BPS black holes, wall-crossing and mock modularity of higher depth

Sergei Alexandrov

Laboratoire Charles Coulomb, CNRS, Montpellier
S.A., B.Pioline arXiv:1808.08479
continuation of
S.A., S.Banerjee, J.Manschot, B.Pioline arXiv:1605.05945 arXiv:1606.05495
arXiv:1702.05497
S.A., B.Pioline arXiv:1804.06928

The problem

- BPS black holes described by D4-D2-D0 bound states in Type IIA string theory compactified on a Calabi-Yau threefold
- electro-magnetic charge

$$
\gamma=\left(0, p^{a}, q_{a}, q_{0}\right) \quad a=1, \ldots, b_{2}(C Y)
$$

- BPS index (black hole degeneracy) $\Omega(\gamma)$ -

Goal: understand modular properties of $\Omega(\gamma)$

The problem

- BPS black holes described by D4-D2-D0 bound states in Type IIA string theory compactified on a Calabi-Yau threefold
- electro-magnetic charge

$$
\gamma=\left(0, p^{a}, q_{a}, q_{0}\right) \quad a=1, \ldots, b_{2}(C Y)
$$

- BPS index (black hole degeneracy) $\Omega(\gamma)$ -

generalized
Donaldson-Thomas invariant

Goal: understand modular properties of $\Omega(\gamma)$
Define a generating function: $\quad h_{. . .}^{\mathrm{DT}}(\tau)=\sum_{q_{0}>0} \Omega(\gamma) e^{2 \pi \mathrm{i} q_{0} \tau}$ and study its properties under modular transformations: $\quad \tau \mapsto \frac{a \tau+b}{c \tau+d}$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

The problem

- BPS black holes described by D4-D2-D0 bound states in Type IIA string theory compactified on a Calabi-Yau threefold
- electro-magnetic charge

$$
\gamma=\left(0, p^{a}, q_{a}, q_{0}\right) \quad a=1, \ldots, b_{2}(C Y)
$$

- BPS index (black hole degeneracy) $\Omega(\gamma)$ -

Goal: understand modular properties of $\Omega(\gamma)$
Define a generating function: $\quad h_{. . .}^{\mathrm{DT}}(\tau)=\sum_{q_{0}>0} \Omega(\gamma) e^{2 \pi \mathrm{i} q_{0} \tau}$ and study its properties under modular transformations: $\quad \tau \mapsto \frac{a \tau+b}{c \tau+d}$

Problems:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

- Generating function depends on too many charges
- DT invariants depend on CY moduli (wall-crossing)

MSW invariants

Solution: consider MSW invariants count states in SCFT constructed in Maldacena,Strominger,Witten ‘97
large volume attractor point

$$
z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow \infty}\left(-q^{a}+\mathrm{i} \lambda p^{a}\right)
$$

MSW invariants

Solution: consider MSW invariants count states in SCFT constructed in Maldacena,Strominger,Witten ' 97

Properties:

- independent of CY moduli
- invariant under spectral flow symmetry

$$
\Omega_{\gamma}^{\mathrm{MSW}}=\Omega\left(\gamma, z_{\infty}^{a}(\gamma)\right)
$$

large volume attractor point

$$
z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow \infty}\left(-q^{a}+\mathrm{i} \lambda p^{a}\right)
$$

spectral flow

$$
\begin{aligned}
& q_{a} \mapsto q_{a}-\kappa_{a b} \epsilon^{b} \\
& q_{0} \mapsto q_{0}-\epsilon^{a} q_{a}+\frac{1}{2} \kappa_{a b} \epsilon^{a} \epsilon^{b}
\end{aligned}
$$

$$
\kappa_{a b}=\kappa_{a b c} p^{c}-\text { quadratic form, given }
$$

by intersection numbers of 4-cycles,

$$
\text { of indefinite signature }\left(1, b_{2}-1\right)
$$

MSW invariants

Solution: consider MSW invariants count states in SCFT constructed in Maldacena,Strominger,Witten ‘97

Properties:

- independent of CY moduli
- invariant under spectral flow symmetry

$$
\Omega_{\gamma}^{\mathrm{MSW}}=\Omega\left(\gamma, z_{\infty}^{a}(\gamma)\right)
$$

large volume attractor point

$$
z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow \infty}\left(-q^{a}+\mathrm{i} \lambda p^{a}\right)
$$

spectral flow

$$
\begin{aligned}
& q_{a} \mapsto q_{a}-\kappa_{a b} \epsilon^{b} \\
& q_{0} \mapsto q_{0}-\epsilon^{a} q_{a}+\frac{1}{2} \kappa_{a b} \epsilon^{a} \epsilon^{b}
\end{aligned}
$$

$$
\kappa_{a b}=\kappa_{a b c} p^{c}-\text { quadratic form, given }
$$

by intersection numbers of 4-cycles,

$$
\text { of indefinite signature }\left(1, b_{2}-1\right)
$$

MSW invariants

Solution: consider MSW invariants count states in SCFT constructed in Maldacena,Strominger,Witten ‘97

Properties:

- independent of CY moduli
- invariant under spectral flow symmetry

$$
\begin{gathered}
\Omega_{\gamma}^{\mathrm{MSW}}=\Omega_{p}\left(\hat{q}_{0}\right) \\
\hat{q}_{0} \equiv q_{0}-\frac{1}{2} \kappa^{a b} q_{a} q_{b}-\text { invariant charge } \\
\text { bounded from above }
\end{gathered}
$$

One can define
generating function of MSW invariants

$$
h_{p}(\tau)=\sum_{\hat{q}_{0} \leq \hat{q}_{0}^{\max }} \Omega_{p}\left(\hat{q}_{0}\right) e^{-2 \pi \mathrm{i} \hat{q}_{0} \tau}
$$

MSW invariants

Solution: consider MSW invariants count states in SCFT constructed in Maldacena,Strominger,Witten '97

Properties:

- independent of CY moduli
- invariant under spectral flow symmetry

$\hat{q}_{0} \equiv q_{0}-\frac{1}{2} \kappa^{a b} q_{a} q_{b}$ - invariant charge bounded from above

One can define
generating function of MSW invariants

$$
h_{p}(\tau)=\sum_{\hat{q}_{0} \leq \hat{q}_{0}^{\max }} \Omega_{p}\left(\hat{q}_{0}\right) e^{-2 \pi \mathrm{i} \hat{q}_{0} \tau}
$$

$$
\Omega_{\gamma}^{\mathrm{MSW}}=\Omega\left(\gamma, z_{\infty}^{a}(\gamma)\right)
$$

large volume attractor point

$$
z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow \infty}\left(-q^{a}+\mathrm{i} \lambda p^{a}\right)
$$

spectral flow

$$
\begin{aligned}
& q_{a} \mapsto q_{a}-\kappa_{a b} \epsilon^{b} \\
& q_{0} \mapsto q_{0}-\epsilon^{a} q_{a}+\frac{1}{2} \kappa_{a b} \epsilon^{a} \epsilon^{b}
\end{aligned}
$$

$$
\kappa_{a b}=\kappa_{a b c} p^{c}-\text { quadratic form, given }
$$

by intersection numbers of 4-cycles,

$$
\text { of indefinite signature }\left(1, b_{2}-1\right)
$$

For irreducible cycle p^{a} : [Gaiotto,Strominger,Yin '06]
$h_{p}(\tau)$ — modular form of weight $-\frac{1}{2} b_{2}-1$

MSW invariants

Solution: consider MSW invariants count states in SCFT constructed in Maldacena,Strominger,Witten '97

Properties:

- independent of CY moduli
- invariant under spectral flow symmetry

$$
\Omega_{\gamma}^{\mathrm{MSW}}=\Omega_{p}\left(\hat{q}_{0}\right)
$$

$\hat{q}_{0} \equiv q_{0}-\frac{1}{2} \kappa^{a b} q_{a} q_{b}$-invariant charge bounded from above

$$
\Omega_{\gamma}^{\mathrm{MSW}}=\Omega\left(\gamma, z_{\infty}^{a}(\gamma)\right)
$$

large volume attractor point

$$
z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow \infty}\left(-q^{a}+\mathrm{i} \lambda p^{a}\right)
$$

spectral flow

$$
\begin{aligned}
q_{a} \mapsto q_{a}-\kappa_{a b} \epsilon^{b} \\
q_{0} \mapsto q_{0}-\epsilon^{a} q_{a}+\frac{1}{2} \kappa_{a b} \epsilon^{a} \epsilon^{b}
\end{aligned}
$$

$$
\kappa_{a b}=\kappa_{a b c} p^{c}-\text { quadratic form, given }
$$

by intersection numbers of 4-cycles,

$$
\text { of indefinite signature }\left(1, b_{2}-1\right)
$$

For irreducible cycle p^{a} : [Gaiotto,Strominger,Yin '06]
$h_{p}(\tau) —$ modular form of weight $-\frac{1}{2} b_{2}-1$

$$
\begin{gathered}
\text { generating function } \\
\text { of MSW invariants } \\
h_{p}(\tau)=\sum_{\hat{q}_{0} \leq \hat{q}_{0}^{\max }} \Omega_{p}\left(\hat{q}_{0}\right) e^{-2 \pi \mathrm{i} \hat{q}_{0} \tau}
\end{gathered}
$$

One can define

The logic of derivation

Type IIA/cy
D4-D2-D0 bl.h.

The logic of derivation

Type IIA/ $\mathrm{CY}_{\times} \mathrm{S}^{1}$

D4-D2-D0 bl.h.

affect the metric on the QK moduli space \mathcal{M}

The logic of derivation

M-theory $/ \mathrm{CY} \times \mathrm{T}^{2} \longleftrightarrow$ Type IIA $/ \mathrm{CY}_{\times} \mathrm{S}^{1} \xrightarrow[\text { T-duality }]{\longrightarrow}$ Type IIB $/ \mathrm{CY} \times \mathrm{S}^{1}$ M5-brane/divisor \longleftrightarrow D4-D2-D0 bl.h. \longleftrightarrow D3-D1-D(-1) inst. affect the metric on the QK moduli space \mathcal{M}

The logic of derivation

The logic of derivation

affect the metric on the QK moduli space \mathcal{M}
\mathcal{M} carries an isometric action of $S L(2, \mathbb{Z})$ preserved by non-perturbative corrections

The logic of derivation

The logic of derivation

affect the metric on the QK moduli space \mathcal{M}
\mathcal{M} carries an isometric action of $S L(2, \mathbb{Z})$ preserved by non-perturbative corrections

A function \mathcal{G} on \mathcal{M} constructed from DT-invariants is modular of weight $\left(-\frac{3}{2}, \frac{1}{2}\right)$

At each order of the instanton expansion:
theta series decomposition $\quad \mathcal{G} \sim \sum_{n=1}^{\infty}\left[\prod_{i=1}^{n} \sum_{p_{i}} h_{p_{i}}\right] \theta_{\boldsymbol{p}}$

The logic of derivation

affect the metric on the QK moduli space \mathcal{M}
\mathcal{M} carries an isometric action of $S L(2, \mathbb{Z})$ preserved by non-perturbative corrections

A function \mathcal{G} on \mathcal{M} constructed from DT-invariants is modular of weight $\left(-\frac{3}{2}, \frac{1}{2}\right)$

At each order of the instanton expansion:
theta series decomposition $\mathcal{G} \sim \sum_{n=1}^{\infty}\left[\prod_{i=1}^{n} \sum_{p_{i}} h_{p_{i}}\right] \theta_{\boldsymbol{p}}$
Modular properties of the theta series determine the properties of $h_{p}(\tau)$

