Characterizing Borcherds-Kac-Moody algebras

Fabian Kertels

Albert-Ludwigs-Universität Freiburg

September 12, 2018

Fabian Kertels (U Freiburg)

Characterizing BKM algebras

- < ∃ → September 12, 2018

э

1/6

 \rightarrow count yields some invariant;

- $\rightarrow\,$ count yields some invariant;
- $\rightarrow\,$ important for understanding of the theory.

- $\rightarrow\,$ count yields some invariant;
- $\rightarrow\,$ important for understanding of the theory.

In 1996, Harvey and Moore introduced a multiplication on BPS states.

Fabian Kertels (U Freiburg)

- $\rightarrow\,$ count yields some invariant;
- $\rightarrow\,$ important for understanding of the theory.

In 1996, Harvey and Moore introduced a multiplication on BPS states. They claimed to obtain a Borcherds-Kac-Moody algebra, but relaxed this: the required \mathbb{Z} -grading with finite-dimensional homogeneous parts does not seem to exist.

・ 得 ト ・ ヨ ト ・ ヨ ト

- $\rightarrow\,$ count yields some invariant;
- $\rightarrow\,$ important for understanding of the theory.

In 1996, Harvey and Moore introduced a multiplication on BPS states. They claimed to obtain a Borcherds-Kac-Moody algebra, but relaxed this: the required \mathbb{Z} -grading with finite-dimensional homogeneous parts does not seem to exist.

 $\rightarrow\,$ Someone should find a suitable generalization of BKM algebras.

ヘロト 不得 とうき とうとう ほう

I countable. $A = (a_{ij})_{i,j \in I} \in \mathbb{R}^{I \times I}$ is a Borcherds-Kac-Moody matrix if

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

I countable. $A = (a_{ij})_{i,j \in I} \in \mathbb{R}^{I \times I}$ is a *Borcherds-Kac-Moody matrix* if • $a_{ii} = 2$ or $a_{ii} \leq 0$ for all $i \in I$,

不得入 不良入 不良入 一度

I countable. $A = (a_{ij})_{i,j \in I} \in \mathbb{R}^{I \times I}$ is a Borcherds-Kac-Moody matrix if

• $a_{ii} = 2$ or $a_{ii} \leq 0$ for all $i \in I$,

•
$$a_{ij} \leq 0$$
 for $i \neq j$, $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$,

不得入 不良入 不良入 一度

I countable. $A = (a_{ij})_{i,j \in I} \in \mathbb{R}^{I \times I}$ is a Borcherds-Kac-Moody matrix if

•
$$a_{ii} = 2$$
 or $a_{ii} \leq 0$ for all $i \in I$,

•
$$a_{ij} \leq 0$$
 for $i \neq j$, $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$,

• *DA* is symmetric for some diagonal $0 < D \in \mathbb{R}^{I \times I}$.

- 31

I countable. $A = (a_{ij})_{i,j \in I} \in \mathbb{R}^{I \times I}$ is a Borcherds-Kac-Moody matrix if

- $a_{ii} = 2$ or $a_{ii} \leq 0$ for all $i \in I$,
- $a_{ij} \leq 0$ for $i \neq j$, $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$,
- *DA* is symmetric for some diagonal $0 < D \in \mathbb{R}^{I \times I}$.

- 31

4 3 5 4 3 5 5

I countable. $A = (a_{ij})_{i,j \in I} \in \mathbb{R}^{I \times I}$ is a Borcherds-Kac-Moody matrix if

• $a_{ii} = 2$ or $a_{ii} \leq 0$ for all $i \in I$,

• $a_{ij} \leq 0$ for $i \neq j$, $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$,

• *DA* is symmetric for some diagonal $0 < D \in \mathbb{R}^{I \times I}$.

Universal Borcherds-Kac-Moody algebra $\hat{\mathfrak{g}}(A)$: real Lie algebra generated by e_i , f_i , h_{ij} for $i, j \in I$ with relations

I countable. $A = (a_{ij})_{i,j \in I} \in \mathbb{R}^{I \times I}$ is a Borcherds-Kac-Moody matrix if

• $a_{ii} = 2$ or $a_{ii} \leq 0$ for all $i \in I$,

- $a_{ij} \leq 0$ for $i \neq j$, $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$,
- *DA* is symmetric for some diagonal $0 < D \in \mathbb{R}^{I \times I}$.

