q)

is not covariant under any quantum symmetry characterized
by nonsymmetric coproduct ∆(ĝ) of the symmetry genera-
tors.

If deformed Poincaré symmetry is described by the univer-
sal R-matrix intertwining the coproduct ∆ = ∆(1) ⊗∆(2) with
flipped coproduct ∆21 = ∆(2) ⊗∆(1)

∆21 = R∆R−1 ↔ ∆21R = R∆ R = R(1) ⊗R(2)

the deformed algebra of oscillators a(p⃗) = Â(p⃗, ω(p⃗)),

a+(p⃗) = Â(−p⃗,−ω(p⃗)) has been given by the relations

a+(p⃗)a(q⃗)− (R(2) I a(q⃗))(R(1) I a+(p⃗)) = ωq(p⃗)δ3(p⃗− q⃗)

a(p⃗)a(q⃗)− (R(2) I a(q⃗))(R(1) I a(p⃗)) = 0 + H.C.
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The action I of deformed generators ĝ ∈ Uq(P3,1) on the de-

formed Poincaré algebra module ĥ ∈ Ĥ is given by

ĝ I ĥ = adg ĥ = Σg(1)ĥS(g(2)) ∆(ĝ) = g(1) ⊗ g(2)

(generalization of commutator)

If written in fourdimensional covariant form it can be written
in general case as follows

δ(C2(p))δ(C2(q))(A(p)A(q))−R(2) I A(q)R(1) I A(p) =

= ϵ(p0)C2(p)δ(4)(p+̃q)

where p+̃q = ∆(1)(p)∆(2)(q) from ∆(P ) = ∆(1)(P )⊗∆(2)(P )

(i.e. Pµ ⊗ 1↔ pµ, 1⊗ Pµ↔ qµ; summ of terms in the coprod-
ucts in our notation is supressed)
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(c) Algebra Φ(ϕ̂, •) of the NC quantum fields ϕ̂ with braided

multiplication rule - we multiply the NC fields ϕ̂ with taking
into account the braid ΨM,H:

ϕ̂(x̂) • ϕ̂(ŷ) ≡ m
M⊗H

[ϕ̂(x̂)⊗ϕ̂(ŷ)] =

= (m⊗m) ◦ (id⊗ΨM,H ⊗ id)[ϕ̂(x̂)⊗ϕ̂(ŷ)]

For basic vectors in the expansion of ϕ̂ we get:

m
M⊗H

[(eipx̂⊗Â(p))⊗(eiqŷ⊗Â(q))] = m(eipx̂ ⊗R(2) I eiqŷ)

ΨM,H
⊗m(R(1) I Â(p))⊗ Â(q)

Using the Weyl map the first factor becomes commutative
function of space-time, and second belongs to algebra Ĥ⇒ after
Weyl map the braided products of fields belong to the algebra
Ĥ. Important: Weyl map should be applied after performing
the braid ΨM,H
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There are two Uq(P3;1) modules M̂ and Ĥ and two actions ◃

and I of generators ĝ on M̂ and Ĥ. On f̂ ∈ M̂ one gets the
differential realization

noncommutative
space-time

ĝ ◃ f̂ = D̂(ĝ)f̂ ĝ ∈ Uq(P3;1)

⇑
noncommutative vector field

After Weyl map D̂(ĝ) becomes a differential operator D(ĝ) on
commutative Minkowski space.
If we act on tensor product M̂⊗ Ĥ we should assume trivial

action on “wrong” part of the tensor product

ĝ I f̂ = ε(ĝ)f̂ ĝ ◃ ĥ = ε(ĝ)ĥ
f̂ ∈ M̂

ĥ ∈ Ĥ
where ε(1)=1; otherwise zero. These properties are needed if

we calculate ĝI ϕ̂(x̂)and ĝ◃ϕ̂(x) and use Hopf-algebraic actions

ĝ I (eipx̂ ⊗ a(q⃗)) = (ĝ(1) I eipx̂)⊗(ĝ(2) I a(q⃗))
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But ∆(ĝ) = g(1) ⊗ g(2) = ∆(0)(ĝ) + terms not containing terms

(ĝ ⊗ 1) and (1⊗ ĝ)

so the only term contributing to g(1) I eipx is 1⊗ ĝ, i.e. g(1) = 1

ĝ I eipx̂⊗a(q⃗) = (1 I eipx̂)⊗(g I a(q⃗)) = eipx̂⊗(g I a(q⃗))

i.e. functions f̂ behave as numbers (scalar spectators) under
the action I of symmetry generators.

