
Sergei Alexandrov

Laboratoire Charles Coulomb, CNRS, Montpellier

S.A., B.Pioline  arXiv:1808.08479

S.A., S.Banerjee, J.Manschot, B.Pioline  arXiv:1605.05945

arXiv:1606.05495

arXiv:1702.05497

S.A., B.Pioline arXiv:1804.06928

BPS black holes, 

wall-crossing and 

mock modularity of higher depth

continuation of



The problem

BPS black holes described by D4-D2-D0 bound states in Type IIA string 

theory compactified on a Calabi-Yau threefold non-trivial 

cycle on CY

●

● electro-magnetic charge

BPS index (black hole degeneracy)●
generalized 

Donaldson-Thomas invariant

label 4- and 2-dim cycles

wrapped by D4 and D2-branes

Goal: understand modular properties of



The problem

BPS black holes described by D4-D2-D0 bound states in Type IIA string 

theory compactified on a Calabi-Yau threefold non-trivial 

cycle on CY

●

● electro-magnetic charge

BPS index (black hole degeneracy)●
generalized 

Donaldson-Thomas invariant

label 4- and 2-dim cycles

wrapped by D4 and D2-branes

Goal: understand modular properties of

Define a generating function:

and study its properties under modular transformations:



The problem

BPS black holes described by D4-D2-D0 bound states in Type IIA string 

theory compactified on a Calabi-Yau threefold non-trivial 

cycle on CY

●

● electro-magnetic charge

BPS index (black hole degeneracy)●
generalized 

Donaldson-Thomas invariant

label 4- and 2-dim cycles

wrapped by D4 and D2-branes

Goal: understand modular properties of

Define a generating function:

and study its properties under modular transformations:

Problems:

●

●

Generating function depends on too many charges

DT invariants depend on CY moduli (wall-crossing)
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For irreducible cycle     :

What is modular behavior of

for generic divisor?

Properties:

●

●

independent of CY moduli

invariant under spectral flow symmetry

spectral flow

‒ quadratic form, given

by intersection numbers of 4-cycles,

of indefinite signature
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Instanton expansion: 

do not depend on D0-brane charge

Cannot be factorized into a product of            and a theta series due to 

dependence of the generating functions on electric charges

Due to spectral flow symmetry the generating functions

are independent of 

due to quadratic term in

theta series decomposition 
indefinite theta series 

with kernel          defined 

by iterated integrals of      

and the tree index 

Solution: express DT invariants in terms of MSW invariants

[Boris’ talk]
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don’t depend on D0-chrage
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Our theta series fits in the class:

kernel quadratic form of 

indefinite signatured-dim. lattice
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Vignéras ‘77Simple criterion for modularity:

In our case: ●

●

● bilinear form

— lattice of electric charges        ;
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Completion and generalized error functions

— smooth solutions of Vignéras equation for

Level 2: sum over unrooted trees

The generating function  of 

MSW invariants is a higher 

depth mock modular form 

Depth = n-1
irreducible divisors

Example: — usual mixed mock modular form
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conjugate to the angular momentum of black hole 

Modularity requires

where                         satisfies a recursive equation

A way to solve the equation: refine it! — replace a factor             by   

— refined index of a 2-particle bound state

Laurent polynomial, 

regular at            , if

Why ?

refined 

S-duality?

Bernoulli 

numbers

Taylor coefficients of 
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Fun with combinatorics

● for each vertex             find            and 

(number of vertices in the subtree rooted at    )

● take the ratio of the coefficients, multiply over 

all            and sum over subtrees

Theorem: for any rooted tree      with     vertices and 



Conclusions

Open problems and applications:

● Indications that S-duality is compatible with refinement.

● New unexpected results for combinatorics of trees.

● Non-perturbative formulation of these results         integral equation on         ?

‒ higher depth (mixed) mock modular form

The main result: the explicit form of the modular completion of the generating 

function of black hole degeneracies (DT invariants) at large volume attractor 

point for arbitrary divisor of CY.

● Geometric or physical meaning of the instanton generating function    .

● Understanding the completion from the point of view of world-volume theory 

on M5-brane wrapped on a reducible divisor.

● Implications for black hole state counting           restrictions on growth 

● Vafa-Witten theory


