Gromow-Witten-Invariants and Moonshine Andreas Banlaki TU Wien

September 11, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Idea:

- ► Extend correspondence seen before to CHL-orbifold of $E_8 \times E_8$ Heterotic on $K3 \times T^2 \leftrightarrow$ Type IIA on some CY3 X
- "Guess" X and compare prepotential on both sides
- ▶ 1-loop corrections to prepotential on heterotic side are governed by (twisted) elliptic genus of K3 (↔ related to M₂₄)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 1-loop corrections to prepotential on TypeIIA side are governed by Gromow-Witten invariants of X

CHL orbifold of $E_8 \times E_8$ heterotic on $K3 \times T^2$ papers by A. Chattopadhyaya, J. R. David (1611.01893, 1712.08791)

- CHL-orbifold: orbifold by g ∈ M₂₄ on K3 × shift ¹/_N on S¹ (T² = S¹ × S¹), (N = o(g))
- holomorphic part of the prepotential corrections at one loop order (no Wilson loop moduli)

$$\bar{F}_{0}^{\text{hol}}(y) = \frac{1}{\pi^{2}} \sum_{s=0}^{N-1} \left(\frac{1}{2} c_{-1}^{(0,s)} \zeta(3) + \sum_{(n_{1},n_{2})>0} e^{-2\pi i \frac{n_{2}s}{N}} c_{-1}^{(r,s)}(n_{1}n_{2},0) \text{Li}_{3}(e^{2\pi i (n_{1}T+n_{2}U)}) \right)$$

where $n_1 \in \frac{1}{N}\mathbb{Z}$, $n_2 \in \mathbb{Z}$ and $(n_1, n_2) > 0$ means : $(n_1, n_2 \ge 0$ and $(n_1, n_2) \neq (0, 0)$) or $(n_2 < 0$ and $n_1|n_2| \le N$ T, U Kähler and complex structure moduli of T^2 and $c_{-1}^{(r,s)}(n_1n_2, 0)$ is determined by twisted elliptic genus

CHL orbifold of $E_8 \times E_8$ heterotic on $K3 \times T^2$

twisted elliptic genus of K3 $F^{(r,s)}(\tau,z) = \frac{1}{N} \operatorname{Tr}_{RRg^{r}} \left| (-1)^{F_{K3} + \bar{F}_{K3}} g^{s} e^{2\pi i z F_{K3}} q^{L_{0} - \frac{c}{24}} \bar{q}^{\bar{L}_{0} - \frac{\bar{c}}{24}} \right|$ $F^{(r,s)}(\tau,z) = \alpha_{\sigma}^{(r,s)} A(\tau,z) + \beta_{\sigma}^{(r,s)}(\tau) B(\tau,z)$ $A(\tau, z), B(\tau, z) \dots$ Jacobi forms of index 1 and weight 0 and -2 $\alpha_{g}^{(r,s)}\dots$ numerical constant, $\beta_{g}^{(r,s)}(au)\dots$ weight 2 modular form under $\Gamma_0(N)$. $\beta_{\sigma}^{(0,0)} = 0$ new supersymmetric index $\mathcal{Z}_{\text{new}} = \frac{1}{n^2(\tau)} \text{Tr}_{R}[(-1)^{F} F q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{c}{24}}]$ $F - F^{T^2} + F^{K3}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tr is taken over internal sector

Type IIA on CY_3

• corrections to prepotential given by:

$$F_0^{\text{GV}} = \zeta(3) \frac{\chi(X)}{2} + \sum_{(n_1, n_2)>0} n_{(n_1, n_2)}^0 \text{Li}_3(e^{2\pi i (n_1 T + n_2 U)})$$

 $n_{(n_1, n_2)}^0 \dots$ (genus 0) Gromow-Witten invariants
(Gopakumar-Vafa invariants) ~ " count holomorphic curves of
genus g on X"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

• This will match with heterotic side for
$$n_{(n_1,n_2)}^0 = 2 \sum_{s=0}^{N-1} e^{-\frac{2\pi i n_2 s}{N}} c_{-1}^{(r,s)}(n_1 n_2, 0).$$

Comparison of both sides

- massless spectrum of order 2 CHL-orbifolds has been calculated in 1611.01893 (A. Chattopadhyaya, J.R. David)
- after Higgsing as far as possible we find an number of n_h of hypermultiplets and n_v of vectormultiplets (4 additional come from $B_{\mu\nu}$, $G_{\mu\nu}$ on T^2)
- look up possible CY₃ in the CY database by M. Kreuzer and H. Skarke (given by reflexive polyhedra)
- calculate Gromow-Witten invariants using PALP (Mori cone) and Instaton.m (A. Klemm)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ so far : 2 matching cases $(h^{1,1} = 2 \text{ and } h^{2,1} = 83, 115)$

Comparison of both sides

$N_{h} - N_{v} = 84$		
Gauge group, Shift $(\gamma; \tilde{\gamma})$	Sector	Matter
$E_{1} \times SU(2) \times U(1) \times SO(14) \times U(1)$	g^0	(27,2;1) + (1,2;1) + (1,1;64)
$E_6 \times SU(2) \times U(1) \times SU(14) \times U(1)$		+2(1, 1; 1)
$(2, 1, 1, 0^5; 2, 0^7)$	g + g	+2(27, 1; 1) + 2(1, 1; 14)
	g ²	(1,2;14) + 6(1,2;1)

 $N_H - N_V = 116$

Gauge group, Shift $(\gamma; \tilde{\gamma})$	Sector	Matter
$SU(8) \times U(1) \times SO(12) \times SU(2) \times U(1)$	g^0	(8 ; 1 , 1)+(56 ; 1 , 1)+(1 ; 12 , 1)
		(1; 32, 1) + 2(1; 1, 1)
$(1^7, -1; 3, 1, 0)$	$g^{1} + g^{3}$	4(1; 1, 2) + 2(1; 12, 1) + 2(8; 1, 2)
	g ²	6(8;1,1) + 2(8;1,1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●