BPS black holes, wall-crossing and mock modularity of higher depth

Sergei Alexandrov

Laboratoire Charles Coulomb, CNRS, Montpellier

S.A., B.Pioline arXiv:1808.08479

continuation of S.A., S.Banerjee, J.Manschot, B.Pioline arXiv:1605.05945 arXiv:1606.05495 arXiv:1702.05497 S.A., B.Pioline arXiv:1804.06928

The problem

- BPS black holes described by D4-D2-D0 bound states in Type IIA string theory compactified on a Calabi-Yau threefold
- electro-magnetic charge

$$y = (0, p^a, q_a, q_0)$$
 $a = 1, \dots, b_2(CY)$
label 4- and 2-dim cycles
wrapped by D4 and D2-branes

• BPS index (black hole degeneracy) $\Omega(\gamma)$ –

non-trivial cycle on CY

generalized Donaldson-Thomas invariant

Goal: understand modular properties of $\Omega(\gamma)$

The problem

- BPS black holes described by D4-D2-D0 bound states in Type IIA string theory compactified on a Calabi-Yau threefold
- electro-magnetic charge

$$a = (0, p^a, q_a, q_0)$$

 $a = 1, \dots, b_2(CY)$
 $a = 1, \dots, b_2(CY)$

• BPS index (black hole degeneracy) $\,\Omega(\gamma) -$

non-trivial cycle on CY

generalized Donaldson-Thomas invariant

Goal: understand modular properties of $\Omega(\gamma)$

Define a generating function:

$$h_{\cdots}^{\mathrm{DT}}(\tau) = \sum_{q_0 > 0} \Omega(\gamma) \, e^{2\pi \mathrm{i} q_0 \tau}$$

and study its properties under modular transformations:

 $\tau \mapsto \frac{a\tau + b}{c\tau + d}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$$

The problem

- BPS black holes described by D4-D2-D0 bound states in Type IIA string theory compactified on a Calabi-Yau threefold
- electro-magnetic charge

$$a = (0, p^a, q_a, q_0)$$

 $a = 1, \dots, b_2(CY)$
 $a = 1, \dots, b_2(CY)$

• BPS index (black hole degeneracy) $\,\Omega(\gamma) -$

non-trivial cycle on CY

generalized Donaldson-Thomas invariant

Goal: understand modular properties of $\Omega(\gamma)$

Define a generating function:

$$h_{\dots}^{\mathrm{DT}}(\tau) = \sum_{q_0 > 0} \Omega(\gamma) \, e^{2\pi \mathrm{i} q_0 \tau}$$

and study its properties under modular transformations:

Problems:

- Generating function depends on too many charges
- DT invariants depend on CY moduli (wall-crossing)

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$$

Solution: consider *MSW invariants* count states in SCFT constructed in Maldacena,Strominger,Witten '97

large volume attractor point

 $z^a_{\infty}(\gamma) = \lim_{\lambda \to \infty} \left(-q^a + i\lambda p^a \right)$

 $\Omega_{\gamma}^{
m MSW}$

 $=\Omega(\gamma, z^a_\infty(\gamma))$

Solution: consider *MSW invariants* count states in SCFT constructed in Maldacena,Strominger,Witten '97

Properties:

- independent of CY moduli
- invariant under *spectral flow symmetry*

large volume attractor point

 $z^a_{\infty}(\gamma) = \lim_{\lambda \to \infty} \left(-q^a + \mathrm{i}\lambda p^a \right)$

 $\begin{array}{l} \textbf{spectral flow} \\ q_a \mapsto q_a - \kappa_{ab} \epsilon^b \\ q_0 \mapsto q_0 - \epsilon^a q_a + \frac{1}{2} \kappa_{ab} \epsilon^a \epsilon^b \\ \kappa_{ab} = \kappa_{abc} p^c - \text{quadratic form, given} \\ \textbf{by intersection numbers of 4-cycles,} \\ \textbf{of indefinite signature} (1, b_2 - 1) \end{array}$

Solution: consider *MSW invariants* count states in SCFT constructed in Maldacena,Strominger,Witten '97

Properties:

- independent of CY moduli
- invariant under *spectral flow symmetry*

 $\Omega_{\gamma}^{\text{MSW}} = \Omega_{p}(\hat{q}_{0})$ $\hat{q}_{0} \equiv q_{0} - \frac{1}{2} \kappa^{ab} q_{a} q_{b} - \text{invariant charge}$ bounded from above

 $\Omega_{\gamma}^{\mathrm{MSW}} = \Omega(\gamma, z^a_{\infty}(\gamma))$

large volume attractor point

 $z^a_{\infty}(\gamma) = \lim_{\lambda \to \infty} \left(-q^a + \mathrm{i}\lambda p^a \right)$

 $\begin{array}{l} \textbf{spectral flow} \\ q_a \mapsto q_a - \kappa_{ab} \epsilon^b \\ q_0 \mapsto q_0 - \epsilon^a q_a + \frac{1}{2} \kappa_{ab} \epsilon^a \epsilon^b \\ \kappa_{ab} = \kappa_{abc} p^c - \text{quadratic form, given} \\ \textbf{by intersection numbers of 4-cycles,} \\ \textbf{of indefinite signature} (1, b_2 - 1) \end{array}$

Solution: consider *MSW invariants* count states in SCFT constructed in Maldacena,Strominger,Witten '97

Properties:

- independent of CY moduli
- invariant under *spectral flow symmetry*

 $\Omega_{\gamma}^{\text{MSW}} = \Omega_{p}(\hat{q}_{0})$ $\hat{q}_{0} \equiv q_{0} - \frac{1}{2} \kappa^{ab} q_{a} q_{b}$ - invariant charge bounded from above

generating function of MSW invariants $h_p(\tau) = \sum_{\hat{q}_0 \leq \hat{q}_0^{\max}} \Omega_p(\hat{q}_0) e^{-2\pi i \hat{q}_0 \tau}$

large volume attractor point

 $z^a_{\infty}(\gamma) = \lim_{\lambda \to \infty} \left(-q^a + \mathrm{i}\lambda p^a \right)$

 $\begin{array}{l} \textbf{spectral flow} \\ q_a \mapsto q_a - \kappa_{ab} \epsilon^b \\ q_0 \mapsto q_0 - \epsilon^a q_a + \frac{1}{2} \kappa_{ab} \epsilon^a \epsilon^b \\ \kappa_{ab} = \kappa_{abc} p^c - \text{quadratic form, given} \\ \textbf{by intersection numbers of 4-cycles,} \\ \textbf{of indefinite signature} (1, b_2 - 1) \end{array}$

Solution: consider *MSW invariants* count states in SCFT constructed in Maldacena,Strominger,Witten '97

Properties:

- independent of CY moduli
- invariant under *spectral flow symmetry*

 $\Omega_{\gamma}^{\text{MSW}} = \Omega_{p}(\hat{q}_{0})$ $\hat{q}_{0} \equiv q_{0} - \frac{1}{2} \kappa^{ab} q_{a} q_{b} - \text{invariant charge} \\ \text{bounded from above}$ One can define $\begin{array}{l} \text{Generating function} \\ \text{of MSW invariants} \\ h_{p}(\tau) = \sum \Omega_{p}(\hat{q}_{0}) e^{-2\pi i \hat{q}_{0} \tau} \end{array}$

 $\hat{q}_0 \leq \hat{q}_0^{\max}$

large volume attractor point

 $z^a_{\infty}(\gamma) = \lim_{\lambda \to \infty} \left(-q^a + \mathrm{i}\lambda p^a \right)$

 $\begin{array}{l} \textbf{spectral flow} \\ q_a \mapsto q_a - \kappa_{ab} \epsilon^b \\ q_0 \mapsto q_0 - \epsilon^a q_a + \frac{1}{2} \kappa_{ab} \epsilon^a \epsilon^b \\ \kappa_{ab} = \kappa_{abc} p^c - \text{quadratic form, given} \\ \textbf{by intersection numbers of 4-cycles,} \\ \textbf{of indefinite signature} (1, b_2 - 1) \end{array}$

For irreducible cycle p^a : [Gaiotto,Strominger,Yin '06] $h_p(\tau)$ — modular form of weight $-\frac{1}{2}b_2 - 1$

