Restrictions on infinite sequences of type IIB vacua

Nils-Ole Walliser

Heidelberg, Dec. 19th, 2011
A.P. Braun, N. Johansson, M. Larfors, N-OW arXiv:1108.1394

Motivation: the landscape

Outline of the talk

- Type IIB flux compactifications
- No-go theorem by Maldacena and Nunez
- GKP's evasion strategy
- Type IIB moduli stabilization
- Calabi-Yau geometry
- Flux vacua
- No-go theorem by Ashok and Douglas
- Sequences in type IIB approaching D-limits
- Mirror Quintic
- LCS point
- numerical results

Outline of the talk

- Type IIB flux compactifications
- No-go theorem by Maldacena and Nunez
- GKP's evasion strategy
- Type IIB moduli stabilization
- Calabi-Yau geometry
- Flux vacua
- No-go theorem by Ashok and Douglas
- Sequences in type IIB approaching D-limits
- Mirror Quintic
- LCS point
- numerical results

$\}$one-parameter CY

Sector	IIA	IIB			
$\mathrm{NS} \otimes \mathrm{NS}$	$g_{\mu \nu} B_{(2)} \phi$	$g_{\mu \nu} \quad B_{(2)} \quad \phi$			
$\mathrm{R} \otimes \mathrm{R}$	$C_{(1)}, C_{(3)}, \ldots, C_{(7)}$	$C_{(0)}, C_{(2)}, \ldots, C_{(8)}$			
$\mathrm{NS} \otimes \mathrm{R}$	Ψ_{M}	λ	Ψ_{M}		
$\mathrm{R} \otimes \mathrm{NS}$	Ψ_{M}^{\prime}	λ^{\prime}	Ψ_{M}^{\prime}	\quad	λ^{\prime}
:---:	$\quad * F_{(10-p-1)}=F_{(p+1)}=d C_{(p)}$				

$$
\begin{aligned}
& S_{\text {Bose }}^{I I B}=S_{N S}+S_{R}+S_{C S} \\
& \quad=\frac{1}{2 \kappa^{2}} \int d^{10} x \sqrt{-g}\left[R-\frac{1}{2} \frac{\partial_{M} \tau \partial^{M} \bar{\tau}}{(\operatorname{Im} \tau)^{2}}-\frac{1}{2} \frac{\left|G_{(3)}\right|^{2}}{\operatorname{Im} \tau}-\frac{1}{2}\left|\tilde{F}_{(5)}^{2}\right|\right]+S_{C S} \\
& \tau=C_{(0)}+i e^{-\phi} \\
& G_{(3)}=F_{(3)}-\tau H_{(3)} \\
& \tilde{F}_{(5)}=F_{(5)}-\frac{1}{2} C_{(2)} \wedge H_{(3)}+\frac{1}{2} B_{(2)} \wedge F_{(3)}
\end{aligned}
$$

Semi classical approx. of space-time $\quad \mathcal{M}^{10}=\mathbb{R}^{3,1} \times X^{6}$ warped metric ansatz:

$$
\begin{aligned}
g_{M N} & =\left(\begin{array}{cc}
e^{2 A(y)} \eta_{\mu \nu} & 0 \\
0 & e^{-2 A(y)} \tilde{g}_{m n}(y)
\end{array}\right) \\
\longrightarrow & \left\{\begin{array}{l}
\tau=\tau(y) \\
G_{(3)} \in H^{3}(X, \mathbb{Z}) \\
\tilde{F}_{(5)}=(1+*)\left[d \alpha(y) \wedge d \mathrm{Vol}_{4}\right]
\end{array}\right.
\end{aligned}
$$

Einstein's equations:

$$
\begin{aligned}
\tilde{\nabla}^{2} e^{4 A}=e^{2 A} & \frac{1}{2} \frac{\left|G_{(3)}\right|^{2}}{\operatorname{Im} \tau}+e^{-6 A}\left(|\partial \alpha|^{2}+\left|\partial e^{4 A}\right|^{2}\right) \\
& \xlongequal{\int_{X}} \quad A=\mathrm{const}, \quad \alpha=\mathrm{const} \quad \text { and } \quad G_{(3)}=0
\end{aligned}
$$

No-go theorem
Including only fluxes \Longrightarrow 4D geometry cannot be M (or dS)