Universal Borcherds-Kac-Moody algebra $\hat{\mathfrak{g}}(A)$: real Lie algebra generated by e_i , f_i , h_{ij} for $i, j \in I$ with relations

•
$$[e_i, f_j] = h_{ij}$$

イロト 不得下 イヨト イヨト 二日

I countable. $A = (a_{ij})_{i,j \in I} \in \mathbb{R}^{I \times I}$ is a Borcherds-Kac-Moody matrix if

• $a_{ii} = 2$ or $a_{ii} \leq 0$ for all $i \in I$,

- $a_{ij} \leq 0$ for $i \neq j$, $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$,
- *DA* is symmetric for some diagonal $0 < D \in \mathbb{R}^{I \times I}$.

Universal Borcherds-Kac-Moody algebra $\hat{\mathfrak{g}}(A)$: real Lie algebra generated by e_i , f_i , h_{ij} for $i, j \in I$ with relations

- $[e_i, f_j] = h_{ij},$
- $[h_{ij}, e_k] = \delta_{ij} a_{jk} e_k, \ [h_{ij}, f_k] = -\delta_{ij} a_{jk} f_k,$

I countable. $A = (a_{ij})_{i,j \in I} \in \mathbb{R}^{I \times I}$ is a Borcherds-Kac-Moody matrix if

• $a_{ii} = 2$ or $a_{ii} \leq 0$ for all $i \in I$,

- $a_{ij} \leq 0$ for $i \neq j$, $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$,
- *DA* is symmetric for some diagonal $0 < D \in \mathbb{R}^{I \times I}$.

Universal Borcherds-Kac-Moody algebra $\hat{\mathfrak{g}}(A)$: real Lie algebra generated by e_i , f_i , h_{ij} for $i, j \in I$ with relations

- $[e_i, f_j] = h_{ij}$,
- $[h_{ij}, e_k] = \delta_{ij} a_{jk} e_k, \ [h_{ij}, f_k] = -\delta_{ij} a_{jk} f_k,$
- $(\mathrm{ad}_{e_i})^{1-a_{ij}}(e_j) = (\mathrm{ad}_{f_i})^{1-a_{ij}}(f_j) = 0$ for $i \neq j, a_{ii} = 2$ or $a_{ij} = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = うのの

I countable. $A = (a_{ij})_{i,j \in I} \in \mathbb{R}^{I \times I}$ is a Borcherds-Kac-Moody matrix if

• $a_{ii} = 2$ or $a_{ii} \leq 0$ for all $i \in I$,

- $a_{ij} \leq 0$ for $i \neq j$, $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$,
- *DA* is symmetric for some diagonal $0 < D \in \mathbb{R}^{I \times I}$.

Universal Borcherds-Kac-Moody algebra $\hat{\mathfrak{g}}(A)$: real Lie algebra generated by e_i , f_i , h_{ij} for $i, j \in I$ with relations

•
$$[e_i, f_j] = h_{ij}$$
,
• $[h_{ij}, e_k] = \delta_{ij} a_{jk} e_k$, $[h_{ij}, f_k] = -\delta_{ij} a_{jk} f_k$,
• $(ad_{e_i})^{1-a_{ij}}(e_j) = (ad_{f_i})^{1-a_{ij}}(f_j) = 0$ for $i \neq j, a_{ii} = 2$ or $a_{ij} = 0$.

g is a Borcherds-Kac-Moody algebra iff

$$\mathfrak{g} = \mathfrak{g}(A) \coloneqq \hat{\mathfrak{g}}(A) / \{h_{ij} : i \neq j\}$$
 for some A.

(Convention of [Gannon 2006].)

(a) Let \mathfrak{g} be a real Lie algebra with

< 行い

э

(a) Let \mathfrak{g} be a real Lie algebra with (1) \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$, dim $(\mathfrak{g}_n) < \infty$ for $n \neq 0$,

- 31

(a) Let \mathfrak{g} be a real Lie algebra with

- (1) \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$, dim $(\mathfrak{g}_n) < \infty$ for $n \neq 0$,
- (2) involution $\vartheta \in \operatorname{Aut}(\mathfrak{g})$ with $\vartheta(\mathfrak{g}_n) \subseteq \mathfrak{g}_{-n}$ for all $n \in \mathbb{Z}$, $\vartheta|_{\mathfrak{g}_0} = -\operatorname{id}_{\mathfrak{g}_0}$,

(a) Let \mathfrak{g} be a real Lie algebra with

- (1) \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$, dim $(\mathfrak{g}_n) < \infty$ for $n \neq 0$,
- (2) involution $\vartheta \in \operatorname{Aut}(\mathfrak{g})$ with $\vartheta(\mathfrak{g}_n) \subseteq \mathfrak{g}_{-n}$ for all $n \in \mathbb{Z}$, $\vartheta|_{\mathfrak{g}_0} = -\operatorname{id}_{\mathfrak{g}_0}$,
- (3) \mathfrak{g} and ϑ -invariant symmetric bilinear form (\cdot, \cdot) such that $\mathfrak{g}_n \perp \mathfrak{g}_m$ if $n + m \neq 0$ and $-(\cdot, \vartheta \cdot)$ is positive definite on \mathfrak{g}_n if $n \neq 0$.