Similarly only ĝ ⊗ 1 (g(2) = 1) contributes to

ĝ ◃ (eipx̂⊗a(q⃗)) = (ĝ ◃ eipx̂)⊗a(q⃗)

However both actions I and ◃ occur in the definition of covari-
ant braid factor between M̂ and Ĥ

ΨM,H(ĥ⊗f̂) = (R(2) ◃ f̂)⊗R(1) I ĥ
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3. QUANTUM POINCARÉ SYMMETRIES OF

NONCOMMUTATIVE FREE QUANTUM FIELDS

a) Classical quantum free fields (scalar case)
The Poincaré covariance is given by formula

U(Λ, a)φ(x)U−1(Λ, a) = φ(Λx + a)

In infinitesimal form it takes shape of generalized Heisenberg
equations, with translational and Lorentz sector

g I φ ≡ [g, φ] = −g ◃ φ ≡ −D(0)(g)φ (g = Pµ, Mµν)
↑

QM action on

algebra Ĥ(0) of

free field oscillators

↑ ↑ ↑
classical action on functions in φ(x) undeformed

D(0)(Pµ) = i∂µ Noether charges

D(0)(Mµν) = i(xµ∂ν − xν∂µ) (g ∈ Ĥ(0))

The standard Leibnitz rule describes the action on the product
of fields corresponding to ∆(0)(g) = g ⊗ 1+ 1⊗ g

D(0)(g) ◃ (φ(x)φ(y))=(D(0)(g)φ(x))φ(y)+φ(x)(D(0)(g)φ(y))
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b) Noncommutative deformed quantum free field ϕ̂ ∈ M̂⊗Ĥ

Both actions are modified (ĝ - deformed generators)

in Ĥ : ĝ I ϕ̂(x̂) = (1⊗ adjĝ)ϕ̂(x) adjĝĥ = ĝ(1)ĥS(ĝ(2))

in M̂ : ĝ ◃ ϕ̂(x̂) = (D̂(ĝ)⊗ 1)ϕ̂(x̂)
⇑

quantum adjoint

The modification of the action in module Ĥ is determined by
the deformed coproduct and deformed antipode.
The action D̂(ĝ) is adjusted in such a way that the basic co-

variance relation is valid

ĝ ◃ ϕ̂(x̂) = S(ĝ) I ϕ̂(x̂) deformed generalized

Heisenberg equations

One can introduce as well the third action ◃̃ of the deformed
generators ĝ on NC quantum fields ϕ̂ (Fiore 2008)

ĝ ◃̃(f ⊗ h) = (ĝ(1) ◃ f)⊗ (ĝ(2) I h)

where f ∈ M̂, h ∈ Ĥ (e.g. f = eipx̂, h = a(p))
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Applying covariance condition one gets

(ĝ(1) ◃f)⊗ h = f ⊗ S(ĝ(1))h

Further

ĝ ◃̃(f ⊗ h) = f ⊗ S(ĝ(1)) g(2)h =∈ (g)f ⊗ h

and we get the formula expressing quantum covariance

ĝ ◃̃ ϕ̂ =∈ (g)ϕ̂

This alternative approach leads to trivialization of braiding
(R(1) ◃̃ ϕ̂)(R(2) ◃̃ ϕ̂), because R(1,2) ◃̃ ϕ̂ =∈ (R(1,2))ϕ̂ = ϕ̂

(Fiore 2010)

If we consider the fields ϕ̂(x̂) on noncommutative space-time

the differential realization D̂(ĝ) is defined on noncommutative

Minkowski space; if after Weyl map we consider fields ϕ̂(x) we
obtain ĝ ◃ ϕ̂(x) = D(ĝ)ϕ̂(x)

where D(ĝ) is the deformation of the classical differential real-

ization D(0)(g) on classical Minkowski space when g → ĝ
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Important class of deformed quantum symmetries: twisted
quantum symmetries generated by F=F(1)⊗F(2)⊂U(P3,1)⊗U(P3,1)

Subclass: twisting of classical symmetries ⇑twist factor

Ĥ(0)=(U(P3,1), m, η, ∆(0), ε, S(0))
F−→ĤF (U(P3,1), m, η, ∆F, ε, SF )

Deformed twisted coproducts and antipodes (g ∈ U(P3,1))

