Mathieu moonshine and K3 surfaces

Bailin Song
University of Science and Technology of China

September 13, 2018

Mathieu Moonshine

Elliptic genus

K3 surface

Mathieu Moonshine conjecture

In 2010, Eguchi, Ooguri and Tachikawa observed that when the elliptic genus of a K3 surface, the Jacobi form $2 \phi_{0,1}(z ; \tau)$ of weight 0 and index 1 , is decomposed into a sum of the characters of the N $=4$ superconformal algebra with central charge $c=6$,
$2 \phi_{0,1}(z ; \tau)=-2 c h_{1,0,0}(z ; \tau)+20 c h_{1,1,0}(z ; \tau)+2 \sum_{n=1}^{\infty} A_{n} c h_{1, n, 0}(z ; \tau)$,
the first few coefficients A_{n} are sums of dimensions of irreducible representations of the largest Mathieu group M_{24}.

Mathieu moonshine conjecture

- Let

$$
\begin{equation*}
\Sigma(q)=q^{-\frac{1}{8}}\left(-2+2 \sum_{n=1}^{\infty} A_{n} q^{n}\right) \tag{1}
\end{equation*}
$$

It is a mock modular form of weight $\frac{1}{2}$.

- Their observation suggests the existence of a graded M_{24}-module $K=\sum_{n=0}^{\infty} K_{n} q^{n-1 / 8}$ with graded dimension $\Sigma(q)$. It is Mathieu analogue to the modular function $J(q)$ in the monstrous moonshine
- It is a special case of umbral moonshine. (2013, Cheng, Duncan and Harvey)

Mathieu McKay-Thompson series

- Subsequently the analogues to McKay-Thompson series in monstrous moonshine were proposed in several works Cheng and Duncan, Eguchi and Hikami, Gaberdiel, Hohenegger and Volpato.
- The McKay-Thompson series for g in M_{24} are of the form

$$
\Sigma_{g}(q)=q^{-\frac{1}{8}} \sum_{n=0}^{\infty} q^{n} \operatorname{Trace}_{K_{n}} g=\frac{e(g)}{24} \Sigma_{e}(q)-\frac{f_{g}}{\eta(q)^{3}}
$$

where $\Sigma_{e}(q)=\Sigma(q), e(g)$ is the character of the 24-dimensional permutation representation of M_{24}, the series f_{g} is a certain explicit modular form of weight 2 for some subgroup $\Gamma^{0}\left(N_{g}\right)$ of $S L(2, \mathbb{Z})$ and η is the Dedekind eta function.

Gannon's result

Terry Gannon has proven that these McKay-Thompson series indeed determine a M_{24}-module:
Theorem (Gannon2012)
The McKay-Thompson series determine a virtual graded M_{24}-module $K=\sum_{n=0}^{\infty} K_{n} q^{n-1 / 8}$. For $n \geq 1$, the K_{n} are honest (and not only virtual) M_{24}-representations.

Symplectic automorphism groups of K3 surfaces

A complex automorphism g of a K 3 surface X is called symplectic if it preserve the holomorphic symplectic 2-form, The finite symplectic automorphism groups of K3 surfaces are all isomorphic to subgroups of the Mathieu group M_{23} of a particular type. M_{23} is isomorphic to a one-point stabilizer for the permutation action of M_{24} on 24 elements.

Theorem (Mukai1988)

A finite group H acting symplectically on a K3 surface is isomorphic to a subgroup of M_{23} with at least five orbits on the regular permutation representation of the Mathieu group $M_{24} \supset M_{23}$ on 24 elements.

Relation to K3 surfaces

Thomas Creutzig and Gerald Höhn showed that

- the complex elliptic genus of a K3 surface can be given the structure of a virtual M_{24}-module which is compatible with the H-module structure for all possible groups H of symplectic automorphisms of K3 surfaces under restriction.
- it is the graded character of a natural virtual module for the N $=4$ super conformal vertex algebra.

