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Lecture 7 The thermal universe - part III

Last time we have seen that our universe roughly 10−14s after the big bang was filled with
a ‘soup’ of standard model particles that are all in thermal equilibrium. We described how
during the expansion of our universe, due to the decrease in temperature, particles become
non-relativistic. Today we start at an energy of roughly 1MeV , which corresponds to 1s
after the big bang, and we will discuss the fate of electrons, positrons, photons and neutrinos.
In order to do that it is useful to keep track of a conserved quantity, namely the entropy.

1 The entropy of our universe

In the second homework you used the first law of thermodynamics

TdS = dE + PdV , (1)

to derive the continuity equation ρ̇+3H(ρ+P ) = 0 under the assumption that the entropy is
not changing in an expanding universe. The continuity equation follows from the Friedmann
equations that we use to describe our universe which means that the entropy in our universe
is conserved. This means it is a useful quantity to keep track of.

To do so we recall that the entropy and the energy are extensive quantities which satisfy

∂VE =
E

V
, ∂V S =

S

V
. (2)

Using this and S = S(V, T ) and E(V, T ) we find from equation (1)

T∂TSdT + T∂V SdV = ∂VEdV + ∂TEdT + PdV

T∂TSdT + T
S

V
dV =

E

V
dV + ∂TEdT + PdV . (3)

Since dT and dV are independent, in particular the terms multiplying dV have to vanish,
which gives

T
S

V
=
E

V
+ P ⇒ S =

E + PV

T
. (4)

We now define the entropy density

s ≡ S

V
=
ρ+ P

T
. (5)

For our discussion of the early universe we are interested in radiation with P = 1
3
ρ for which

the entropy density becomes

s =
4

3

ρ

T
. (6)
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Note, that it easily follows from the scalings ρ ∼ a−4, V ∼ a3 and T ∼ a−1 that the entropy
S is indeed constant.

In order to calculate the entropy density in the early universe, we have to sum over all
particles, taking into account their energy density and temperature. We do this like last
time by defining

s =
2π2

45
g?S(T )T 3 , (7)

where we used equation (14) from the lecture 6 notes for the energy density ρ and T denotes
the photon temperature. The quantity g?S(T ) again is the sum of the particles in thermal
equilibrium with the photons and the decoupled particles g?S(T ) = gth?S + gdec?S (T ). The
effective number in thermal equilibrium is the same as last time gth?S = gth? , where gth? was
defined in equation (23) in the lecture 6 notes. However, due to the different scaling with
temperature, this is not true for the decoupled degrees of freedom. In particular, we have

gdec?S (T ) =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

, (8)

which is different from gdec? (T ) which has powers of 4 for the temperature (cf. equation (24)
in the lecture 6 notes).

As we showed above, the entropy is preserved and in the case that no particles are created
or destroyed then the particle density and entropy density scale in the same way, i.e. like
1/V ∼ a−3. This means that their ratio ni/s is constant. Now in the early universe in
thermal equilibrium particles and anti-particles are constantly created and destroyed but
as we discussed before the net baryon number cannot change due to perturbative standard
model interactions. So after baryogenesis the quantity (nb−nb̄)/s is preserved and does not
change during the evolution of our universe until today.

Another consequence of the fact that sa3 = const. is that, using equation (7), we find
that

g?S(T )T 3a3 = const. ⇒ T ∝ g
− 1

3
?S a

−1 . (9)

This means that away from temperatures where particles become non-relativistic we find that
the factor of proportionality, i.e. the slope of the decrease of the temperature, is constant
and depends on the relativistic degrees of freedom. If one species drops out of equilibrium
because it becomes non-relativistic, then its entropy density (like its energy density) decays
exponentially. However, the net entropy has to stay constant so the particle that becomes
non-relativistic has to transfer its entropy to the particle species that are still in thermal
equilibrium. For example, when electrons and positions are in thermal equilibrium we have
the reaction

e− + e+ ↔ γ + γ . (10)

Once the temperature drops below the electron mass, the annihilation is strongly favored

e− + e+ → γ + γ , (11)

the electron and positron densities decay exponentially and their entropy is transfered to
the photons. Since g?S decreased by 7

8
4 during this decoupling of the electrons, the factor of

proportionality between T and a−1 in equation (9) has increased. This is shown in figure 1.
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Figure 1: After the electrons and positrons become non-relativistic they annihilate which
changes the evolution of the temperature of the photons (orange line).

2 Neutrino decoupling

In our universe things are more interesting and in particular the neutrinos play an interesting
role. Via weak interactions like for example

e− + e+ ↔ νe + ν̄e , (12)

they are kept in thermal equilibrium with the electrons. We have argued based on dimen-
sional analysis that the cross-section for such interactions goes like σ ∼ α2/T 2. However,
this is not anymore true after the electroweak symmetry breaking. After this electroweak
symmetry breaking the W± and Z bosons have a mass which provides a new scale and
actually determines the weak interaction strength. A process with two initial and two final
particles like the one in equation (12) scales like α2/m4

W ≈ 10−10GeV −4. On dimensional
grounds we then have

σ ∼ α2

m4
W

T 2 , (13)

so instead of increasing with decreasing temperature, σ is now decreasing during the cooling
of the universe.