The logic of derivation

affect the metric on the QK moduli space \mathcal{M}
\mathcal{M} carries an isometric action of $S L(2, \mathbb{Z})$ preserved by non-perturbative corrections

A function \mathcal{G} on \mathcal{M} constructed from DT-invariants is modular of weight $\left(-\frac{3}{2}, \frac{1}{2}\right)$

At each order of the instanton expansion:
theta series decomposition $\mathcal{G} \sim \sum_{n=1}^{\infty}\left[\prod_{i=1}^{n} \sum_{p_{i}} h_{p_{i}}\right] \theta_{\boldsymbol{p}}$
Modular properties of the theta series determine the properties of $h_{p}(\tau)$
Conclusion: for $n \geq 2$ there is a modular anomaly

The logic of derivation

affect the metric on the QK moduli space \mathcal{M}
\mathcal{M} carries an isometric action of $S L(2, \mathbb{Z})$ preserved by non-perturbative corrections

A function \mathcal{G} on \mathcal{M} constructed from DT-invariants is modular of weight $\left(-\frac{3}{2}, \frac{1}{2}\right)$

At each order of the instanton expansion: theta series decomposition

$$
\mathcal{G} \sim \sum_{n=1}^{\infty}\left[\prod_{i=1}^{n} \sum_{p_{i}} \widehat{h}_{p_{i}}\right] \widehat{\theta}_{\boldsymbol{p}}
$$

Modular properties of the theta series determine the properties of $h_{p}(\tau)$
Conclusion: for $n \geq 2$ there is a modular anomaly $\longrightarrow \begin{gathered}\text { construct } \\ \text { completion }\end{gathered} \widehat{h}_{p}(\tau, \bar{\tau})$

Theta series decomposition

Instanton expansion:

$$
\mathcal{G}=\sum_{n=1}^{\infty}[\prod_{i=1}^{n} \sum_{\gamma_{i}} \underbrace{\bar{\Omega}\left(\gamma_{i}\right) e^{-2 \pi \mathrm{i} \hat{q}_{i, 0} \tau}}_{h_{p_{i}, q_{i}}^{\mathrm{DT}}(\tau)} \underbrace{\left.\int_{\gamma_{i}} \mathrm{~d} z_{i} \mathcal{X}_{p_{i}, q_{i}}^{(\theta)}\left(z_{i}\right)\right] \mathcal{G}_{n}\left(\left\{\gamma_{i}, z_{i}\right\}\right)}_{\text {do not depend on D0-brane charge }} \text { sum over labeled trees }
$$

rational function of z_{i}

Theta series decomposition

Instanton expansion:

$$
\mathcal{G}=\sum_{n=1}^{\infty}[\prod_{i=1}^{n} \sum_{\gamma_{i}} \underbrace{\bar{\Omega}\left(\gamma_{i}\right) e^{-2 \pi \mathrm{i} \hat{q}_{i, 0} \tau}}_{h_{p_{i}, q_{i}}^{\mathrm{DT}}(\tau)} \underbrace{\left.\int_{\ell_{i}} \mathrm{~d} z_{i} \mathcal{X}_{p_{i}, q_{i}}^{(\theta)}\left(z_{i}\right)\right] \mathcal{G}_{n}\left(\left\{\gamma_{i}, z_{i}\right\}\right)}_{\text {do not depend on D0-brane charge }} \text { sum over labeled trees }
$$

rational function of z_{i}

Cannot be factorized into a product of $h_{p_{i}, q_{i}}^{\mathrm{DT}}$ and a theta series due to dependence of the generating functions on electric charges $q_{i, a}$

Theta series decomposition

Instanton expansion:

$$
\mathcal{G}=\sum_{n=1}^{\infty}[\prod_{i=1}^{n} \sum_{\gamma_{i}} \underbrace{\bar{\Omega}\left(\gamma_{i}\right) e^{-2 \pi \mathrm{i} \hat{q}_{i, 0} \tau}}_{h_{p_{i}, q_{i}}^{\mathrm{DT}}(\tau)} \underbrace{\left.\int_{\ell_{\gamma_{i}}} \mathrm{~d} z_{i} \mathcal{X}_{p_{i}, q_{i}}^{(\theta)}\left(z_{i}\right)\right] \mathcal{G}_{n}\left(\left\{\gamma_{i}, z_{i}\right\}\right)}_{\text {do not depend on D0-brane charge }} \text { sum over labeled trees }
$$

rational function of z_{i}

Cannot be factorized into a product of $h_{p_{i}, q_{i}}^{\mathrm{DT}}$ and a theta series due to dependence of the generating functions on electric charges $q_{i, a}$
Solution: express DT invariants in terms of MSW invariants

$$
\bar{\Omega}\left(\gamma, z^{a}\right)=\sum_{\sum_{i=1}^{n} \gamma_{i}=\gamma} g_{\text {tr }, n}\left(\left\{\gamma_{i}\right\}, z^{a}\right) \prod_{i=1}^{n} \bar{\Omega}_{p_{i}}\left(q_{i, 0}\right) \quad \quad \text { [Boris' talk] }
$$

Theta series decomposition

Instanton expansion:

$$
\mathcal{G}=\sum_{n=1}^{\infty}[\prod_{i=1}^{n} \sum_{\gamma_{i}} \underbrace{\bar{\Omega}\left(\gamma_{i}\right) e^{-2 \pi \mathrm{i} \hat{q}_{i}, 0}}_{h_{p_{i}, q_{i}}^{\mathrm{DT}}(\tau)} \text { do not depend on D0-brane charge } \underbrace{\left.\int_{\ell_{i}} \mathrm{~d} z_{i} \mathcal{X}_{p_{i}, q_{i}}^{(\theta)}\left(z_{i}\right)\right] \mathcal{G}_{n}\left(\left\{\gamma_{i}, z_{i}\right\}\right)}_{\text {do }} \text { sum over labeled trees }
$$

rational function of z_{i}

Cannot be factorized into a product of $h_{p_{i}, q_{i}}^{\mathrm{DT}}$ and a theta series due to dependence of the generating functions on electric charges $q_{i, a}$
Solution: express DT invariants in terms of MSW invariants

$$
h_{p, q}^{\mathrm{DT}}\left(\tau, z^{a}\right)=\sum_{\substack{\sum_{i=1}^{n}\left(p_{i}^{a}, q_{i, a}\right)=\\ \text { don't depend on DO-chrage } \\ g_{\text {tr }, n}\left(\left\{\gamma_{i}\right\}, z^{a}\right) \\ \text { donee index }}} e^{\pi \mathrm{i} \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i=1}^{n} h_{p_{i}}(\tau) \quad \text { [Boris' talk] } Q_{n}=\kappa^{a b} q_{a} q_{b}-\sum_{i=1}^{n} \kappa_{i}^{a b} q_{i, a} q_{i, b} .
$$

Theta series decomposition

Instanton expansion:

$$
\mathcal{G}=\sum_{n=1}^{\infty}[\prod_{i=1}^{n} \sum_{\gamma_{i}} \underbrace{\bar{\Omega}\left(\gamma_{i}\right) e^{-2 \pi \mathrm{i} \hat{q}_{i, 0} \tau}}_{h_{p_{i}, q_{i}}^{\mathrm{DT}}(\tau)} \underbrace{\left.\int_{\ell_{\gamma_{i}}} \mathrm{~d} z_{i} \mathcal{X}_{p_{i}, q_{i}}^{(\theta)}\left(z_{i}\right)\right] \mathcal{G}_{n}\left(\left\{\gamma_{i}, z_{i}\right\}\right)}_{\text {do not depend on D0-brane charge }} \text { sum over labeled trees }
$$

rational function of z_{i}

Cannot be factorized into a product of $h_{p_{i}, q_{i}}^{\mathrm{DT}}$ and a theta series due to dependence of the generating functions on electric charges $q_{i, a}$
Solution: express DT invariants in terms of MSW invariants

$$
\begin{aligned}
& h_{p, q}^{\mathrm{DT}}\left(\tau, z^{a}\right)=\sum g_{\operatorname{tr}, n}\left(\left\{\gamma_{i}\right\}, z^{a}\right) e^{\pi \mathrm{i} \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \prod^{n} h_{p_{i}}(\tau) \quad \text { [Boris' talk] } \\
& \sum_{i=1}^{n}\left(p_{i}^{a}, q_{i, a}\right)=\left(p^{a}, q_{a}\right) \text { tree index } \\
& \text { don't depend on D0-chrage }
\end{aligned}
$$

Due to spectral flow symmetry the generating functions due to quadratic term in \hat{q}_{0} $h_{p_{i}}$ are independent of $q_{i, a}$

Theta series decomposition

Instanton expansion:

$$
\mathcal{G}=\sum_{n=1}^{\infty}[\prod_{i=1}^{n} \sum_{\gamma_{i}} \underbrace{\bar{\Omega}\left(\gamma_{i}\right) e^{-2 \pi \mathrm{i} \hat{q}_{i, 0} \tau}} \underbrace{}_{\ell_{\gamma_{i}}} \mathrm{~d} z_{i} \mathcal{X}_{p_{i}, q_{i}}^{(\theta)}\left(z_{i}\right)] \mathcal{G}_{n}\left(\left\{\gamma_{i}, z_{i}\right\}\right)
$$

rational function of z_{i}

$$
h_{p_{i}, q_{i}}^{\mathrm{DT}}(\tau) \quad \text { do not depend on D0-brane charge }
$$

Cannot be factorized into a product of $h_{p_{i}, q_{i}}^{\mathrm{DT}}$ and a theta series due to dependence of the generating functions on electric charges $q_{i, a}$
Solution: express DT invariants in terms of MSW invariants

$$
\begin{aligned}
& h_{p, q}^{\mathrm{DT}}\left(\tau, z^{a}\right)=\sum g_{\mathrm{tr}, n}\left(\left\{\gamma_{i}\right\}, z^{a}\right) e^{\pi \mathrm{i} \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \prod^{n} h_{p_{i}}(\tau) \quad \text { [Boris' talk] } \\
& \sum_{i=1}^{n}\left(p_{i}^{a}, q_{i, a}\right)=\left(p^{a}, q_{a}\right) \text { tree index } \\
& \text { don't depend on D0-chrage }
\end{aligned}
$$

Due to spectral flow symmetry the generating functions due to quadratic term in \hat{q}_{0} $h_{p_{i}}$ are independent of $q_{i, a}$

$$
\begin{gathered}
\text { theta series decomposition } \\
\mathcal{G}=\frac{1}{\sqrt{\tau_{2}}} \sum_{n=1}^{\infty}\left[\prod_{i=1}^{n} \sum_{p_{i}} h_{p_{i}}\right] e^{-S_{p}^{\mathrm{cl}}} \vartheta_{p}\left(\Phi_{n}^{\mathrm{tot}}\right) \longleftarrow \\
\hline
\end{gathered}
$$

indefinite theta series with kernel $\Phi_{n}^{\text {tot }}$ defined by iterated integrals of \mathcal{G}_{n} and the tree index $g_{\mathrm{tr}, n}$

