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Mathieu Moonshine conjecture

In 2010, Eguchi, Ooguri and Tachikawa observed that when the
elliptic genus of a K3 surface, the Jacobi form 2φ0,1(z ; τ) of weight
0 and index 1, is decomposed into a sum of the characters of the N
= 4 superconformal algebra with central charge c = 6,

2φ0,1(z ; τ) = −2ch1,0,0(z ; τ)+20ch1,1,0(z ; τ)+2
∞∑
n=1

Anch1,n,0(z ; τ),

the first few coefficients An are sums of dimensions of irreducible
representations of the largest Mathieu group M24.
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Mathieu moonshine conjecture

I Let

Σ(q) = q−
1
8 (−2 + 2

∞∑
n=1

Anq
n). (1)

It is a mock modular form of weight 1
2 .

I Their observation suggests the existence of a graded
M24-module K =

∑∞
n=0 Knq

n−1/8 with graded dimension
Σ(q). It is Mathieu analogue to the modular function J(q) in
the monstrous moonshine

I It is a special case of umbral moonshine. (2013, Cheng,
Duncan and Harvey)
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Mathieu McKay-Thompson series

I Subsequently the analogues to McKay-Thompson series in
monstrous moonshine were proposed in several works Cheng
and Duncan, Eguchi and Hikami, Gaberdiel, Hohenegger and
Volpato.

I The McKay-Thompson series for g in M24 are of the form

Σg (q) = q−
1
8

∞∑
n=0

qn TraceKn g =
e(g)

24
Σe(q)− fg

η(q)3

where Σe(q) = Σ(q), e(g) is the character of the
24-dimensional permutation representation of M24, the series
fg is a certain explicit modular form of weight 2 for some
subgroup Γ0(Ng ) of SL(2,Z) and η is the Dedekind eta
function.
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Gannon’s result

Terry Gannon has proven that these McKay-Thompson series
indeed determine a M24-module:

Theorem (Gannon2012)

The McKay-Thompson series determine a virtual graded
M24-module K =

∑∞
n=0 Knq

n−1/8. For n ≥ 1, the Kn are honest
(and not only virtual) M24-representations.
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Symplectic automorphism groups of K3 surfaces

A complex automorphism g of a K3 surface X is called symplectic
if it preserve the holomorphic symplectic 2-form,
The finite symplectic automorphism groups of K3 surfaces are all
isomorphic to subgroups of the Mathieu group M23 of a particular
type. M23 is isomorphic to a one-point stabilizer for the
permutation action of M24 on 24 elements.

Theorem (Mukai1988)

A finite group H acting symplectically on a K3 surface is
isomorphic to a subgroup of M23 with at least five orbits on the
regular permutation representation of the Mathieu group
M24 ⊃ M23 on 24 elements.
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Relation to K3 surfaces

Thomas Creutzig and Gerald Höhn showed that

I the complex elliptic genus of a K3 surface can be given the
structure of a virtual M24-module which is compatible with
the H-module structure for all possible groups H of symplectic
automorphisms of K3 surfaces under restriction.

I it is the graded character of a natural virtual module for the N
=4 super conformal vertex algebra.
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Relation to K3 surfaces

If g is a symplectic automorphism of a K3 surface, the functions
Σg (q) admit a geometric interpretation in terms of K3 surfaces.

Theorem (Creutzig-Höhn2012)

For a non-trivial finite symplectic automorphism g acting on a K3
surface X , the equivariant elliptic genus and the twining character
determined by the McKay-Thompson series of Mathieu moonshine
agree, i.e. one has

EllX ,g (z ; τ) =
e(g)

12
φ0,1 + fgφ−2,1.

Bailin Song Mathieu moonshine and K3 surfaces



Outline
Mathieu Moonshine

Elliptic genus
K3 surface

Goal

I We will construct a graded vector space

AX (q) =
∞∑
n=1

An(X )qn−
1
8 .

The graded dimension of AX (q) is Σ(q) + 2q−
1
8 . For a finite

symplectic automorphism g acting on a K3 surface X ,

Σg (q) + 2q−
1
8 =

∞∑
n=1

qn−
1
8 traceAn(X )g = traceAX (q)g .