Solution: consider *MSW invariants* count states in SCFT constructed in Maldacena,Strominger,Witten '97

Properties:

- independent of CY moduli
- invariant under *spectral flow symmetry*

 $\hat{q}_0 \leq \hat{q}_0^{\max}$

large volume attractor point

 $z^a_{\infty}(\gamma) = \lim_{\lambda \to \infty} \left(-q^a + \mathrm{i}\lambda p^a \right)$

 $\begin{array}{l} \textbf{spectral flow} \\ q_a \mapsto q_a - \kappa_{ab} \epsilon^b \\ q_0 \mapsto q_0 - \epsilon^a q_a + \frac{1}{2} \kappa_{ab} \epsilon^a \epsilon^b \\ \kappa_{ab} = \kappa_{abc} p^c - \text{quadratic form, given} \\ \textbf{by intersection numbers of 4-cycles,} \\ \textbf{of indefinite signature} (1, b_2 - 1) \end{array}$

For irreducible cycle p^a : [Gaiotto,Strominger,Yin '06] $h_p(\tau)$ — modular form of weight $-\frac{1}{2}b_2 - 1$ What is modular behavior of $h_p(\tau)$ for generic divisor? The logic of derivation

Type IIA/CY D4-D2-D0 bl.h. The logic of derivation

Type IIA/CY×S¹ D4-D2-D0 bl.h.

affect the metric on the QK moduli space $\ensuremath{\mathcal{M}}$

The logic of derivation

dependence of the generating functions on electric charges $q_{i,a}$

by iterated integrals of \mathcal{G}_n and the tree index $g_{tr,n}$

Our theta series fits in the class:

Our theta series fits in the class:

Our theta series fits in the class:

Simple criterion for modularity:

Vignéras '77

Our theta series fits in the class:

Simple criterion for modularity:

Vignéras '77

Solutions of Vignéras equation: • $n = 1, \ \lambda = -1:$ $\Phi(\mathbf{x}) = e^{-\pi \frac{(\mathbf{x}, \mathbf{v})^2}{\mathbf{v}^2}}$ for convergence • $n = 1, \ \lambda = 0:$ $\Phi(\mathbf{x}) = \operatorname{Erf}\left(\sqrt{\pi} \frac{\mathbf{x} \cdot \mathbf{v}}{|\mathbf{v}|}\right) - \operatorname{Erf}\left(\sqrt{\pi} \frac{\mathbf{x} \cdot \mathbf{v}'}{|\mathbf{v}'|}\right)$ $\mathbf{v} \cdot \mathbf{v}' > 0$

Solutions of Vignéras equation: • $n = 1, \ \lambda = -1:$ $\Phi(\mathbf{x}) = e^{-\pi \frac{(\mathbf{x}, \mathbf{v})^2}{\mathbf{v}^2}}$ for convergence • $n = 1, \ \lambda = 0:$ $\Phi(\mathbf{x}) = \operatorname{Erf}\left(\sqrt{\pi} \frac{\mathbf{x} \cdot \mathbf{v}}{|\mathbf{v}|}\right) - \operatorname{Erf}\left(\sqrt{\pi} \frac{\mathbf{x} \cdot \mathbf{v}'}{|\mathbf{v}'|}\right)$ $\mathbf{v} \cdot \mathbf{v}' > 0$ [Zwegers '02] completion of *holomorphic mock* theta series with kernel $\Phi^{\operatorname{hol}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{x}, \mathbf{v}) - \operatorname{sgn}(\mathbf{x}, \mathbf{v}')$

 $\operatorname{Enf}(u, \sqrt{-}) = \operatorname{Enf}(u) \operatorname{Enf}(u, \sqrt{-})$

$$\operatorname{Erf}(u\sqrt{\pi}) = \operatorname{sgn}(u) - \operatorname{sgn}(u) \operatorname{Erfc}(|u|\sqrt{\pi})$$

smooth solution

holomorphic & discontinuous

exponentially decaying discontinuous solution

Solutions of Vignéras equation:	for convergence
• $n = 1, \ \lambda = -1: \Phi(x) = e^{-\pi \frac{(x,v)^2}{v^2}}$	$v^2 > 0$
• $n = 1, \ \lambda = 0:$ $\Phi(\boldsymbol{x}) = \operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}}{ \boldsymbol{v} }\right) - \operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}'}{ \boldsymbol{v}' }\right)$	$\boldsymbol{v}\cdot\boldsymbol{v}'>0$
[Zwegers '02] completion of <i>holomorphic mock</i> theta series with kernel $\Phi^{ m hol}({m x})=$	$\operatorname{sgn}({m x},{m v})-\operatorname{sgn}({m x},{m v}')$
$\int du' e^{-\pi (u-u')^2} \operatorname{sgn}(u') = \operatorname{Erf}(u\sqrt{\pi}) \qquad -\operatorname{sgn}(u) \operatorname{Erfc}(u \sqrt{\pi}) =$	$=\frac{\mathrm{i}}{\pi}\int\frac{\mathrm{d}z}{z}e^{-\pi z^2-2\pi\mathrm{i}zu}$
in smooth solution exponentially decaying discontinuous solution	$ \sum_{R-iu} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} $

Solutions of Vignéras equation:	for convergence
• $n = 1, \ \lambda = -1: \Phi(x) = e^{-\pi \frac{(x,v)^2}{v^2}}$	$\boldsymbol{v}^2>0$
• $n = 1, \ \lambda = 0:$ $\Phi(\boldsymbol{x}) = \operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}}{ \boldsymbol{v} }\right) - \operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}'}{ \boldsymbol{v}' }\right)$	$oldsymbol{v}\cdotoldsymbol{v}'>0$
[Zwegers '02] completion of <i>holomorphic mock</i> theta series with kernel $\Phi^{ m hol}(x)$	$) = \operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v}) - \operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v}')$
$\int du' e^{-\pi (u-u')^2} \operatorname{sgn}(u') = \operatorname{Erf}(u\sqrt{\pi}) \qquad -\operatorname{sgn}(u) \operatorname{Erfc}(u \sqrt{\pi})$	$\overline{f} = \frac{\mathrm{i}}{\pi} \int \frac{\mathrm{d}z}{z} e^{-\pi z^2 - 2\pi \mathrm{i}zu}$
R smooth solution exponentially deca	lying $\frac{n}{R-iu} \sim$

Generalization to arbitrary *n* : [ABMP, Nazaroglu '16]

 $\begin{aligned} & Generalized \ error \ functions \\ & E_n(\mathcal{M}; \mathbf{u}) = \int_{\mathbb{R}^n} \mathrm{d}\mathbf{u}' \ e^{-\pi(\mathbf{u}-\mathbf{u}')^{\mathrm{tr}}(\mathbf{u}-\mathbf{u}')} \prod \mathrm{sgn}(\mathcal{M}^{\mathrm{tr}}\mathbf{u}') \\ & M_n(\mathcal{M}; \mathbf{u}) = \left(\frac{\mathrm{i}}{\pi}\right)^n |\det \mathcal{M}|^{-1} \int_{\mathbb{R}^n - \mathrm{i}\mathbf{u}} \mathrm{d}^n z \ \frac{e^{-\pi z^{\mathrm{tr}} z - 2\pi \mathrm{i} z^{\mathrm{tr}} \mathbf{u}}}{\prod(\mathcal{M}^{-1} z)} \end{aligned}$

 $\mathbf{u}, \mathbf{z} \in \mathbb{R}^n, \, \mathcal{M} - n \times n \text{ matrix}$

Solutions of Vignéras equation:	for convergence
• $n = 1, \ \lambda = -1:$ $\Phi(\boldsymbol{x}) = e^{-\pi \frac{(\boldsymbol{x}, \boldsymbol{v})^2}{\boldsymbol{v}^2}}$	$v^2 > 0$
• $n = 1, \ \lambda = 0:$ $\Phi(\boldsymbol{x}) = \operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}}{ \boldsymbol{v} }\right) - \operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}'}{ \boldsymbol{v}' }\right)$	$\boldsymbol{v}\cdot\boldsymbol{v}'>0$
[Zwegers '02] completion of <i>holomorphic mock</i> theta series with kernel $\Phi^{hol}(x) =$	$\operatorname{sgn}({m x},{m v}) - \operatorname{sgn}({m x},{m v}')$
$\int du' e^{-\pi (u-u')^2} \operatorname{sgn}(u') = \operatorname{Erf}(u\sqrt{\pi}) \qquad -\operatorname{sgn}(u) \operatorname{Erfc}(u \sqrt{\pi}) =$	$=\frac{\mathrm{i}}{\pi}\int\frac{\mathrm{d}z}{z}e^{-\pi z^2-2\pi\mathrm{i}zu}$
in smooth solution exponentially decaying discontinuous solution	

