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INTRODUCTION



• Consider the Elliptic genus of K 3.

F (K 3; τ, z) =

TrRR

(
(−1)F K 3+F̄ K 3

e2πizF K 3
e2πiτ(L0−c/24)ē−2πi τ̄(L̄0−ĉ/24)

)
=

∑
m≥0,l

c(4m − l2)e2πimτe2πilz

The trace is taken over the Ramond sector.

The elliptic genus is holomorphic in τ, z.

Only the ground states of the left movers are counted.



Evaluating the index we obtain

F (K 3; τ, z) = 8
[
θ2(τ, z)2

θ2(τ,0)2 +
θ3(τ, z)2

θ3(τ,0)2 +
θ4(τ, z)2

θ4(τ,0)2

]
≡ 8A(τ, z)

The Hodge diamond of K 3 is given by

h(0,0) = h(2,2) = h(0,2) = h(2,0) = 1,
h(1,1) = 20



Focus on 2 aspects in which the elliptic genus of K 3 plays an
important role.

• Counting 1/4 BPS, dyons in N = 4 string compactifications of
type II string theory on K 3× T 2.

Dual to heterotic on T 6.

• One loop corrections to gravitational/gauge couplings of
N = 2 string compactifications of heterotic string theory on
K 3× T 2.

Dual to type II on Calabi-Yau



Consider generalizations:
• Consider type II B on K 3 × T 2.

Orbifold this with g′:
Acts as a Z2 involution on K 3 together with a 1/2 shift on one
of the circles of S1.

The action preserves N = 4 supersymmetry.
The Hodge Diamond of the quotiented K 3

h(0,0) = h(2,2) = h(0,2) = h(2,0) = 1,
h(1,1) = 12



• On the heterotic side, this compactification is dual to the
simplest of the CHL compactifications.

Exchange the 2 E8 × E8 of the heterotic together with a 1/2
shift on one of the circles of T 6.

Notice that the rank is reduced by 8.



To be explicit, let us provide an orbifold realization of this
compactification.

Realize the K 3: T 4/Z2

g : (y1, y2, y3, y4, y5, y6)→ (y1, y2,−y3,−y4,−y5,−y6)

The involution g′ acts as

g′ : (y1, y2, y3, y4, y4, y6)→ (y1 + π, y2, y3 + π, y4, y5, y6)

Orbifolding by g produces the K 3× T 2 manifold.

Further orbifolding by g′ produces (K 3× T 2)/Z2



Lets us now evaluate the following twisted elliptic genus of K 3.

F (r ,s)(τ, z)

=
1
N
TrK 3

RR;g′r

(
(−1)F K 3+F̄ K 3

g′se2πizF K 3
e2πiτ(L0−c/24)q̄−2πi τ̄(L̄0−c/24)

)
,

=
∑

m≥0∈Z/2,l∈Z

c(r ,s)(4m − l2)e2πimτe2πilz

0 ≤ r , s,≤ 1.



Using the orbifold realization of K 3 and the g′ action, we obtain

F (0,0) =
8
2

A(τ, z),

F (0,1) =
8
6

A(τ, z)− 2
3

B(τ, z)E2(τ),

F (1,0) =
8
6

A(τ, z) +
1
3

B(τ, z)E2(
τ

2
),

F (1,1) =
8
6

A(τ, z) +
1
3

B(τ, z)E2(
τ + 1

2
)

B(τ, z) =
θ2

1(τ, z)

η6(τ)
,



EN(τ) =
12i

π(N − 1)
∂τ ln

η(τ)

η(Nτ)

Is a modular form of weight 2 of the group Γ0(N)



These twisted elliptic genera for the ZN quotients of K 3 by g′

with N = 2,3,5,7 have been written down in
David, Jatkar, Sen (2006) .

g′ is a ZN automorphism of K 3.

The Hodge diamond of K 3/ZN becomes

h(0,0) = h(2,2) = h(0,2) = h(2,0) = 1,

h(1,1) = 2
(

24
N + 1

− 2
)

= 2k



N h(1,1) k
1 20 10
2 12 6
3 8 4
5 4 2
7 2 1

Let us call these CHL orbifolds. In fact there are 3 additional
CHL orbifolds N = 4,6,8. with k = 3,2,1 respectively.

The heterotic duals of these orbifolds have been studied earlier.
Chaudhuri, Hockney, Lykken (1995), Chaudhuri, Lowe (1995)



The twisted elliptic genera on these quotients of K 3 is the
crucial input

for constructing the generating function of

1/4 BPS dyons in compactifications of type II on K 3× T 2/ZN

(N = 4 supersymmetry).