I We will show 2An are even.(2012 Gannon)
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original construction

Let Ωch
X be the chiral de Rham complex on X , by the following fact

I H0(X ,Ωch
X ) is the simple N = 4 vertex algebra with central

charge c = 6;

I H2(X ,Ωch
X ) ∼= H0(X ,Ωch

X );

I The graded dimension of
H0(X ,Ωch

X )−H1(X ,Ωch
X ) + H2(X ,Ωch

X ) is the elliptic genus of
X .

I H1(X ,Ωch
X ) is a representation of H0(X ,Ωch

X )

If the representaion is unitary, we immediantly get the
decomposition formular of the elliptic genus. However we can not
prove it. So we take a filtration F iH1(X ,Ωch

X ) of H1(X ,Ωch
X ), such

that its associated graded object is a unitary representation of
H0(X ,Ωch

X ). The space of highest weight vectors is what we want.
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A free system

Let V be an 2k dimensional complex vector space.
Let W(V ) is be the vertex algebra generated by
even elements βx

′
(z), αx ′(z), x ′ ∈ V x ∈ V ∗

odd elements bx
′
(z), cx(z) x ′ ∈ V , x ∈ V ∗

with their nontrivial OPEs are

βx
′
(z)αx(w) ∼ 〈x ′, x〉(z − w)−2.

bx
′
(z)cx(w) ∼ 〈x ′, x〉(z − w)−1.

Here for P = β, α, b or c , we assume a1P
x1 + a2P

x2 = Pa1x1+a2x2 .
W(V ) is a system of free bosons and free fermionics.
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An Hermitian form on W(V )

If there is an positive definite Hermitian form on V . Let x ′1, · · · x ′N
be an orthonormal basis of V and x1, · · · xN be its dual basis in
V ∗. W(V ) is equipped with a positive definite Hermitian form
(−,−) with the following property:

(β
x ′i
(n)A,B) = (A, αxi

(−n)B), for any n ∈ Z, n 6= 0, ∀A,B ∈ W(V );

(b
x ′i
(n)A,B) = (A, cxi(−n−1)B), for any n ∈ Z,∀A,B ∈ W(V ).

Bailin Song Mathieu moonshine and K3 surfaces
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A bilinear form

The state space of W(V ) is the supercommutative ring freely

generated by cxi(n), b
x ′i
(n), α

xi
(n), β

x ′i
(n), n < 0. The is a nondegenerate

symmetric bilinear form

〈−,−〉 :W(V )×W(V )→ C,

given by 〈βx ′n , αx
m〉 = δnmx

′(x), 〈bx ′n , cxm〉 = δnmx
′(x)
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An involution

Let I :W(V )→W(V ) be the antilinear vertex algebra
automorphism given by

I(b
x ′i
(n)) = cxi(n), I(cxi(n)) = b

x ′i
(n),

I(β
x ′i
(n)) = αxi

(n), I(αxi
(n)) = β

x ′i
(n).

We have
I2(A) = A,

〈A,B〉 = (A, I(B)).
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N=4 superconformal vertex algebra

Let V(V ) be N = 4 superconformal vertex algebra with central
charge c = 6k generated by the following elements:

L(z) =
2k∑
i=1

(: βx
′
i (z)αxi (z) : − : bx

′
i (z)∂cxi (z) :),

J(z) = −
2k∑
i=1

: bx
′
i (z)cxi (z) :, G (z) =

2k∑
i=1

: bx
′
i (z)αxi (z) :,

D(z) =
k∑

i=1

: bx
′
2i−1(z)bx

′
2i (z) :, E (z) =

k∑
i=1

: cx2i−1(z)cx2i (z) : .

Q(z) =
2k∑
i=1

: βx
′
i (z)cxi (z) :, B(z) = Q(0)D(z), C (z) = G(0)E (z) :

Bailin Song Mathieu moonshine and K3 surfaces
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N=4 superconformal vertex algebra

We have

Q∗(n) = G(−n+1), J∗(n) = J(−n),

L∗(n) = L(−n+2) − (n − 1)J(−n+1), D∗(n) = −E(−n).

B∗(n) = C(−n+1),

So W(V ) is a unitary representation of V(V ).