Semi classical approx. of space-time $\quad \mathcal{M}^{10}=\mathbb{R}^{3,1} \times X^{6}$ warped metric ansatz:

$$
\begin{aligned}
g_{M N} & =\left(\begin{array}{cc}
e^{2 A(y)} \eta_{\mu \nu} & 0 \\
0 & e^{-2 A(y)} \tilde{g}_{m n}(y)
\end{array}\right) \\
\longrightarrow & \left\{\begin{array}{l}
\tau=\tau(y) \\
G_{(3)} \in H^{3}(X, \mathbb{Z}) \\
\tilde{F}_{(5)}=(1+*)\left[d \alpha(y) \wedge d \mathrm{Vol}_{4}\right]
\end{array}\right.
\end{aligned}
$$

1) Einstein's equations: $S=S_{\text {Bose }}^{I I B}+S_{l o c} \longrightarrow T_{M N}=T_{M N}^{I I B}+T_{M N}^{l o c}$

$$
\tilde{\nabla}^{2} e^{4 A}=e^{2 A} \frac{1}{2} \frac{\left|G_{(3)}\right|^{2}}{\operatorname{Im} \tau}+e^{-6 A}\left(|\partial \alpha|^{2}+\left|\partial e^{4 A}\right|^{2}\right)+k^{2} e^{2 A}\left(T_{m}^{m}-T_{\mu}^{\mu}\right)_{l o c}
$$

2) Bianchi identity: $d \tilde{F}_{(5)}=H_{(3)} \wedge F_{(3)}+2 \kappa^{2} T_{3} \rho_{3}$

$$
\Longrightarrow \quad \frac{1}{2 \kappa^{2} T_{3}} \int H_{(3)} \wedge F_{(3)}+N_{3}=0 \quad \begin{aligned}
& \text { Tadpole cancellation } \\
& \text { condition }
\end{aligned}
$$

$$
\tilde{\nabla}^{2}\left(e^{4 A}-\alpha\right)=e^{2 A} \frac{\left|i G_{(3)}-* G_{(3)}\right|^{2}}{24 \operatorname{Im} \tau}+e^{-6 A}\left|\partial\left(e^{4 A}-\alpha\right)\right|^{2}+2 \kappa^{2} e^{2 A}\left(\frac{1}{4} T_{l o c}-T_{3} \rho_{3}\right)
$$

BPS-like condition: $T_{l o c} \geq 4 T_{3} \rho_{3}$

1) restricts the choice of local sources (tree level)

- D3, O3, D7 and O7 saturate the inequality
- anti-D3 satisfy
- O5, anti-O3, etc. violate

2) ISD condition: $\quad * G_{(3)}=i G_{(3)} \quad\left(\Longleftrightarrow G_{(3)} \in H^{(2,1)} \oplus H^{(0,3)}\right)$
3) $e^{4 A}=\alpha(y) \quad \Longrightarrow \quad \tilde{F}_{(5)}(A)$

If no D7 branes $\quad \Longrightarrow \quad \tilde{R}_{m n}=0, \quad \partial_{m} \tau=0$
i.e. X is conformally CY

A clear strategy:

1) choose X s.t. $\quad \tilde{R}_{m n}=\ldots \quad \tilde{\nabla}^{2} \tau=\ldots$
2) consider localized objects that saturate BPS-like bound
3) $\tilde{F}_{(5)}$ with ISD $G_{(3)}$

Outline of the talk

- Type IIB flux compactifications
- No-go theorem by Maldacena and Nunez
- GKP's evasion strategy
- Type IIB moduli stabilization
- Calabi-Yau geometry
- Flux vacua
- No-go theorem by Ashok and Douglas
- Sequences in type IIB approaching D-limits
- Mirror Quintic
- LCS point
- numerical results

Semi classical approx. of space-time $\quad \mathcal{M}^{10}=\mathbb{R}^{3,1} \times \mathcal{X}^{6}$

$$
\mathcal{N}=1,2 \quad \text { SUSY survives compactif. } \quad \Longrightarrow \quad \nabla_{\mathcal{X}} \eta=0
$$

- No fluxes: complex Kähler w. $c_{1}(\mathcal{X})=0 \quad$ [CHSW '85]

