Restrictions on infinite sequences of type IIB vacua

Nils-Ole Walliser

TU

WIEN

Heidelberg, Dec. 19th, 2011

A.P. Braun, N. Johansson, M. Larfors, N-OW arXiv:1108.1394

Motivation: the landscape

- Type IIB flux compactifications
 - No-go theorem by Maldacena and Nunez —
 - **GKP's evasion strategy** ____
- Type IIB moduli stabilization
 - Calabi-Yau geometry
 - Flux vacua
 - No-go theorem by Ashok and Douglas
- Sequences in type IIB approaching D-limits •
 - Mirror QuinticLCS point

one-parameter CY

numerical results

- Type IIB flux compactifications
 - No-go theorem by Maldacena and Nunez
 - **GKP's evasion strategy**
- Type IIB moduli stabilization
 - Calabi-Yau geometry
 - Flux vacua
 - No-go theorem by Ashok and Douglas
- Sequences in type IIB approaching D-limits •
 - Mirror Quintic LCS point
 - —

- one-parameter CY
- numerical results

Sector	IIA	IIB
NS⊗NS	$g_{\mu u}$ $B_{(2)}$ ϕ	$g_{\mu u}$ $B_{(2)}$ ϕ
$R \otimes R$	$C_{(1)}, C_{(3)}, \dots, C_{(7)}$	$C_{(0)}, C_{(2)}, \dots, C_{(8)}$
NS⊗R	Ψ_M λ	Ψ_M λ
$R \otimes NS$	$ig \Psi_M' = \lambda'$	Ψ_M' λ'

$$\frac{\phi}{C_{(8)}} \qquad F_{(p+1)} = dC_{(p)} \\ *F_{(10-p-1)} = F_{(p+1)}$$

$$S_{Bose}^{IIB} = S_{NS} + S_R + S_{CS}$$

= $\frac{1}{2\kappa^2} \int d^{10}x \sqrt{-g} \left[R - \frac{1}{2} \frac{\partial_M \tau \partial^M \bar{\tau}}{(\operatorname{Im} \tau)^2} - \frac{1}{2} \frac{|G_{(3)}|^2}{\operatorname{Im} \tau} - \frac{1}{2} |\tilde{F}_{(5)}^2| \right] + S_{CS}$

$$\tau = C_{(0)} + ie^{-\phi}$$

$$G_{(3)} = F_{(3)} - \tau H_{(3)}$$

$$\tilde{F}_{(5)} = F_{(5)} - \frac{1}{2}C_{(2)} \wedge H_{(3)} + \frac{1}{2}B_{(2)} \wedge F_{(3)}$$

Semi classical approx. of space-time $\mathcal{M}^{10} = \mathbb{R}^{3,1} \times X^6$ warped metric ansatz:

Einstein's equations:

$$\tilde{\nabla}^2 e^{4A} = e^{2A} \frac{1}{2} \frac{|G_{(3)}|^2}{\operatorname{Im} \tau} + e^{-6A} \left(|\partial \alpha|^2 + |\partial e^{4A}|^2 \right)$$
$$\stackrel{\int_X}{\longrightarrow} A = \operatorname{const}, \quad \alpha = \operatorname{const} \quad \text{and} \quad G_{(3)} = 0$$

No-go theorem

[Maldacena-Nunez '00]

Including only fluxes \implies 4D geometry cannot be M (or dS)

Semi classical approx. of space-time $\mathcal{M}^{10} = \mathbb{R}^{3,1} \times X^6$ warped metric ansatz:

1) Einstein's equations: $S = S_{Bose}^{IIB} + S_{loc} \longrightarrow T_{MN} = T_{MN}^{IIB} + T_{MN}^{loc}$ $\tilde{\nabla}^2 e^{4A} = e^{2A} \frac{1}{2} \frac{|G_{(3)}|^2}{\operatorname{Im} \tau} + e^{-6A} \left(|\partial \alpha|^2 + |\partial e^{4A}|^2 \right) + k^2 e^{2A} \left(T_m^m - T_\mu^\mu \right)_{loc}$