Relation to K3 surfaces

If g is a symplectic automorphism of a K3 surface, the functions $\Sigma_{g}(q)$ admit a geometric interpretation in terms of K3 surfaces.
Theorem (Creutzig-Höhn2012)
For a non-trivial finite symplectic automorphism g acting on a K3 surface X, the equivariant elliptic genus and the twining character determined by the McKay-Thompson series of Mathieu moonshine agree, i.e. one has

$$
E \|_{X, g}(z ; \tau)=\frac{e(g)}{12} \phi_{0,1}+f_{g} \phi_{-2,1}
$$

Goal

- We will construct a graded vector space

$$
\mathcal{A}_{X}(q)=\sum_{n=1}^{\infty} \mathcal{A}_{n}(X) q^{n-\frac{1}{8}}
$$

The graded dimension of $\mathcal{A}_{X}(q)$ is $\Sigma(q)+2 q^{-\frac{1}{8}}$. For a finite symplectic automorphism g acting on a K3 surface X,

$$
\Sigma_{g}(q)+2 q^{-\frac{1}{8}}=\sum_{n=1}^{\infty} q^{n-\frac{1}{8}} \operatorname{trace} \mathcal{A}_{\mathcal{A}_{n}(X)} g=\operatorname{trace}_{\mathcal{A}_{X}(q)} g
$$

- We will show $2 A_{n}$ are even.(2012 Gannon)

original construction

Let $\Omega_{X}^{c h}$ be the chiral de Rham complex on X, by the following fact

- $H^{0}\left(X, \Omega_{X}^{c h}\right)$ is the simple $N=4$ vertex algebra with central charge $c=6$;
- $H^{2}\left(X, \Omega_{X}^{c h}\right) \cong H^{0}\left(X, \Omega_{X}^{c h}\right)$;
- The graded dimension of $H^{0}\left(X, \Omega_{X}^{c h}\right)-H^{1}\left(X, \Omega_{X}^{c h}\right)+H^{2}\left(X, \Omega_{X}^{c h}\right)$ is the elliptic genus of X.
- $H^{1}\left(X, \Omega_{X}^{c h}\right)$ is a representation of $H^{0}\left(X, \Omega_{X}^{c h}\right)$

If the representaion is unitary, we immediantly get the decomposition formular of the elliptic genus. However we can not prove it. So we take a filtration $F^{i} H^{1}\left(X, \Omega_{X}^{c h}\right)$ of $H^{1}\left(X, \Omega_{X}^{c h}\right)$, such that its associated graded object is a unitary representation of $H^{0}\left(X, \Omega_{X}^{c h}\right)$. The space of highest weight vectors is what we want.

A free system

Let V be an $2 k$ dimensional complex vector space. Let $\mathcal{W}(V)$ is be the vertex algebra generated by even elements $\quad \beta^{x^{\prime}}(z), \alpha^{x^{\prime}}(z), \quad x^{\prime} \in V x \in V^{*}$ odd elements $\quad b^{x^{\prime}}(z), c^{x}(z) \quad x^{\prime} \in V, x \in V^{*}$ with their nontrivial OPEs are

$$
\begin{aligned}
\beta^{x^{\prime}}(z) \alpha^{x}(w) & \sim\left\langle x^{\prime}, x\right\rangle(z-w)^{-2} \\
b^{x^{\prime}}(z) c^{x}(w) & \sim\left\langle x^{\prime}, x\right\rangle(z-w)^{-1}
\end{aligned}
$$

Here for $P=\beta, \alpha, b$ or c, we assume $a_{1} P^{x_{1}}+a_{2} P^{x_{2}}=P^{a_{1} x_{1}+a_{2} x_{2}}$. $\mathcal{W}(V)$ is a system of free bosons and free fermionics.

An Hermitian form on $\mathcal{W}(V)$

If there is an positive definite Hermitian form on V. Let $x_{1}^{\prime}, \cdots x_{N}^{\prime}$ be an orthonormal basis of V and $x_{1}, \cdots x_{N}$ be its dual basis in $V^{*} . \mathcal{W}(V)$ is equipped with a positive definite Hermitian form $(-,-)$ with the following property:

$$
\begin{array}{ll}
\left(\beta_{(n)}^{x_{i}^{\prime}} A, B\right)=\left(A, \alpha_{(-n)}^{x_{i}} B\right), & \text { for any } n \in \mathbb{Z}, n \neq 0, \forall A, B \in \mathcal{W}(V) \\
\left(b_{(n)}^{x_{i}^{\prime}} A, B\right)=\left(A, c_{(-n-1)}^{x_{i}} B\right), & \text { for any } n \in \mathbb{Z}, \forall A, B \in \mathcal{W}(V)
\end{array}
$$

