Gromow-Witten-Invariants and Moonshine Andreas Banlaki
 TU Wien

September 11, 2018

Idea:

- Extend correspondence seen before to CHL-orbifold of $E_{8} \times E_{8}$ Heterotic on $K 3 \times T^{2} \leftrightarrow$ Type IIA on some CY3 X
- "Guess" X and compare prepotential on both sides
- 1-loop corrections to prepotential on heterotic side are governed by (twisted) elliptic genus of K3 (\leftrightarrow related to M_{24})
- 1-loop corrections to prepotential on TypelIA side are governed by Gromow-Witten invariants of X

CHL orbifold of $E_{8} \times E_{8}$ heterotic on $K 3 \times T^{2}$

 papers by A. Chattopadhyaya, J. R. David $(1611.01893,1712.08791)$- CHL-orbifold: orbifold by $g \in M_{24}$ on $K 3 \times$ shift $\frac{1}{N}$ on S^{1} $\left(T^{2}=S^{1} \times S^{1}\right),(N=o(g))$
- holomorphic part of the prepotential corrections at one loop order (no Wilson loop moduli)
$\bar{F}_{0}^{\text {hol }}(y)=\frac{1}{\pi^{2}} \sum_{s=0}^{N-1}\left(\frac{1}{2} c_{-1}^{(0, s)} \zeta(3)+\sum_{\left(n_{1}, n_{2}\right)>0} e^{-2 \pi i \frac{n_{2} s}{N}} c_{-1}^{(r, s)}\left(n_{1} n_{2}, 0\right) \operatorname{Li}_{3}\left(e^{2 \pi i\left(n_{1} T+n_{2} U\right)}\right)\right)$
where $n_{1} \in \frac{1}{N} \mathbb{Z}, n_{2} \in \mathbb{Z}$ and $\left(n_{1}, n_{2}\right)>0$ means: $\left(n_{1}, n_{2} \geq 0\right.$ and $\left.\left(n_{1}, n_{2}\right) \neq(0,0)\right)$ or ($n_{2}<0$ and $n_{1}\left|n_{2}\right| \leq N$ T, U Kähler and complex structure moduli of T^{2} and $c_{-1}^{(r, s)}\left(n_{1} n_{2}, 0\right)$ is determined by twisted elliptic genus

CHL orbifold of $E_{8} \times E_{8}$ heterotic on $K 3 \times T^{2}$

- twisted elliptic genus of K3
$F^{(r, s)}(\tau, z)=\frac{1}{N} \operatorname{Tr}_{R R g^{r}}\left[(-1)^{F_{K 3}+\bar{F}_{K 3}} g^{s} e^{2 \pi i z F_{K 3}} q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}}\right]$
$F^{(r, s)}(\tau, z)=\alpha_{g}^{(r, s)} A(\tau, z)+\beta_{g}^{(r, s)}(\tau) B(\tau, z)$
$A(\tau, z), B(\tau, z) \ldots$ Jacobi forms of index 1 and weight 0 and
-2
$\alpha_{g}^{(r, s)} \ldots$ numerical constant, $\beta_{g}^{(r, s)}(\tau) \ldots$ weight 2 modular form under $\Gamma_{0}(N), \beta_{g}^{(0,0)}=0$
- new supersymmetric index

$$
\begin{aligned}
& \mathcal{Z}_{\text {new }}=\frac{1}{\eta^{2}(\tau)} \operatorname{Tr}_{R}\left[(-1)^{F} F q^{L_{0}-\frac{c}{24}} \bar{q}^{L_{0}-\frac{\bar{c}}{24}}\right] \\
& F=F^{T^{2}}+F^{K 3}
\end{aligned}
$$

Tr is taken over internal sector

Type IIA on CY_{3}

- $\mathcal{N}=2, D=4$ theory with $n_{v}=h^{1,1}+1$ vectormultiplets and $n_{H}=h^{2,1}+1$ hypermultiplets
- corrections to prepotential given by:
$F_{0}^{\mathrm{GV}}=\zeta(3) \frac{\chi(X)}{2}+\sum_{\left(n_{1}, n_{2}\right)>0} n_{\left(n_{1}, n_{2}\right)}^{0} \operatorname{Li}_{3}\left(e^{2 \pi i\left(n_{1} T+n_{2} U\right)}\right)$
$n_{\left(n_{1}, n_{2}\right)}^{0} \ldots$ (genus 0) Gromow-Witten invariants
(Gopakumar-Vafa invariants) ~"count holomorphic curves of genus g on $\mathrm{X}^{\prime \prime}$
- This will match with heterotic side for

$$
n_{\left(n_{1}, n_{2}\right)}^{0}=2 \sum_{s=0}^{N-1} e^{-\frac{2 \pi i i_{2} s}{N}} c_{-1}^{(r, s)}\left(n_{1} n_{2}, 0\right)
$$

Comparison of both sides

- massless spectrum of order 2 CHL -orbifolds has been calculated in 1611.01893 (A. Chattopadhyaya, J.R. David)
- after Higgsing as far as possible we find an number of n_{h} of hypermultiplets and n_{v} of vectormultiplets (4 additional come from $B_{\mu \nu}, G_{\mu \nu}$ on T^{2})
- look up possible $C Y_{3}$ in the CY database by M. Kreuzer and H. Skarke (given by reflexive polyhedra)
- calculate Gromow-Witten invariants using PALP (Mori cone) and Instaton.m (A. Klemm)
- so far: 2 matching cases $\left(h^{1,1}=2\right.$ and $\left.h^{2,1}=83,115\right)$

Comparison of both sides

$N_{h}-N_{v}=84$		
Gauge group, Shift ($\gamma ; \tilde{\gamma}$)	Sector	Matter
$E_{6} \times S U(2) \times U(1) \times S O(14) \times U(1)$	g^{0}	$\begin{aligned} \hline(\mathbf{2 7}, \mathbf{2} ; \mathbf{1})+ & (\mathbf{1}, \mathbf{2} ; \mathbf{1})+(\mathbf{1}, \mathbf{1} ; \mathbf{6 4}) \\ + & 2(\mathbf{1}, \mathbf{1} ; \mathbf{1}) \end{aligned}$
$\left(2,1,1,0^{5} ; 2,0^{7}\right)$	$g^{1}+g^{3}$	$\begin{gathered} 6(\mathbf{1}, \mathbf{1} ; \mathbf{1})+4(\mathbf{1}, \mathbf{2} ; \mathbf{1}) \\ +2(\mathbf{2 7}, \mathbf{1} ; \mathbf{1})+2(\mathbf{1}, \mathbf{1} ; \mathbf{1 4}) \\ \hline \end{gathered}$
	g^{2}	$(1,2 ; 14)+6(1,2 ; 1)$

$N_{H}-N_{V}=116$

Gauge group, Shift $(\gamma ; \tilde{\gamma})$	Sector	Matter
$S U(8) \times U(1) \times S O(12) \times S U(2) \times U(1)$	g^{0}	$(\mathbf{8} ; \mathbf{1}, \mathbf{1})+(\mathbf{5 6 ; 1 , 1}(\mathbf{1})+(\mathbf{1} ; \mathbf{1 2}, \mathbf{1})$
	$g^{1}+g^{3}$	$4(\mathbf{1} ; \mathbf{1}, \mathbf{2})+2(\mathbf{1} ; \mathbf{1 2}, \mathbf{1})+2(\mathbf{8} ; \mathbf{1}, \mathbf{2})$
	g^{2}	$6(\mathbf{8} ; \mathbf{1}, \mathbf{1})+2(\mathbf{8} ; \mathbf{1}, \mathbf{1})$