(• Fluxes: generalized complex structures
[Hitchin '02, Gualtieri '04])

$$
\omega_{i j}=i \eta^{\dagger} \gamma_{[i} \gamma_{j]} \eta \quad \quad \Omega \sim \eta^{T} \gamma_{[i} \gamma_{j} \gamma_{k]} \eta
$$

\mathcal{X} is Calabi-Yau manifold : $\quad c_{1}=0 \Longleftrightarrow \exists \quad R_{m n}=0$

Moduli space : $\quad M=\underset{\Lambda S}{M_{C S}^{2,1}} \times M_{K}^{1,1}$
z is $h^{(2,1)}$-dimensional complex coordinate

A set of coordinates of $M_{C S}: \quad \Pi_{I}=\int_{C_{I}} \Omega=\int_{X} C_{I} \wedge \Omega \quad\left\{C_{I}\right\} \in H_{3}(X)$

- Periods vector

$$
\Pi(z)=\left(\begin{array}{c}
\Pi_{b_{3}-1}(z) \\
\vdots \\
\Pi_{0}(z)
\end{array}\right)
$$

$$
\text { Periods of } X
$$

$$
b_{3}=2 h^{(2,1)}+2
$$

- Intersection matrix $\quad Q_{I J}=\int_{C_{I}} C_{J}=\int_{X} C_{I} \wedge C_{J}$

Symplectic structure

Inters. prod. : $\quad\left\langle A_{(3)}, B_{(3)}\right\rangle=\int_{X} A_{(3)} \wedge B_{(3)}=A \cdot Q \cdot B^{T}$
anti-symm. topological moduli indep.

Scalar prod. : $\quad\left(A_{(3)}, B_{(3)}\right)=\int_{X} A_{(3)} \wedge * B_{(3)}=A \cdot \mathcal{G}_{z} \cdot B^{T}$
moduli dep. positive quadratic form on $\mathbb{C}^{b_{3}}$

- 4-dim effective theory: $N=1$ scalar potential (tree-level)

$$
V(z, \tau)=e^{K}\left(g^{i \bar{\jmath}} D_{i} W D_{\bar{\jmath}} \bar{W}+g^{\tau \bar{\tau}} D_{\tau} W D_{\bar{\tau}} \bar{W}\right)
$$

We know how to express the components in terms of the periods !
Kähler potential: $K_{\mathrm{cs}}(z, \bar{z})=-\log \left(i \int_{X} \Omega \wedge \bar{\Omega}\right)=-\log \left(i \Pi^{\dagger} \cdot Q^{-1} \cdot \Pi\right)$
Superpotential: $\quad W=\int_{X} \Omega \wedge G_{(3)}=G \cdot \Pi$

- Hence the scalar potential can be computed numerically once the periods and their derivatives are known.

- \hat{N} must lie within an ellipsoid in $\mathbb{R}^{2 b_{3}}$ whose dimensions are given by the (τ, z)-dependent eigenvalues $\Lambda_{i}(\tau, z)$ of the matrix $\mathcal{G}_{\tau} \otimes \mathcal{G}_{z}$

No-go theorem

Any region of (τ, z)-space for which $\Lambda_{i}(\tau, z)$ are bounded from below by some positive number, can support only a finite number of vacua.

$$
\begin{gathered}
0<L=\hat{N} \cdot\left(\mathcal{G}_{\tau} \otimes \mathcal{G}_{z}\right) \cdot \hat{N}^{T} \leq L_{\max } \quad \mathcal{G}_{z}=2 e^{K} \operatorname{Re}\left[\Pi \Pi^{\dagger}+g^{i \bar{\jmath}} D_{i} \Pi \bar{D}_{\bar{\jmath}} \Pi^{\dagger}\right] \\
\hat{N} \cdot \mathcal{G}_{\tau} \otimes \mathcal{G}_{t} \cdot \hat{N}^{T}=\sum_{i, j}\left|\hat{N} \cdot v_{i} \otimes w_{j}\right|^{2} \mu_{i} \lambda_{j}=\sum_{i, j}\left|\epsilon_{i j}\right|^{2} \lambda_{j} \mu_{i}
\end{gathered}
$$

Evasion from the no-go

Infinite series of vacua can occur only if their location in the (τ, z)-space approaches a point where the matrix $\mathcal{G}_{\tau} \otimes \mathcal{G}_{z}$ develops a null eigenvector.