Generalization to arbitrary *n* : [ABMP, Nazaroglu '16]

Generalized error functions $E_n(\mathcal{M}; \mathbf{u}) = \int_{\mathbb{R}^n} d\mathbf{u}' \, e^{-\pi(\mathbf{u}-\mathbf{u}')^{\mathrm{tr}}(\mathbf{u}-\mathbf{u}')} \prod \operatorname{sgn}(\mathcal{M}^{\mathrm{tr}}\mathbf{u}')$ $M_n(\mathcal{M}; \mathbf{u}) = \left(\frac{\mathrm{i}}{\pi}\right)^n |\det \mathcal{M}|^{-1} \int_{\mathbb{R}^n - \mathrm{i}\mathbf{u}} \mathrm{d}^n z \, \frac{e^{-\pi z^{\mathrm{tr}} z - 2\pi \mathrm{i} z^{\mathrm{tr}} \mathbf{u}}}{\prod(\mathcal{M}^{-1} z)}$

 $\mathop{\sim}_{{\tt u}\to\infty}\prod {\rm sgn}({\mathcal M}^{{\rm tr}}{\tt u})$

exponentially decaying, discontinuous

 $\mathbf{u}, \mathbf{z} \in \mathbb{R}^n, \, \mathcal{M} - n \times n \text{ matrix}$

Solutions of Vignéras equation for $\lambda = 0$ from generalized error functions:

$$\Phi_n^E(\mathcal{V}; \boldsymbol{x}) = E_n(\mathcal{B} \cdot \mathcal{V}; \mathcal{B} \cdot \boldsymbol{x})$$
$$\Phi_n^M(\mathcal{V}; \boldsymbol{x}) = M_n(\mathcal{B} \cdot \mathcal{V}; \mathcal{B} \cdot \boldsymbol{x})$$

$$\begin{split} \mathcal{V} &= (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) - d \times n \text{ matrix} \\ \mathcal{B} &= (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n)^{\mathrm{tr}} - n \times d \text{ matrix} \\ \boldsymbol{e}_i & - \begin{array}{l} \text{orthonormal basis in the} \\ \text{subspace spanned by } \boldsymbol{v}_i \end{split}$$

 Φ_n^E provide modular *completions* for holomorphic indefinite theta series with quadratic form of signature (n, d - n) and kernel $\Phi_n^{\text{hol}}(\mathcal{V}; \mathbf{x}) = \prod_{i=1}^n \text{sgn}(\mathbf{v}_i, \mathbf{x})$

 Φ_n^M — the part of the completion with fastest decay can be expressed as *n* iterated Eichler (period) integrals
Solutions of Vignéras equation for $\lambda = 0$ from generalized error functions:

$$\Phi_n^E(\mathcal{V}; \boldsymbol{x}) = E_n(\mathcal{B} \cdot \mathcal{V}; \mathcal{B} \cdot \boldsymbol{x})$$
$$\Phi_n^M(\mathcal{V}; \boldsymbol{x}) = M_n(\mathcal{B} \cdot \mathcal{V}; \mathcal{B} \cdot \boldsymbol{x})$$

$$\begin{split} \mathcal{V} &= (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) - d \times n \text{ matrix} \\ \mathcal{B} &= (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n)^{\mathrm{tr}} - n \times d \text{ matrix} \\ \boldsymbol{e}_i & - \begin{array}{l} \text{orthonormal basis in the} \\ \text{subspace spanned by } \boldsymbol{v}_i \end{split}$$

 Φ_n^E provide modular *completions* for holomorphic indefinite theta series with quadratic form of signature (n, d - n) and kernel $\Phi_n^{\text{hol}}(\mathcal{V}; \mathbf{x}) = \prod_{i=1}^n \operatorname{sgn}(\mathbf{v}_i, \mathbf{x})$

 Φ_n^M — the part of the completion with fastest decay can be expressed as *n* iterated Eichler (period) integrals

Higher depth mock modularity

Solutions of Vignéras equation for $\lambda = 0$ from generalized error functions:

$$\Phi_n^E(\mathcal{V}; \boldsymbol{x}) = E_n(\mathcal{B} \cdot \mathcal{V}; \mathcal{B} \cdot \boldsymbol{x})$$
$$\Phi_n^M(\mathcal{V}; \boldsymbol{x}) = M_n(\mathcal{B} \cdot \mathcal{V}; \mathcal{B} \cdot \boldsymbol{x})$$

$$\begin{split} \mathcal{V} &= (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) - d \times n \text{ matrix} \\ \mathcal{B} &= (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n)^{\mathrm{tr}} - n \times d \text{ matrix} \\ \boldsymbol{e}_i & - \begin{array}{l} \text{orthonormal basis in the} \\ \text{subspace spanned by } \boldsymbol{v}_i \end{split}$$

 Φ_n^E provide modular *completions* for holomorphic indefinite theta series with quadratic form of signature (n, d - n) and kernel $\Phi_n^{\text{hol}}(\mathcal{V}; \mathbf{x}) = \prod_{i=1}^n \text{sgn}(\mathbf{v}_i, \mathbf{x})$

 Φ_n^M — the part of the completion with fastest decay can be expressed as *n* iterated Eichler (period) integrals

Higher depth mock modularity

Lift to solution with $\lambda = m$:

$$\tilde{\Phi}_{n,m}^{E}(\mathcal{V},\tilde{\mathcal{V}};\boldsymbol{x}) = \left[\prod_{i=1}^{m} \mathcal{D}(\tilde{\boldsymbol{v}}_{i})\right] \Phi_{n}^{E}(\mathcal{V};\boldsymbol{x})$$

 $\mathcal{D}(ilde{m{v}}) = ilde{m{v}} \cdot ig(m{x} + rac{1}{2\pi} \, \partial_{m{x}} ig)$ — covariant derivative raising λ by 1

Solutions of Vignéras equation for $\lambda = 0$ from generalized error functions:

$$\Phi_n^E(\mathcal{V}; \boldsymbol{x}) = E_n(\mathcal{B} \cdot \mathcal{V}; \mathcal{B} \cdot \boldsymbol{x})$$
$$\Phi_n^M(\mathcal{V}; \boldsymbol{x}) = M_n(\mathcal{B} \cdot \mathcal{V}; \mathcal{B} \cdot \boldsymbol{x})$$

$$\begin{split} \mathcal{V} &= (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) - d \times n \text{ matrix} \\ \mathcal{B} &= (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n)^{\mathrm{tr}} - n \times d \text{ matrix} \\ \boldsymbol{e}_i & - \begin{array}{l} \text{orthonormal basis in the} \\ \text{subspace spanned by } \boldsymbol{v}_i \end{split}$$

 Φ_n^E provide modular *completions* for holomorphic indefinite theta series with quadratic form of signature (n, d - n) and kernel $\Phi_n^{\text{hol}}(\mathcal{V}; \mathbf{x}) = \prod_{i=1}^n \text{sgn}(\mathbf{v}_i, \mathbf{x})$

 Φ_n^M — the part of the completion with fastest decay can be expressed as *n* iterated Eichler (period) integrals

Higher depth mock modularity

Lift to solution with $\lambda = m$:

$$\tilde{\Phi}_{n,m}^{E}(\mathcal{V},\tilde{\mathcal{V}};\boldsymbol{x}) = \left[\prod_{i=1}^{m} \mathcal{D}(\tilde{\boldsymbol{v}}_{i})\right] \Phi_{n}^{E}(\mathcal{V};\boldsymbol{x})$$

$$\sim_{\boldsymbol{x} \to \infty} \prod_{i=1}^m \, \mathcal{D}(\tilde{\boldsymbol{v}}_i) \prod_{j=1}^n \operatorname{sgn}(\boldsymbol{v}_j, \boldsymbol{x})$$