∆F (g) = F ∆(0)(g)F−1 ∆(0) = g ⊗ 1+ 1⊗ g

SF (g) = vS(0)(g)v−1 v = F(1) S(0)(g)F(2)

Coassociativity of twisted coproduct ↔ two-cocycle condition:

F12(∆
(0) ⊗ id)F = F23(id⊗∆(0))F

F12 = F ⊗ 1

F23 = 1⊗ F

From twisted coproduct follows the formula for the R-matrix
RF

RF = F21 F−1 RF ⊂ U(P3,1)⊗ U(P3,1)
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Important property: for twisted theories the homomorphic
Weyl map provides ⋆-product multiplication explicitly

f1(x̂) · f2(x̂)
W−→ f1(x) ⋆ f2(x) = m[F−1◃(f1(x)⊗ f2(x))]

=(F (1)◃f1(x))(F (2) ◃ f2(x))

We use in ∆(F−1) = F (1) ⊗ F (2) the standard differential re-

alizations of g ∈ U(P3,1) in classical space-time.
The ⋆-multiplication is noncommutative, however braided-commu-
tative. One can show that (Aschieri, 2006)

f1 ⋆ f2 = (R(2) ◃ f2)(R(1) ◃ f1) ≡ R21 ◃ (f2 ⋆ f1)

Braided commutativity ⇔ vanishing braided commutator

[f1, f2]
BR

⋆
≡ f1 ⋆ f2 −R21 ◃ (f2 ⋆ f1) = 0

If f1 = xµ, f2 = xν, in such braided form one can put as well
the noncommutativity of deformed space-time coordinates.
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Example: canonical deformation ([x̂µ, x̂ν] = iθ
(0)
µν ≡ iθµν)

Fθ = exp i
2θµνPµ ⊗ Pν → ∆(θ)(g) = Fθ∆

(0)(g)(Fθ)
−1

= ∆
(θ)
(1)
⊗∆

(θ)
(2)

Explicitly:

∆(θ)(Pµ) = ∆(0)(Pµ)

∆(θ)(Mµν) = ∆(0)(Mµν)− θρσ[(ηρµPν − ηρνPµ)⊗ Pσ

+ Pρ ⊗ (ησµPν − ησνPµ)]

Generalized Heisenberg equations (after Weyl map)

Pµ I ϕ̂(x) ≡ [Pµ, ϕ̂(x)] = i∂µ · ϕ̂(x) undeformed

Mµν I ϕ̂(x) ≡ adMµνϕ̂(x) = −D(Mµν)ϕ̂(x) deformed

adMµνϕ̂(x) = [Mµν, ϕ̂(x)] + θ α
[ν

Pαϕ̂(x)Pµ] + θ α
[µ

Pν]ϕ̂(x)Pα

D(Mµν) = −i(xµ∂ν − xν∂µ)− θ
ρ

ν ∂ρ∂µ − θ
ρ
µ∂ρ∂µ

Modified Heisenberg equation in Lorentz sector represents the
equality of suitably adjusted deformed actions ◃ and I.
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4. COVARIANT BRAIDED FIELD COMMUTATORS

AND BRAIDED LOCALITY OF NONCOMMUTATIVE

QUANTUM FREE FIELDS

The quantum-covariant commutator of NC quantum fields
is braided

[ϕ̂(x̂), ϕ̂(ŷ)]
BR

• ≡ ϕ̂(x̂) • ϕ̂(ŷ)− (R(2) I ϕ̂(ŷ))(R(1) I ϕ̂(x̂))

Remark: For covariant fields one can replace the actions I→ ◃

The quantum covariance of braided commutator is obtained
in two steps:
i) We show that the product of quantum fields is covariant, i.e.

ĝ I (ϕ̂(x̂) • ϕ̂(ŷ)) = mM⊗H [∆(ĝ) I (ϕ̂(x̂) • ϕ̂(ŷ))]

= (g(1) I ϕ̂(x̂)) • (g(2) I ϕ̂(ŷ))

This relation is valid if the braid factor ΨM,H is given by R21.