With the discovery of Mathieu Moonshine symmetry in K 3 it
was found that to each conjugacy class g′ in M24, one can
construct the twining character

F (0,1)(τ, z)

=
1
N
TrK 3

RR

(
(−1)F K 3+F̄ K 3

g′e2πizF K 3
e2πiτ(L0−c/24)q̄−2πi τ̄(L̄0−c/24)

)
,

There are 26 twining characters in all.
Cheng (2005), Eguchi, Hikami (2005), Gaberdiel, Hohenegger,

Volpato (2006)

The twining character character of the N = 2,3,5,7 CHL
constructed earlier coincides with the class pA, with
p = 2,3,5,7.



Conjucay Class Order Cycle shape Cycle

1A 1 124 ()
2A 2 18 · 28 (1, 8)(2, 12)(4, 15)(5, 7)(9, 22)(11, 18)(14, 19)(23, 24)
3A 3 16 · 36 (3, 18, 20)(4, 22, 24)(5, 19, 17)(6, 11, 8)(7, 15, 10)(9, 12, 14)
5A 4 14 · 54 (2, 21, 13, 16, 23)(3, 5, 15, 22, 14)(4, 12, 20, 17, 7)(9, 18, 19, 10, 24)
7A 7 13 · 73 (1, 17, 5, 21, 24, 10, 6)(2, 12, 13, 9, 4, 23, 20)(3, 8, 22, 7, 18, 14, 19)
11A 11 12 · 112 (1, 3, 10, 4, 14, 15, 5, 24, 13, 17, 18)(2, 21, 23, 9, 20, 19, 6, 12, 16, 11, 22)
23A 23 11 · 231 (1, 7, 6, 24, 14, 4, 16, 12, 20, 9, 11, 5, 15, 10, 19, 18, 23, 17, 3, 2, 8, 22, 21)
23B 23 11 · 231 (1, 4, 11, 18, 8, 6, 12, 15, 17, 21, 14, 9, 19, 2, 7, 16, 5, 23, 22, 24, 20, 10, 3)

4B 4 14 · 22 · 44 (1, 17, 21, 9)(2, 13, 24, 15)(3, 23)(4, 14, 5, 8)(6, 16)(12, 18, 20, 22)
6A 6 12 · 22 · 32 · 62 (1, 8)(2, 24, 11, 12, 23, 18)(3, 20, 10)(4, 15)(5, 19, 9, 7, 14, 22)(6, 16, 13)
8A 8 12 · 21 · 41 · 82 (1, 13, 17, 24, 21, 15, 9, 2)(3, 16, 23, 6)(4, 22, 14, 12, 5, 18, 8, 20)(7, 11)
14A 14 11 · 21 · 71 · 141 (1, 12, 17, 13, 5, 9, 21, 4, 24, 23, 10, 20, 6, 2)(3, 18, 8, 14, 22, 19, 7)(11, 15)
14B 14 11 · 21 · 71 · 141 (1, 13, 21, 23, 6, 12, 5, 4, 10, 2, 17, 9, 24, 20)(3, 14, 7, 8, 19, 18, 22)(11, 15)
15A 15 11 · 31 · 51 · 151 (2, 13, 23, 21, 16)(3, 7, 9, 5, 4, 18, 15, 12, 19, 22, 20, 10, 14, 17, 24)(6, 8, 11)
15B 15 11 · 31 · 51 · 151 (2, 23, 16, 13, 21)(3, 12, 24, 15, 17, 18, 14, 4, 10, 5, 20, 9, 22, 7, 19)(6, 8, 11)

Table: Conjugacy classes of M23 ⊂ M24 (Type 1)



Conjucay Class Order Cycle shape Cycle

2B 4 212 (1, 8)(2, 10)(3, 20)(4, 22)(5, 17)(6, 11)(7, 15)(9, 13)(12, 14)(16, 18)(19, 23)(21, 24)
3B 9 38 (1, 10, 3)(2, 24, 18)(4, 13, 22)(5, 19, 15)(6, 7, 23)(8, 21, 12)(9, 16, 17)(11, 20, 14)