 $\mathcal{D}(ilde{m{v}}) = ilde{m{v}} \cdot \left(m{x} + rac{1}{2\pi} \, \partial_{m{x}}
ight)$ — covariant derivative raising λ by 1

Solutions of Vignéras equation for $\lambda = 0$ from generalized error functions:

$$\Phi_n^E(\mathcal{V}; \boldsymbol{x}) = E_n(\mathcal{B} \cdot \mathcal{V}; \mathcal{B} \cdot \boldsymbol{x})$$
$$\Phi_n^M(\mathcal{V}; \boldsymbol{x}) = M_n(\mathcal{B} \cdot \mathcal{V}; \mathcal{B} \cdot \boldsymbol{x})$$

$$\begin{split} \mathcal{V} &= (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) - d \times n \text{ matrix} \\ \mathcal{B} &= (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n)^{\mathrm{tr}} - n \times d \text{ matrix} \\ \boldsymbol{e}_i & - \begin{array}{l} \text{orthonormal basis in the} \\ \text{subspace spanned by } \boldsymbol{v}_i \end{split}$$

 Φ_n^E provide modular *completions* for holomorphic indefinite theta series with quadratic form of signature (n, d - n) and kernel $\Phi_n^{\text{hol}}(\mathcal{V}; \mathbf{x}) = \prod_{i=1}^n \text{sgn}(\mathbf{v}_i, \mathbf{x})$

 Φ_n^M — the part of the completion with fastest decay can be expressed as *n* iterated Eichler (period) integrals

Higher depth mock modularity

Lift to solution with $\lambda = m$: $\tilde{\Phi}_{n,m}^{E}(\mathcal{V}, \tilde{\mathcal{V}}; \boldsymbol{x}) = \left[\prod_{i=1}^{m} \mathcal{D}(\tilde{\boldsymbol{v}}_{i})\right] \Phi_{n}^{E}(\mathcal{V}; \boldsymbol{x}) \qquad \sim \prod_{i=1}^{m} (\tilde{\boldsymbol{v}}_{i}, \boldsymbol{x}) \prod_{j=1}^{n} \operatorname{sgn}(\boldsymbol{v}_{j}, \boldsymbol{x})$ $\mathcal{D}(\tilde{\boldsymbol{v}}) = \tilde{\boldsymbol{v}}_{i} (\tilde{\boldsymbol{v}}_{i}, \boldsymbol{x}) \prod_{j=1}^{n} \operatorname{sgn}(\boldsymbol{v}_{j}, \boldsymbol{x})$

 $\mathcal{D}(ilde{m{v}}) = ilde{m{v}} \cdot ig(m{x} + rac{1}{2\pi} \, \partial_{m{x}} ig)$ — covariant derivative raising λ by 1

In our case:
$$\Phi_n^{\text{tot}} = \sum_{\substack{n_1 + \cdots + n_m = n \\ n_k \ge 1}} \Phi_m^f \prod_{k=1}^m \Phi_{n_k}^g \longleftarrow$$
 proportional to the tree index g_{tr,n_k}

given by iterated integrals of \mathcal{G}_n

In our case: $\Phi_n^{\text{tot}} = \sum_{\substack{n_1 + \cdots + n_m = n \\ n_k \ge 1}} \Phi_m^f \prod_{k=1}^m \Phi_{n_k}^g \longleftarrow$ proportional to the tree index g_{tr,n_k} given by iterated integrals of \mathcal{G}_n . $\log d_n = \log d_n$

In our case:
$$\Phi_n^{\text{tot}} = \sum_{\substack{n_1 + \cdots + n_m = n \\ n_k \ge 1}} \Phi_m^{f} \prod_{k=1}^m \Phi_{n_k}^g \longleftarrow$$
 proportional to the tree index g_{tr,n_k}
given by iterated integrals of \mathcal{G}_n .

$$\Phi_n^{f}(\boldsymbol{x}) = \frac{\Phi_1^{f}(\boldsymbol{x})}{2^{n-1}n!} \sum_{\mathcal{T} \in \mathbb{T}_n^{\ell}} \tilde{\Phi}_{n-1}^M(\{\boldsymbol{u}_e\}, \{\boldsymbol{v}_{s(e)t(e)}\}; \boldsymbol{x})$$

In our case:
$$\Phi_n^{\text{tot}} = \sum_{\substack{n_1 + \cdots + n_m = n \\ n_k \ge 1}} \Phi_m^f \prod_{k=1}^m \Phi_{n_k}^g \longleftarrow$$
 proportional to the tree index g_{tr,n_k}
given by iterated integrals of \mathcal{G}_n .

$$\Phi_n^{\mathcal{J}}(\boldsymbol{x}) = \frac{\Phi_1^{\mathcal{J}}(\boldsymbol{x})}{2^{n-1}n!} \sum_{\mathcal{T} \in \mathbb{T}_n^{\ell}} \tilde{\Phi}_{n-1}^M(\{\boldsymbol{u}_e\}, \{\boldsymbol{v}_{s(e)t(e)}\}; \boldsymbol{x})$$

(

$$\begin{aligned} & \overset{i=1}{(\tilde{v}_i,\tilde{v}_j)} = 0 \\ & \textbf{away from discontinuities} \\ & V_{n_k-1} \cdot \Phi^g_{n_k} = 0 \end{aligned}$$

•
$$\Phi_1^f(x) = (2\tau_2 t^2)^{-\frac{1}{2}} e^{-\pi \frac{(x,t)^2}{t^2}}$$
 — solution for $\lambda = -1$

In our case:
$$\Phi_n^{\text{tot}} = \sum_{\substack{n_1 + \cdots + n_m = n \\ n_k \ge 1}} \Phi_m^f \prod_{k=1}^m \Phi_{n_k}^g \longleftarrow$$
 proportional to the tree index g_{tr,n_k}
given by iterated integrals of \mathcal{G}_n .
 $\Phi_n^f(x) = 0$

given by iterated integrals of \mathcal{G}_n

$$\Phi_n^{f}(\boldsymbol{x}) = \frac{\Phi_1^{f}(\boldsymbol{x})}{2^{n-1}n!} \sum_{\mathcal{T} \in \mathbb{T}_n^{\ell}} \tilde{\Phi}_{n-1}^{M}(\{\boldsymbol{u}_e\}, \{\boldsymbol{v}_{s(e)t(e)}\}; \boldsymbol{x})$$

•
$$\Phi_1^f(x) = (2\tau_2 t^2)^{-\frac{1}{2}} e^{-\pi \frac{(x,t)^2}{t^2}}$$
 — solution for $\lambda = -1$

away from discontinuities
$$V_{n_k-1} \cdot \Phi^g_{n_k} = 0$$

• $\mathcal{T} \in \mathbb{T}_n^\ell$ — labeled unrooted tree $V_{\mathcal{T}}$ — set of its vertices

m

In our case:
$$\Phi_n^{\text{tot}} = \sum_{\substack{n_1 + \cdots + n_m = n \\ n_k \ge 1}} \Phi_m^f \prod_{k=1}^m \Phi_{n_k}^g \longleftarrow$$
 proportional to the tree index g_{tr,n_k}

given by iterated integrals of \mathcal{G}_n

$$\Phi_n^f(\boldsymbol{x}) = \frac{\Phi_1^f(\boldsymbol{x})}{2^{n-1}n!} \sum_{\mathcal{T} \in \mathbb{T}_n^\ell} \tilde{\Phi}_{n-1}^M(\{\boldsymbol{u}_e\}, \{\boldsymbol{v}_{s(e)t(e)}\}; \boldsymbol{x})$$

•
$$\Phi_1^f(x) = (2\tau_2 t^2)^{-\frac{1}{2}} e^{-\pi \frac{(x,t)^2}{t^2}}$$
 — solution for $\lambda = -1$

•
$$\mathcal{T} \in \mathbb{T}_n^{\ell}$$
 — labeled unrooted tree $V_{\mathcal{T}}$ — set of its vertices

