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The problem

® BPS black holes described by D4-D2-D0 bound states in Type |IA string
theory compactified on a Calabi-Yau threefold W non-trivial

cycle on CY

- generalized
Donaldson-Thomas invariant

e electro-magnetic charge

Y= (Oapa7QQ7 QO) a = ]-7----,-b2(CY)

label 4- and 2-dim cycles
wrapped by D4 and D2-branes

e BPS index (black hole degeneracy) €2(~y)

Goal: understand modular properties of Q(v)
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The problem
® BPS black holes described by D4-D2-D0 bound states in Type |IA string

theory compactified on a Calabi-Yau threefold b non-trivial
_ cycle on CY
e electro-magnetic charge A
Y= (Oapa7QQ7 QO) a = 1,---,b2(CY) g
label 4- and 2-dim cycles ‘,
wrapped by D4 and D2-branes
generalized

e BPS index (black hole degeneracy) 2(y) — Donaldson-Thomas invariant

Goal: understand modular properties of Q(v)

Define a generating function: hDT Z Q(y e2™aoT
900 at +b
and study its properties under modular transformations: T po——
a b
Problems: (c d) € SL(2,7)

e Generating function depends on too many charges

e DT invariants depend on CY moduli (wall-crossing)
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Solution: consider MSW invariants

count states in SCFT constructed
In Maldacena,Strominger,Witten ‘97

Properties:
e independent of CY moduli

e invariant under spectral flow symmetry
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\_ of indefinite signature (1,b, —1) /
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MSW Invariants

Solution: consider MSW invariants

count states in SCFT constructed
In Maldacena,Strominger,Witten ‘97

Properties:
e independent of CY moduli

e invariant under spectral flow symmetry

. B

QvMSW — Qp(éo)

qo — 3 kK%qaqy — invariant charge
bounded from above

. B

One can define
-

o =

generating function 5

of MSW Invariants
hp(T) = D Qp(do) e 207
\ QOS s j

4y
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large volume
attractor point

(—q" +1iAp®)
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Z50(7) = lim

/

spectral flow
b
Ga =7 4a — Kab€
qo — qo — €"qq + % Kabe® e’

Kab = KabcD— quadratic form, given
by intersection numbers of 4-cycles,
\_ of indefinite signature (1,b, —1) /

For irreducible cycle p“:
[Gaiotto,Strominger,Yin ’06]

h,(7) — modular form of weight —3 b2 — 1

What is modular behavior of
h,(7)for generic divisor?
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A function G on M constructed from DT-invariants
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At each order of the instanton expansion: S~ R
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Modular properties of the theta series determine the properties of A, (7)
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Conclusion: for n > 2 there is a modular anomaly —> completion ho(T,T)



Theta series decomposition
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Instanton expansion' rational function of z;
/_ sum over labeled trees
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Theta series decomposition
Instanton expansion' rational function of z;

/_ sum over labeled trees
—27ig; 0T - 6 ~
=3 [T 0o [ asagt o o
n=1 1=1 Yi \ \"‘/1 L

hjr]?Tq (1) do not depend on DO-brane charge

Cannot be factorized into a product of hp 4, and a theta series due to

dependence of the generating functions on electric charges g¢; ,
Solution: express DT invariants in terms of MSW invariants

T
DT i : .
hpg (1,2 = > gun({7:}.2%) e @D ] by, (1) [Boris' talk]
>y (0f14ia) = (0% 4a)  tree index i=1 :
don’t depend on DO-chrage Qn =K"qub — Y K{"Giali
i=1
Due to spectral flow symmetry the generating functions due to quadratic term in Go

h,, are independent of ¢i.a

theta;erles decomposition indefinite thet? feries
‘ 1 —Sgt g tot with kernel @, defined
U= NG Z [H Z hp, ] Ip (P ) <T— by iterated integrals of G,
and the tree index gtr.n

=1 pi
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Modularity of indefinite theta series

Our theta series fits in the class:
Ip(®.N) =75 2 Y ()P B(V27(q + b)) e TT@ R e a0