2) Bianchi identity: $d\tilde{F}_{(5)} = H_{(3)} \wedge F_{(3)} + 2\kappa^2 T_3 \rho_3$

$$\implies \frac{1}{2\kappa^2 T_3} \int H_{(3)} \wedge F_{(3)} + N_3 = 0$$

Tadpole cancellation condition

$$\tilde{\nabla}^2 \left(e^{4A} - \alpha \right) = e^{2A} \frac{|iG_{(3)} - *G_{(3)}|^2}{24 \operatorname{Im} \tau} + e^{-6A} |\partial \left(e^{4A} - \alpha \right)|^2 + 2\kappa^2 e^{2A} \left(\frac{1}{4} T_{loc} - T_3 \rho_3 \right)$$

BPS-like condition: $T_{loc} \ge 4T_3\rho_3$

1) restricts the choice of local sources (tree level)

- D3, O3, D7 and O7 saturate the inequality
- anti-D3 satisfy
- O5, anti-O3, etc. violate

2) ISD condition:
$$*G_{(3)} = iG_{(3)} \quad \left(\iff G_{(3)} \in H^{(2,1)} \oplus H^{(0,3)} \right)$$

3) $e^{4A} = \alpha(y) \implies \tilde{F}_{(5)}(A)$

If no D7 branes
$$\implies \tilde{R}_{mn} = 0$$
, $\partial_m \tau = 0$

i.e. X is conformally CY

A clear strategy:

1) choose X s.t.
$$\tilde{R}_{mn} = \dots$$
 $\tilde{\nabla}^2 \tau = \dots$

2) consider localized objects that saturate BPS-like bound

3)
$$\tilde{F}_{(5)}$$
 with ISD $G_{(3)}$

- Type IIB flux compactifications
 - No-go theorem by Maldacena and Nunez
 - **GKP's evasion strategy** ____
- Type IIB moduli stabilization
 - Calabi-Yau geometry
 - Flux vacua
 - No-go theorem by Ashok and Douglas
- Sequences in type IIB approaching D-limits
 - Mirror Quintic LCS point
 - - numerical results

one-parameter CY

Semi classical approx. of space-time $\mathcal{M}^{10} = \mathbb{R}^{3,1} \times \mathcal{X}^{6}$ $\mathcal{N} = 1, 2$ SUSY survives compactif. $\implies \nabla_{\mathcal{X}} \eta = 0$ • No fluxes: complex Kähler w. $c_1(\mathcal{X}) = 0$ [CHSW '85] (• Fluxes: generalized complex structures [Hitchin '02, Gualtieri '04]) $\omega_{ij} = i\eta^{\dagger} \gamma_{[i} \gamma_{j]} \eta$ $\Omega \sim \eta^T \gamma_{[i} \gamma_{j} \gamma_{k]} \eta$

 \mathcal{X} is Calabi-Yau manifold : $c_1 = 0 \iff \exists R_{mn} = 0$

A set of coordinates of M_{CS} : $\Pi_I = \int_{C_I} \Omega = \int_X C_I \wedge \Omega \quad \{C_I\} \in H_3(X)$

Periods of X

Periods vector

$$\Pi(z) = \begin{pmatrix} \Pi_{b_3-1}(z) \\ \vdots \\ \Pi_0(z) \end{pmatrix}$$

/ 17

$$b_3 = 2h^{(2,1)} + 2$$

 Intersection matrix (

$$Q_{IJ} = \int_{C_I} C_J = \int_X C_I \wedge C_J$$

 $\langle \rangle \rangle$

Symplectic structure

$$A^{I} = -(Q^{-1})^{IJ} \int_{C_{J}} A_{(3)}$$

Inters. prod. : $\langle A_{(3)}, B_{(3)} \rangle = \int_{X} A_{(3)} \wedge B_{(3)} = A \cdot Q \cdot B^{T}$

anti-symm. topological moduli indep.