(a) Let \mathfrak{g} be a real Lie algebra with

- (1) \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$, dim $(\mathfrak{g}_n) < \infty$ for $n \neq 0$,
- (2) involution $\vartheta \in \operatorname{Aut}(\mathfrak{g})$ with $\vartheta(\mathfrak{g}_n) \subseteq \mathfrak{g}_{-n}$ for all $n \in \mathbb{Z}$, $\vartheta|_{\mathfrak{g}_0} = -\operatorname{id}_{\mathfrak{g}_0}$,
- (3) g- and ∂-invariant symmetric bilinear form (·, ·) such that g_n ⊥ g_m if n + m ≠ 0 and (·, ∂·) is positive definite on g_n if n ≠ 0 (i.e. ([X, Y], Z) = (X, [Y, Z]), (∂X, ∂Y) = (X, Y) for all X, Y, Z ∈ g).

(a) Let \mathfrak{g} be a real Lie algebra with

- (1) \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$, dim $(\mathfrak{g}_n) < \infty$ for $n \neq 0$,
- (2) involution $\vartheta \in \operatorname{Aut}(\mathfrak{g})$ with $\vartheta(\mathfrak{g}_n) \subseteq \mathfrak{g}_{-n}$ for all $n \in \mathbb{Z}$, $\vartheta|_{\mathfrak{g}_0} = -\operatorname{id}_{\mathfrak{g}_0}$,
- (3) g- and ϑ -invariant symmetric bilinear form (\cdot, \cdot) such that $\mathfrak{g}_n \perp \mathfrak{g}_m$ if $n + m \neq 0$ and $-(\cdot, \vartheta \cdot)$ is positive definite on \mathfrak{g}_n if $n \neq 0$ (i.e. $([X, Y], Z) = (X, [Y, Z]), (\vartheta X, \vartheta Y) = (X, Y)$ for all $X, Y, Z \in \mathfrak{g}$).

Then, up to quotients by central ideals and adjoining of commuting derivations, g = g(A) for some BKM matrix A.

[Borcherds 1988]

(a) Let \mathfrak{g} be a real Lie algebra with

- (1) \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$, dim $(\mathfrak{g}_n) < \infty$ for $n \neq 0$,
- (2) involution $\vartheta \in \operatorname{Aut}(\mathfrak{g})$ with $\vartheta(\mathfrak{g}_n) \subseteq \mathfrak{g}_{-n}$ for all $n \in \mathbb{Z}$, $\vartheta|_{\mathfrak{g}_0} = -\operatorname{id}_{\mathfrak{g}_0}$,
- (3) \mathfrak{g} and ϑ -invariant symmetric bilinear form (\cdot, \cdot) such that $\mathfrak{g}_n \perp \mathfrak{g}_m$ if $n + m \neq 0$ and $-(\cdot, \vartheta \cdot)$ is positive definite on \mathfrak{g}_n if $n \neq 0$ (i.e. $([X, Y], Z) = (X, [Y, Z]), (\vartheta X, \vartheta Y) = (X, Y)$ for all $X, Y, Z \in \mathfrak{g}$).

Then, up to quotients by central ideals and adjoining of commuting derivations, g = g(A) for some BKM matrix A.

[Borcherds 1988]

(b) g(A) obeys (1)–(3).

using [Kac 1990, Borcherds 1988, Jurisich 1996]

• For (b), w.l.o.g. the simple roots are linearly independent. We get:

- 3

• For (b), w.l.o.g. the simple roots are linearly independent. We get:

• root space decomposition $\mathfrak{g}(A) = \bigoplus_{\alpha \in \Delta \cup \{0\}} \mathfrak{g}_{\alpha}$ with dim $(\mathfrak{g}_{\alpha}) < \infty$, $\alpha \in \Delta$,