L .
| | _Q/E‘Aﬂp kernel quadratic form of
d-dim. lattice indefinite signature
In our case: e A=n—2
o A =3 |A; — lattice of electric charges Qia ; d=nby
e bilinear form z.y = Z"" ob 2 yL Zfeabcxayfpf

S|gnature (n, n(bg —1))

Simple criterion for modularity: Vignéras ‘77
Vy-®(x) =0 Up(P, A\) — modular
Va =05 +2m(x- 05 — A) of weight (A + d/2,0)

1 3

It remains to check Vp_o - ®P" =0



Generalized error functions |
Solutions of Vignéras equation: for convergence

(@,v)?
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Zr- v Zr- v

e n=1 A=0: (I)(:c):Erf(\/?—>wErf(\/7_r ’) v-v' >0

| V']
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<I>ﬁ/‘[ — the part of the completion with fastest decay
can be expressed as n iterated Eichler (period) integrals
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Generalized error functions |l
Solutions of Vignéras equation for A = 0 from generalized error functions:

V = (vy,...,v,) — d X n matrix

E ? bl

¢, (Viw) = En(B-ViB- ) B=(e1,...,en)" — n x d matrix
M orthonormal basis in the

P, (V§ 33) — Mn(B -ViB - a:) € — subspace spanned by v;

®~ provide modular completions for holomorphic indefinite theta series
with quadratic form of signature (n,d — n) and kernel @' (V;x) = [ ,sgn(v;, )

<I>ﬁ/‘[ — the part of the completion with fastest decay
can be expressed as n iterated Eichler (period) integrals

. 3

Higher depth mock modularity

Lift to solution with A = m

n

OE ;) o~ H D(v;) H sen(v;, x)
1=1 7

1

1=1

D(v) = v - (x + 5= 0,) — covariant derivative raising A by 1



Generalized error functions |l
Solutions of Vignéras equation for A = 0 from generalized error functions:

V = (vy,...,v,) — d X n matrix
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<I>ﬁ/‘[ — the part of the completion with fastest decay
can be expressed as n iterated Eichler (period) integrals

. 3

Higher depth mock modularity

Lift to solution with A = m

1=1

f(vi,0;)

o, (V; x) m:OOH Vi, & )Hsgn vj, &
i=1 j=1

3

D(v) = v - (x + 5= 0,) — covariant derivative raising A by 1
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depth mock modular form
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4 )
Example: n =2 h,(T) — usual mixed mock modular form
Ry — _M Bs (27'2<’Yla')/2>2> Bs (2?) = é—| e~ e _ 2nErfe(+/7|z|)
8t =\ (pP1p2) @

\_ (pp1p2) = KapaP D105 )
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rooted tree T’ subtreees T’ having the same root as T
with n = 7 vertices and m = 3 vertices

(7,3) (7,3) (7,3)
(1,1) (4,1) (4,1) (4,2)
(1,1) , 3.1)

e for each vertex v € T find n,(T") and My (T O
(number of vertices in the subtree rooted at v) 3.1) /k /]l
1

e take the ratio of the coefficients, multiply over (4, 2)

allv € T"and sum over subtrees (7,3)
T,T4 74 743 0 T
3 3 3 3-2 77 314!

s _ . . )

Theorem: for any rooted tree T with n vertices and m < n
> 20—
 ml(n—m)!
9 T'CT vEVy (T {n —m)! Y,




Conclusions

The main result: the explicit form of the modular completion of the generating
function of black hole degeneracies (DT invariants) at large volume attractor
point for arbitrary divisor of CY.

—>  h,(7) - higher depth (mixed) mock modular form

e Indications that S-duality is compatible with refinement.

e New unexpected results for combinatorics of trees.

Open problems and applications:
e Non-perturbative formulation of these results —> integral equation on h,(7)?

e Understanding the completion from the point of view of world-volume theory
on M5-brane wrapped on a reducible divisor.

e Geometric or physical meaning of the instanton generating function G.
e Implications for black hole state counting =— restrictions on growth

e Vafa-Witten theory