• $v_{ij}, u_{ij} = nb_2$ -dimensional vectors such that

 $egin{aligned} oldsymbol{v}_{ij} \cdot oldsymbol{x} &= \sqrt{2 au_2} \langle \gamma_i, \gamma_j
angle & oldsymbol{u}_{ij} \cdot oldsymbol{x} &= -\sqrt{2 au_2} \operatorname{Im}(Z_{\gamma_i} ar{Z}_{\gamma_j}) \ \end{aligned}$ define stability condition of a bound state $\gamma_i + \gamma_j$ $(oldsymbol{v}_{ij}, oldsymbol{x})(oldsymbol{u}_{ij}, oldsymbol{x}) < 0 \end{aligned}$ $\begin{array}{c} \textbf{\textit{locally}} \quad \Phi_{n_k}^{\,g} \sim \sum \prod_{\substack{i=1 \\ (\tilde{\boldsymbol{v}}_i, \tilde{\boldsymbol{v}}_j) = 0}}^{n_k - 1} (\tilde{\boldsymbol{v}}_i, \boldsymbol{x}) \end{array}$

away from discontinuities $V_{n_k-1} \cdot \Phi^g_{n_k} = 0$

m

In our case:
$$\Phi_n^{\text{tot}} = \sum_{\substack{n_1 + \cdots + n_m = n \\ n_k \ge 1}} \Phi_m^f \prod_{k=1}^m \Phi_{n_k}^g \longleftarrow$$
 proportional to the tree index g_{tr,n_k}

given by iterated integrals of \mathcal{G}_n

$$\Phi_n^f(\boldsymbol{x}) = \frac{\Phi_1^f(\boldsymbol{x})}{2^{n-1}n!} \sum_{\mathcal{T} \in \mathbb{T}_n^\ell} \tilde{\Phi}_{n-1}^M(\{\boldsymbol{u}_e\}, \{\boldsymbol{v}_{s(e)t(e)}\}; \boldsymbol{x})$$

•
$$\Phi_1^f(x) = (2\tau_2 t^2)^{-\frac{1}{2}} e^{-\pi \frac{(x,t)^2}{t^2}}$$
 — solution for $\lambda = -1$

- $\mathcal{T} \in \mathbb{T}_n^{\ell}$ labeled unrooted tree $V_{\mathcal{T}}$ set of its vertices
- $v_{ij}, u_{ij} = nb_2$ -dimensional vectors such that

 $\begin{array}{c} \textbf{locally} \quad \Phi_{n_k}^g \sim \sum \prod_{\substack{i=1\\ (\tilde{\boldsymbol{v}}_i, \tilde{\boldsymbol{v}}_j) = 0}}^{n_k - 1} (\tilde{\boldsymbol{v}}_i, \boldsymbol{x}) \end{array}$

away from discontinuities $V_{n_k-1} \cdot \Phi^g_{n_k} = 0$

In our case:
$$\Phi_n^{\text{tot}} = \sum_{\substack{n_1 + \cdots + n_m = n \\ n_k \ge 1}} \Phi_m^f \prod_{k=1}^m \Phi_{n_k}^g \longleftarrow$$
 proportional to the tree index g_{tr,n_k}

given by iterated integrals of \mathcal{G}_n

$$\Phi_n^f(\boldsymbol{x}) = \frac{\Phi_1^f(\boldsymbol{x})}{2^{n-1}n!} \sum_{\mathcal{T} \in \mathbb{T}_n^\ell} \tilde{\Phi}_{n-1}^M(\{\boldsymbol{u}_e\}, \{\boldsymbol{v}_{s(e)t(e)}\}; \boldsymbol{x})$$

•
$$\Phi_1^f(x) = (2\tau_2 t^2)^{-\frac{1}{2}} e^{-\pi \frac{(x,t)^2}{t^2}}$$
 — solution for $\lambda = -1$

- $\mathcal{T} \in \mathbb{T}_n^{\ell}$ labeled unrooted tree $V_{\mathcal{T}}$ set of its vertices
- $v_{ij}, u_{ij} = nb_2$ -dimensional vectors such that

$$\begin{split} \boldsymbol{v}_{ij} \cdot \boldsymbol{x} &= \sqrt{2\tau_2} \langle \gamma_i, \gamma_j \rangle \qquad \boldsymbol{u}_{ij} \cdot \boldsymbol{x} = -\sqrt{2\tau_2} \operatorname{Im}(Z_{\gamma_i} \bar{Z}_{\gamma_j}) \\ \text{define stability condition of a bound state } \gamma_i + \gamma_j \\ (\boldsymbol{v}_{ij}, \boldsymbol{x})(\boldsymbol{u}_{ij}, \boldsymbol{x}) < 0 \end{split}$$

• $\tilde{\Phi}_{n-1}^{M}$ — generalized error function of order n-1 lifted to solution for $\lambda = n-1$

locally $\Phi_{n_k}^g \sim \sum_{i=1}^{n_k-1} (\tilde{v}_i, x)$

away from discontinuities $V_{n_k-1} \cdot \Phi^g_{n_k} = 0$

In our case:
$$\Phi_n^{\text{tot}} = \sum_{\substack{n_1 + \cdots + n_m = n \\ n_k \ge 1}} \Phi_m^f \prod_{k=1}^m \Phi_{n_k}^g \longleftarrow$$
 proportional to the tree index g_{tr,n_k}

given by iterated integrals of \mathcal{G}_n

$$\Phi_n^f(\boldsymbol{x}) = \frac{\Phi_1^f(\boldsymbol{x})}{2^{n-1}n!} \sum_{\mathcal{T} \in \mathbb{T}_n^\ell} \tilde{\Phi}_{n-1}^M(\{\boldsymbol{u}_e\}, \{\boldsymbol{v}_{s(e)t(e)}\}; \boldsymbol{x})$$

•
$$\Phi_1^f(x) = (2\tau_2 t^2)^{-\frac{1}{2}} e^{-\pi \frac{(x,t)^2}{t^2}}$$
 — solution for $\lambda = -1$

- $\mathcal{T} \in \mathbb{T}_n^{\ell}$ labeled unrooted tree $V_{\mathcal{T}}$ set of its vertices
- $v_{ij}, u_{ij} = nb_2$ -dimensional vectors such that

$$\begin{split} \boldsymbol{v}_{ij} \cdot \boldsymbol{x} &= \sqrt{2\tau_2} \langle \gamma_i, \gamma_j \rangle \qquad \boldsymbol{u}_{ij} \cdot \boldsymbol{x} = -\sqrt{2\tau_2} \operatorname{Im}(Z_{\gamma_i} \bar{Z}_{\gamma_j}) \\ \text{define stability condition of a bound state } \gamma_i + \gamma_j \\ (\boldsymbol{v}_{ij}, \boldsymbol{x})(\boldsymbol{u}_{ij}, \boldsymbol{x}) < 0 \end{split}$$

• $\tilde{\Phi}_{n-1}^{M}$ — generalized error function of order n-1 lifted to solution for $\lambda = n-1$

 $\begin{array}{c} \textbf{locally} \quad \Phi_{n_k}^g \sim \sum \prod_{\substack{i=1\\ (\tilde{\boldsymbol{v}}_i, \tilde{\boldsymbol{v}}_j) = 0}}^{n_k - 1} (\tilde{\boldsymbol{v}}_i, \boldsymbol{x}) \end{array}$

away from discontinuities $V_{n_k-1} \cdot \Phi_{n_k}^g = 0$

away from discontinuities $V_{n-2}\cdot \Phi_n^{\, f}=0$

Modular anomaly

We do have $V_{n-2} \cdot \Phi_n^{\text{tot}} = 0$ away from discontinuities. But discontinuities can spoil Vignéras equation, and hence modularity of theta series, as it happens, for instance, for $\operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v})$ in the case n = 1.

Modular anomaly

We do have $V_{n-2} \cdot \Phi_n^{\text{tot}} = 0$ *away* from discontinuities. But discontinuities can spoil Vignéras equation, and hence modularity of theta series, as it happens, for instance, for $\operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v})$ in the case n = 1.

Discontinuities of the kernels

discontinuity	origin	moduli dependence	cancel
walls of marginal stability	tree index & twistor integrals	yes	yes
fake walls	tree index	yes	yes
walls in the charge space $\langle \gamma_i, \gamma_j \rangle \sim (\boldsymbol{v}_{ij}, \boldsymbol{x}) = 0$	tree index	no	no

Modular anomaly

We do have $V_{n-2} \cdot \Phi_n^{\text{tot}} = 0$ *away* from discontinuities. But discontinuities can spoil Vignéras equation, and hence modularity of theta series, as it happens, for instance, for $\operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v})$ in the case n = 1.