A bilinear form

The state space of $\mathcal{W}(V)$ is the supercommutative ring freely generated by $c_{(n)}^{x_{i}}, b_{(n)}^{x_{i}^{\prime}}, \alpha_{(n)}^{x_{i}}, \beta_{(n)}^{x_{i}^{\prime}}, n<0$. The is a nondegenerate symmetric bilinear form

$$
\langle-,-\rangle: \mathcal{W}(V) \times \mathcal{W}(V) \rightarrow \mathbb{C}
$$

given by $\left\langle\beta_{n}^{x^{\prime}}, \alpha_{m}^{x}\right\rangle=\delta_{m}^{n} x^{\prime}(x),\left\langle b_{n}^{x^{\prime}}, c_{m}^{x}\right\rangle=\delta_{m}^{n} x^{\prime}(x)$

An involution

Let $\mathcal{I}: \mathcal{W}(V) \rightarrow \mathcal{W}(V)$ be the antilinear vertex algebra automorphism given by

$$
\begin{array}{ll}
\mathcal{I}\left(b_{(n)}^{x_{i}^{\prime}}\right)=c_{(n)}^{x_{i}}, & \mathcal{I}\left(c_{(n)}^{x_{i}}\right)=b_{(n)}^{x_{i}^{\prime}}, \\
\mathcal{I}\left(\beta_{(n)}^{x_{i}^{\prime}}\right)=\alpha_{(n)}^{x_{i}}, & \mathcal{I}\left(\alpha_{(n)}^{x_{i}}\right)=\beta_{(n)}^{x_{i}^{\prime}} .
\end{array}
$$

We have

$$
\begin{gathered}
\mathcal{I}^{2}(A)=A \\
\langle A, B\rangle=(A, \mathcal{I}(B)) .
\end{gathered}
$$

$\mathrm{N}=4$ superconformal vertex algebra

Let $\mathcal{V}(V)$ be $N=4$ superconformal vertex algebra with central charge $c=6 k$ generated by the following elements:

$$
\begin{gathered}
L(z)=\sum_{i=1}^{2 k}\left(: \beta^{x_{i}^{\prime}}(z) \alpha^{x_{i}}(z):-: b^{x_{i}^{\prime}}(z) \partial c^{x_{i}}(z):\right) \\
J(z)=-\sum_{i=1}^{2 k}: b^{x_{i}^{\prime}}(z) c^{x_{i}}(z):, \quad G(z)=\sum_{i=1}^{2 k}: b^{x_{i}^{\prime}}(z) \alpha^{x_{i}}(z): \\
D(z)=\sum_{i=1}^{k}: b^{x_{2 i-1}^{\prime}}(z) b^{x_{2 i}^{\prime}}(z):, \quad E(z)=\sum_{i=1}^{k}: c^{x_{2 i-1}}(z) c^{x_{2 i}}(z): \\
Q(z)=\sum_{i=1}^{2 k}: \beta^{x_{i}^{\prime}}(z) c^{x_{i}}(z):, \quad B(z)=Q_{(0)} D(z), \quad C(z)=G_{(0)} E(z):
\end{gathered}
$$

$\mathrm{N}=4$ superconformal vertex algebra

We have

$$
\begin{array}{ll}
Q_{(n)}^{*}=G_{(-n+1)}, & J_{(n)}^{*}=J_{(-n)} \\
L_{(n)}^{*}=L_{(-n+2)}-(n-1) J_{(-n+1)}, & D_{(n)}^{*}=-E_{(-n)} \\
B_{(n)}^{*}=C_{(-n+1)}, &
\end{array}
$$

So $\mathcal{W}(V)$ is a unitary representation of $\mathcal{V}(V)$.

$$
\begin{array}{ll}
\mathcal{I}\left(Q_{(n)}\right)=G_{(n)}, & \mathcal{I}\left(J_{(n)}\right)=-J_{(n)} \\
\mathcal{I}\left(L_{(n)}\right)=L_{(n)}+n J_{(n-1)}, & \mathcal{I}\left(D_{(n)}\right)=E_{(n)} \\
\mathcal{I}\left(B_{(n)}\right)=C_{(n)}, &
\end{array}
$$

\mathcal{I} maps irreducible representation of $\mathcal{V}(V)$ to irreducible representation of $\mathcal{V}(V)$.