Modularity of indefinite theta series

Our theta series fits in the class:

$$
\vartheta_{\boldsymbol{p}}(\Phi, \lambda)=\tau_{2}^{-\lambda / 2} \sum_{\boldsymbol{q} \in \boldsymbol{\Lambda}+\frac{1}{2} \boldsymbol{p}}(-1)^{\boldsymbol{q} \cdot \boldsymbol{p}} \Phi\left(\sqrt{2 \tau_{2}}(\boldsymbol{q}+\boldsymbol{b})\right) e^{-\pi \mathrm{i} \tau(\boldsymbol{q}+\boldsymbol{b})^{2}+2 \pi \mathrm{i} \boldsymbol{c} \cdot\left(\boldsymbol{q}+\frac{1}{2} \boldsymbol{b}\right)} \underbrace{\begin{array}{l}
\text { quadratic form of } \\
\text { indefinite signature }
\end{array}}_{\text {kernel }}
$$

Modularity of indefinite theta series

Our theta series fits in the class:

$$
\vartheta_{\boldsymbol{p}}(\Phi, \lambda)=\tau_{2}^{-\lambda / 2} \sum_{\boldsymbol{q} \in \boldsymbol{\Lambda}+\frac{1}{2} \boldsymbol{p}}(-1)^{\boldsymbol{q} \cdot \boldsymbol{p}} \Phi\left(\sqrt{2 \tau_{2}}(\boldsymbol{q}+\boldsymbol{b})\right) e^{-\pi \mathrm{i} \tau(\boldsymbol{q}+\boldsymbol{b})^{2}+2 \pi \mathrm{i} \boldsymbol{c} \cdot\left(\boldsymbol{q}+\frac{1}{2} \boldsymbol{b}\right)} \underbrace{\text { quadratic form of }}_{\text {kernel }} \begin{aligned}
& \text { indefinite signature }
\end{aligned}
$$

In our case: $\bullet \lambda=n-2$

- $\boldsymbol{\Lambda}=\oplus_{i=1}^{n} \Lambda_{i}$ - lattice of electric charges $q_{i, a} ; d=n b_{2}$
- bilinear form

$$
\begin{gathered}
\boldsymbol{x} \cdot \boldsymbol{y}=\sum_{i=1}^{n} \kappa_{i, a b} x_{i}^{a} y_{i}^{b}=\sum_{i=1}^{n} \kappa_{a b c} x_{i}^{a} y_{i}^{b} p_{i}^{c} \\
\text { signature }\left(n, n\left(b_{2}-1\right)\right)
\end{gathered}
$$

Modularity of indefinite theta series

Our theta series fits in the class:

$$
\vartheta_{\boldsymbol{p}}(\Phi, \lambda)=\tau_{2}^{-\lambda / 2} \sum_{\boldsymbol{q} \in \boldsymbol{\Lambda}+\frac{1}{2} \boldsymbol{p}}(-1)^{\boldsymbol{q} \cdot \boldsymbol{p}} \Phi\left(\sqrt{2 \tau_{2}}(\boldsymbol{q}+\boldsymbol{b})\right) e^{-\pi \mathrm{i} \tau(\boldsymbol{q}+\boldsymbol{b})^{2}+2 \pi \mathrm{i} \boldsymbol{c} \cdot\left(\boldsymbol{q}+\frac{1}{2} \boldsymbol{b}\right)} \underbrace{\text { quadratic form of }}_{\text {kernel }} \begin{aligned}
& \text { indefinite signature }
\end{aligned}
$$

In our case: $\bullet \lambda=n-2$

- $\boldsymbol{\Lambda}=\oplus_{i=1}^{n} \Lambda_{i}$ - lattice of electric charges $q_{i, a} ; d=n b_{2}$
- bilinear form $\quad \boldsymbol{x} \cdot \boldsymbol{y}=\sum_{i=1}^{n} \kappa_{i, a b} x_{i}^{a} y_{i}^{b}=\sum_{i=1}^{n} \kappa_{a b c} x_{i}^{a} y_{i}^{b} p_{i}^{c}$ signature $\left(n, n\left(b_{2}-1\right)\right)$

Simple criterion for modularity:
Vignéras '77

$$
\begin{array}{cl}
V_{\lambda} \cdot \Phi(\boldsymbol{x})=0 \\
V_{\lambda}=\partial_{\boldsymbol{x}}^{2}+2 \pi\left(\boldsymbol{x} \cdot \partial_{\boldsymbol{x}}-\lambda\right)
\end{array} \quad \begin{aligned}
& \vartheta_{\boldsymbol{p}}(\Phi, \lambda)-\text { modular } \\
& \text { of weight }(\lambda+d / 2,0)
\end{aligned}
$$

Modularity of indefinite theta series

Our theta series fits in the class:

$$
\vartheta_{\boldsymbol{p}}(\Phi, \lambda)=\tau_{2}^{-\lambda / 2} \sum_{\boldsymbol{q} \in \boldsymbol{\Lambda + \frac { 1 } { 2 }} \boldsymbol{p}}(-1)^{\boldsymbol{q} \cdot \boldsymbol{p}} \underbrace{\Phi\left(\sqrt{2 \tau_{2}}(\boldsymbol{q}+\boldsymbol{b})\right) e^{-\pi \mathrm{i} \tau(\boldsymbol{q}+\boldsymbol{b})^{2}+2 \pi \mathrm{i} \cdot \cdot\left(\boldsymbol{q}+\frac{1}{2} \boldsymbol{b}\right)}}_{\text {-dim. lattice }} \underbrace{}_{\begin{array}{l}
\text { quadratic form of } \\
\text { indefinite signature }
\end{array}}
$$

In our case: - $\lambda=n-2$

- $\boldsymbol{\Lambda}=\oplus_{i=1}^{n} \Lambda_{i}$ — lattice of electric charges $q_{i, a} ; d=n b_{2}$
- bilinear form $\boldsymbol{x} \cdot \boldsymbol{y}=\sum_{i=1}^{n} \kappa_{i, a b} x_{i}^{a} y_{i}^{b}=\sum_{i=1}^{n} \kappa_{a b c} x_{i}^{a} y_{i}^{b} p_{i}^{c}$ signature $\left(n, n\left(b_{2}-1\right)\right)$

Simple criterion for modularity:
Vignéras ‘77

$$
\begin{gathered}
V_{\lambda} \cdot \Phi(\boldsymbol{x})=0 \\
V_{\lambda}=\partial_{\boldsymbol{x}}^{2}+2 \pi\left(\boldsymbol{x} \cdot \partial_{\boldsymbol{x}}-\lambda\right)
\end{gathered} \longrightarrow \begin{aligned}
& \vartheta_{\boldsymbol{p}}(\Phi, \lambda) \text { - modular } \\
& \text { of weight }(\lambda+d / 2,0)
\end{aligned}
$$

It remains to check $V_{n-2} \cdot \Phi_{n}^{\text {tot }}=0$

Generalized error functions I

Solutions of Vignéras equation:

- $n=1, \lambda=-1: \quad \Phi(\boldsymbol{x})=e^{-\pi \frac{(\boldsymbol{x}, v)^{2}}{v^{2}}}$
for convergence

$$
\boldsymbol{v}^{2}>0
$$

- $n=1, \lambda=0: \quad \Phi(\boldsymbol{x})=\operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}\right)-\operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}^{\prime}}{\left|\boldsymbol{v}^{\prime}\right|}\right)$

Generalized error functions |

Solutions of Vignéras equation:

- $n=1, \lambda=-1: \quad \Phi(\boldsymbol{x})=e^{-\pi \frac{(\boldsymbol{x}, v)^{2}}{v^{2}}}$
for convergence $\boldsymbol{v}^{2}>0$
- $n=1, \lambda=0: \quad \Phi(\boldsymbol{x})=\operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}\right)-\operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}^{\prime}}{\left|\boldsymbol{v}^{\prime}\right|}\right), ~($ Zwegers '02] $\boldsymbol{v} \cdot \boldsymbol{v}^{\prime}>0$ [Zwegers '02] completion of holomorphic mock theta series with kernel $\Phi^{\mathrm{hol}}(\boldsymbol{x})=\operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v})-\operatorname{sgn}\left(\boldsymbol{x}, \boldsymbol{v}^{\prime}\right)$

$$
\operatorname{Erf}(u \sqrt{\pi})=\operatorname{sgn}(u)-\operatorname{sgn}(u) \operatorname{Erfc}(|u| \sqrt{\pi})
$$

smooth solution holomorphic \& exponentially decaying discontinuous discontinuous solution

Generalized error functions |

Solutions of Vignéras equation:

- $n=1, \lambda=-1: \quad \Phi(\boldsymbol{x})=e^{-\pi \frac{(\boldsymbol{x}, v)^{2}}{v^{2}}}$
- $n=1, \lambda=0: \quad \Phi(\boldsymbol{x})=\operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}\right)-\operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}^{\prime}}{\left|\boldsymbol{v}^{\prime}\right|}\right)$ (Zwegers '02]
for convergence $\boldsymbol{v}^{2}>0$
completion of holomorphic mock theta series with kernel $\Phi^{\text {hol }}(\boldsymbol{x})=\operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v})-\operatorname{sgn}\left(\boldsymbol{x}, \boldsymbol{v}^{\prime}\right)$ $\int_{\mathbb{R}} \mathrm{d} u^{\prime} e^{-\pi\left(u-u^{\prime}\right)^{2}} \operatorname{sgn}\left(u^{\prime}\right)=\operatorname{Erf}(u \sqrt{\pi})$
smooth solution
$-\underset{\text { exponentially decaying }}{-\operatorname{sgn}(u) \operatorname{Erfc}(|u| \sqrt{\pi})}=\frac{\mathrm{i}}{\pi_{\mathbb{R}-\mathrm{i} u}} \int^{\mathrm{d} z} \frac{\mathrm{~d} z}{z} e^{-\pi z^{2}-2 \pi \mathrm{i} z u}$ discontinuous solution

Generalized error functions |

Solutions of Vignéras equation:

- $n=1, \lambda=-1: \quad \Phi(\boldsymbol{x})=e^{-\pi \frac{(x, v)^{2}}{v^{2}}}$
- $n=1, \lambda=0$:
$\Phi(\boldsymbol{x})=\operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}\right)-\operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}^{\prime}}{\left|\boldsymbol{v}^{\prime}\right|}\right)$
for convergence $v^{2}>0$
[Zwegers '02]
completion of holomorphic mock theta series with kernel $\Phi^{\text {hol }}(\boldsymbol{x})=\operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v})-\operatorname{sgn}\left(\boldsymbol{x}, \boldsymbol{v}^{\prime}\right)$ $\int_{\mathbb{R}} \mathrm{d} u^{\prime} e^{-\pi\left(u-u^{\prime}\right)^{2}} \operatorname{sgn}\left(u^{\prime}\right)=\operatorname{Erf}(u \sqrt{\pi})$ smooth solution
$\underset{\text { exponentially decaying }}{-\operatorname{sgn}(u) \operatorname{Erfc}(|u| \sqrt{\pi})}=\frac{\mathrm{i}}{\pi_{\mathbb{R}-\mathrm{i} u}} \int^{\frac{\mathrm{d} z}{z}} e^{-\pi z^{2}-2 \pi \mathrm{i} z u}$ discontinuous solution

Generalization to arbitrary n : [ABMP, Nazaroglu '16]