Discontinuities of the kernels

discontinuity	origin	moduli dependence	cancel
walls of marginal stability	tree index & twistor integrals	yes	yes
fake walls	tree index	yes	yes
walls in the charge space $\langle \gamma_i, \gamma_j \rangle \sim (\boldsymbol{v}_{ij}, \boldsymbol{x}) = 0$	tree index	no	no

 $V_{n-2} \cdot \Phi_n^{\text{tot}} \neq 0$ and both theta series and the generating function $h_p(\tau)$ have modular anomalies

It is possible to construct a *non-holomorphic completion* $\hat{h}_p(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2}b_2 - 1$

$$\widehat{h}_p(\tau,\bar{\tau}) = h_p(\tau) - \sum_{n=2}^{\infty} \sum_{\sum_{i=1}^n \gamma_i = \gamma} \frac{R_n(\{\gamma_i\};\tau_2) e^{\pi i \tau Q_n(\{\gamma_i\})} \prod_{i=1}^n h_{p_i}(\tau)$$

It is possible to construct a *non-holomorphic completion* $\hat{h}_p(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2}b_2 - 1$

$$\widehat{h}_p(\tau,\bar{\tau}) = h_p(\tau) - \sum_{n=2}^{\infty} \sum_{\substack{\sum_{i=1}^n \gamma_i = \gamma}} \frac{R_n(\{\gamma_i\};\tau_2) e^{\pi i \tau Q_n(\{\gamma_i\})} \prod_{i=1}^n h_{p_i}(\tau)$$

Result: R_n are given by 2-level construction

It is possible to construct a *non-holomorphic completion* $\hat{h}_p(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2}b_2 - 1$

$$\widehat{h}_p(\tau,\bar{\tau}) = h_p(\tau) - \sum_{n=2}^{\infty} \sum_{\substack{n=1 \\ \sum_{i=1}^n \gamma_i = \gamma}} \frac{R_n(\{\gamma_i\};\tau_2) e^{\pi i \tau Q_n(\{\gamma_i\})} \prod_{i=1}^n h_{p_i}(\tau)$$

Result: R_n are given by 2-level construction

Level 1: sum over Schröder trees

$$R_n = \operatorname{Sym}\left\{\sum_{T \in \mathbb{T}_n^{\mathrm{S}}} (-1)^{n_T} \mathcal{E}_{v_0}^{(+)} \prod_{v \in V_T \setminus \{v_0\}} \mathcal{E}_v^{(0)}\right\}$$

It is possible to construct a *non-holomorphic completion* $\hat{h}_p(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2}b_2 - 1$

$$\widehat{h}_p(\tau,\bar{\tau}) = h_p(\tau) - \sum_{n=2}^{\infty} \sum_{\sum_{i=1}^n \gamma_i = \gamma} \frac{R_n(\{\gamma_i\};\tau_2) e^{\pi i \tau Q_n(\{\gamma_i\})} \prod_{i=1}^n h_{p_i}(\tau)$$

Result: R_n are given by 2-level construction Level 1: sum over *Schröder* trees

 $R_n = \operatorname{Sym}\left\{\sum_{T \in \mathbb{T}_n^{\mathrm{S}}} (-1)^{n_T} \mathcal{E}_{v_0}^{(+)} \prod_{v \in V_T \setminus \{v_0\}} \mathcal{E}_v^{(0)}\right\}$

• $T \in \mathbb{T}_n^{S}$ — rooted tree with *n* leaves and vertices having at least 2 children n_T — number of vertices (excluding leaves); v_0 — root of T

It is possible to construct a *non-holomorphic completion* $\hat{h}_{n}(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2}b_2 - 1$

$$\widehat{h}_p(\tau,\bar{\tau}) = h_p(\tau) - \sum_{n=2}^{\infty} \sum_{\substack{n=1 \\ \sum_{i=1}^n \gamma_i = \gamma}} \frac{R_n(\{\gamma_i\};\tau_2) e^{\pi i \tau Q_n(\{\gamma_i\})} \prod_{i=1}^n h_{p_i}(\tau)$$

Result: R_n are given by 2-level construction Level 1: sum over Schröder trees

• $T \in \mathbb{T}_n^{S}$ — rooted tree with *n* leaves and vertices having at least 2 children n_T — number of vertices (excluding leaves); v_0 — root of T • $\mathcal{E}_n(\{\gamma_i\};\tau_2) = \mathcal{E}_n^{(0)} + \mathcal{E}_n^{(+)}$ — set of functions (Level 2) depending on *n* charges at most / exponentially

polynomial in τ_2

decreasing

It is possible to construct a *non-holomorphic completion* $\hat{h}_p(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2}b_2 - 1$

$$\widehat{h}_p(\tau,\bar{\tau}) = h_p(\tau) - \sum_{n=2}^{\infty} \sum_{\substack{n=1 \\ \sum_{i=1}^n \gamma_i = \gamma}} \frac{R_n(\{\gamma_i\};\tau_2) e^{\pi i \tau Q_n(\{\gamma_i\})} \prod_{i=1}^n h_{p_i}(\tau)$$

Completion and generalized error functions

Level 2: sum over *unrooted* trees

 $\mathcal{E}_n(\{\gamma_i\};\tau_2)$ — smooth solutions of Vignéras equation for $\lambda = n-1$

Completion and generalized error functions Level 2: sum over *unrooted* trees $\mathcal{E}_n(\{\gamma_i\};\tau_2)$ — smooth solutions of Vignéras equation for $\lambda = n-1$ $\mathcal{E}_{n} = \frac{(2\tau_{2})^{\frac{1-n}{2}}}{2^{n-1}n!} \sum \tilde{\Phi}_{n-1}^{E}(\{\boldsymbol{v}_{e}\}, \{\boldsymbol{v}_{s(e)t(e)}\}; \boldsymbol{x}))$ s(e)t(e) $\gamma_{s(e)}$ \mathcal{T}_{e}^{s} \mathcal{T}_{e}^{t} $oldsymbol{v}_e = \sum \sum oldsymbol{v}_{ij}$ The generating function of

 $i \in V_{\mathcal{T}_{e}^{s}} j \in V_{\mathcal{T}_{e}^{t}}$

 $v_e \cdot x \sim \langle \gamma_e^s, \gamma_e^t
angle$

 $\mathcal{D} = \mathcal{D}_1 + \dots + \mathcal{D}_n \longrightarrow \text{Depth} = \text{n-1}$ *irreducible divisors*

MSW invariants is a higher

depth mock modular form

Completion and generalized error functions Level 2: sum over *unrooted* trees $\mathcal{E}_n(\{\gamma_i\};\tau_2)$ — smooth solutions of Vignéras equation for $\lambda = n-1$ $\mathcal{E}_{n} = \frac{(2\tau_{2})^{\frac{1-n}{2}}}{2^{n-1}n!} \sum_{\mathcal{T} \in \mathbb{T}_{n}^{\ell}} \tilde{\Phi}_{n-1}^{E}(\{\boldsymbol{v}_{e}\}, \{\boldsymbol{v}_{s(e)t(e)}\}; \boldsymbol{x})$ \mathcal{T}_{e}^{s} \mathcal{T}_{e}^{t} $oldsymbol{v}_e = \sum \sum oldsymbol{v}_{ij}$ The generating function of **MSW** invariants is a higher $i \in V_{\mathcal{T}_{e}^{s}} j \in V_{\mathcal{T}_{e}^{t}}$ depth mock modular form $v_e \cdot x \sim \langle \gamma_e^s, \gamma_e^t angle$ $\mathcal{D} = \mathcal{D}_1 + \cdots + \mathcal{D}_n \longrightarrow \text{Depth} = n-1$ irreducible divisors **Example:** n = 2 $h_p(au)$ — usual mixed mock modular form $\beta_{\frac{3}{2}}(x^2) = \frac{2}{|x|} e^{-\pi x^2} - 2\pi \operatorname{Erfc}(\sqrt{\pi}|x|)$ $(pp_1p_2) = \kappa_{abd} p^a p_1^b p_2^c$ $R_2 = -\frac{|\langle \gamma_1, \gamma_2 \rangle|}{8\pi} \beta_{\frac{3}{2}} \left(\frac{2\tau_2 \langle \gamma_1, \gamma_2 \rangle^2}{(nn_1 n_2)} \right)$