12B 144 122 (1, 12, 24, 23, 10, 8, 18, 6, 3, 21, 2, 7)(4, 9, 11, 15, 13, 16, 20, 5, 22, 17, 14, 19)
6B 36 64 (1, 24, 10, 18, 3, 2)(4, 11, 13, 20, 22, 14)(5, 17, 19, 9, 15, 16)(6, 21, 7, 12, 23, 8)
4C 16 46 (1, 23, 18, 21)(2, 12, 10, 6)(3, 7, 24, 8)(4, 15, 20, 17)(5, 14, 9, 13)(11, 16, 22, 19)
10A 20 22 · 102 (1, 8)(2, 18, 21, 19, 13, 10, 16, 24, 23, 9)(3, 4, 5, 12, 15, 20, 22, 17, 14, 7)(6, 11)
21A 63 31 · 211 (1, 3, 9, 15, 5, 12, 2, 13, 20, 23, 17, 4, 14, 10, 21, 22, 19, 6, 7, 11, 16)(8, 18, 24)
21B 63 31 · 211 (1, 12, 17, 22, 16, 5, 23, 21, 11, 15, 20, 10, 7, 9, 13, 14, 6, 3, 2, 4, 19)(8, 24, 18)
4A 8 24 · 44 (1, 4, 8, 15)(2, 9, 12, 22)(3, 6)(5, 24, 7, 23)(10, 13)(11, 14, 18, 19)(16, 20)(17, 21)

12A 24 21 · 41 · 61 · 121 (1, 15, 8, 4)(2, 19, 24, 9, 11, 7, 12, 14, 23, 22, 18, 5)(3, 13, 20, 6, 10, 16)(17, 21)

Table: Conjugacy classes of M24 6∈ M23 (Type 2)



Using:

modular transformations and

correspondence with cycle structure in M24 (needed for
conjugacy class with composite orders)

We can construct the twisted elliptic genera given the twining
character for all classes g′ ∈ M23 ⊂ M24.

Chattopadhyaya, David (2017),
earlier Gaberdiel, Persson, Ronellenfitsch, Volpato (2012)

The classes are:



Conjucay Class Order

1A 1
2A 2
3A 3
5A 5
7A 7
11A 11

23A/B 23

4B 4
6A 6
8A 8

14A/B 14
15A/B 15

Table: The classes 2A, 3A, 5A, 7A, 4B, 6A, 8A are the CHL orbifolds.



The twisted elliptic genera is of the form:

F (0,0)(τ, z) = α
(0,0)
g′ A(τ, z),

F (r ,s)(τ, z) = α
(r ,s)
g′ A(τ, z) + β

(r ,s)
g′ (τ)B(τ, z),

r , s ∈ {0,1, · · ·N − 1} with (r, s) 6= (0, 0)

α
(r ,s)
g′ are numerical constants

β
(r ,s)
g′ is a weight 2 modular form under Γ0(N) which have been

explicitly constructed.



With the twisted genera we can explore its role in

• Dyons in type IIB on (K 3× T 2)/ZN : N = 4 compactifications.

• One loop corrections: gravitational/gauge
on heterotic E8×,E8 theory on (K 3× T 2)/ZN : N = 2
compactifications.

The rest of the talk will focus on the second aspect.



HETEROTIC E8 × E8 on

(K 3× T 2)/ZN



Let us describe the heterotic compactification briefly.

Consider first the E8 × E8 theory on K 3× T 2.

This is well studied compactificatiion in the context of N = 2
string duality.

This theory is dual to type II A on a Calabi-Yau.



To preserve supersymmetry one needs to embed the spin
connection of K 3 in a SU(2) of the gauge group.

The simplest way to see this is from the supersymmetry
variations.

This requires
Tr(F ∧ F )− Tr(R ∧ R) = 0

We must pick the gauge connection from SU(2) from say one
of the E8’s and set it equal to the spin connection of K 3 to
ensure this equation is true.



Lets describe this more from the conformal field theory point of
view.

We take the right moving sector to be supersymmetric.

Consider the fermionic description of the E8 in terms of
left moving fermions
λI , I = 1, · · · 16.

We break this lattice to D2 with I = 1,2,3,4 and the rest D6.

The world sheet has a term of

G =
4∑

I,J=1

λIBIJ
a λ

J ∂̄X a

Ba refers to the SU(2) spin connection.
The 4 fermions get coupled to the bosons of K 3 .
The remaining fermions are free.



Thus the internal CFT splits into

Hinternal = H(6,6)
D2K 3 ⊗H

(6,0)
D6 ⊗H(8,0)

E8
⊗H(2,3)

T 2 .

The left moving fermions together with bosons and their right
moving bosons and their super partners form the (6,6) SCFT
of K 3.

With this decomposition, we can specify the action of g′.