I(Q(n)) = G(n), I(J(n)) = −J(n),

I(L(n)) = L(n) + nJ(n−1), I(D(n)) = E(n).

I(B(n)) = C(n),

I maps irreducible representation of V(V ) to irreducible
representation of V(V ).
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Irreducible unitary representations

For an irreducible unitary representation Mk,h,l of N = 4 vertex
algebra V(V ) with central charge c = 6k , there is a unique
element (lowest weigbt vector) satisfying condition(*)

L(n)v = 0, n > 1; J(n)v = 0, n > 0;

G(n)v = 0, Q(n)v = 0, n > 0;

B(n)v = 0; C(n)v = 0, n ≥ 0.

E(n)v = 0, n ≥ 0; D(n)v = 0, n > 0;

Mk,h,l is labeled by the conformal weight h and fermionic number
of v

L(1)v = hv , J(0)v = lv .
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Character

There exist two types of unitary representations of V(V ):
massless (BPS) : h = 0, l = 0, 1, · · · , k
massive (non-BPS): h > 0, l = 0, 1, · · · , k − 1.
The character of a representation M of the N = 4 vertex algebra is
defined by

chV (z ; τ) = (−y)−ktraceM(−y)J(0)qL(1) .

Let chk,h,l(z ; τ) be the character of the representation Mk,h,l . We
have chk,h+1,l(z ; τ) = chk,1,l(z ; τ)qh, for h ≥ 0.

Bailin Song Mathieu moonshine and K3 surfaces
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Elliptic genus

For a complex manifold X , let W(TX ) be the vector bundle of
vertex algebra over X , with its fibre at x ∈ X is W(TxX ).

W(TX ) ∼= Sym∗(
∞⊕
n=1

(Tqn ⊕T ∗qn))
⊗
∧∗(

∞⊕
n=1

(T−y−1qn ⊕T ∗−yqn−1))

The complex elliptic genus of X is

EllX (z ; τ) = y−
dim X

2

∑
(−1)i TraceH i (X ,W(TX ))(−y)J(0)qL(1) .

For an automorphism g of X , the equivariant elliptic genus of X is

EllX ,g (z ; τ) = y−
dim X

2

∑
(−1)i TraceH i (X ,W(TX )) g(−y)J(0)qL(1)

Here q = e2πiτ and y = e2πiz

Bailin Song Mathieu moonshine and K3 surfaces
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HyperKähler manifold

In this talk, we assume X is a HyperKähler manifold with
dimension 2k : a Kähler manifold with its holonomy group Sp(k).
Some properties:

I X has a holomorphic symplectic form w . If ω is the Kähler
form, we can choose w such that 1

k!k!w
k ∧ w̄k = 1

(2k)!ω
2k

I Its Ricci curvature vanishes.

I Its elliptic genus EllX (z ; τ) is a Jacobi form.

I H0(X ,W(TX )) ∼=W(TxX )Sp(k), so Q,G , J, L,D,E , the
generators of N = 4 vertex algebra are global sections of
W(TX ).

Example: K3 surface.

Bailin Song Mathieu moonshine and K3 surfaces
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Duality operator 1

Let Ω0,l(X ,W(TX )) be the space of (0, l) differential forms on X
with values in W(TX ).
The Käher form

ω =
√
−1

∑
ϕi ∧ ϕ̄i

in terms of a unitary coframe ϕ1, · · · , ϕ2k .
For a set I = {i1, · · · , il} ⊂ {1, · · · , 2k}, let ϕ̄I = ϕ̄ii ∧ · · · ∧̄ϕil let
Ī = {1, · · · , 2k} − I , let εI = ±1 is the number such that

εI ϕ̄I ∧ ϕ̄Ī =
1

k!
w̄k .

