Exact entropy and Rademacher expansion for CHL orbifold black holes

Abhiram M Kidambi
WIP w/ A. Chowdhury, T. Wrase (TU Wien) \& V. Reys (U. Milano Bicocca), S. Murthy (KCL London)

Institute for Theoretical Physics, TU Wien

ESI Workshop on Moonshine, Vienna

INSTITUTE for
THEORETICAL
PHYSICS
Vienna University of Technology

Overview

Can we recover an exact supergravity - SCFT match for microstate counting in CHL orbifolds on $\mathcal{N}=4, d=4$ string theory?

- Dabholkar-Murthy-Zagier (DMZ) for CHL models ("The microscopic approach")
- The Rademacher expansion method and supergravity matching ("The sort of macroscopic approach")
- A note on negative discriminant states

If you slept through Val's talk

A slide for the non-string theorists. [DVV, $D M V V, D M Z, \ldots]$

- $\mathcal{N}=4, d=4$ string theory on $K 3 \times T^{2}-\frac{1}{2}$-BPS or $\frac{1}{4}$-BPS
- $\frac{1}{2}$-BPS black holes exist everywhere in moduli space, degeneracy independent of contour choice, partition function given by $\frac{1}{\eta(\tau)^{24}}$
- $\frac{1}{4}$-BPS black holes are "mortal" i.e. not all of them exist everywhere in moduli space, PF given in terms of $\frac{1}{\Phi_{10}(\tau, \sigma, z)}$, i.e. inverse of the Igusa cusp form of wt. 10 (related to the EG of K3)

If you slept through Val's talk

- $\frac{1}{\Phi_{10}(\tau, \sigma, z)}$ is meromorphic in z. Residue of the Φ_{10} integral at poles represents a jump in the degeneracy of $\frac{1}{4}$-BPS black holes.
- Jump due to when two $\frac{1}{2}$-BPS states become bound and effectively behave as a $\frac{1}{4}$-BPS state. "Wall crossing"

$$
\begin{gathered}
\Phi_{10}(\tau, \sigma, z) \sim \eta(\tau)^{24} \eta(\sigma)^{24} \\
\frac{1}{\Phi_{10}(\tau, \sigma, z)}=\sum_{m \geq-1} \psi_{m}(\tau, z) p^{m}, p=e^{2 \pi i \sigma}
\end{gathered}
$$

$\psi_{m}(\tau, z)$ encodes the degeneracies of all $\frac{1}{4}$-BPS black holes.

If you slept through Val's talk

- The true $\frac{1}{4}$-BPS black holes are the finite part of $\psi_{m}(\tau, z)$, the bound $\frac{1}{2}$-BPS black holes are the polar part of $\psi_{m}(\tau, z)$.

$$
\psi_{m}^{F}(\tau, z)=\psi_{m}(\tau, z)-\psi_{m}^{P}(\tau, z)
$$

[Dabholkar, Murthy, Zagier]

- Holds for almost all cases of black holes (except for a subtlety regarding negative discriminant states $\Delta=\left(4 m n-I^{2}\right)<0$ (In the string theory picture: if $Q^{2}=-2$ or $P^{2}=-2$ or both)

What we're doing

Mathematician:
DMZ concerns the theory of $(\mathrm{M}) \mathrm{JF}$'s on $S L_{2}(\mathbb{Z})$. Can we generalize this to congruence subgroups $\Gamma_{0}(N) \subset S L_{2}(\mathbb{Z})$?

Physicist :
Can we study the properties of the BH microstate counting functions under a CHL orbifold?
(CHL orbifolds are special supersymmetry preserving orbifolds.)
[Chaudhuri, Hockney, Lykken]

Finite $\frac{1}{4}$-BPS degeneracies via. the product representation

- Under CHL orbifold, explicit formula for the lift of the orbifolded EG is well known for prime values of orbifolds $N=2,3,5,7$
[Sen, Jatkar, David; Volpato, Zimet, Paquette; Pioline, Bossard, Cosnier-Horeau;..]
- EG is a JF on $\Gamma_{0}(N)$
- Can write down two equivalent lifts

$$
\Phi_{k}(\tau, \sigma, z) \& \tilde{\Phi}_{k}(\tau, \sigma, z), k=\frac{24}{N+1}-2
$$

The two lifts are related via $\mathrm{Sp}_{2}(\mathbb{Z})$ transform.