This story has an extension which includes a *refinement* — parameter y conjugate to the angular momentum of black hole

This story has an extension which includes a *refinement* — parameter y conjugate to the angular momentum of black hole $\beta_i = \langle \gamma, \gamma_i \rangle$

Modularity requires $\mathcal{E}_{n}^{(0)}(\{\gamma_{i}\}) = g_{n}^{(0)}(\{\gamma_{i},\beta_{i}\})$ where $g_{n}^{(0)}(\{\gamma_{i},c_{i}\})$ satisfies a recursive equation $\gamma = \gamma_{1} + \dots + \gamma_{n}$ A way to solve the equation: refine it! — replace a factor $\langle \gamma_{i},\gamma_{j} \rangle$ by $\frac{y^{\langle \gamma_{i},\gamma_{j} \rangle} - y^{-\langle \gamma_{i},\gamma_{j} \rangle}}{y - y^{-1}}$ — refined index of a 2-particle bound state

This story has an extension which includes a *refinement* — parameter y conjugate to the angular momentum of black hole $\beta_i = \langle \gamma, \gamma_i \rangle$

Modularity requires $\mathcal{E}_{n}^{(0)}(\{\gamma_{i}\}) = g_{n}^{(0)}(\{\gamma_{i},\beta_{i}\})$ where $g_{n}^{(0)}(\{\gamma_{i},c_{i}\})$ satisfies a recursive equation $\gamma = \gamma_{1} + \dots + \gamma_{n}$ A way to solve the equation: refine it! — replace a factor $\langle \gamma_{i},\gamma_{j} \rangle$ by $\frac{y^{\langle \gamma_{i},\gamma_{j} \rangle} - y^{-\langle \gamma_{i},\gamma_{j} \rangle}}{y - y^{-1}}$ — refined index of a 2-particle bound state

$$g_n^{(\text{ref})}(\{\gamma_i, c_i\}, y) = \frac{\operatorname{Sym}\left\{F_n^{(\text{ref})}(\{c_i\}) y^{\sum_{i < j} \langle \gamma_i \gamma_j \rangle}\right\}}{(y - y^{-1})^{n-1}}$$
$$F_n^{(\text{ref})}(\{c_i\}) = 2^{1-n} \prod_{k=1}^{n-1} \operatorname{sgn}\left(\sum_{i=1}^k c_i\right)$$

This story has an extension which includes a *refinement* — parameter y conjugate to the angular momentum of black hole $\beta_i = \langle \gamma, \gamma_i \rangle$

Modularity requires $\mathcal{E}_n^{(0)}(\{\gamma_i\}) = g_n^{(0)}(\{\gamma_i, \beta_i\})$ $c_i = \operatorname{Im}(Z_{\gamma_i} \bar{Z}_{\gamma})$ where $g_n^{(0)}(\{\gamma_i, c_i\})$ satisfies a recursive equation $\gamma = \gamma_1 + \dots + \gamma_n$ A way to solve the equation: refine it! — replace a factor $\langle \gamma_i, \gamma_j \rangle$ by $\frac{y^{\langle \gamma_i, \gamma_j \rangle} - y^{-\langle \gamma_i, \gamma_j \rangle}}{y - y^{-1}} \quad - \text{refined index of a 2-particle bound state}$

This story has an extension which includes a *refinement* — parameter y conjugate to the angular momentum of black hole $\beta_i = \langle \gamma, \gamma_i \rangle$

Modularity requires $\mathcal{E}_{n}^{(0)}(\{\gamma_{i}\}) = g_{n}^{(0)}(\{\gamma_{i},\beta_{i}\})$ where $g_{n}^{(0)}(\{\gamma_{i},c_{i}\})$ satisfies a recursive equation $\gamma = \gamma_{1} + \dots + \gamma_{n}$ A way to solve the equation: refine it! — replace a factor $\langle \gamma_{i},\gamma_{j} \rangle$ by $\frac{y^{\langle \gamma_{i},\gamma_{j} \rangle} - y^{-\langle \gamma_{i},\gamma_{j} \rangle}}{y - y^{-1}}$ — refined index of a 2-particle bound state

$$g_{n}^{(\text{ref})}(\{\gamma_{i}, c_{i}\}, y) = \frac{\operatorname{Sym}\left\{F_{n}^{(\text{ref})}(\{c_{i}\}) y^{\sum_{i < j} \langle \gamma_{i}, \gamma_{j} \rangle}\right\}}{(y - y^{-1})^{n-1}}$$
$$F_{n}^{(\text{ref})}(\{c_{i}\}) = 2^{1-n} \sum_{\substack{n_{1} + \dots + n_{m} = n \\ n_{k} \ge 1}} \prod_{k=1}^{m} \frac{b_{n_{k}}}{\sum_{k=1}^{m-1}} \operatorname{sgn}\left(\sum_{i=1}^{n_{1} + \dots + n_{k}} c_{i}\right)$$

This story has an extension which includes a *refinement* — parameter y conjugate to the angular momentum of black hole

 $\beta_{i} = \langle \gamma, \gamma_{i} \rangle$ $\beta_{i} = \langle \gamma, \gamma_{i} \rangle$ $\beta_{i} = \langle \gamma, \gamma_{i} \rangle$ $c_{i} = \text{Im}(Z_{\gamma_{i}}\bar{Z}_{\gamma})$ $\gamma = \gamma_{1} + \dots + \gamma_{n}$ A way to solve the equation: refine it! — replace a factor $\langle \gamma_{i}, \gamma_{j} \rangle$ by $\frac{y^{\langle \gamma_{i}, \gamma_{j} \rangle} - y^{-\langle \gamma_{i}, \gamma_{j} \rangle}}{y - y^{-1}}$ — refined index of a 2-particle bound state $g_{n}^{(\text{ref})}(\{\gamma_{i}, c_{i}\}, y) = \frac{\text{Sym}\left\{F_{n}^{(\text{ref})}(\{c_{i}\})y^{\sum_{i < j} \langle \gamma_{i} \gamma_{j} \rangle}\right\}}{(y - y^{-1})^{n-1}}$ Laurent polynomial, regular at $y \to 1$, if $F_{n}^{(\text{ref})}(\{c_{i}\}) = \frac{(y - y^{-1})^{n-1}}{(y - y^{-1})^{n-1}}$

$$F_n^{(\text{ref})}(\{c_i\}) = 2^{1-n} \sum_{\substack{n_1 + \dots + n_m = n \\ n_k \ge 1}} \prod_{k=1}^{m} b_{n_k} \prod_{k=1}^{m} \operatorname{sgn}\left(\sum_{i=1}^{n+1} c_i\right) \xrightarrow{\text{Sym } F_n^{(1,0)}(\{c_i\}) = 0}$$

This story has an extension which includes a *refinement* — parameter y conjugate to the angular momentum of black hole $\beta_i = \langle \gamma, \gamma_i \rangle$

Modularity requires $\mathcal{E}_n^{(0)}(\{\gamma_i\}) = g_n^{(0)}(\{\gamma_i, \beta_i\})$ $c_i = \operatorname{Im}(Z_{\gamma_i} \bar{Z}_{\gamma})$ where $g_n^{(0)}(\{\gamma_i, c_i\})$ satisfies a recursive equation $\gamma = \gamma_1 + \dots + \gamma_n$ A way to solve the equation: refine it! — replace a factor $\langle \gamma_i, \gamma_j \rangle$ by $\frac{y^{\langle \gamma_i, \gamma_j \rangle} - y^{-\langle \gamma_i, \gamma_j \rangle}}{y - y^{-1}} \quad \text{--refined index of a 2-particle bound state}$ $g_{n}^{(\text{ref})}(\{\gamma_{i}, c_{i}\}, y) = \frac{\text{Sym}\left\{F_{n}^{(\text{ref})}(\{c_{i}\}) y^{\sum_{i < j} \langle \gamma_{i} \gamma_{j} \rangle}\right\}}{(y - y^{-1})^{n-1}}$ $F_{n}^{(\text{ref})}(\{c_{i}\}) = 2^{1-n} \sum_{\substack{n_{1} + \dots + n_{m} = n \\ n_{k} > 1}} \prod_{k=1}^{m} \frac{b_{n_{k}}}{\sum_{k=1}^{m-1}} \operatorname{sgn}\left(\sum_{i=1}^{n_{1} + \dots + n_{k}} c_{i}\right)$ $Laurent polynomial, regular at <math>y \to 1$, if Sym $F_{n}^{(\text{ref})}(\{c_{i}\}) = 0$ Taylor coefficients of $tanh(x) \longrightarrow b_n = \frac{2^n(2^n - 1)}{n!} B_n$ Bernoull

numbers

This story has an extension which includes a *refinement* — parameter y conjugate to the angular momentum of black hole $\beta_i = \langle \gamma, \gamma_i \rangle$

