Exact entropy and Rademacher expansion for CHL orbifold black holes

Abhiram M Kidambi WIP w/ A. Chowdhury, T. Wrase (TU Wien) & V. Reys (U. Milano Bicocca), S. Murthy (KCL London)

Institute for Theoretical Physics, TU Wien

ESI Workshop on Moonshine, Vienna

Overview

Can we recover an exact supergravity - SCFT match for microstate counting in CHL orbifolds on N = 4, d = 4 string theory?

- Dabholkar-Murthy-Zagier (DMZ) for CHL models ("The microscopic approach")
- The Rademacher expansion method and supergravity matching ("The sort of macroscopic approach")

A note on negative discriminant states

If you slept through Val's talk

A slide for the non-string theorists. [DVV, DMVV, DMZ, ...]

- $\mathcal{N} = 4, d = 4$ string theory on $K3 \times T^2$ $\frac{1}{2}$ -BPS or $\frac{1}{4}$ -BPS
- $\frac{1}{2}$ -BPS black holes exist everywhere in moduli space, degeneracy independent of contour choice, partition function given by $\frac{1}{n(\tau)^{24}}$
- $\frac{1}{4}$ -BPS black holes are "mortal" i.e. not all of them exist everywhere in moduli space, PF given in terms of $\frac{1}{\Phi_{10}(\tau, \sigma, z)}$, i.e. inverse of the Igusa cusp form of wt. 10 (related to the EG of K3)

(日) (日) (日) (日) (日) (日) (日) (日)

If you slept through Val's talk

- $\frac{1}{\Phi_{10}(\tau, \sigma, z)}$ is meromorphic in *z*. Residue of the Φ_{10} integral at poles represents a jump in the degeneracy of $\frac{1}{4}$ -BPS black holes.
- Jump due to when two ¹/₂-BPS states become bound and effectively behave as a ¹/₄-BPS state. "Wall crossing"

$$\Phi_{10}(\tau,\sigma,z) \sim \eta(\tau)^{24} \eta(\sigma)^{24}$$

$$\frac{1}{\Phi_{10}(\tau,\sigma,z)} = \sum_{m \ge -1} \psi_m(\tau,z) p^m, \ p = e^{2\pi i \sigma}$$

 $\psi_m(\tau, z)$ encodes the degeneracies of all $\frac{1}{4}$ -BPS black holes.

If you slept through Val's talk

 The true ¹/₄-BPS black holes are the finite part of ψ_m(τ, z), the bound ¹/₂-BPS black holes are the polar part of ψ_m(τ, z).

$$\psi_m^F(\tau, \mathbf{Z}) = \psi_m(\tau, \mathbf{Z}) - \psi_m^P(\tau, \mathbf{Z})$$

(日) (日) (日) (日) (日) (日) (日) (日)

[Dabholkar, Murthy, Zagier]

Holds for almost all cases of black holes (except for a subtlety regarding negative discriminant states Δ = (4mn − l²) < 0 (In the string theory picture: if Q² = −2 or P² = −2 or both)

Mathematician:

DMZ concerns the theory of (M)JF's on $SL_2(\mathbb{Z})$. Can we generalize this to congruence subgroups $\Gamma_0(N) \subset SL_2(\mathbb{Z})$?

Physicist :

Can we study the properties of the BH microstate counting functions under a CHL orbifold?

(CHL orbifolds are special supersymmetry preserving orbifolds.) [Chaudhuri, Hockney, Lykken]

Finite $\frac{1}{4}$ -BPS degeneracies via. the product representation

• Under CHL orbifold, explicit formula for the lift of the orbifolded EG is well known for prime values of orbifolds N = 2, 3, 5, 7

[Sen, Jatkar, David; Volpato, Zimet, Paquette; Pioline, Bossard, Cosnier-Horeau;..]

- EG is a JF on Γ₀(N)
- Can write down two equivalent lifts

$$\Phi_k(au, \sigma, z)$$
 & $ilde{\Phi}_k(au, \sigma, z), \ k = rac{24}{N+1} - 2$

The two lifts are related via $Sp_2(\mathbb{Z})$ transform.

- Can perform a Jacobi form decomposition of the Φ
 [˜]_k lift, the construction of the polar component (Appell-Lerch sum) and extract the finite component
- Black hole degeneracies are Fourier coefficients of this finite component

Finite $\frac{1}{4}$ -BPS degeneracies under CHL orbifold

- Straightforward to obtain the black hole degeneracies, checked for N = 2, 3, 5, 7
- Methods to extend to non-prime orbifolds also exist [Govindarajan, Gopala Krishna]
- Subtlety: Post caution about negative discriminant states. "Bound state metamorphosis"
- Bounds state metamorphosis: Each configuration of a $\frac{1}{4}$ -BPS bound state has some contribution to the supersymmetric index. For special values of black hole electric and magnetic charges, different bound states have the same index contribution in a chamber. Identify such bound states to one another. *[Sen, Chowdhury, et,al; Dabholkar, Gaiotto, Nampuri]*
- By accounting for metamorphosis, one can extract black hole degeneracies for all values of charges

Matching with supergravity

- For an exact match, supergravity must know about these degeneracies.
- With some microscopic assumptions, evaluate the QEF in terms of the K3 prepotential and the worldsheet instanton contributions [Reys, Murthy]
- QEF is an infinite convergent sum of std. Bessel functions of the first kind whose coefficients are BH degeneracies [cf. talk by Val Reys]
- To compute these coefficients, use the Rademacher circle method with appropriate choice of multiplier systems for the Gen. Kloosterman sums. Some microscopic data is assumed here.
- Matching of coefficients with microscopic case for low values of summation in GKS already evident for low values of *m* in ψ^F_m(τ, Z). [Murthy, Reys]
- Extend this to the CHL cases (Rademacher expansions for (M)MJF on Γ₀(N))

Rademacher expansion for CHL black holes

- Rademacher expansions for congruence subgroups commensurable with SL₂(Z) is known [Cheng, Duncan]
- Subtlety: No S transforms in Γ₀(N), use Γ_{0,+}(N) which includes the Atkin-Lehner involution. (Atknin-Lehner involution = S-duality transform for Γ₀(N)). Focus as of now on Γ_{0,+}(N)
- Rademacher series for modular forms in Γ_{0,+}(N) has been studied [Nally; Sussman]
- Difference between Φ_k and $\tilde{\Phi}_k$ is important here.
- Φ_k transforms as a modular object in $\Gamma^0(N)$ for which there is no AL involution, $\tilde{\Phi}_k$ transforms as a modular object in $\Gamma_{0,+}(N)$. Rademacher series numerically simpler in $\Gamma_{0,+}(N)$.
- Idea/Current status: To recover the coefficients of Φ_k, switch to Φ_k via Sp₂(ℤ) transform. Extract coefficients via the circle method and translate back to Φ_k.

Conclusion and WIP

- Initial impressions: Properties of JF's with regards to polar and finite decomposition seems to extend to JF's on Γ₀(N).
- Trying to verify this with known physical calculations by computing the Rademacher series of the relevant (M)MJF's on Γ₀(N).
- Extend to Rademacher series on Γ⁰(N) to compute coefficients of Φ_k directly.
- The exact supergravity match is as of yet to be solved, glacial progress
- Try to produce a closed form expression to recover ALL finite $\frac{1}{4}$ -BPS contributions to the supersymmetric index in moduli space
- Explore number theoretic properties of BH twining by sporadic group elements [Volpato, Zimet, Paquette; David, Chattopadhyaya]

Thank you!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○