For f̂⊗ĥ ∈ ϕ̂(x̂) and f̂ ′⊗ĥ′ ∈ ϕ̂(ŷ) we have

(we denote ∆(4)(ĝ) = ĝ(1) ⊗ ĝ(2) ⊗ ĝ(3) ⊗ ĝ(4))
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ĝI [(f̂⊗ĥ)•(f̂ ′⊗ĥ′)] =

=[(ĝ(1)I f̂)•(ĝ(2)R(2)I f̂ ′)]⊗[(ĝ(3)R(1)I ĥ) · (ĝ(4)I ĥ′)]
?
=

?
= [(ĝ(1)I f̂)(R(2)ĝ(3)I f̂ ′)]⊗ [(R(1)ĝ(2)I ĥ)(ĝ(4)I ĥ′)]

= [(ĝ(1)I f̂) · (ĝ(2)I ĥ)] • [(ĝ(3)I f̂ ′) · (ĝ(4)I ĥ′)]

= [ĝ(1) I(f̂⊗ĥ)] • [ĝ(2)I(f̂ ′⊗ĥ′)]

where
?
= follows from the definition of universal R-matrix∑

I,J

(ĝI
(2)R

J
(2) = RI

(2)ĝ
J
(3)) = 0 ⇔ ĝ(2)R(2) = R(2)ĝ(3) etc.

We also use that ϕ̂(ŷ) is covariant what links ◃ and I
ii) We show that the braided commutator of quantum fields is

covariant, i.e. we should have

ĝI [ϕ̂(x̂), ϕ̂(ŷ)]
BR

•
?
= ĝ I (ϕ̂(x̂) • ϕ(ŷ))−R21 · ĝI(ϕ̂(ŷ) • ϕ̂(x̂))

First term follows from the covariance of product of fields, and
second term is valid if we have
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ĝ I (R(2) I ϕ̂(ŷ)) • (R(1) I ϕ̂(x̂)) =

= mM⊗H [∆(ĝ)R21 I (ϕ̂(ŷ)⊗ ϕ̂(x̂))]
?
=

= mM⊗H [R21∆21(ĝ) I (ϕ̂(ŷ)⊗ ϕ(x̂))]

where validity of ? implies the defining relation of the R-matrix

∆R21 = R21∆21 ←→ R∆21 = ∆ R

The braided field commutator is covariant for any quasitrian-
gular deformation. Explicitly

ϕ̂(x̂) • ϕ̂(ŷ) = 1
(2π)8

∫
d4p

∫
d4q δ(p2 −m2)δ(p2 −m2)·

·mM⊗H [(eipx̂ · (R(2) ◃ eiqŷ)⊗ (R(1) I A(p))A(q)]︸ ︷︷ ︸
belongs to M̂

︸ ︷︷ ︸
belongs to Ĥ
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If we perform the Weyl map (in twisted case)

mM⊗H(eipx̂ · (R(2) ◃ eiqŷ))⊗ (R(1) I Â(p))Â(q)
W
≃

W
≃ (F (1) ◃ eipx)(F (2)R(2) ◃ eiqy) · (R(1) I Â(p))Â(q)︸ ︷︷ ︸

c-number function
︸ ︷︷ ︸

element of algebra H

we obtain for the braided field commutator after using the
Weyl map (twist F arbitrary 2-cocycle)

[ϕ̂(x̂), ϕ̂(ŷ)]
BR

•
W
≃ 1

(2π)8

∫
d4p

∫
d4q δ(p2 −m2)δ(q2 −m2)·

· (F (1) ◃ eipx)(F (2)R(2) ◃ eiqy)(R(1) I Â(p))Â(q)

−(F (1) ◃ eiqy)(F (2)R(2) ◃ eipx)(R(2)R(1) I Â(q))(R(1) I Â(p))

F−1 = F (1) ⊗ F (2) R = R(1) ·R(2) = F21 F−1
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Explicite calculation: the canonical deformation described by

twist Fθ = e
i
2θµνPµ⊗Pν

In such a case one can factorize explicitly the modified com-
mutation relations for deformed field oscillators.

We use

Pµ ◃ eipx = pµeipx Pµ I Â(p) = −pµÂ(p)

and one gets

Rθ
21 ◃ (eipx ⊗ eiqy) = eiθµνpµqν(eipx ⊗ eiqy)

Rθ
21 I (Â(p)⊗ Â(q)) = eiθµνpµqν(Â(p)⊗ Â(q))

We obtain:

[ϕ̂(x̂)), ϕ̂(ŷ))]
BR

•
W
≃ 1

(2π)8

∫
d4p

∫
d4q δ(p2−m2)δ(q2−m2)eipx eiqy

· [Â(p) ⋆
H

Â(q)−Rθ
21 I (Â(q) ⋆

H
Â(p))]
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if we introduce the following modified multiplication ⋆H in Ĥ