Modularity requires $\mathcal{E}_n^{(0)}(\{\gamma_i\}) = g_n^{(0)}(\{\gamma_i, \beta_i\})$ $c_i = \operatorname{Im}(Z_{\gamma_i} \bar{Z}_{\gamma})$ where $g_n^{(0)}(\{\gamma_i, c_i\})$ satisfies a recursive equation $\gamma = \gamma_1 + \dots + \gamma_n$ A way to solve the equation: refine it! — replace a factor $\langle \gamma_i, \gamma_j \rangle$ by $\frac{y^{\langle \gamma_i, \gamma_j \rangle} - y^{-\langle \gamma_i, \gamma_j \rangle}}{y - y^{-1}} \quad \text{--refined index of a 2-particle bound state}$ $g_n^{(\text{ref})}(\{\gamma_i, c_i\}, y) = \frac{\text{Sym}\left\{F_n^{(\text{ref})}(\{c_i\}) y^{\sum_{i < j} \langle \gamma_i \gamma_j \rangle}\right\}}{(y - y^{-1})^{n-1}}$ Laurent polynomial, regular at $y \to 1$, if $F_n^{(\text{ref})}(\{c_i\}) = 2^{1-n} \sum_{\substack{n_1 + \dots + n_m = n \\ n_i \ge 1}} \prod_{k=1}^m b_{n_k} \prod_{k=1}^{m-1} \operatorname{sgn}\left(\sum_{i=1}^{n_1 + \dots + n_k} c_i\right) \qquad \text{Sym} F_n^{(\text{ref})}(\{c_i\}) = 0$ Taylor coefficients of $tanh(x) \longrightarrow b_n = \frac{2^n(2^n-1)}{n!} B_n$ Bernou numbers

This story has an extension which includes a *refinement* — parameter y conjugate to the angular momentum of black hole $\beta_i = \langle \gamma, \gamma_i \rangle$

Modularity requires $\mathcal{E}_n^{(0)}(\{\gamma_i\}) = g_n^{(0)}(\{\gamma_i, \beta_i\})$ $c_i = \operatorname{Im}(Z_{\gamma_i} \bar{Z}_{\gamma})$ where $g_n^{(0)}(\{\gamma_i, c_i\})$ satisfies a recursive equation $\gamma = \gamma_1 + \dots + \gamma_n$ A way to solve the equation: refine it! — replace a factor $\langle \gamma_i, \gamma_j \rangle$ by $y^{\langle \gamma_i, \gamma_j \rangle} - y^{-\langle \gamma_i, \gamma_j \rangle}$ — refined index of a 2-particle bound state $y - y^{-1}$ $g_n^{(\text{ref})}(\{\gamma_i, c_i\}, y) = \frac{\text{Sym}\left\{F_n^{(\text{ref})}(\{c_i\}) y^{\sum_{i < j} \langle \gamma_i \gamma_j \rangle}\right\}}{(y - y^{-1})^{n-1}}$ Laurent polynomial, regular at $y \to 1$, if Taylor coefficients of $tanh(x) \longrightarrow b_n = \frac{2^n(2^n-1)}{n!} B_n$ Bernoull $\lim_{y \to 1} g_n^{(\mathrm{ref})}(\{\gamma_i, \beta_i\}, y) = \mathcal{E}_n^{(0)}(\{\gamma_i\})$ numbers

This story has an extension which includes a *refinement* — parameter y conjugate to the angular momentum of black hole $\beta_i = \langle \gamma, \gamma_i \rangle$

Modularity requires $\mathcal{E}_n^{(0)}(\{\gamma_i\}) = g_n^{(0)}(\{\gamma_i, \beta_i\})$ $c_i = \operatorname{Im}(Z_{\gamma_i} Z_{\gamma})$ where $g_n^{(0)}(\{\gamma_i, c_i\})$ satisfies a recursive equation $\gamma = \gamma_1 + \dots + \gamma_n$ A way to solve the equation: refine it! — replace a factor $\langle \gamma_i, \gamma_j \rangle$ by $y^{\langle \gamma_i, \gamma_j \rangle} - y^{-\langle \gamma_i, \gamma_j \rangle}$ - refined index of a 2-particle bound state $y - y^{-1}$ $g_n^{(\text{ref})}(\{\gamma_i, c_i\}, y) = \frac{\text{Sym}\left\{F_n^{(\text{ref})}(\{c_i\}) y^{\sum_{i < j} \langle \gamma_i \gamma_j \rangle}\right\}}{(y - y^{-1})^{n-1}}$ Laurent polynomial, regular at $y \to 1$, if $F_n^{(\text{ref})}(\{c_i\}) = 2^{1-n} \sum_{n_1 + \dots + n_m = n} \prod_{k=1}^m b_{n_k} \prod_{k=1}^{m-1} \operatorname{sgn}\left(\sum_{i=1}^{n_1 + \dots + n_k} c_i\right)$ $\operatorname{Sym} F_n^{(\operatorname{ref})}(\{c_i\}) = 0$ Taylor coefficients of $tanh(x) \longrightarrow b_n = \frac{2^n(2^n - 1)}{n!} B_n$ Why ? Bernoull refined $\lim_{y \to 1} g_n^{(\mathrm{ref})}(\{\gamma_i, \beta_i\}, y) = \mathcal{E}_n^{(0)}(\{\gamma_i\})$ numbers S-duality
rooted tree Twith n = 7 vertices

• for each vertex $v \in T'$ find $n_v(T)$ and $n_v(T')$ (number of vertices in the subtree rooted at v)

(7, 3)

(3, 1)

(4, 2)

(7,3)

- for each vertex $v \in T'$ find $n_v(T)$ and $n_v(T')$ (number of vertices in the subtree rooted at v)
- take the ratio of the coefficients, multiply over all $v \in T'$ and sum over subtrees

$$\frac{7}{3} + \frac{7 \cdot 4}{3} + \frac{7 \cdot 4}{3} + \frac{7 \cdot 4 \cdot 3}{3 \cdot 2} = 35 = \frac{7!}{3! \, 4!}$$

(number of vertices in the subtree rooted at v)

• take the ratio of the coefficients, multiply over all $v \in T'$ and sum over subtrees

$$\frac{7}{3} + \frac{7 \cdot 4}{3} + \frac{7 \cdot 4}{3} + \frac{7 \cdot 4 \cdot 3}{3 \cdot 2} = 35 = \frac{7!}{3! \, 4!}$$

Theorem: for any rooted tree T with n vertices and m < n $\sum_{T' \subset T} \prod_{v \in V_{T'}} \frac{n_v(T)}{n_v(T')} = \frac{n!}{m!(n-m)!}$

(3, 1)

(4, 2)

(7, 3)

Conclusions

The main result: the *explicit* form of the *modular completion* of the generating function of black hole degeneracies (DT invariants) at large volume attractor point for *arbitrary* divisor of CY.

 \longrightarrow $h_p(\tau)$ – higher depth (mixed) mock modular form

- Indications that S-duality is compatible with *refinement*.
- New unexpected results for combinatorics of trees.

Open problems and applications:

- Non-perturbative formulation of these results \longrightarrow integral equation on $\hat{h}_p(\tau)$?
- Understanding the completion from the point of view of world-volume theory on M5-brane wrapped on a reducible divisor.
- Geometric or physical meaning of the instanton generating function \mathcal{G} .
- Implications for black hole state counting --> restrictions on growth
- Vafa-Witten theory