Scalar

r prod.:
$$(A_{(3)}, B_{(3)}) = \int_X A_{(3)} \wedge *B_{(3)} = A \cdot \mathcal{G}_z \cdot B^T$$

moduli dep. positive quadratic form on \mathbb{C}^{b_3}

• 4-dim effective theory: *N*=1 scalar potential (tree-level)

$$V(z,\tau) = e^{K} \left(g^{i\bar{\jmath}} D_{i} W D_{\bar{\jmath}} \bar{W} + g^{\tau\bar{\tau}} D_{\tau} W D_{\bar{\tau}} \bar{W} \right)$$

We know how to express the components in terms of the periods !

Kähler potential:
$$K_{\rm cs}(z,\bar{z}) = -\log\left(i\int_X \Omega \wedge \bar{\Omega}\right) = -\log(i\Pi^{\dagger} \cdot Q^{-1} \cdot \Pi)$$

Superpotential:
$$W = \int_X \Omega \wedge G_{(3)} = G \cdot \Pi$$

• Hence the scalar potential can be computed numerically once the periods and their derivatives are known.

D3 tadpole condition revisited:
$$\int_{X} F_{(3)} \wedge H_{(3)} = \underbrace{\frac{\chi}{24} + \frac{1}{4}N_{O3} - N_{D3}}_{-N_3} \equiv L \leq L_{max}$$

$$(F_{(3)}, H_{(3)}) = \frac{i}{2\mathrm{Im}\tau} \langle \bar{G}_{(3)}, G_{(3)} \rangle = \frac{1}{2\mathrm{Im}\tau} \langle \bar{G}_{(3)}, *G_{(3)} \rangle = \frac{1}{2\mathrm{Im}\tau} \bar{G} \cdot \mathcal{G}_z \cdot G^T > 0$$
Define vector $\hat{N} = (F, H) \in \mathbb{R}^{2b_3}$

$$0 < L = \hat{N} \cdot (\mathcal{G}_\tau \otimes \mathcal{G}_z) \cdot \hat{N}^T \leq L_{max}$$

$$\mathcal{G}_\tau = \frac{1}{2\mathrm{Im}\tau} \begin{pmatrix} 1 & -\mathrm{Re}\tau \\ -\mathrm{Re}\tau & |\tau|^2 \end{pmatrix}$$

• \hat{N} must lie within an ellipsoid in \mathbb{R}^{2b_3} whose dimensions are given by the (τ, z) -dependent eigenvalues $\Lambda_i(\tau, z)$ of the matrix $\mathcal{G}_\tau \otimes \mathcal{G}_z$

No-go theorem

[Ashok-Douglas '03]

Any region of (τ, z) -space for which $\Lambda_i(\tau, z)$ are bounded from below by some positive number, can support only a finite number of vacua.

$$0 < L = \hat{N} \cdot (\mathcal{G}_{\tau} \otimes \mathcal{G}_{z}) \cdot \hat{N}^{T} \leq L_{max} \qquad \qquad \mathcal{G}_{z} = 2e^{K} \operatorname{Re} \left[\Pi \Pi^{\dagger} + g^{i\bar{j}} D_{i} \Pi \bar{D}_{\bar{j}} \Pi^{\dagger} \right]$$
$$\hat{N} \cdot \mathcal{G}_{\tau} \otimes \mathcal{G}_{t} \cdot \hat{N}^{T} = \sum_{i,j} |\hat{N} \cdot v_{i} \otimes w_{j}|^{2} \mu_{i} \lambda_{j} = \sum_{i,j} |\epsilon_{ij}|^{2} \lambda_{j} \mu_{i}$$

Evasion from the no-go

Infinite series of vacua can occur only if their location in the (τ, z) -space approaches a point where the matrix $\mathcal{G}_{\tau} \otimes \mathcal{G}_{z}$ develops a null eigenvector.