Let us ask what this means for the ratio between the particle interaction rate Γ = nσv
compared to the Hubble expansion rate H ∼ T 2/MP . Recalling that n ∼ T 3 and v ≈ 1, we
get

Γ

H
∼ α2

m4
W

T 5MP

T 2
≈
(

T

MeV

)3

. (14)

What this estimate shows is that particles like the neutrinos that only interact via the weak
force, will freeze-out at a temperature of roughly 1MeV .
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3 The cosmic neutrino background

The only particles that are relativistic at such low energies are the electron, the photon
and the neutrinos. The electron becomes non-relativistic at slightly lower temperature T .
me = .5MeV . At this point the neutrinos are decoupled and the entropy of the electrons is
transfered only to the thermal bath of the photons. This means that the neutrinos will have
a lower temperature than the photons. In figure 1, the neutrino temperature would follow
the dashed blue line, while the photon temperature corresponds to the orange line.

Let us make this more precise: Neglecting the decoupled neutrinos, we have before and
after the electron decoupling

g?S =

{
2 + 7

8
4 = 11

2
T > me

2 T � me
. (15)

It then follows from equation (9) that the factor of proportionality between the photon
temperature Tγ and a−1 changes due to the electron decoupling by a factor of ((11/2)/2)1/3 =
(11/4)1/3. However, the same factor for the neutrinos does not change so that the neutrino
temperature is slightly lower and given by

Tν =

(
4

11

) 1
3

Tγ ≈ .71Tγ . (16)

This means that our universe is filled in addition to the cosmic microwave background with
a cosmic neutrino background that currently has a temperature of

Tν,0 =

(
4

11

) 1
3

2.725K ≈ 1.95K . (17)

We are currently not able to experimentally detect this cosmic neutrino background since
the neutrinos have very low energies and interact only via the weak force. However, we have
indirect evidence for their existence since their energy and entropy density affect the big
bang nucleosynthesis and anisotropies in the cosmic microwave background, both of which
we will discuss later in this course.

Next let us calculate the values of g? and g?S after the decoupling of the electrons. For
g? we have from equations (23)-(25) in the lecture 6 notes

g?(T ) = gth? + gdec? (T ) = 2 +
7

8
· 2 · 3 ·

(
4

11

) 4
3

≈ 3.36 . (18)

Similarly, we find for g?S from equation (8)

g?S(T ) = gth?S + gdec?S (T ) = 2 +
7

8
· 2 · 3 · 4

11
≈ 3.91 . (19)

These are the values shown in figure 2, that we have already seen last time.1 As is also clear
from figure 2, before the neutrino freeze-out we have g? = g?S.

1The decoupling of the neutrinos is not instantaneous and not totally finished by the time the electrons
become non-relativistic. This means that a small fraction of the electron entropy is transferred to the
neutrinos. This is usually encoded in an effective number of neutrinos Neff ≈ 3.046 that replaces the 3 that
counts the neutrinos in equations (18), (19) which leads to the values in figure 2.
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Figure 2: The evolution of the relativistic degrees of freedom in our early universe (taken
from Daniel Baumann’s “Cosmology” lectures).

4 Important events in our early universe

Before we start to discuss the deviation from equilibrium and big bang nucleosynthesis next
time, it might be good to take stock and recall the important events of our universe in the
time from 10−14s to 380, 000 years after the big bang.

As we have discussed before the time of 10−14s after the big bang corresponds to a
temperature of 10TeV which is roughly the energy scale we can test in particle experiments
like the LHC at CERN. We have also argued that the standard model particles are in thermal
equilibrium at that time so that we have a hot and dense soup of standard model particles at
this point. The expansion of the universe leads to a cooling of this plasma and the important
events during the evolution and cooling of our universe are summarized in the table below.
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Event Time Redshift Temperature

Baryogenesis ? ? ?

EW phase transition 2× 10−11s 1015 100GeV

QCD phase transition 2× 10−5s 1012 150MeV

Neutrino decoupling 1s 6× 109 1MeV

Electron-positron annihilation 6s 2× 109 500keV

Big bang nucleosynthesis 3min 4× 108 100keV

Matter-radiation equality 6× 104yrs 3400 .75eV

Recombination 2.6− 3.8× 105yrs 1100-1400 .26− .33eV

CMB 3.8× 105yrs 1100 .26eV

Baryogenesis: As we discussed in lecture 5, there is an asymmetry between baryons and
anti-baryons that cannot be explained by the standard model of particle physics. Thus at
energies above 1TeV there must be some new physics that generates this asymmetry. While
there are many different theoretical ideas, there is no experimental test of any of these so
we cannot associate a time to baryogenesis. Since the observed universe is neutral under the
electric charge, there must be a similar asymmetry between electrons and positrons so that
after their annihilation we are left with one electron for each proton.