Â(p) ⋆
H

Â(q) = m ◦ Fθ I [Â(p)⊗ Â(q)] = e
i
2θµνpµqνÂ(p)Â(q)

If we postulate the braided covariant CCR for field oscillators

δ(p2−m2)δ(q2−m2)[Â(p) ⋆
H

Â(q)−R21 I Â(q) ⋆
H

Â(p)] =

= ϵ(p0)δ(p2−m2)δ(4)(p+q)

one gets the braided local • - commutator for free noncommu-
tative quantum fields

[ϕ̂(x̂), ϕ̂(ŷ)]
BR

•
W
≃ i∆(x− y; m2) =

= − i
(2π)3

∫ d3p⃗
ω(p⃗)

sin[ω(p⃗)(x0 − y0)]e
ip⃗(x⃗−y⃗)

The multiplication • of fields after Weyl map (ϕ̂(x̂)
W→ ϕ̂(x))

contains nonlocal ⋆-product multiplication in classical Minkowski
space determined by F−1

θ and the braid factor ΨM,H.
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5. BRAIDING AND κ-DEFORMED NC FREE QUANTUM FIELDS

Application of presented formalism implies

i) The knowledge of R-matrix. It depends on the choice
of basis ↔ determines mass Casimir Cκ(p) and p0 = ωκ(p⃗)

ii) The knowledge of ⋆κ-product describing Weyl map for

functions M̂κ on κ-Minkowski space-time

i) R-matrix

R = exp(
1

κ
r1 +

1

κ2
r2 +

1

κ3
r3 + . . .) r1=classical

r-matrix

In standard basis with deformed Lorentz sector (J.L., Nowicki,
Ruegg, Tolstoy 1991) one gets (Young, Zegers 2008)

r1 = Ni ∧ Pi
r2 = 0

r3 = −18(P
2
0 Ni∧Pi+Ni∧P 2

0 Pi)− 1
12(PjMji∧P0Pk+Nk∧P⃗ 2Pk)+ four

terms
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Bicrossproduct basis (Majid, Ruegg 1994) is better adjusted
to the description of κ-deformation via braiding. One performs
the basis transformation (P ′0, = P0, M ′i = Mi unchanged)

P ′i = e−
P0
2κPi N ′i = Nie

−P0
2κ −

∈ijk

2κ
MjPke−

P0
2κ

One gets r′1 = r1, but

r′2 = −(NiP0 ∧ Pi + Ni ∧ PiP0)− 1
2 ∈ijk MjPk ∧ Pi ̸= 0

r′3 = r3 + . . .

It can be checked that the description of exchange relations for
2-particle states in a κ-deformed theory (Young, Zegers 2007)
calculated in bicrossproduct basis can be derived from braided
commutators of field oscillators with R-matrix given above.
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ii) ⋆κ-product and Weyl map
In NC κ-deformed fields one can introduce the NC plane waves

with different orderings.

eip̂⃗x, eip⃗̂⃗x e−ip0x̂0, e−
i
2p0x̂0 eip⃗̂⃗x e−

i
2p0x̂0 etc.

providing different Weyl maps.
If we use eipx̂, the ⋆κ-product is obtained by applying the

CBH formula

[x̂µ, x̂ν] =
i

κ
(δ

µ
0 x̂ν − δν

0 x̂µ)⇒ eipx̂ eiqx̂ = eiγ(p,q)x̂

i.e. we have
eipx⋆κ eiqx = eiγµ(p,q)x

where (Kosinski, J.L., Maslanka 2000) γ0 = p0 + q0 and

γi(p, q) =
fκ(p0)e

q0
κ pi + fκ(p0)qi

fκ(p0 + q0)
fκ(α) =

κ

α
(1− e−

α
κ)

(J.L., M. Woronowicz, in preparation)
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6. FINAL REMARKS

i) One can apply the formulation to more complicated twists,
depending on Pk as well as Mµν; it may provide also quan-
tum Minkowski spaces with Lie-algebraic commutation rela-
tions. (J.L., M.Woronowicz, 2006). Problem: factorization
of braided algebra of oscillators not always possible.

ii) For general quasitriangular deformations, characterized by
universal R-matrix one can introduce twist in the category
of quasi-Hopf algebras, with nontrivial coassociator (Drinfeld
1990; Beggs, Majid (2004); Young, Zegers (2008))

iii) Interesting step to be made: to employ braided free com-
mutators into the perturbative expansion of interacting NC
quantum fields
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