Generalized error functions

$E_{n}(\mathcal{M} ; u)=\int_{\mathbb{R}^{n}} d u^{\prime} e^{-\pi\left(u-u^{\prime}\right)^{\operatorname{tr}}\left(u-u^{\prime}\right)} \prod \operatorname{sgn}\left(\mathcal{M}^{\operatorname{tr}} u^{\prime}\right)$
$M_{n}(\mathcal{M} ; u)=\left(\frac{\mathrm{i}}{\pi}\right)^{n}|\operatorname{det} \mathcal{M}|_{\mathbb{R}^{n}-\mathrm{i} u}^{-1} \mathrm{~d}^{n} z \frac{e^{-\pi \mathbb{z}^{\mathrm{tr}} \mathbb{z}-2 \pi \mathrm{iz} \mathrm{z}^{\mathrm{tr}} \mathrm{u}}}{\prod\left(\mathcal{M}^{-1} \mathbb{Z}\right)}$
$\mathrm{u}, \mathbb{Z} \in \mathbb{R}^{n}, \mathcal{M}-n \times n$ matrix

Generalized error functions |

Solutions of Vignéras equation:

- $n=1, \lambda=-1: \quad \Phi(\boldsymbol{x})=e^{-\pi \frac{(\boldsymbol{x}, \boldsymbol{v})^{2}}{v^{2}}}$
- $n=1, \lambda=0$:
$\Phi(\boldsymbol{x})=\operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}\right)-\operatorname{Erf}\left(\sqrt{\pi} \frac{\boldsymbol{x} \cdot \boldsymbol{v}^{\prime}}{\left|\boldsymbol{v}^{\prime}\right|}\right)$
for convergence $v^{2}>0$
[Zwegers '02]
completion of holomorphic mock theta series with kernel $\Phi^{\text {hol }}(\boldsymbol{x})=\operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v})-\operatorname{sgn}\left(\boldsymbol{x}, \boldsymbol{v}^{\prime}\right)$ $\int_{\mathbb{R}} \mathrm{d} u^{\prime} e^{-\pi\left(u-u^{\prime}\right)^{2}} \operatorname{sgn}\left(u^{\prime}\right)=\operatorname{Erf}(u \sqrt{\pi})$ smooth solution
$\underset{\quad-\operatorname{exponentially} \text { decaying }}{-\operatorname{sgn}(u) \operatorname{Erfc}(|u| \sqrt{\pi})}=\frac{\mathrm{i}}{\pi} \int_{\mathbb{R}-\mathrm{i} u} \frac{\mathrm{~d} z}{z} e^{-\pi z^{2}-2 \pi \mathrm{i} z u}$ discontinuous solution

Generalization to arbitrary n : [ABMP, Nazaroglu '16]

Generalized error functions

$$
\begin{aligned}
& E_{n}(\mathcal{M} ; u)=\int_{\mathbb{R}^{n}} \mathrm{~d} u^{\prime} e^{-\pi\left(u-u^{\prime}\right)^{\operatorname{tr}}\left(u-u^{\prime}\right)} \prod \operatorname{sgn}\left(\mathcal{M}^{\left.\operatorname{tr} u^{\prime}\right)}\right. \\
& M_{n}(\mathcal{M} ; u)=\left(\frac{\mathrm{i}}{\pi}\right)^{n}|\operatorname{det} \mathcal{M}|^{-1} \int_{\mathbb{R}^{n}-\mathrm{i} u} \mathrm{~d}^{n} z \frac{e^{-\pi \mathbb{Z}^{\operatorname{tr}} \mathbb{Z}-2 \pi \mathrm{i} \mathbb{z}^{\operatorname{tr}} u}}{\prod\left(\mathcal{M}^{-1} \mathbb{Z}\right)}
\end{aligned}
$$

$$
\underset{u \rightarrow \infty}{\sim} \prod \operatorname{sgn}\left(\mathcal{M}^{\operatorname{tr}}{ }_{u}\right)
$$

exponentially decaying, discontinuous
$\mathbb{U}, \mathbb{Z} \in \mathbb{R}^{n}, \mathcal{M}-n \times n$ matrix

Generalized error functions II

Solutions of Vignéras equation for $\lambda=0$ from generalized error functions:

$$
\begin{aligned}
& \Phi_{n}^{E}(\mathcal{V} ; \boldsymbol{x})=E_{n}(\mathcal{B} \cdot \mathcal{V} ; \mathcal{B} \cdot \boldsymbol{x}) \\
& \Phi_{n}^{M}(\mathcal{V} ; \boldsymbol{x})=M_{n}(\mathcal{B} \cdot \mathcal{V} ; \mathcal{B} \cdot \boldsymbol{x})
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{V}=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right)-d \times n \text { matrix } \\
\mathcal{B}=\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)^{\operatorname{tr}}-n \times d \text { matrix } \\
\boldsymbol{e}_{i}-\quad \text { orthonormal basis in the } \\
\text { subspace spanned by } \boldsymbol{v}_{i}
\end{gathered}
$$

Φ_{n}^{E} provide modular completions for holomorphic indefinite theta series with quadratic form of signature $(n, d-n)$ and kernel $\Phi_{n}^{\text {hol }}(\mathcal{V} ; \boldsymbol{x})=\prod_{i=1}^{n} \operatorname{sgn}\left(\boldsymbol{v}_{i}, \boldsymbol{x}\right)$
Φ_{n}^{M} — the part of the completion with fastest decay
can be expressed as n iterated Eichler (period) integrals

Generalized error functions II

Solutions of Vignéras equation for $\lambda=0$ from generalized error functions:

$$
\begin{aligned}
& \Phi_{n}^{E}(\mathcal{V} ; \boldsymbol{x})=E_{n}(\mathcal{B} \cdot \mathcal{V} ; \mathcal{B} \cdot \boldsymbol{x}) \\
& \Phi_{n}^{M}(\mathcal{V} ; \boldsymbol{x})=M_{n}(\mathcal{B} \cdot \mathcal{V} ; \mathcal{B} \cdot \boldsymbol{x})
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{V}=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right)-d \times n \text { matrix } \\
\mathcal{B}=\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)^{\text {tr }}-n \times d \text { matrix } \\
\boldsymbol{e}_{i}-\quad \text { orthonormal basis in the } \\
\text { subspace spanned by } \boldsymbol{v}_{i}
\end{gathered}
$$

Φ_{n}^{E} provide modular completions for holomorphic indefinite theta series with quadratic form of signature $(n, d-n)$ and kernel $\Phi_{n}^{\mathrm{hol}}(\mathcal{V} ; \boldsymbol{x})=\prod_{i=1}^{n} \operatorname{sgn}\left(\boldsymbol{v}_{i}, \boldsymbol{x}\right)$
Φ_{n}^{M} - the part of the completion with fastest decay
can be expressed as n iterated Eichler (period) integrals

Higher depth mock modularity

Generalized error functions II

Solutions of Vignéras equation for $\lambda=0$ from generalized error functions:

$$
\begin{aligned}
& \Phi_{n}^{E}(\mathcal{V} ; \boldsymbol{x})=E_{n}(\mathcal{B} \cdot \mathcal{V} ; \mathcal{B} \cdot \boldsymbol{x}) \\
& \Phi_{n}^{M}(\mathcal{V} ; \boldsymbol{x})=M_{n}(\mathcal{B} \cdot \mathcal{V} ; \mathcal{B} \cdot \boldsymbol{x})
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{V}=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right)-d \times n \text { matrix } \\
\mathcal{B}=\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)^{\text {tr }}-n \times d \text { matrix } \\
\boldsymbol{e}_{i}-\quad \text { orthonormal basis in the } \\
\quad \text { subspace spanned by } \boldsymbol{v}_{i}
\end{gathered}
$$

Φ_{n}^{E} provide modular completions for holomorphic indefinite theta series with quadratic form of signature $(n, d-n)$ and kernel $\Phi_{n}^{\mathrm{hol}}(\mathcal{V} ; \boldsymbol{x})=\prod_{i=1}^{n} \operatorname{sgn}\left(\boldsymbol{v}_{i}, \boldsymbol{x}\right)$
Φ_{n}^{M} - the part of the completion with fastest decay
can be expressed as n iterated Eichler (period) integrals

Higher depth mock modularity

Lift to solution with $\lambda=m$:

$$
\tilde{\Phi}_{n, m}^{E}(\mathcal{V}, \tilde{\mathcal{V}} ; \boldsymbol{x})=\left[\prod_{i=1}^{m} \mathcal{D}\left(\tilde{\boldsymbol{v}}_{i}\right)\right] \Phi_{n}^{E}(\mathcal{V} ; \boldsymbol{x})
$$

$\mathcal{D}(\tilde{\boldsymbol{v}})=\tilde{\boldsymbol{v}} \cdot\left(\boldsymbol{x}+\frac{1}{2 \pi} \partial_{\boldsymbol{x}}\right)$ - covariant derivative raising λ by 1

Generalized error functions II

Solutions of Vignéras equation for $\lambda=0$ from generalized error functions:

$$
\begin{aligned}
& \Phi_{n}^{E}(\mathcal{V} ; \boldsymbol{x})=E_{n}(\mathcal{B} \cdot \mathcal{V} ; \mathcal{B} \cdot \boldsymbol{x}) \\
& \Phi_{n}^{M}(\mathcal{V} ; \boldsymbol{x})=M_{n}(\mathcal{B} \cdot \mathcal{V} ; \mathcal{B} \cdot \boldsymbol{x})
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{V}=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right)-d \times n \text { matrix } \\
\mathcal{B}=\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)^{\text {tr }}-n \times d \text { matrix } \\
\boldsymbol{e}_{i}-\quad \text { orthonormal basis in the } \\
\text { subspace spanned by } \boldsymbol{v}_{i}
\end{gathered}
$$

Φ_{n}^{E} provide modular completions for holomorphic indefinite theta series with quadratic form of signature $(n, d-n)$ and kernel $\Phi_{n}^{\mathrm{hol}}(\mathcal{V} ; \boldsymbol{x})=\prod_{i=1}^{n} \operatorname{sgn}\left(\boldsymbol{v}_{i}, \boldsymbol{x}\right)$
Φ_{n}^{M} - the part of the completion with fastest decay
can be expressed as n iterated Eichler (period) integrals

Higher depth mock modularity

Lift to solution with $\lambda=m$:

$$
\tilde{\Phi}_{n, m}^{E}(\mathcal{V}, \tilde{\mathcal{V}} ; \boldsymbol{x})=\left[\prod_{i=1}^{m} \mathcal{D}\left(\tilde{\boldsymbol{v}}_{i}\right)\right] \Phi_{n}^{E}(\mathcal{V} ; \boldsymbol{x}) \quad \underset{x \rightarrow \infty}{\sim} \prod_{i=1}^{m} \mathcal{D}\left(\tilde{\boldsymbol{v}}_{i}\right) \prod_{j=1}^{n} \operatorname{sgn}\left(\boldsymbol{v}_{j}, \boldsymbol{x}\right)
$$

$\mathcal{D}(\tilde{\boldsymbol{v}})=\tilde{\boldsymbol{v}} \cdot\left(\boldsymbol{x}+\frac{1}{2 \pi} \partial_{\boldsymbol{x}}\right)$ - covariant derivative raising λ by 1

Generalized error functions II

Solutions of Vignéras equation for $\lambda=0$ from generalized error functions:

$$
\begin{aligned}
& \Phi_{n}^{E}(\mathcal{V} ; \boldsymbol{x})=E_{n}(\mathcal{B} \cdot \mathcal{V} ; \mathcal{B} \cdot \boldsymbol{x}) \\
& \Phi_{n}^{M}(\mathcal{V} ; \boldsymbol{x})=M_{n}(\mathcal{B} \cdot \mathcal{V} ; \mathcal{B} \cdot \boldsymbol{x})
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{V}=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right)-d \times n \text { matrix } \\
\mathcal{B}=\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)^{\text {tr }}-n \times d \text { matrix } \\
\boldsymbol{e}_{i}-\quad \text { orthonormal basis in the } \\
\text { subspace spanned by } \boldsymbol{v}_{i}
\end{gathered}
$$