Electroweak-phase transition: During this phase transition that we discussed last time,
the particles get their mass due to the so called Higgs effect. Once the standard model
particles are massive they start to drop out of equilibrium whenever the temperature of the
universe (i.e. the thermal bath) becomes smaller than their mass. Then the particles start
to annihilate with their anti-particles and their number densities decrease exponentially.
The remaining matter in our observed universe is due to the matter-anti-matter asymmetry
mentioned above.

QCD phase transition: The strong force is weaker at higher energies (temperatures)
and becomes stronger and stronger during the cooling of the universe. Around 150MeV the
strong force is so strong that free gluons and quarks cannot exist anymore and all the quarks
are bound into so called baryons and mesons. These are bound states that are neutral under
the strong force. The lightest baryons are the familiar proton and neutron. There are also
heavier baryons and mesons that can be lighter than the proton and neutron but all of these
are unstable and quickly decay. So a little bit after the QCD phase transition we are left
with essentially only protons and neutrons that are the building blocks for the atomic nuclei.

Neutrino decoupling: As we discussed today, at around 1MeV the weak interaction
becomes so weak that particles that are only charged under the weak force, i.e. the neutrinos,
decouple from the thermal plasma. These neutrinos, similarly to the photons in the CMB,
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give rise to a cosmic neutrino background that is slightly colder than the CMB and is difficult
to observe directly. At the time of decoupling the three neutrinos are still relativistic and
during the cooling of the universe they become non-relativistic whenever the temperature is
smaller than their respective mass.

Electron-positron annihilation: Around T ∼ me ≈ 511keV the electrons and positrons
become non-relativistic and transfer their energy and entropy into the photons only (since
the neutrinos are decoupled already). This slows down the decrease in the temperature of
the photons a little bit so that the photons today have a temperature that is a little bit
larger than the neutrino background.

Big bang nucleosynthesis: One of the greatest successes of the big bang cosmology is
that it correctly predicts the observed abundance of elements in our universe. We will discuss
next time how the protons and neutrons in our universe combine into atomic nuclei. Using
nuclear physics, we can predict the amount of different elements in the early universe and
these predictions agree with what we observe. Any kind of new physics that can appear
beyond the standard model is severely constraint by this success.

Recombination: Once the average energy of the photons drops below .33eV the tail of
high energy photons is sufficiently small to allow for neutral atoms to form. This process in
which electrons and protons combine2 takes roughly 100,000 years and at its end the universe
is filled with clouds of neutral atoms and the cosmic microwave background.

The cosmic microwave background: Once the electrons and nuclei combine into neutral
atoms, the photons can stream freely until today. The observation of this cosmic microwave
background does not only tell us about the universe 380,000 years after the big bang but
the incredible homogeneity of the CMB also strongly motivates a short phase of accelerated
expansion in our very early universe, the so called inflation. The small deviations from ho-
mogeneity in the CMB photons we observe together with their polarization provide detailed
information about this period of inflation.

5 Dark Matter

As we have seen in lecture 3, more than 80% of the matter in our universe is not in the form
of standard model particles but rather in the form of dark matter that consists of one (or
multiple) unknown particle species. Since we don’t know what these particles are and how
they interact, we cannot say for sure how their observed energy density arises. However, if
we assume that the dark matter and standard model particles are in thermal equilibrium
in the early universe, then the evolution of the dark matter particles should be describable
with the tools we developed so far. In particular, since the dark matter is not visible and
so difficult to detect, it can at most interact with the standard model particles via the weak
force (or via an unknown even weaker force). If we assume that the mass of the dark matter

2Don’t ask why this is called recombination. The electrons and nuclei were never combined before that
point.
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particles is above their decoupling scale, then they would become non-relativistic before they
decouple from the standard model particles and their number density starts to exponentially
decay. Then at a certain point their interaction rate becomes so small that Γ ∼ H which
leads to a freeze-out and a relic density of dark matter particles. This scenario can lead to the
observed amount of dark matter and experiments have already substantially constraint the
cross-section and mass of such weakly interacting massive particles (often called WIMPs).
This is shown in figure 3 where the constraints on the WIMP mass is plotted against the
WIMP-nucleon cross section. The upper right region is excluded by experiments.

Figure 3: Some experimental bounds on weakly interacting massive particles.

While some experiments have claimed a detection of dark matter in the past, other
experiments could not reproduce these findings. So we have to wait for future experiments
to shed light on the nature of the dark matter in our universe.
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