- Can perform a Jacobi form decomposition of the $\tilde{\Phi}_{k}$ lift, the construction of the polar component (Appell-Lerch sum) and extract the finite component
- Black hole degeneracies are Fourier coefficients of this finite component

Finite $\frac{1}{4}$-BPS degeneracies under CHL orbifold

- Straightforward to obtain the black hole degeneracies, checked for $N=2,3,5,7$
- Methods to extend to non-prime orbifolds also exist [Govindarajan, Gopala Krishna]
- Subtlety: Post caution about negative discriminant states. "Bound state metamorphosis"
- Bounds state metamorphosis: Each configuration of a $\frac{1}{4}$-BPS bound state has some contribution to the supersymmetric index. For special values of black hole electric and magnetic charges, different bound states have the same index contribution in a chamber. Identify such bound states to one another. [Sen, Chowdhury, et, al; Dabholkar, Gaiotto, Nampuri]
- By accounting for metamorphosis, one can extract black hole degeneracies for all values of charges

Matching with supergravity

- For an exact match, supergravity must know about these degeneracies.
- With some microscopic assumptions, evaluate the QEF in terms of the K3 prepotential and the worldsheet instanton contributions [Reys, Murthy]
- QEF is an infinite convergent sum of std. Bessel functions of the first kind whose coefficients are BH degeneracies [cf. talk by Val Reys]
- To compute these coefficients, use the Rademacher circle method with appropriate choice of multiplier systems for the Gen. Kloosterman sums. Some microscopic data is assumed here.
- Matching of coefficients with microscopic case for low values of summation in GKS already evident for low values of m in $\psi_{m}^{F}(\tau, z)$. [Murthy, Reys]
- Extend this to the CHL cases (Rademacher expansions for (M)MJF on $\Gamma_{0}(N)$)

Rademacher expansion for CHL black holes

- Rademacher expansions for congruence subgroups commensurable with $S L_{2}(\mathbb{Z})$ is known [Cheng, Duncan]
- Subtlety: No S transforms in $\Gamma_{0}(N)$, use $\Gamma_{0,+}(N)$ which includes the Atkin-Lehner involution. (Atknin-Lehner involution = S-duality transform for $\left.\Gamma_{0}(N)\right)$. Focus as of now on $\Gamma_{0,+}(N)$
- Rademacher series for modular forms in $\Gamma_{0,+}(N)$ has been studied [Nally; Sussman]
- Difference between Φ_{k} and $\tilde{\Phi}_{k}$ is important here.
- Φ_{k} transforms as a modular object in $\Gamma^{0}(N)$ for which there is no AL involution, $\tilde{\Phi}_{k}$ transforms as a modular object in $\Gamma_{0,+}(N)$. Rademacher series numerically simpler in $\Gamma_{0,+}(N)$.
- Idea/Current status: To recover the coefficients of Φ_{k}, switch to $\tilde{\Phi}_{k}$ via $S p_{2}(\mathbb{Z})$ transform. Extract coefficients via the circle method and translate back to Φ_{k}.

Conclusion and WIP

- Initial impressions: Properties of JF's with regards to polar and finite decomposition seems to extend to JF's on $\Gamma_{0}(N)$.
- Trying to verify this with known physical calculations by computing the Rademacher series of the relevant (M)MJF's on $\Gamma_{0}(N)$.
- Extend to Rademacher series on $\Gamma^{0}(N)$ to compute coefficients of Φ_{k} directly.
- The exact supergravity match is as of yet to be solved, glacial progress
- Try to produce a closed form expression to recover ALL finite $\frac{1}{4}$-BPS contributions to the supersymmetric index in moduli space
- Explore number theoretic properties of BH twining by sporadic group elements [Volpato, Zimet, Paquette; David, Chattopadhyaya]

Thank you！