Φ_{n}^{E} provide modular completions for holomorphic indefinite theta series with quadratic form of signature $(n, d-n)$ and kernel $\Phi_{n}^{\mathrm{hol}}(\mathcal{V} ; \boldsymbol{x})=\prod_{i=1}^{n} \operatorname{sgn}\left(\boldsymbol{v}_{i}, \boldsymbol{x}\right)$
Φ_{n}^{M} - the part of the completion with fastest decay
can be expressed as n iterated Eichler (period) integrals

Higher depth mock modularity

Lift to solution with $\lambda=m$:

$$
\tilde{\Phi}_{n, m}^{E}(\mathcal{V}, \tilde{\mathcal{V}} ; \boldsymbol{x})=\left[\prod_{i=1}^{m} \mathcal{D}\left(\tilde{\boldsymbol{v}}_{i}\right)\right] \Phi_{n}^{E}(\mathcal{V} ; \boldsymbol{x})
$$

$$
\underset{x \rightarrow \infty}{\sim} \prod_{i=1}^{m}\left(\tilde{\boldsymbol{v}}_{i}, \boldsymbol{x}\right) \prod_{j=1}^{n} \operatorname{sgn}\left(\tilde{\boldsymbol{v}}_{i}, \tilde{\boldsymbol{v}}_{j}\right)=0
$$

$\mathcal{D}(\tilde{\boldsymbol{v}})=\tilde{\boldsymbol{v}} \cdot\left(\boldsymbol{x}+\frac{1}{2 \pi} \partial_{\boldsymbol{x}}\right)$ - covariant derivative raising λ by 1

Kernels

In our case: $\Phi_{n}^{\text {tot }}=\sum_{\substack{n_{1}+\cdots n_{m}=n \\ n_{k} \geq 1}} \Phi_{m}^{f} \prod_{k=1}^{m} \Phi_{n_{k}}^{g} \longleftarrow$ proportional to the tree index $g_{\text {tr }, n_{k}}$
given by iterated integrals of \mathcal{G}_{n}

Kernels

In our case: $\Phi_{n}^{\text {tot }}=\sum_{\substack{n_{1}+\cdots n_{m}=n \\ n_{k} \geq 1}} \Phi_{m}^{f} \prod_{k=1}^{m} \Phi_{n_{k}}^{g} \longleftarrow$ proportional to the tree index $g_{\text {tr }, n_{k}}$
given by iterated integrals of \mathcal{G}_{n} $\begin{aligned} & \text { locally } \Phi_{n_{k}}^{g} \sim \sum \prod_{\substack{i=1 \\\left(\tilde{\boldsymbol{v}}_{i}, \tilde{\boldsymbol{v}}_{j}\right)=0}}^{n_{k}-1}\left(\tilde{\boldsymbol{v}}_{i}, \boldsymbol{x}\right)\end{aligned}$

Kernels

In our case: $\Phi_{n}^{\text {tot }}=\sum_{\substack{n_{1}+\cdots n_{m}=n \\ n_{k} \geq 1}} \Phi_{m}^{f} \prod_{k=1}^{m} \Phi_{n_{k}}^{g} \longleftarrow$ proportional to the tree index $g_{\text {tr }, n_{k}}$
given by iterated integrals of \mathcal{G}_{n} $\begin{aligned} & \text { locally } \Phi_{n_{k}}^{g} \sim \sum \prod_{\substack{i=1 \\\left(\tilde{\boldsymbol{v}}_{i}, \tilde{\boldsymbol{v}}_{j}\right)=0}}^{n_{k}-1}\left(\tilde{\boldsymbol{v}}_{i}, \boldsymbol{x}\right)\end{aligned}$

$$
\begin{aligned}
& \text { away from discontinuities } \\
& \qquad V_{n_{k}-1} \cdot \Phi_{n_{k}}^{g}=0
\end{aligned}
$$

Kernels

In our case: $\Phi_{n}^{\mathrm{tot}}=\sum_{\substack{n_{1}+\cdots n_{m}=n \\ n_{k} \geq 1}} \Phi_{m}^{f} \prod_{k=1}^{m} \Phi_{n_{k}}^{g} \longleftarrow$ proportional to the tree index $g_{\mathrm{tr}, n_{k}}$
given by iterated integrals of $\mathcal{G}_{n}$$\quad \begin{aligned} & \text { locally } \Phi_{n_{k}}^{g} \sim \sum \prod_{\substack{i=1 \\\left(\tilde{\boldsymbol{v}}_{i}, \tilde{\boldsymbol{v}}_{j}\right)=0}}^{\Phi_{1}^{f}(x)}\left(\tilde{\boldsymbol{v}}_{i}, \boldsymbol{x}\right)\end{aligned}$

$$
\Phi_{n}^{f}(\boldsymbol{x})=\frac{\Phi_{1}^{\int}(x)}{2^{n-1} n!} \sum_{\mathcal{T} \in \mathrm{T}_{n}^{\ell}} \tilde{\Phi}_{n-1}^{M}\left(\left\{\boldsymbol{u}_{e}\right\},\left\{\boldsymbol{v}_{s(e) t(e)}\right\} ; \boldsymbol{x}\right)
$$

$$
\begin{aligned}
& \text { away from discontinuities } \\
& \qquad V_{n_{k}-1} \cdot \Phi_{n_{k}}^{g}=0
\end{aligned}
$$

Kernels

In our case: $\Phi_{n}^{\mathrm{tot}}=\sum_{\substack{n_{1}+\cdots n_{m}=n \\ n_{k} \geq 1}} \Phi_{m}^{f} \prod_{k=1}^{m} \Phi_{n_{k}}^{g} \longleftarrow$ proportional to the tree index $g_{\mathrm{tr}, n_{k}}$
given by iterated integrals of \mathcal{G}_{n}
$\Phi_{1}^{f}(x) \quad$ locally $\Phi_{n_{k}}^{g} \sim \sum \prod_{\substack{i=1 \\\left(\tilde{\boldsymbol{v}}_{i}, \tilde{\boldsymbol{v}}_{j}\right)=0}}^{n_{k}-1}\left(\tilde{\boldsymbol{v}}_{i}, \boldsymbol{x}\right)$
$\Phi_{n}^{f}(\boldsymbol{x})=\frac{\Phi_{1}^{\int}(x)}{2^{n-1} n!} \sum_{\mathcal{T} \in \mathrm{T}_{n}^{\ell}} \tilde{\Phi}_{n-1}^{M}\left(\left\{\boldsymbol{u}_{e}\right\},\left\{\boldsymbol{v}_{s(e) t(e)}\right\} ; \boldsymbol{x}\right)$
away from discontinuities
$V_{n_{k}-1} \cdot \Phi_{n_{k}}^{g}=0$

- $\Phi_{1}^{f}(x)=\left(2 \tau_{2} t^{2}\right)^{-\frac{1}{2}} e^{-\pi \frac{(x, t)^{2}}{t^{2}}}-$ solution for $\lambda=-1$

Kernels

In our case: $\Phi_{n}^{\mathrm{tot}}=\sum_{\substack{n_{1}+\ldots n_{m}=n \\ n_{k} \geq 1}} \Phi_{m}^{\int} \prod_{k=1}^{m} \Phi_{n_{k}}^{g} \longleftarrow$ proportional to the tree index $g_{\mathrm{tr}, n_{k}}$ locally

$$
\begin{array}{r}
\Phi_{n_{k}}^{g} \sim \sum \prod_{i=1}^{n_{k}-1}\left(\tilde{\boldsymbol{v}}_{i}, \boldsymbol{x}\right) \\
\left(\tilde{\boldsymbol{v}}_{i}, \tilde{\boldsymbol{v}}_{j}\right)=0
\end{array}
$$

$$
\Phi_{n}^{f}(\boldsymbol{x})=\frac{\Phi_{1}^{\int}(x)}{2^{n-1} n!} \sum_{\mathcal{T} \in \mathrm{T}_{n}^{\ell}} \tilde{\Phi}_{n-1}^{M}\left(\left\{\boldsymbol{u}_{e}\right\},\left\{\boldsymbol{v}_{s(e) t(e)}\right\} ; \boldsymbol{x}\right)
$$

$$
\begin{gathered}
\text { away from discontinuities } \\
V_{n_{k}-1} \cdot \Phi_{n_{k}}^{g}=0
\end{gathered}
$$

- $\Phi_{1}^{f}(x)=\left(2 \tau_{2} t^{2}\right)^{-\frac{1}{2}} e^{-\pi \frac{(x, t)^{2}}{t^{2}}}-$ solution for $\lambda=-1$
- $\mathcal{T} \in \mathbb{T}_{n}^{\ell}$ — labeled unrooted tree $V_{\mathcal{T}}$ - set of its vertices

Kernels

In our case: $\Phi_{n}^{\mathrm{tot}}=\sum_{\substack{n_{1}+\cdots n_{m}=n \\ n_{k} \geq 1}} \Phi_{m}^{f} \prod_{k=1}^{m} \Phi_{n_{k}}^{g} \longleftarrow$ proportional to the tree index $g_{\text {tr, }, n_{k}}$
iven by iterated integrals of \mathcal{G}_{n}
$\Phi_{1}^{f}(x) \quad$ locally $\Phi_{n_{k}}^{g} \sim \sum_{\substack{i=1 \\\left(\tilde{\boldsymbol{v}}_{i}, \tilde{\boldsymbol{v}}_{j}\right)=0}}^{n_{k}-1}\left(\tilde{\boldsymbol{v}}_{i}, \boldsymbol{x}\right)$

$$
\begin{aligned}
& \text { away from discontinuities } \\
& V_{n_{k}-1} \cdot \Phi_{n_{k}}^{g}=0
\end{aligned}
$$

- $\Phi_{1}^{f}(x)=\left(2 \tau_{2} t^{2}\right)^{-\frac{1}{2}} e^{-\pi \frac{(x, t)^{2}}{t^{2}}}-$ solution for $\lambda=-1$
- $\mathcal{T} \in \mathbb{T}_{n}^{\ell}$ — labeled unrooted tree $V_{\mathcal{T}}$ — set of its vertices

- $\boldsymbol{v}_{i j}, \boldsymbol{u}_{i j}-n b_{2}$-dimensional vectors such that
$\boldsymbol{v}_{i j} \cdot \boldsymbol{x}=\sqrt{2 \tau_{2}}\left\langle\gamma_{i}, \gamma_{j}\right\rangle \quad \boldsymbol{u}_{i j} \cdot \boldsymbol{x}=-\sqrt{2 \tau_{2}} \operatorname{Im}\left(Z_{\gamma_{i}} \bar{Z}_{\gamma_{j}}\right)$
define stability condition of a bound state $\gamma_{i}+\gamma_{j}$

$$
\left(\boldsymbol{v}_{i j}, \boldsymbol{x}\right)\left(\boldsymbol{u}_{i j}, \boldsymbol{x}\right)<0
$$

Kernels

$$
\begin{aligned}
& \text { away from discontinuities } \\
& V_{n_{k}-1} \cdot \Phi_{n_{k}}^{g}=0
\end{aligned}
$$