- 3

イロト イポト イヨト イヨト

- For (b), w.l.o.g. the simple roots are linearly independent. We get:
 - root space decomposition $\mathfrak{g}(A) = \bigoplus_{\alpha \in \Delta \cup \{0\}} \mathfrak{g}_{\alpha}$ with dim $(\mathfrak{g}_{\alpha}) < \infty$, $\alpha \in \Delta$,
 - \mathbb{Z} -grading from there by homomorphism $\widecheck{\phi}$: span_{\mathbb{Z}} $(\Delta) \to \mathbb{Z}$,

- 4 週 ト - 4 三 ト - 4 三 ト

- For (b), w.l.o.g. the simple roots are linearly independent. We get:
 - root space decomposition $\mathfrak{g}(A) = \bigoplus_{\alpha \in \Delta \cup \{0\}} \mathfrak{g}_{\alpha}$ with dim $(\mathfrak{g}_{\alpha}) < \infty$, $\alpha \in \Delta$,
 - \mathbb{Z} -grading from there by homomorphism ϕ : span_{\mathbb{Z}} $(\Delta) \to \mathbb{Z}$,
 - involution ϑ by $\vartheta(e_i) \coloneqq -f_i$,

イロト イポト イヨト イヨト

- For (b), w.l.o.g. the simple roots are linearly independent. We get:
 - root space decomposition $\mathfrak{g}(A) = \bigoplus_{\alpha \in \Delta \cup \{0\}} \mathfrak{g}_{\alpha}$ with dim $(\mathfrak{g}_{\alpha}) < \infty$, $\alpha \in \Delta$,
 - \mathbb{Z} -grading from there by homomorphism ϕ : span_{\mathbb{Z}} $(\Delta) \to \mathbb{Z}$,
 - involution ϑ by $\vartheta(e_i) := -f_i$,
 - g- and ϑ -invariant symmetric bilinear form (\cdot, \cdot) by induction.

- For (b), w.l.o.g. the simple roots are linearly independent. We get:
 - root space decomposition $\mathfrak{g}(A) = \bigoplus_{\alpha \in \Delta \cup \{0\}} \mathfrak{g}_{\alpha}$ with dim $(\mathfrak{g}_{\alpha}) < \infty$, $\alpha \in \Delta$,
 - \mathbb{Z} -grading from there by homomorphism ϕ : span_{\mathbb{Z}} $(\Delta) \to \mathbb{Z}$,
 - involution ϑ by $\vartheta(e_i) := -f_i$,
 - g- and ϑ -invariant symmetric bilinear form (\cdot, \cdot) by induction.
- Remaining problem: why is $-(\cdot, \vartheta \cdot)$ (almost) positive definite?

- 本間 医 (本語) (本語) (二語)

- For (b), w.l.o.g. the simple roots are linearly independent. We get:
 - root space decomposition $\mathfrak{g}(A) = \bigoplus_{\alpha \in \Delta \cup \{0\}} \mathfrak{g}_{\alpha}$ with dim $(\mathfrak{g}_{\alpha}) < \infty$, $\alpha \in \Delta$,
 - \mathbb{Z} -grading from there by homomorphism $\widecheck{\phi}$: span_{\mathbb{Z}}(Δ) $ightarrow \mathbb{Z}$,
 - involution ϑ by $\vartheta(e_i) \coloneqq -f_i$,
 - g- and ϑ -invariant symmetric bilinear form (\cdot, \cdot) by induction.
- Remaining problem: why is $-(\cdot, \vartheta \cdot)$ (almost) positive definite?
 - $\rightarrow \text{ show: } \ker\left(\cdot,\cdot\right) \eqqcolon \mathfrak{r} = \langle \mathsf{ad}_{e_i}^{1-a_{ij}}(e_j), \mathsf{ad}_{f_i}^{1-a_{ij}}(f_j) : i \neq j, a_{ii} = 2 \text{ or } a_{ij} = 0 \rangle.$

ヘロト 不得 とうき とうとう ほう

- For (b), w.l.o.g. the simple roots are linearly independent. We get:
 - root space decomposition $\mathfrak{g}(A) = \bigoplus_{\alpha \in \Delta \cup \{0\}} \mathfrak{g}_{\alpha}$ with dim $(\mathfrak{g}_{\alpha}) < \infty$, $\alpha \in \Delta$,
 - \mathbb{Z} -grading from there by homomorphism ϕ : span_{\mathbb{Z}} $(\Delta) \to \mathbb{Z}$,
 - involution ϑ by $\vartheta(e_i) \coloneqq -f_i$,
 - g- and ϑ -invariant symmetric bilinear form (\cdot, \cdot) by induction.
- Remaining problem: why is $-(\cdot, \vartheta \cdot)$ (almost) positive definite?