Let
∗ : Ω0,l(X ,W(TX ))→ Ω0,2k−l(X ,W(TX ))

such that for η =
∑
ηI ϕ̄I ∈ Ω0,l(X ,W(TX ), ∗η =

∑
εI J(ηI )ϕ̄Ī

We have
∗ ∗ η = (−1)lη

Bailin Song Mathieu moonshine and K3 surfaces
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Duality operator 2

I The bilinear form on W(TxX ) induce the bilinear form

Ω0,l(X ,W(TX ))× Ω0,2k−l(X ,W(TX ))→ C

〈η, ψ〉 =

∫
X

∑
I

〈η, ψĪ 〉
1

k!
wk ∧ ϕI ∧ ϕĪ

I The Kähler metric induces an Hermitian metric on W(TX ),
so we have an Hermitian metric on Ω0,l(X ,W(TX ))

(η, η′) =

∫
X

∑
i

(ηI , η
′
I )

1

k!k!
wk w̄k

I We have
〈η, ∗ψ〉 = (η, ψ)

Bailin Song Mathieu moonshine and K3 surfaces
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Duality operator 3

I We can use the complex (Ω0,∗(X ,W(TX )), ∂̄) to compute
the cohomology H i (X ,W(TX )). The dual of ∂̄ is

∂̄∗ = − ∗ ∂̄ ∗ .

Let ∆ = ∂̄∂̄∗ + ∂̄∗∂̄ be the Laplacian, the cohomology of
W(TX ) is isomorphic to Ker ∆.

I H i (X ,W(TX )) is a unitary representation of the N = 4
vertex algebra.

I ∗ gives an antilinear isomorphism from H i (X ,W(TX ))to
H2k−i (X ,W(TX )).

I ∗ maps irreducible representation of the N = 4 vertex algebra
to irreducible representation of the N = 4 vertex algebra.

Bailin Song Mathieu moonshine and K3 surfaces
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An operator on Ω0,∗(X ,W(TX ))

I Let F1 : Ω0,∗(X ,W(TX ))→ Ω0,∗+1(X ,W(TX )),

F1 =
∑
〈R(x ′l )x

′
i , x

j〉 :: (Γxl cxi : bx
′
j :(0) +

1

2
:: Γxl Γxi : βx

′
j :(0)).

Here Γx(z) =
∑

n 6=0
−1
n α

x
(n)z

−n and R is the curvature of TX .

I The dual of F1 is F ∗1 = − ∗ F1∗.
I F1 commute with the action of the N = 4 vertex algebra.

Bailin Song Mathieu moonshine and K3 surfaces
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The operators Fi

Fi comes from the chiral de Rham complex Ωch
X .

The chiral de Rham complex on X has a soft resolution (Ωch,∗
X , Q̄)

by ”tensor” Ωch
X with Ω0,∗

X , the sheaf of smooth (0, ∗) forms.
There is a canonical linear isomorphism

Φ : Ω0,∗(X ,W(TX ))→ Ωch,∗
X (X ).

Φ∗(Q̄) = ∂̄ + F1 + F2 + · · ·

Q̄2 = 0 implies ∂̄F1 + F1∂̄ = 0 and ∂̄F2 + F2∂̄ = F1F1.

Bailin Song Mathieu moonshine and K3 surfaces
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A new cohomology

I ∂̄F1 + F1∂̄ = 0. We get

F1 : H∗(X ,W(TX ))→ H∗+1(X ,W(TX )).

I There is F2 : Ω0,∗(X ,W(TX ))→ Ω0,∗+1(X ,W(TX )), such
that ∂̄F2 + F2∂̄ = F1F1. So

F2
1 = 0.

I (H∗(X ,W(TX )),F1) is a complex.
Let H∗(X ) be its cohomology.

H∗(X ) ∼= KerF1 ∩ KerF∗1

Bailin Song Mathieu moonshine and K3 surfaces
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A new cohomology

I Hi (X ) is a unitary representation of the N = 4 vertex algebra
with central charge c = 6k .

I ∗ gives an isomorphism Hi (X ) to H2k−i (X ). And ∗∗ = (−1)i .

I

H0(X ) ∼=W(TxX )g ∼= H0(X ,Ωch
X ),

here g is the space of algebraic vector fields on TxX which
preserve w |x .
H0(X ) contain the N = 4 vertex algebra. We expect it is
exactly the N = 4 vertex algebra. It is true of K3 surface.
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Space of highest weight vectors

I Let Ai
h,l(X ) be the space of the vectors satisfying condition

(*) (highest weight vector) of the unitary representation
Hi (X ) of the N = 4 vertex algebra with conformal weight h
and fermionic number l .