- $\Phi_{1}^{f}(x)=\left(2 \tau_{2} t^{2}\right)^{-\frac{1}{2}} e^{-\pi \frac{(x, t)^{2}}{t^{2}}}$ - solution for $\lambda=-1$
- $\mathcal{T} \in \mathbb{T}_{n}^{\ell}$ — labeled unrooted tree $V_{\mathcal{T}}$ - set of its vertices
- $\boldsymbol{v}_{i j}, \boldsymbol{u}_{i j}-n b_{2}$-dimensional vectors such that $\boldsymbol{v}_{i j} \cdot \boldsymbol{x}=\sqrt{2 \tau_{2}}\left\langle\gamma_{i}, \gamma_{j}\right\rangle \quad \boldsymbol{u}_{i j} \cdot \boldsymbol{x}=-\sqrt{2 \tau_{2}} \operatorname{Im}\left(Z_{\gamma_{i}} \bar{Z}_{\gamma_{j}}\right)$ define stability condition of a bound state $\gamma_{i}+\gamma_{j}$

$$
\left(\boldsymbol{v}_{i j}, \boldsymbol{x}\right)\left(\boldsymbol{u}_{i j}, \boldsymbol{x}\right)<0
$$

Kernels

In our case: $\Phi_{n}^{\text {tot }}=\sum_{\substack{n_{1}+\cdots n_{m}=n \\ n_{k} \geq 1}} \Phi_{m}^{f} \prod_{k=1}^{m} \Phi_{n_{k}}^{g} \longleftarrow$ proportional to the tree index $g_{\text {tr }, n_{k}}$
fiven by iterated integrals of \mathcal{G}_{n}
$\Phi_{1}^{f}(x) \quad$ locally $\Phi_{n_{k}}^{g} \sim \sum_{\substack{i=1 \\\left(\tilde{\boldsymbol{v}}_{i}, \tilde{\boldsymbol{v}}_{j}\right)=0}}^{n_{i}-1}\left(\tilde{\boldsymbol{v}}_{i}, \boldsymbol{x}\right)$
$\Phi_{n}^{\int}(\boldsymbol{x})=\frac{\Phi_{1}^{\int}(x)}{2^{n-1} n!} \sum_{\mathcal{T} \in \mathrm{T}_{n}^{\ell}} \tilde{\Phi}_{n-1}^{M}\left(\left\{\boldsymbol{u}_{e}\right\},\left\{\boldsymbol{v}_{s(e) t(e)}\right\} ; \boldsymbol{x}\right)$

$$
\begin{gathered}
\text { away from discontinuities } \\
V_{n_{k}-1} \cdot \Phi_{n_{k}}^{g}=0
\end{gathered}
$$

- $\Phi_{1}^{f}(x)=\left(2 \tau_{2} t^{2}\right)^{-\frac{1}{2}} e^{-\pi \frac{(x, t)^{2}}{t^{2}}}-$ solution for $\lambda=-1$
- $\mathcal{T} \in \mathbb{T}_{n}^{\ell}$ — labeled unrooted tree $V_{\mathcal{T}}$ - set of its vertices
- $\boldsymbol{v}_{i j}, \boldsymbol{u}_{i j}-n b_{2}$-dimensional vectors such that $\boldsymbol{v}_{i j} \cdot \boldsymbol{x}=\sqrt{2 \tau_{2}}\left\langle\gamma_{i}, \gamma_{j}\right\rangle \quad \boldsymbol{u}_{i j} \cdot \boldsymbol{x}=-\sqrt{2 \tau_{2}} \operatorname{Im}\left(Z_{\gamma_{i}} \bar{Z}_{\gamma_{j}}\right)$ define stability condition of a bound state $\gamma_{i}+\gamma_{j}$

$$
\left(\boldsymbol{v}_{i j}, \boldsymbol{x}\right)\left(\boldsymbol{u}_{i j}, \boldsymbol{x}\right)<0
$$

- $\tilde{\Phi}_{n-1}^{M}$ - generalized error function of order $n-1$ lifted to solution for $\lambda=n-1$

Kernels

$$
\Phi_{n}^{f}(\boldsymbol{x})=\frac{\Phi_{1}^{f}(x)}{2^{n-1} n!} \sum_{\mathcal{T} \in \mathrm{T}_{n}^{\ell}} \tilde{\Phi}_{n-1}^{M}\left(\left\{\boldsymbol{u}_{e}\right\},\left\{\boldsymbol{v}_{s(e) t(e)}\right\} ; \boldsymbol{x}\right)
$$

away from discontinuities
 $$
V_{n_{k}-1} \cdot \Phi_{n_{k}}^{g}=0
$$

- $\Phi_{1}^{f}(x)=\left(2 \tau_{2} t^{2}\right)^{-\frac{1}{2}} e^{-\pi \frac{(x, t)^{2}}{t^{2}}}-$ solution for $\lambda=-1$
- $\mathcal{T} \in \mathrm{T}_{n}^{\ell}$ - labeled unrooted tree $V_{\mathcal{T}}$ — set of its vertices
- $\boldsymbol{v}_{i j}, \boldsymbol{u}_{i j}-n b_{2}$-dimensional vectors such that $\boldsymbol{v}_{i j} \cdot \boldsymbol{x}=\sqrt{2 \tau_{2}}\left\langle\gamma_{i}, \gamma_{j}\right\rangle \quad \boldsymbol{u}_{i j} \cdot \boldsymbol{x}=-\sqrt{2 \tau_{2}} \operatorname{Im}\left(Z_{\gamma_{i}} \bar{Z}_{\gamma_{j}}\right)$ define stability condition of a bound state $\gamma_{i}+\gamma_{j}$

$$
\left(\boldsymbol{v}_{i j}, \boldsymbol{x}\right)\left(\boldsymbol{u}_{i j}, \boldsymbol{x}\right)<0
$$

- $\tilde{\Phi}_{n-1}^{M}$ - generalized error function of order $n-1$ lifted to solution for $\lambda=n-1$
away from discontinuities

$$
V_{n-2} \cdot \Phi_{n}^{\int}=0
$$

Modular anomaly

We do have $V_{n-2} \cdot \Phi_{n}^{\text {tot }}=0$ away from discontinuities.
But discontinuities can spoil Vignéras equation, and hence modularity of theta series, as it happens, for instance, for $\operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v})$ in the case $n=1$.

Modular anomaly

We do have $V_{n-2} \cdot \Phi_{n}^{\text {tot }}=0$ away from discontinuities.
But discontinuities can spoil Vignéras equation, and hence modularity of theta series, as it happens, for instance, for $\operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v})$ in the case $n=1$.

Discontinuities of the kernels

discontinuity	origin	moduli dependence	cancel
walls of marginal stability	 twistor integrals	yes	yes
fake walls	tree index	yes	yes
walls in the charge space $\left\langle\gamma_{i}, \gamma_{j}\right\rangle \sim\left(\boldsymbol{v}_{i j}, \boldsymbol{x}\right)=0$	tree index	no	no

Modular anomaly

We do have $V_{n-2} \cdot \Phi_{n}^{\text {tot }}=0$ away from discontinuities.
But discontinuities can spoil Vignéras equation, and hence modularity of theta series, as it happens, for instance, for $\operatorname{sgn}(\boldsymbol{x}, \boldsymbol{v})$ in the case $n=1$.

Discontinuities of the kernels

discontinuity	origin	moduli dependence	cancel
walls of marginal stability	 twistor integrals	yes	yes
fake walls	tree index	yes	yes
walls in the charge space $\left\langle\gamma_{i}, \gamma_{j}\right\rangle \sim\left(\boldsymbol{v}_{i j}, \boldsymbol{x}\right)=0$	tree index	no	no

$$
V_{n-2} \cdot \Phi_{n}^{\mathrm{tot}} \neq 0
$$

and both theta series and the generating function $h_{p}(\tau)$ have modular anomalies

Modular completion

It is possible to construct a non-holomorphic completion $\widehat{h}_{p}(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2} b_{2}-1$

$$
\widehat{h}_{p}(\tau, \bar{\tau})=h_{p}(\tau)-\sum_{n=2}^{\infty} \sum_{\sum_{i=1}^{n} \gamma_{i}=\gamma} R_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right) e^{\pi \mathrm{i} \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i=1}^{n} h_{p_{i}}(\tau)
$$

Modular completion

It is possible to construct a non-holomorphic completion $\widehat{h}_{p}(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2} b_{2}-1$

$$
\widehat{h}_{p}(\tau, \bar{\tau})=h_{p}(\tau)-\sum_{n=2}^{\infty} \sum_{\sum_{i=1}^{n} \gamma_{i}=\gamma} R_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right) e^{\pi \mathrm{i} \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i=1}^{n} h_{p_{i}}(\tau)
$$

Result: R_{n} are given by 2-level construction

Modular completion

It is possible to construct a non-holomorphic completion $\widehat{h}_{p}(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2} b_{2}-1$

$$
\widehat{h}_{p}(\tau, \bar{\tau})=h_{p}(\tau)-\sum_{n=2}^{\infty} \sum_{\sum_{i=1}^{n} \gamma_{i}=\gamma} R_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right) e^{\pi \mathrm{i} \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i=1}^{n} h_{p_{i}}(\tau)
$$

Result: R_{n} are given by 2-level construction
Level 1: sum over Schröder trees

$$
R_{n}=\operatorname{Sym}\left\{\sum_{T \in \mathbb{T}_{n}^{\mathrm{S}}}(-1)^{n_{T}} \mathcal{E}_{v_{0}}^{(+)} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{v}^{(0)}\right\}
$$

Modular completion

It is possible to construct a non-holomorphic completion $\widehat{h}_{p}(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2} b_{2}-1$

$$
\widehat{h}_{p}(\tau, \bar{\tau})=h_{p}(\tau)-\sum_{n=2}^{\infty} \sum_{\sum_{i=1}^{n} \gamma_{i}=\gamma} R_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right) e^{\pi \mathrm{i} \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i=1}^{n} h_{p_{i}}(\tau)
$$

Result: R_{n} are given by 2-level construction
Level 1: sum over Schröder trees

$$
R_{n}=\operatorname{Sym}\left\{\sum_{T \in \mathbb{T}_{n}^{S}}(-1)^{n_{T}} \mathcal{E}_{v_{0}}^{(+)} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{v}^{(0)}\right\}
$$

- $T \in \mathbb{T}_{n}^{\mathrm{S}}$ - rooted tree with n leaves and vertices having at least 2 children n_{T} — number of vertices (excluding leaves); $\quad v_{0}$ — root of T

Modular completion

It is possible to construct a non-holomorphic completion $\widehat{h}_{p}(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2} b_{2}-1$

$$
\widehat{h}_{p}(\tau, \bar{\tau})=h_{p}(\tau)-\sum_{n=2}^{\infty} \sum_{\sum_{i=1}^{n} \gamma_{i}=\gamma} R_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right) e^{\pi \mathrm{i} \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i=1}^{n} h_{p_{i}}(\tau)
$$

Result: R_{n} are given by 2-level construction
Level 1: sum over Schröder trees

$$
R_{n}=\operatorname{Sym}\left\{\sum_{T \in \mathbb{T}_{n}^{\mathrm{S}}}(-1)^{n_{T}} \mathcal{E}_{v_{0}}^{(+)} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{v}^{(0)}\right\}
$$