Irreducible unitary representations

For an irreducible unitary representation $M_{k, h, l}$ of $N=4$ vertex algebra $\mathcal{V}(V)$ with central charge $c=6 k$, there is a unique element (lowest weigbt vector) satisfying condition(*)

$$
\begin{gathered}
L_{(n)} v=0, n>1 ; \quad J_{(n)} v=0, n>0 \\
G_{(n)} v=0, \quad Q_{(n)} v=0, n>0 \\
B_{(n)} v=0 ; \quad C_{(n)} v=0, n \geq 0 \\
E_{(n)} v=0, n \geq 0 ; \quad D_{(n)} v=0, n>0
\end{gathered}
$$

$M_{k, h, /}$ is labeled by the conformal weight h and fermionic number of v

$$
L_{(1)} v=h v, \quad J_{(0)} v=I v .
$$

Character

There exist two types of unitary representations of $\mathcal{V}(V)$:
massless (BPS) : $h=0, I=0,1, \cdots, k$
massive (non-BPS): $h>0, I=0,1, \cdots, k-1$.
The character of a representation M of the $N=4$ vertex algebra is defined by

$$
\operatorname{ch}_{V}(z ; \tau)=(-y)^{-k} \operatorname{trace}_{M}(-y)^{J_{(0)}} q^{L_{(1)}} .
$$

Let $c h_{k, h, l}(z ; \tau)$ be the character of the representation $M_{k, h, l}$. We have $c h_{k, h+1, l}(z ; \tau)=c h_{k, 1, l}(z ; \tau) q^{h}$, for $h \geq 0$.

Elliptic genus

For a complex manifold X, let $\mathcal{W}(T X)$ be the vector bundle of vertex algebra over X, with its fibre at $x \in X$ is $\mathcal{W}\left(T_{x} X\right)$.

$$
\mathcal{W}(T X) \cong \operatorname{Sym}^{*}\left(\bigoplus_{n=1}^{\infty}\left(T_{q^{n}} \oplus T_{q^{n}}^{*}\right)\right) \bigotimes \wedge^{*}\left(\bigoplus_{n=1}^{\infty}\left(T_{-y^{-1} q^{n}} \oplus T_{-y q^{n-1}}^{*}\right)\right)
$$

The complex elliptic genus of X is

$$
E \|_{X}(z ; \tau)=y^{-\frac{\operatorname{dim} X}{2}} \sum(-1)^{i} \operatorname{Trace}_{H^{i}(X, \mathcal{W}(T X))}(-y)^{J_{(0)}} q^{L_{(1)}} .
$$

For an automorphism g of X, the equivariant elliptic genus of X is

$$
E \|_{X, g}(z ; \tau)=y^{-\frac{\operatorname{dim} X}{2}} \sum(-1)^{i} \operatorname{Trace}_{H^{i}(X, \mathcal{W}(T X))} g(-y)^{J_{(0)}} q^{L_{(1)}}
$$

Here $q=e^{2 \pi i \tau}$ and $y=e^{2 \pi i z}$

HyperKähler manifold

In this talk, we assume X is a HyperKähler manifold with dimension $2 k$: a Kähler manifold with its holonomy group $\operatorname{Sp}(k)$. Some properties:

- X has a holomorphic symplectic form w. If ω is the Kähler form, we can choose w such that $\frac{1}{k!k!} w^{k} \wedge \bar{w}^{k}=\frac{1}{(2 k)!} \omega^{2 k}$
- Its Ricci curvature vanishes.
- Its elliptic genus $E l_{X}(z ; \tau)$ is a Jacobi form.
- $H^{0}(X, \mathcal{W}(T X)) \cong \mathcal{W}\left(T_{x} X\right)^{S p(k)}$, so Q, G, J, L, D, E, the generators of $N=4$ vertex algebra are global sections of $\mathcal{W}(T X)$.
Example: K3 surface.

Duality operator 1

Let $\Omega^{0, I}(X, \mathcal{W}(T X))$ be the space of $(0, I)$ differential forms on X with values in $\mathcal{W}(T X)$.
The Käher form

$$
\omega=\sqrt{-1} \sum \varphi_{i} \wedge \bar{\varphi}_{i}
$$

in terms of a unitary coframe $\varphi_{1}, \cdots, \varphi_{2 k}$.
For a set $I=\left\{i_{1}, \cdots, i_{l}\right\} \subset\{1, \cdots, 2 k\}$, let $\bar{\varphi}_{I}=\bar{\varphi}_{i_{i}} \wedge \cdots \bar{\wedge} \varphi_{i_{l}}$ let $\bar{I}=\{1, \cdots, 2 k\}-I$, let $\epsilon_{I}= \pm 1$ is the number such that

$$
\epsilon_{I} \bar{\varphi}_{I} \wedge \bar{\varphi}_{\bar{l}}=\frac{1}{k!} \bar{w}^{k} .
$$