 $\rightarrow \text{ show: } \ker\left(\cdot,\cdot\right) \eqqcolon \mathfrak{r} = \langle \mathsf{ad}_{e_i}^{1-a_{ij}}(e_j), \mathsf{ad}_{f_i}^{1-a_{ij}}(f_j) : i \neq j, a_{ii} = 2 \text{ or } a_{ij} = 0 \rangle.$

For this: Casimir-like operator Ω₀ "almost commuting" with action of g(A) on modules and whose eigenvalues on highest weight modules contain valuable information.

ヘロト 不得 とうき とうとう ほう

- For (b), w.l.o.g. the simple roots are linearly independent. We get:
 - root space decomposition $\mathfrak{g}(A) = \bigoplus_{\alpha \in \Delta \cup \{0\}} \mathfrak{g}_{\alpha}$ with dim $(\mathfrak{g}_{\alpha}) < \infty$, $\alpha \in \Delta$,
 - \mathbb{Z} -grading from there by homomorphism ϕ : span_{\mathbb{Z}} $(\Delta) \to \mathbb{Z}$,
 - involution ϑ by $\vartheta(e_i) \coloneqq -f_i$,
 - g- and ϑ -invariant symmetric bilinear form (\cdot, \cdot) by induction.
- Remaining problem: why is $-(\cdot, \vartheta \cdot)$ (almost) positive definite?

 $\rightarrow \text{ show: } \ker\left(\cdot,\cdot\right) \eqqcolon \mathfrak{r} = \langle \mathsf{ad}_{e_i}^{1-a_{ij}}(e_j), \mathsf{ad}_{f_i}^{1-a_{ij}}(f_j) : i \neq j, a_{ii} = 2 \text{ or } a_{ij} = 0 \rangle.$

- For this: Casimir-like operator Ω₀ "almost commuting" with action of g(A) on modules and whose eigenvalues on highest weight modules contain valuable information.
- From Ω_0 on \mathfrak{r} : \mathfrak{r} generated by $\mathfrak{r} \cap \mathfrak{g}_{\pm \alpha}$ with $\alpha \in \Delta_+$ non-simple, $2\rho(\nu^{-1}(\alpha)) = (\alpha, \alpha)$. ($\rho \in \mathfrak{g}_0^*$ Weyl vector, $\nu : \mathfrak{g}_0 \hookrightarrow \mathfrak{g}_0^*$ from (\cdot, \cdot) .)

5/6

- For (b), w.l.o.g. the simple roots are linearly independent. We get:
 - root space decomposition $\mathfrak{g}(A) = \bigoplus_{\alpha \in \Delta \cup \{0\}} \mathfrak{g}_{\alpha}$ with dim $(\mathfrak{g}_{\alpha}) < \infty$, $\alpha \in \Delta$,
 - \mathbb{Z} -grading from there by homomorphism ϕ : span_{\mathbb{Z}} $(\Delta) \to \mathbb{Z}$,
 - involution ϑ by $\vartheta(e_i) \coloneqq -f_i$,
 - g- and ϑ -invariant symmetric bilinear form (\cdot, \cdot) by induction.
- Remaining problem: why is $-(\cdot, \vartheta \cdot)$ (almost) positive definite?

 $\rightarrow \text{ show: } \ker\left(\cdot,\cdot\right) \eqqcolon \mathfrak{r} = \langle \mathsf{ad}_{e_i}^{1-a_{ij}}(e_j), \mathsf{ad}_{f_i}^{1-a_{ij}}(f_j) : i \neq j, a_{ii} = 2 \text{ or } a_{ij} = 0 \rangle.$

- For this: Casimir-like operator Ω₀ "almost commuting" with action of g(A) on modules and whose eigenvalues on highest weight modules contain valuable information.
- From Ω_0 on \mathfrak{r} : \mathfrak{r} generated by $\mathfrak{r} \cap \mathfrak{g}_{\pm \alpha}$ with $\alpha \in \Delta_+$ non-simple, $2\rho(\nu^{-1}(\alpha)) = (\alpha, \alpha)$. ($\rho \in \mathfrak{g}_0^*$ Weyl vector, $\nu : \mathfrak{g}_0 \hookrightarrow \mathfrak{g}_0^*$ from (\cdot, \cdot) .)
- If x ∈ (t ∩ g_{-α}) \ ⟨ad^{1-a_{ij}}_{f_i}(f_j)⟩: reflect α "and x" into the Weyl chamber. Computations...contradiction to 2ρ(ν⁻¹(α)) = (α, α).

- 3

Thank you for your attention!

- 2

イロト イヨト イヨト イヨト