This can occur in two ways:

- 1) \mathcal{G}_{τ} degenerates, or
- 2) G_z degenerates

Points where this happens are referred to as D-limits.

- Type IIB flux compactifications
 - No-go theorem by Maldacena and Nunez
 - GKP's evasion strategy
- · Type IIB moduli stabilization
 - Calabi-Yau geometry
 - Flux vacua
 - No-go theorem by Ashok and Douglas
- · Sequences in type IIB approaching D-limits
 - Mirror Quintic
 - LCS point
 - numerical results

one-parameter CY

The Mirror Quintic CY $X^{(101,1)}$

Zero locus of homogeneous polynomial in \mathbb{P}^4

$$p = \sum_{i=1}^{5} x_i^5 - 5\psi x_1 x_2 x_3 x_4 x_5 = 0 \qquad x_i \in \mathbb{P}^4$$
(more precisely: $X^{(101,1)} = \mathbb{P}^4[p]/\mathbb{Z}_5^3 + \text{ blow-ups}$)
complex structure modulus: $\psi \in \mathbb{C}$
• but $\psi \sim \alpha \psi \quad w/ \quad \alpha = e^{2\pi i/5}$ can be compensated by $x_i \longrightarrow \alpha^{-1} x_i$

$$\longrightarrow \qquad \text{moduli space: } \mathbb{C}/\mathbb{Z}_5 \qquad \text{orbifold singularity at} \quad \psi = 0$$

• "true" coordinate: $z=1/\psi^5$

• D-limits

$$egin{arrge} z=0 \ z=1 \end{bmatrix}$$
 large complex structure limit conifold singularity

Analytical study the sequences in the vicinity of the LCS point

[Braun, Johansson, Larfors, N-OW '11]

• The period vector takes following general form around LCS point:

$$\begin{pmatrix} \Pi_3 \\ \Pi_2 \\ \Pi_1 \\ \Pi_0 \end{pmatrix} \sim \begin{pmatrix} \alpha t^3 + \beta t + i\gamma \frac{\zeta(3)}{\pi^3} \\ \delta t^2 + \epsilon t + \eta \\ t \\ 1 \end{pmatrix} \qquad \begin{aligned} t \sim -i \ln z \\ \alpha, \dots, \eta \quad \text{rational coefficients parametrizing} \\ \text{family of one-modulus CY} \\ \text{[Doran, Morgan '05]} \end{aligned}$$

- Expand $\mathcal{G}_z = 2e^K \operatorname{Re}\left[\Pi \Pi^{\dagger} + g^{i\bar{\jmath}} D_i \Pi \bar{D}_{\bar{\jmath}} \Pi^{\dagger}\right]$
- Determine eigenvalues and eigenvectors of \mathcal{G}_z (and $\mathcal{G}_{ au}$) up to $\mathcal{O}(\mathrm{Im}(z)^{-3})$
- Requiring $\lim_{n \to \infty} z_n = 0$, $\lim_{n \to \infty} N_n \cdot (\mathcal{G}_{\tau} \otimes \mathcal{G}_{z_n}) \cdot N_n^T \neq \infty$

it follows $F^0 = F^1 = H^0 = H^1 = 0 \implies \int F_{(3)} \wedge H_{(3)} = 0$ the metric degenerates !

This implies that there is no ISD vacuum, except the singular one Located exactly at the LCS point.

Summary

- Ashok and Douglas: infinite sequences of type IIB ISD flux vacua can only occur in D-limits.
- We refine this no-go result: there are no infinite sequences accumulating to the LCS point of a class of one-parameter CYs. Most prominent example: Mirror Quintic.
- Similar analysis for conifold points and the decoupling limit obtaining identical results.
- Similar analysis for LCS point of a two-parameter CY.

Outlook

- Formulate more general and transparent conditions on the singularity.
 Statement of a more general finiteness theorem.
- Do similar techniques apply for more general CYs ?
- How do warping corrections affect the results ?