Let

$$
*: \Omega^{0, I}(X, \mathcal{W}(T X)) \rightarrow \Omega^{0,2 k-I}(X, \mathcal{W}(T X))
$$

such that for $\eta=\sum \eta_{I} \bar{\varphi}_{I} \in \Omega^{0, I}\left(X, \mathcal{W}(T X), * \eta=\sum \epsilon_{I} J\left(\eta_{I}\right) \bar{\varphi}_{\bar{I}}\right.$
We have

Duality operator 2

- The bilinear form on $\mathcal{W}\left(T_{x} X\right)$ induce the bilinear form

$$
\begin{gathered}
\Omega^{0, I}(X, \mathcal{W}(T X)) \times \Omega^{0,2 k-I}(X, \mathcal{W}(T X)) \rightarrow \mathbb{C} \\
\langle\eta, \psi\rangle=\int_{X} \sum_{I}\left\langle\eta, \psi_{\bar{I}}\right\rangle \frac{1}{k!} w^{k} \wedge \varphi_{I} \wedge \varphi_{\bar{I}}
\end{gathered}
$$

- The Kähler metric induces an Hermitian metric on $\mathcal{W}(T X)$, so we have an Hermitian metric on $\Omega^{0, I}(X, \mathcal{W}(T X))$

$$
\left(\eta, \eta^{\prime}\right)=\int_{X} \sum_{i}\left(\eta_{I}, \eta_{I}^{\prime}\right) \frac{1}{k!k!} w^{k} \bar{w}^{k}
$$

- We have

$$
\langle\eta, * \psi\rangle=(\eta, \psi)
$$

Duality operator 3

- We can use the complex $\left(\Omega^{0, *}(X, \mathcal{W}(T X)), \bar{\partial}\right)$ to compute the cohomology $H^{i}(X, \mathcal{W}(T X))$. The dual of $\bar{\partial}$ is

$$
\bar{\partial}^{*}=-* \bar{\partial} *
$$

Let $\Delta=\bar{\partial} \bar{\partial}^{*}+\bar{\partial}^{*} \bar{\partial}$ be the Laplacian, the cohomology of $\mathcal{W}(T X)$ is isomorphic to Ker Δ.

- $H^{i}(X, \mathcal{W}(T X))$ is a unitary representation of the $N=4$ vertex algebra.
- * gives an antilinear isomorphism from $H^{i}(X, \mathcal{W}(T X))$ to $H^{2 k-i}(X, \mathcal{W}(T X))$.
- * maps irreducible representation of the $N=4$ vertex algebra to irreducible representation of the $N=4$ vertex algebra.

An operator on $\Omega^{0, *}(X, \mathcal{W}(T X))$

- Let $F_{1}: \Omega^{0, *}(X, \mathcal{W}(T X)) \rightarrow \Omega^{0, *+1}(X, \mathcal{W}(T X))$,

$$
F_{1}=\sum\left\langle R\left(x_{l}^{\prime}\right) x_{i}^{\prime}, x^{j}\right\rangle::\left(\Gamma^{x_{i}} c^{x_{i}}: b^{x_{j}^{\prime}}:(0)+\frac{1}{2}:: \Gamma^{x_{i}} \Gamma^{x_{i}}: \beta^{x_{j}^{\prime}}:(0)\right) .
$$

Here $\Gamma^{\times}(z)=\sum_{n \neq 0} \frac{-1}{n} \alpha_{(n)}^{\times} z^{-n}$ and R is the curvature of $T X$.

- The dual of F_{1} is $F_{1}^{*}=-* F_{1} *$.
- F_{1} commute with the action of the $N=4$ vertex algebra.

