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— count yields some invariant;
— important for understanding of the theory.

In 1996, Harvey and Moore introduced a multiplication on BPS states.
They claimed to obtain a Borcherds-Kac-Moody algebra, but relaxed this:
the required Z-grading with finite-dimensional homogeneous parts does not
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Bogomol'nyi-Prasad-Sommerfield states: one-particle states in string/field
theories with A/ > 1 SUSY that saturate lower bound on mass;

— count yields some invariant;

— important for understanding of the theory.

In 1996, Harvey and Moore introduced a multiplication on BPS states.
They claimed to obtain a Borcherds-Kac-Moody algebra, but relaxed this:
the required Z-grading with finite-dimensional homogeneous parts does not
seem to exist.

— Someone should find a suitable generalization of BKM algebras.
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I countable. A= (a;);jes € R'* is a Borcherds-Kac-Moody matrix if
@ gij=2ora;<0foralliel,
@ a3 <O0fori#j,a;€cZifa=2,
e DA is symmetric for some diagonal 0 < D € R/*/.

Universal Borcherds-Kac-Moody algebra g(A): real Lie algebra generated
by e;, f;, hjj for i,j € I with relations

° [ef7 6] - hl_]r

o [hij, ex] = dijajkex, [hij, ] = —dijajitx,

o (ade;)' "7 (e) = (adg)' =2 (f) = O for i # j, aj = 2 or ay = 0.
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BKM algebras: short introduction

I countable. A= (a;);jes € R'* is a Borcherds-Kac-Moody matrix if
@ gij=2ora;<0foralliel,
@ a3 <O0fori#j,a;€cZifa=2,
e DA is symmetric for some diagonal 0 < D € R/*/.

Universal Borcherds-Kac-Moody algebra g(A): real Lie algebra generated
by e;, f;, hjj for i,j € I with relations

° [ei7 6] = hfj'

4 [h,‘j, ek] = (5,-jajkek, [hU7 fk] = —(5,~jajkfk,

o (ade,) 7% (ej) = (adg )t~ (f;) = 0 for i # j,a; = 2 or a; = 0.
g is a Borcherds-Kac-Moody algebra iff

g = g(A) = g§(A)/{hjj : i # j} for some A.

(Convention of [Gannon 2006].)
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(2) involution ¥ € Aut(g) with 9(gn) C g, for all n € Z, 9|y, = —idg,,
(3) g- and ¥-invariant symmetric bilinear form (-, -) such that g, L g, if
n+ m#0 and — (-,9-) is positive definite on g, if n £ 0 (i.e.
(X, Y], 2) = (X,[Y, Z]), (WX, 9Y)=(X,Y) forall X,Y,Z € g).
Then, up to quotients by central ideals and adjoining of commuting

derivations, g = g(A) for some BKM matrix A.
[Borcherds 1988]

(b) g(A) obeys (1)—(3).
using [Kac 1990, Borcherds 1988, Jurisich 1996]
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Main difficulties in the proof of (b)

@ For (b), w.l.o.g. the simple roots are linearly independent. We get:
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Main difficulties in the proof of (b)

For (b), w.l.o.g. the simple roots are linearly independent. We get:
root space decomposition g(A) =B, cau g 9o With dim(ga) <oco, a€A,
Z-grading from there by homomorphism ¢ : span,(A) — Z,
involution ¥ by ¥(e;) = —1;,
g- and Y-invariant symmetric bilinear form (-, -) by induction.
@ Remaining problem: why is — (-, 4-) (almost) positive definite?

— show: ker(-,-) =t = <adifa"f(ej),ad2_a’7(fj) i # j,a =2 or aj =0).
@ For this: Casimir-like operator g “almost commuting” with action of
g(A) on modules and whose eigenvalues on highest weight modules
contain valuable information.

@ From Qg on t: v generated by t N g1, with a € A} non-simple,
20(vY()) = (a,@). (p € g§ Weyl vector, v : gg — g§ from (-,-).)
e lfxe(tnNg_a)\ (ad:;i_a"j(ﬂ»: reflect a “and x" into the Weyl/

chamber. Computations. . . contradiction to 2p(v~*(a)) = (o, a).
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Questions?

Thank you for your attention!
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