I E l
(0)∗ gives an antilinear isomorphism form Ai

h,l(X ) to

A2k−i
h,l (X ).

I E l
(0) ∗ E

l
(0)∗ = (−1)l+i .

I If l + k is odd. E l
(0) ∗ E

l
(0)∗ = (−1)l+i = −1.

dimAk
h,l(X ) is even.

Bailin Song Mathieu moonshine and K3 surfaces
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Decomposition of elliptic genus 1

Hi (X ) = (−1)k(
k⊕

l=0

Mk,0,l ⊗Ai
0,l(X ))⊕ (

∞⊕
n=1

k⊕
l=1

Mk,h,l ⊗Ai
h,l(X )).

Let Ai
h,l = dimAi

h,l(X )
The elliptic genus of X is

EllX (z ; τ) =
∑

(−1)i TraceHi (X )(−y)J(0)qL(1)

=
k∑

l=0

(
2k∑
i=0

((−1)iAi
0,l)chk,0,l(z ; τ)+

∞∑
h=1

k−1∑
l=0

(
2k∑
i=0

((−1)iAi
h,l)chk,n,l(z ; τ))

Bailin Song Mathieu moonshine and K3 surfaces
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Decomposition of elliptic genus 2

Theorem
If X is a HyperKähler manifold, then its elliptic genus has
decomposition

EllX (z ; τ) =
k∑

l=0

a0,lchk,0,l(z ; τ) +
k−1∑
l=0

∞∑
h=0

ah+1,lq
hchk,1,l(z ; τ))

Here ah,l is even when k + l is odd.

Bailin Song Mathieu moonshine and K3 surfaces
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Elliptic genus of K3 surface 1

We apply the previous result of elliptic genus to K3 surface. If X is
a K3 surface.

I Unitary representation When k = 1:
massless: M1,0,0 and M1,0,1

Massive: M1,h,1

I H2(X ) ∼= H0(X ) is isomorphic to M1,0,0.

I dimH0,1(X ) = dimH2,1(X ) = 0 and dimH1,1(X ) = 20.
The weight zero part of H1(X ) is H1,1(X ).
Obviously H1,1(X ) = A1

0,1(X ) and A1
0,1(X ) = 0.

I H1(X ,Ωch
X ) = M1,0,1 ⊗ H1,1(X )⊕ (⊕∞h=1M1,h,0 ⊗A1

n,0(X )).

Bailin Song Mathieu moonshine and K3 surfaces
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Elliptic genus of K3 surface 2

I We get the decomposition of the elliptic genus of K3 surface,

EllX (z ; τ) = −2ch1,0,0(z ; τ)+20ch1,0,1(z ; τ)+2
∞∑
h=1

Ahch1,n,0(z ; τ).

Here Ah = 1
2A

1
h,0(X ).

I Since A1
h,0 is even, Ah is integer .

I We have constructed a graded vector space

AX (q) =
∞∑
h=1

A1
h,0(X )qh−

1
8 ,

which has the exact dimension for Mathieu moonshine.

Bailin Song Mathieu moonshine and K3 surfaces
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Equivariant Elliptic genus of K3 surface

If g is a finite symplectic automorphism of X , elements of H0(X )
and H2(X ) are g invariant. Action of g commute with the action
of N = 4 vertex algebra.

EllX ,g (z ; τ) = −2ch1,0,0(z ; τ) + ch1,0,1(z ; τ)traceH1,1(X )g

+
∞∑
h=1

traceA1
h,0(X )g ch1,h,0(z ; τ).

Compare with Thomas Creutzig and Gerald Höhn’s result

EllX ,g (z ; τ) =
e(g)

12
φ0,1 + fgφ−2,1,

we get :

Σg (q) + 2q
1
8 =

∞∑
n=1

qn−
1
8 traceA1

n,2(X )g = traceAX (q)g .

Bailin Song Mathieu moonshine and K3 surfaces
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Questions

By Gannon’s result, AX (q) is an M24 module. How to construct a
concrete M24 module structure on AX (q)?
By our construction, we can construct a vector bundle on the
moduli space of HyperKäher structure of K3 surfaces.
Can we glue the finite symplectic automorphism in different K3
surface?

Bailin Song Mathieu moonshine and K3 surfaces
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Thank you!
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