The operators F_{i}

F_{i} comes from the chiral de Rham complex $\Omega_{X}^{c h}$.
The chiral de Rham complex on X has a soft resolution $\left(\Omega_{X}^{c h, *}, \bar{Q}\right)$ by "tensor" $\Omega_{X}^{c h}$ with $\Omega_{X}^{0, *}$, the sheaf of smooth $(0, *)$ forms.
There is a canonical linear isomorphism

$$
\begin{gathered}
\Phi: \Omega^{0, *}(X, \mathcal{W}(T X)) \rightarrow \Omega_{X}^{c h, *}(X) . \\
\Phi^{*}(\bar{Q})=\bar{\partial}+F_{1}+F_{2}+\cdots \\
\bar{Q}^{2}=0 \text { implies } \bar{\partial} F_{1}+F_{1} \bar{\partial}=0 \text { and } \bar{\partial} F_{2}+F_{2} \bar{\partial}=F_{1} F_{1} .
\end{gathered}
$$

A new cohomology

- $\bar{\partial} F_{1}+F_{1} \bar{\partial}=0$. We get

$$
\mathcal{F}_{1}: H^{*}(X, \mathcal{W}(T X)) \rightarrow H^{*+1}(X, \mathcal{W}(T X))
$$

- There is $F_{2}: \Omega^{0, *}(X, \mathcal{W}(T X)) \rightarrow \Omega^{0, *+1}(X, \mathcal{W}(T X))$, such that $\bar{\partial} F_{2}+F_{2} \bar{\partial}=F_{1} F_{1}$. So

$$
\mathcal{F}_{1}^{2}=0
$$

- $\left(H^{*}(X, \mathcal{W}(T X)), \mathcal{F}_{1}\right)$ is a complex.

Let $\mathcal{H}^{*}(X)$ be its cohomology.

$$
\mathcal{H}^{*}(X) \cong \operatorname{Ker} \mathcal{F}_{1} \cap \operatorname{Ker} \mathcal{F}_{1}^{*}
$$

A new cohomology

- $\mathcal{H}^{i}(X)$ is a unitary representation of the $N=4$ vertex algebra with central charge $c=6 k$.
- * gives an isomorphism $\mathcal{H}^{i}(X)$ to $\mathcal{H}^{2 k-i}(X)$. And $* *=(-1)^{i}$.

$$
\mathcal{H}^{0}(X) \cong \mathcal{W}\left(T_{X} X\right)^{\mathfrak{g}} \cong H^{0}\left(X, \Omega_{X}^{c h}\right)
$$

here \mathfrak{g} is the space of algebraic vector fields on $T_{x} X$ which preserve $\left.w\right|_{x}$.
$\mathcal{H}^{0}(X)$ contain the $N=4$ vertex algebra. We expect it is exactly the $N=4$ vertex algebra. It is true of $K 3$ surface.

Space of highest weight vectors

- Let $\mathcal{A}_{h, /}^{i}(X)$ be the space of the vectors satisfying condition $\left.{ }^{*}\right)$ (highest weight vector) of the unitary representation $\mathcal{H}^{i}(X)$ of the $N=4$ vertex algebra with conformal weight h and fermionic number I.
- $E_{(0)}^{\prime} *$ gives an antilinear isomorphism form $\mathcal{A}_{h, /}^{i}(X)$ to $\mathcal{A}_{h, I}^{2 k-i}(X)$.
- $E_{(0)}^{\prime} * E_{(0)}^{\prime} *=(-1)^{1+i}$.
- If $I+k$ is odd. $E_{(0)}^{\prime} * E_{(0)}^{\prime} *=(-1)^{I+i}=-1$. $\operatorname{dim} \mathcal{A}_{h, l}^{k}(X)$ is even.

Decomposition of elliptic genus 1

$$
\mathcal{H}^{i}(X)=(-1)^{k}\left(\bigoplus_{I=0}^{k} M_{k, 0, I} \otimes \mathcal{A}_{0, I}^{i}(X)\right) \oplus\left(\bigoplus_{n=1}^{\infty} \bigoplus_{I=1}^{k} M_{k, h, I} \otimes \mathcal{A}_{h, I}^{i}(X)\right)
$$

Let $A_{h, I}^{i}=\operatorname{dim} \mathcal{A}_{h, I}^{i}(X)$
The elliptic genus of X is

$$
\begin{gathered}
E I_{X}(z ; \tau)=\sum(-1)^{i} \operatorname{Trace}_{\mathcal{H}^{i}(X)}(-y)^{J_{(0)}} q^{L_{(1)}} \\
=\sum_{l=0}^{k}\left(\sum_{i=0}^{2 k}\left((-1)^{i} A_{0, l}^{i}\right) c h_{k, 0, l}(z ; \tau)+\sum_{h=1}^{\infty} \sum_{l=0}^{k-1}\left(\sum_{i=0}^{2 k}\left((-1)^{i} A_{h, l}^{i}\right) c h_{k, n, l}(z ; \tau)\right)\right.
\end{gathered}
$$