- $T \in \mathbb{T}_{n}^{\mathrm{S}}$ — rooted tree with n leaves and vertices having at least 2 children n_{T} - number of vertices (excluding leaves); $\quad v_{0}$ - root of T
- $\mathcal{E}_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right)=\mathcal{E}_{n}^{(0)}+\mathcal{E}_{n}^{(+)}$- set of functions (Level 2) depending on n charges at most

polynomial in τ_{2}
exponentially decreasing

Modular completion

It is possible to construct a non-holomorphic completion $\widehat{h}_{p}(\tau, \bar{\tau})$ which transforms as a modular form of weight $-\frac{1}{2} b_{2}-1$

$$
\widehat{h}_{p}(\tau, \bar{\tau})=h_{p}(\tau)-\sum_{n=2}^{\infty} \sum_{\sum_{i=1}^{n} \gamma_{i}=\gamma} R_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right) e^{\pi \mathrm{i} \tau Q_{n}\left(\left\{\gamma_{i}\right\}\right)} \prod_{i=1}^{n} h_{p_{i}}(\tau)
$$

Result: R_{n} are given by 2-level construction
Level 1: sum over Schröder trees

$$
R_{n}=\operatorname{Sym}\left\{\sum_{T \in \mathbb{T}_{n}^{\mathrm{S}}}(-1)^{n_{T}} \mathcal{E}_{v_{0}}^{(+)} \prod_{v \in V_{T} \backslash\left\{v_{0}\right\}} \mathcal{E}_{v}^{(0)}\right\}
$$

- $\quad T \in \mathbb{T}_{n}^{S}$ - rooted tree with n leaves and vertices having at least 2 children n_{T} - number of vertices (excluding leaves); $\quad v_{0}$ - root of T
- $\mathcal{E}_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right)=\mathcal{E}_{n}^{(0)}+\mathcal{E}_{n}^{(+)}$- set of functions (Level 2) depending on n charges at most

polynomial in τ_{2}
exponentially decreasing

Completion and generalized error functions

Level 2: sum over unrooted trees
$\mathcal{E}_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right)$ - smooth solutions of Vignéras equation for $\lambda=n-1$

$$
\mathcal{E}_{n}=\frac{\left(2 \tau_{2}\right)^{\frac{1-n}{2}}}{2^{n-1} n!} \sum_{\mathcal{T} \in \mathbb{T}_{n}^{e}} \tilde{\Phi}_{n-1}^{E}\left(\left\{\boldsymbol{v}_{e}\right\},\left\{\boldsymbol{v}_{s(e) t(e)}\right\} ; \boldsymbol{x}\right)
$$

Completion and generalized error functions

Level 2: sum over unrooted trees
$\mathcal{E}_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right)$ - smooth solutions of Vignéras equation for $\lambda=n-1$

$$
\mathcal{E}_{n}=\frac{\left(2 \tau_{2}\right)^{\frac{1-n}{2}}}{2^{n-1} n!} \sum_{\mathcal{T} \in \mathbb{T}_{n}^{e}} \tilde{\Phi}_{n-1}^{E}\left(\left\{\boldsymbol{v}_{\boldsymbol{e}}\right\},\left\{\boldsymbol{v}_{s(e) t(e)}\right\} ; \boldsymbol{x}\right)
$$

$\mathcal{D}=\mathcal{D}_{1}+\cdots+\mathcal{D}_{n} \quad \longrightarrow$ Depth $=\mathbf{n} \mathbf{- 1}$ irreducible divisors

Completion and generalized error functions

Level 2: sum over unrooted trees
$\mathcal{E}_{n}\left(\left\{\gamma_{i}\right\} ; \tau_{2}\right)$ - smooth solutions of Vignéras equation for $\lambda=n-1$

$$
\mathcal{E}_{n}=\frac{\left(2 \tau_{2}\right)^{\frac{1-n}{2}}}{2^{n-1} n!} \sum_{\mathcal{T} \in \mathbb{T}_{n}^{e}} \tilde{\Phi}_{n-1}^{E}\left(\left\{\boldsymbol{v}_{e}\right\},\left\{\boldsymbol{v}_{s(e) t(e)}\right\} ; \boldsymbol{x}\right)
$$

$$
\begin{aligned}
& \boldsymbol{v}_{e}=\sum_{i \in V_{\mathcal{T}_{e}^{s}}} \sum_{j \in V_{\mathcal{T}_{e}^{t}}} \boldsymbol{v}_{i j} \\
& \boldsymbol{v}_{e} \cdot \boldsymbol{x} \sim\left\langle\gamma_{e}^{s}, \gamma_{e}^{t}\right\rangle
\end{aligned}
$$

Example: $n=2 \quad h_{p}(\tau)$ - usual mixed mock modular form

$$
R_{2}=-\frac{\left|\left\langle\gamma_{1}, \gamma_{2}\right\rangle\right|}{8 \pi} \beta_{\frac{3}{2}}\left(\frac{2 \tau_{2}\left\langle\gamma_{1}, \gamma_{2}\right\rangle^{2}}{\left(p p_{1} p_{2}\right)}\right)
$$

$$
\begin{array}{r}
\beta_{\frac{3}{2}}\left(x^{2}\right)=\frac{2}{|x|} e^{-\pi x^{2}}-2 \pi \operatorname{Erfc}(\sqrt{\pi}|x|) \\
\left(p p_{1} p_{2}\right)=\kappa_{a b d} p^{a} p_{1}^{b} p_{2}^{c}
\end{array}
$$

Refinement

This story has an extension which includes a refinement - parameter y conjugate to the angular momentum of black hole

Refinement

This story has an extension which includes a refinement - parameter y conjugate to the angular momentum of black hole

$$
\begin{aligned}
\beta_{i} & =\left\langle\gamma, \gamma_{i}\right\rangle \\
c_{i} & =\operatorname{Im}\left(Z_{\gamma_{\gamma}} \bar{Z}_{\gamma}\right) \\
\gamma & =\gamma_{1}+\cdots+\gamma_{n}
\end{aligned}
$$

Modularity requires $\mathcal{E}_{n}^{(0)}\left(\left\{\gamma_{i}\right\}\right)=g_{n}^{(0)}\left(\left\{\gamma_{i}, \beta_{i}\right\}\right)$ where $g_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right)$ satisfies a recursive equation
A way to solve the equation: refine it! - replace a factor $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ by $\frac{y^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle}-y^{-\left\langle\gamma_{i}, \gamma_{j}\right\rangle}}{y-y^{-1}}$ - refined index of a 2-particle bound state

Refinement

This story has an extension which includes a refinement - parameter y conjugate to the angular momentum of black hole

$$
\begin{aligned}
\beta_{i} & =\left\langle\gamma, \gamma_{i}\right\rangle \\
c_{i} & =\operatorname{Im}\left(Z_{\gamma_{i}} \bar{Z}_{\gamma}\right) \\
\gamma & =\gamma_{1}+\cdots+\gamma_{n}
\end{aligned}
$$

Modularity requires $\mathcal{E}_{n}^{(0)}\left(\left\{\gamma_{i}\right\}\right)=g_{n}^{(0)}\left(\left\{\gamma_{i}, \beta_{i}\right\}\right)$ where $g_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right)$ satisfies a recursive equation
A way to solve the equation: refine it! - replace a factor $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ by $\frac{y^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle}-y^{-\left\langle\gamma_{i}, \gamma_{j}\right\rangle}}{y-y^{-1}}$ - refined index of a 2-particle bound state
$g_{n}^{(\text {ref })}\left(\left\{\gamma_{i}, c_{i}\right\}, y\right)=\frac{\operatorname{Sym}\left\{F_{n}^{(\mathrm{ref)}}\left(\left\{c_{i}\right\}\right) y^{\sum_{i<j}\left\langle\gamma_{i} \gamma_{j}\right\rangle}\right\}}{\left(y-y^{-1}\right)^{n-1}}$
$F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right)=2^{1-n} \prod_{k=1}^{n-1} \operatorname{sgn}\left(\sum_{i=1}^{k} c_{i}\right)$

Refinement

This story has an extension which includes a refinement - parameter y conjugate to the angular momentum of black hole

$$
\begin{aligned}
\beta_{i} & =\left\langle\gamma, \gamma_{i}\right\rangle \\
c_{i} & =\operatorname{Im}\left(Z_{\gamma_{i}} \bar{Z}_{\gamma}\right) \\
\gamma & =\gamma_{1}+\cdots+\gamma_{n}
\end{aligned}
$$

Modularity requires $\mathcal{E}_{n}^{(0)}\left(\left\{\gamma_{i}\right\}\right)=g_{n}^{(0)}\left(\left\{\gamma_{i}, \beta_{i}\right\}\right)$ where $g_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right)$ satisfies a recursive equation
A way to solve the equation: refine it! - replace a factor $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ by $\frac{y^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle}-y^{-\left\langle\gamma_{i}, \gamma_{j}\right\rangle}}{y-y^{-1}}$ - refined index of a 2-particle bound state
$g_{n}^{(\text {ref })}\left(\left\{\gamma_{i}, c_{i}\right\}, y\right)=\frac{\operatorname{Sym}\left\{F_{n}^{(\text {ref })}\left(\left\{c_{i}\right\}\right) y^{\sum_{i<j}\left\langle\gamma_{i} \gamma_{j}\right\rangle}\right\}}{\left(y-y^{-1}\right)^{n-1} \quad \text { not a Laurent polynomial, }}$ $F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right)=2^{1-n} \prod_{k=1}^{n-1} \operatorname{sgn}\left(\sum_{i=1}^{k} c_{i}\right)$ singular at $y \rightarrow 1$

Refinement

This story has an extension which includes a refinement - parameter y conjugate to the angular momentum of black hole

$$
\begin{aligned}
\beta_{i} & =\left\langle\gamma, \gamma_{i}\right\rangle \\
c_{i} & =\operatorname{Im}\left(Z_{\gamma_{i}} \bar{Z}_{\gamma}\right) \\
\gamma & =\gamma_{1}+\cdots+\gamma_{n}
\end{aligned}
$$

Modularity requires $\mathcal{E}_{n}^{(0)}\left(\left\{\gamma_{i}\right\}\right)=g_{n}^{(0)}\left(\left\{\gamma_{i}, \beta_{i}\right\}\right)$ where $g_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right)$ satisfies a recursive equation
A way to solve the equation: refine it! - replace a factor $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ by $\frac{y^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle}-y^{-\left\langle\gamma_{i}, \gamma_{j}\right\rangle}}{y-y^{-1}}$ - refined index of a 2-particle bound state
$g_{n}^{\text {(ref) }}\left(\left\{\gamma_{i}, c_{i}\right\}, y\right)=\frac{\operatorname{Sym}\left\{F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right) y^{\sum_{i<j}\left(\gamma_{i} \gamma_{j}\right\rangle}\right\}}{\left(y-y^{-1}\right)^{n-1}}$
$F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right)=2^{1-n} \sum_{\substack{n_{1}+\cdots+n_{m}=n \\ n_{k} \geq 1}} \prod_{k=1}^{m} b_{n_{k}} \prod_{k=1}^{m-1} \operatorname{sgn}\left(\sum_{i=1}^{n_{1}+\cdots n_{k}} c_{i}\right)$

Refinement

This story has an extension which includes a refinement - parameter y conjugate to the angular momentum of black hole

$$
\begin{aligned}
\beta_{i} & =\left\langle\gamma, \gamma_{i}\right\rangle \\
c_{i} & =\operatorname{Im}\left(Z_{\gamma_{i}} \bar{Z}_{\gamma}\right) \\
\gamma & =\gamma_{1}+\cdots+\gamma_{n}
\end{aligned}
$$