This can occur in two ways:

1) \mathcal{G}_{τ} degenerates, or
2) \mathcal{G}_{z} degenerates

Points where this happens are referred to as D-limits.

Outline of the talk

- Type IIB flux compactifications
- No-go theorem by Maldacena and Nunez
- GKP's evasion strategy
- Type IIB moduli stabilization
- Calabi-Yau geometry
- Flux vacua
- No-go theorem by Ashok and Douglas
- Sequences in type IIB approaching D-limits
- Mirror Quintic
- LCS point
- numerical results
one-parameter CY

The Mirror Quintic CY $\quad X^{(101,1)}$
Zero locus of homogeneous polynomial in \mathbb{P}^{4}
$p=\sum_{i=1}^{5} x_{i}^{5}-5 \psi x_{1} x_{2} x_{3} x_{4} x_{5}=0 \quad x_{i} \in \mathbb{P}^{4}$
(more precisely: $X^{(101,1)}=\mathbb{P}^{4}[p] / \mathbb{Z}_{5}^{3}+$ blow-ups)
complex structure modulus: $\psi \in \mathbb{C}$

- but $\psi \sim \alpha \psi$ w/ $\alpha=e^{2 \pi i / 5} \quad$ can be compensated by $x_{i} \longrightarrow \alpha^{-1} x_{i}$
$\longrightarrow \quad$ moduli space: $\mathbb{C} / \mathbb{Z}_{5} \quad$ orbifold singularity at $\quad \psi=0$
- "true" coordinate: $z=1 / \psi^{5}$
- D-limits $\begin{cases}z=0 & \text { large complex structure limit } \\ z=1 & \text { conifold singularity }\end{cases}$

Sequences of SUSY vacua related via monodromy $\left(H, F_{n}\right) \quad$ [Ahlqvist, Greene et al '10]

Analytical study the sequences in the vicinity of the LCS point

- The period vector takes following general form around LCS point:

$$
\left(\begin{array}{c}
\Pi_{3} \\
\Pi_{2} \\
\Pi_{1} \\
\Pi_{0}
\end{array}\right) \sim\left(\begin{array}{cl}
\alpha t^{3}+\beta t+i \gamma \frac{\zeta(3)}{\pi^{3}} \\
\delta t^{2}+\epsilon t+\eta \\
t \\
1
\end{array}\right) \quad \begin{array}{ll}
t \sim-i \ln z \\
\alpha, \ldots, \eta & \text { rational coefficients parametrizing } \\
\text { family of one-modulus CY }
\end{array}
$$

- Expand $\quad \mathcal{G}_{z}=2 e^{K} \operatorname{Re}\left[\Pi \Pi^{\dagger}+g^{i \bar{j}} D_{i} \Pi \bar{D}_{\bar{\jmath}} \Pi^{\dagger}\right]$
- Determine eigenvalues and eigenvectors of \mathcal{G}_{z} (and \mathcal{G}_{τ}) up to $\mathcal{O}\left(\operatorname{Im}(z)^{-3}\right)$
- Requiring $\quad \lim _{n \rightarrow \infty} z_{n}=0, \quad \lim _{n \rightarrow \infty} N_{n} \cdot\left(\mathcal{G}_{\tau} \otimes \mathcal{G}_{z_{n}}\right) \cdot N_{n}^{T} \neq \infty$
it follows $\quad F^{0}=F^{1}=H^{0}=H^{1}=0 \quad \Longrightarrow \quad \int F_{(3)} \wedge H_{(3)}=0 \begin{aligned} & \text { the metric } \\ & \text { degenerates ! }\end{aligned}$
This implies that there is no ISD vacuum, except the singular one Located exactly at the LCS point.

Summary

- Ashok and Douglas: infinite sequences of type IIB ISD flux vacua can only occur in D-limits.
- We refine this no-go result: there are no infinite sequences accumulating to the LCS point of a class of one-parameter CYs. Most prominent example: Mirror Quintic.
- Similar analysis for conifold points and the decoupling limit obtaining identical results.
- Similar analysis for LCS point of a two-parameter CY.

Outlook

- Formulate more general and transparent conditions on the singularity.
\square \rightarrow Statement of a more general finiteness theorem.
- Do similar techniques apply for more general CYs ?
- How do warping corrections affect the results ?