Decomposition of elliptic genus 2

Theorem
If X is a HyperKähler manifold, then its elliptic genus has decomposition

$$
\left.E \|_{X}(z ; \tau)=\sum_{I=0}^{k} a_{0, I} c h_{k, 0, I}(z ; \tau)+\sum_{l=0}^{k-1} \sum_{h=0}^{\infty} a_{h+1, I} q^{h} c h_{k, 1, I}(z ; \tau)\right)
$$

Here $a_{h, l}$ is even when $k+l$ is odd.

Elliptic genus of K3 surface 1

We apply the previous result of elliptic genus to $K 3$ surface. If X is a K3 surface.

- Unitary representation When $k=1$:
massless: $M_{1,0,0}$ and $M_{1,0,1}$
Massive: $M_{1, h, 1}$
- $\mathcal{H}^{2}(X) \cong \mathcal{H}^{0}(X)$ is isomorphic to $M_{1,0,0}$.
- $\operatorname{dim} H^{0,1}(X)=\operatorname{dim} H^{2,1}(X)=0$ and $\operatorname{dim} H^{1,1}(X)=20$.

The weight zero part of $\mathcal{H}^{1}(X)$ is $H^{1,1}(X)$.
Obviously $H^{1,1}(X)=\mathcal{A}_{0,1}^{1}(X)$ and $A_{0,1}^{1}(X)=0$.

- $\mathcal{H}^{1}\left(X, \Omega_{X}^{c h}\right)=M_{1,0,1} \otimes H^{1,1}(X) \oplus\left(\oplus_{h=1}^{\infty} M_{1, h, 0} \otimes \mathcal{A}_{n, 0}^{1}(X)\right)$.

Elliptic genus of K3 surface 2

- We get the decomposition of the elliptic genus of K3 surface,

$$
E I_{X}(z ; \tau)=-2 c h_{1,0,0}(z ; \tau)+20 c h_{1,0,1}(z ; \tau)+2 \sum_{h=1}^{\infty} A_{h} c h_{1, n, 0}(z ; \tau)
$$

Here $A_{h}=\frac{1}{2} A_{h, 0}^{1}(X)$.

- Since $A_{h, 0}^{1}$ is even, A_{h} is integer .
- We have constructed a graded vector space

$$
\mathcal{A}_{X}(q)=\sum_{h=1}^{\infty} \mathcal{A}_{h, 0}^{1}(X) q^{h-\frac{1}{8}}
$$

which has the exact dimension for Mathieu moonshine.

Equivariant Elliptic genus of K3 surface

If g is a finite symplectic automorphism of X, elements of $\mathcal{H}^{0}(X)$ and $\mathcal{H}^{2}(X)$ are g invariant. Action of g commute with the action of $N=4$ vertex algebra.

$$
\begin{aligned}
E \|_{X, g}(z ; \tau) & =-2 c h_{1,0,0}(z ; \tau)+c h_{1,0,1}(z ; \tau) \operatorname{trace}_{H^{1,1}(X)} g \\
& +\sum_{h=1}^{\infty} \operatorname{trace}_{\mathcal{A}_{h, 0}^{1}(X)} g c h_{1, h, 0}(z ; \tau)
\end{aligned}
$$

Compare with Thomas Creutzig and Gerald Höhn's result

$$
E \|_{X, g}(z ; \tau)=\frac{e(g)}{12} \phi_{0,1}+f_{g} \phi_{-2,1}
$$

we get :

$$
\Sigma_{g}(q)+2 q^{\frac{1}{8}}=\sum_{n=1}^{\infty} q^{n-\frac{1}{8}} \operatorname{trace}_{\mathcal{A}_{n, 2}^{1}(X)} g=\operatorname{trace}_{\mathcal{A}_{X}(q)} g
$$

Questions

By Gannon's result, $A_{X}(q)$ is an M_{24} module. How to construct a concrete M_{24} module structure on $A_{X}(q)$?
By our construction, we can construct a vector bundle on the moduli space of HyperKäher structure of K3 surfaces.
Can we glue the finite symplectic automorphism in different K3 surface?

Thank you!