Modularity requires $\mathcal{E}_{n}^{(0)}\left(\left\{\gamma_{i}\right\}\right)=g_{n}^{(0)}\left(\left\{\gamma_{i}, \beta_{i}\right\}\right)$ where $g_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right)$ satisfies a recursive equation
A way to solve the equation: refine it! - replace a factor $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ by
$\frac{y^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle}-y^{-\left\langle\gamma_{i}, \gamma_{j}\right\rangle}}{y-y^{-1}}$ - refined index of a 2-particle bound state
$g_{n}^{\text {(ref) })}\left(\left\{\gamma_{i}, c_{i}\right\}, y\right)=\frac{\operatorname{Sym}\left\{F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right) y^{\sum_{i<j}\left\langle\gamma_{i} \gamma_{j}\right\rangle}\right\}}{\left(y-y^{-1}\right)^{n-1}}$
Laurent polynomial, regular at $y \rightarrow 1$, if
$F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right)=2^{1-n} \sum_{\substack{n_{1}+\cdots+n_{m}=n \\ n_{k} \geq 1}} \prod_{k=1}^{m} b_{n_{k}} \prod_{k=1}^{m-1} \operatorname{sgn}\left(\sum_{i=1}^{n_{1}+\cdots n_{k}} c_{i}\right)$
$\operatorname{Sym} F_{n}^{(\text {ref })}\left(\left\{c_{i}\right\}\right)=0$

Refinement

This story has an extension which includes a refinement - parameter y conjugate to the angular momentum of black hole

$$
\begin{aligned}
\beta_{i} & =\left\langle\gamma, \gamma_{i}\right\rangle \\
c_{i} & =\operatorname{Im}\left(Z_{\gamma_{i}} \bar{Z}_{\gamma}\right) \\
\gamma & =\gamma_{1}+\cdots+\gamma_{n}
\end{aligned}
$$

Modularity requires $\mathcal{E}_{n}^{(0)}\left(\left\{\gamma_{i}\right\}\right)=g_{n}^{(0)}\left(\left\{\gamma_{i}, \beta_{i}\right\}\right)$ where $g_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right)$ satisfies a recursive equation
A way to solve the equation: refine it! - replace a factor $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ by
$\frac{y^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle}-y^{-\left\langle\gamma_{i}, \gamma_{j}\right\rangle}}{y-y^{-1}}$ - refined index of a 2-particle bound state
$g_{n}^{\text {(ref) }}\left(\left\{\gamma_{i}, c_{i}\right\}, y\right)=\frac{\operatorname{Sym}\left\{F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right) y^{\sum_{i<j}\left(\gamma_{i} \gamma_{j}\right\rangle}\right\}}{\left(y-y^{-1}\right)^{n-1}}$
Laurent polynomial, regular at $y \rightarrow 1$, if $\operatorname{Sym} F_{n}^{(\text {ref })}\left(\left\{c_{i}\right\}\right)=0$
Taylor coefficients of $\tanh (x) \longrightarrow b_{n}=\frac{2^{n}\left(2^{n}-1\right)}{n!} B_{n}$
numbers

Refinement

This story has an extension which includes a refinement - parameter y conjugate to the angular momentum of black hole

$$
\begin{aligned}
\beta_{i} & =\left\langle\gamma, \gamma_{i}\right\rangle \\
c_{i} & =\operatorname{Im}\left(Z_{\gamma_{2}} \bar{Z}_{\gamma}\right) \\
\gamma & =\gamma_{1}+\cdots+\gamma_{n}
\end{aligned}
$$

Modularity requires $\mathcal{E}_{n}^{(0)}\left(\left\{\gamma_{i}\right\}\right)=g_{n}^{(0)}\left(\left\{\gamma_{i}, \beta_{i}\right\}\right)$ where $g_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right)$ satisfies a recursive equation
A way to solve the equation: refine it! - replace a factor $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ by
$\frac{y^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle}-y^{-\left\langle\gamma_{i}, \gamma_{j}\right\rangle}}{y-y^{-1}}$ - refined index of a 2-particle bound state
$g_{n}^{\text {(ref) }}\left(\left\{\gamma_{i}, c_{i}\right\}, y\right)=\frac{\operatorname{Sym}\left\{F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right) y^{\sum_{i<j}\left(\gamma_{i} \gamma_{j}\right\rangle}\right\}}{\left(y-y^{-1}\right)^{n-1}}$
Laurent polynomial, regular at $y \rightarrow 1$, if $\operatorname{Sym} F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right)=0$

Refinement

This story has an extension which includes a refinement - parameter y conjugate to the angular momentum of black hole

$$
\begin{aligned}
\beta_{i} & =\left\langle\gamma, \gamma_{i}\right\rangle \\
c_{i} & =\operatorname{Im}\left(Z_{\gamma_{2}} \bar{Z}_{\gamma}\right) \\
\gamma & =\gamma_{1}+\cdots+\gamma_{n}
\end{aligned}
$$

Modularity requires $\mathcal{E}_{n}^{(0)}\left(\left\{\gamma_{i}\right\}\right)=g_{n}^{(0)}\left(\left\{\gamma_{i}, \beta_{i}\right\}\right)$ where $g_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right)$ satisfies a recursive equation
A way to solve the equation: refine it! - replace a factor $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ by $\frac{y^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle}-y^{-\left\langle\gamma_{i}, \gamma_{j}\right\rangle}}{y-y^{-1}}$ - refined index of a 2-particle bound state
$g_{n}^{\text {(ref) }}\left(\left\{\gamma_{i}, c_{i}\right\}, y\right)=\frac{\operatorname{Sym}\left\{F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right) y^{\sum_{i<j}\left(\gamma_{i} \gamma_{j}\right\rangle}\right\}}{\left(y-y^{-1}\right)^{n-1}}$ $F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right)=2^{1-n} \sum_{\substack{n_{1}+\cdots+n_{m}=n \\ n_{k} \geq 1}} \prod_{k=1}^{m} b_{n_{k}} \prod_{k=1}^{m-1} \operatorname{sgn}\left(\sum_{i=1}^{n_{1}+\cdots n_{k}} c_{i}\right)$

Bernoulli numbers

Refinement

This story has an extension which includes a refinement - parameter y conjugate to the angular momentum of black hole

$$
\begin{aligned}
\beta_{i} & =\left\langle\gamma, \gamma_{i}\right\rangle \\
c_{i} & =\operatorname{Im}\left(Z_{\gamma_{\gamma}} \bar{Z}_{\gamma}\right) \\
\gamma & =\gamma_{1}+\cdots+\gamma_{n}
\end{aligned}
$$

Modularity requires $\mathcal{E}_{n}^{(0)}\left(\left\{\gamma_{i}\right\}\right)=g_{n}^{(0)}\left(\left\{\gamma_{i}, \beta_{i}\right\}\right)$
where $g_{n}^{(0)}\left(\left\{\gamma_{i}, c_{i}\right\}\right)$ satisfies a recursive equation
A way to solve the equation: refine it! - replace a factor $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ by $\underline{y^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle}-y^{-\left\langle\gamma_{i}, \gamma_{j}\right\rangle}}$
—refined index of a 2 -particle bound state
$g_{n}^{(\mathrm{ref})}\left(\left\{\gamma_{i}, c_{i}\right\}, y\right)=\frac{\operatorname{Sym}\left\{F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right) y^{\sum_{i<j}\left\langle\gamma_{i} \gamma_{j}\right\rangle}\right\}}{\left(y-y^{-1}\right)^{n-1}}$ $F_{n}^{(\mathrm{ref})}\left(\left\{c_{i}\right\}\right)=2^{1-n} \sum_{\substack{n_{1}+\cdots+n_{m}=n \\ n_{k} \geq 1}} \prod_{k=1}^{m} b_{n_{k}} \prod_{k=1}^{m-1} \operatorname{sgn}\left(\sum_{i=1}^{n_{1}+\cdots n_{k}} c_{i}\right)$

Why ?
Taylor coefficients of $\tanh (x) \longrightarrow b_{n}=\frac{2^{n}\left(2^{n}-1\right)}{n!} B_{n}$
refined

$$
\lim _{y \rightarrow 1} g_{n}^{(\mathrm{ref})}\left(\left\{\gamma_{i}, \beta_{i}\right\}, y\right)=\mathcal{E}_{n}^{(0)}\left(\left\{\gamma_{i}\right\}\right)
$$

Fun with combinatorics

rooted tree T
with $n=7$ vertices

Fun with combinatorics

rooted tree T
with $n=7$ vertices

Fun with combinatorics

rooted tree T
with $n=7$ vertices
subtreees T^{\prime} having the same root as T and $m=3$ vertices

- for each vertex $v \in T^{\prime}$ find $n_{v}(T)$ and $n_{v}\left(T^{\prime}\right)$ (number of vertices in the subtree rooted at v)

Fun with combinatorics

rooted tree T
with $n=7$ vertices
subtreees T^{\prime} having the same root as T and $m=3$ vertices

- for each vertex $v \in T^{\prime}$ find $n_{v}(T)$ and $n_{v}\left(T^{\prime}\right)$ (number of vertices in the subtree rooted at v)

$(7,3)$

Fun with combinatorics

rooted tree T
with $n=7$ vertices
subtreees T^{\prime} having the same root as T and $m=3$ vertices

$(3,1)$

- for each vertex $v \in T^{\prime}$ find $n_{v}(T)$ and $n_{v}\left(T^{\prime}\right)$ (number of vertices in the subtree rooted at v)

Fun with combinatorics

rooted tree T
with $n=7$ vertices
subtreees T^{\prime} having the same root as T
and $m=3$ vertices

- for each vertex $v \in T^{\prime}$ find $n_{v}(T)$ and $n_{v}\left(T^{\prime}\right)$ (number of vertices in the subtree rooted at v)
- take the ratio of the coefficients, multiply over all $v \in T^{\prime}$ and sum over subtrees
 $\frac{7}{3}+\frac{7 \cdot 4}{3}+\frac{7 \cdot 4}{3}+\frac{7 \cdot 4 \cdot 3}{3 \cdot 2}=35=\frac{7!}{3!4!}$

Fun with combinatorics

rooted tree T
with $n=7$ vertices
subtreees T^{\prime} having the same root as T and $m=3$ vertices

- for each vertex $v \in T^{\prime}$ find $n_{v}(T)$ and $n_{v}\left(T^{\prime}\right)$ (number of vertices in the subtree rooted at v)
- take the ratio of the coefficients, multiply over all $v \in T^{\prime}$ and sum over subtrees
 $\frac{7}{3}+\frac{7 \cdot 4}{3}+\frac{7 \cdot 4}{3}+\frac{7 \cdot 4 \cdot 3}{3 \cdot 2}=35=\frac{7!}{3!4!}$

Theorem: for any rooted tree T with n vertices and $m<n$

$$
\sum_{T^{\prime} \subset T} \prod_{v \in V_{T^{\prime}}} \frac{n_{v}(T)}{n_{v}\left(T^{\prime}\right)}=\frac{n!}{m!(n-m)!}
$$

Conclusions

The main result: the explicit form of the modular completion of the generating function of black hole degeneracies (DT invariants) at large volume attractor point for arbitrary divisor of CY.
$\longrightarrow h_{p}(\tau)$ - higher depth (mixed) mock modular form

- Indications that S-duality is compatible with refinement.
- New unexpected results for combinatorics of trees.

Open problems and applications:

- Non-perturbative formulation of these results \longrightarrow integral equation on $\widehat{h}_{p}(\tau)$?
- Understanding the completion from the point of view of world-volume theory on M5-brane wrapped on a reducible divisor.
- Geometric or physical meaning of the instanton generating function \mathcal{G}.
- Implications for black hole state counting \longrightarrow restrictions on growth
- Vafa-Witten theory