The g′ acts as a ZN automorphism on the (6,6) CFT HD2K 3

together with a 1/N shift on one of the circles in H(2,3)

T 2 .



• These compactifications preserve N = 2 supersymmetry.

• The un-broken gauge group is U(1)× E7 × E8

• The orbifold by g′ reduces the number of hypers in the theory.

Note that for the K 3× T 2 compactification due to the up-lift to 6
dimensions, there is a constraint on number of

Nh − Nv = 240

These compactifications cannot be lifted to 6d , (note the shift
by 1/N on one of the radii of T 2.



• Recall the heterotic E8 × E8 string theory on K 3× T 2 with the
standard embedding is dual to type II on Calabi-Yau (K3
fibered) with

χ = −480

Kachru, Vafa (1995), Klemm, Lerche, Mayr (1995)

• Compactifications on orbifolds (K 3× T 2)/ZN give rise to
generalizations of this heterotic-type II string duality



• The dual theory is type II string compactified on Calabi-Yau.

The properties of this Calabi-Yau can be predicted by
evaluating one loop corrections/ certain supersymmetric indices
on the heterotic side.

The one loop gravitational corrections contain information of
Gopakumar-Vafa invariants.



•With this aim, we examine the one loop correction

S =

∫
Fg(y , ȳ)F 2g−2R2

F ,R are the self dual part of the gravi-photon and the Riemann
curvature.

The coupling Fg(y , ȳ) depends on the vector multiplet moduli.

We will restrict our attention to the Kähler and complex
structure of the torus.



NEW SUPERSYMMETRY INDEX

AND

THE TWISTED ELLIPTIC GENUS



• The coupling Fg is obtained by performing a one loop integral
over the fundamental domain.

The input to obtain the integrand is the new supersymmetric
index

Znew =
1

η2(τ)
TrR[(−1)F̄ F̄qL0− c

24 q̄L̃0− c̃
24 ].

F refers to the right moving fermions number.
Sum of the right moving fermion number of the T 2 CFT and
right moving fermion number of the K 3 CFT

F̄ = F̄ T 2
+ F̄ K 3.

The trace is taken over the Ramond sector of the right moving
supersymmetric internal conformal field theory.
Note that (c, c̃) = (22,9).



The new supersymmetric index is a different quantity from the
Elliptic genus/twisted elliptic genus of K 3

•We will show that the twisted elliptic genus determines the
new supersymmetric index.



The internal conformal field theory

Hinternal = H(6,6)
D2K 3 ⊗H

(6,0)
D6 ⊗H(8,0)

E8
⊗H(2,3)

T 2 .

The CFT H(6,6)
D2K 3 is orbifolded by g′ with 1/N shifts in the H(2,3)

T 2 .



Keeping track of the zero modes on the torus, evaluating the
trace

Znew =
1

η2(τ)

Γ
(r ,s)
2,2 (q, q̄)

η2(τ)

×

[
θ6

2(τ)

η6(τ)
Φ

(r ,s)
R +

θ6
3(τ)

η6(τ)
Φ

(r ,s)
NS+ −

θ6
4(τ)

η6(τ)
Φ

(r ,s)
NS−

]

×E4(q)

η8(τ)
.

The sum over the sectors (r , s) is implied and r , s run from 0 to
N − 1.



Let us understand the origin of each term
Γ

(r,s)
2,2
η2 arises from the lattice sum on T 2 together with the left

moving bosonic oscillators.

The lattice sum

Γ
(r ,s)
2,2 (q, q̄) =

∑
m1,m2,n2∈Z,

n1=Z+ r
N

q
p2
L
2 q̄

p2
R
2 e2πim1s/N ,

1
2

p2
R =

1
2T2U2

| −m1U + m2 + n1T + n2TU|2,

1
2

p2
L =

1
2

p2
R + m1n1 + m2n2 .



• T ,U are the Kähler and complex structure of the T 2.

The lattice sum is the only part of the index that contains
anti-holomorphic dependence.

• The insertion of (g′)s and the twisted sectors of (g′)s:

Result in the phase e2πim1s/N

The winding modes to shift from integers by r
N .



• The term E4(q)
η8(τ)

arises
from the partition function of the second E8 gauge group which
is untouched in the standard embedding.

E4 is the Eisenstein series of weight 4.



• The terms in the square bracket arises from evaluating the
index on the D6 lattice together with the combined D2K 3.

The partition function on the D6 lattice in the various sectors
are given by

ZR(D6; q) =
θ6

2
η6 , ZNS+(D6; q) =

θ6
3
η6 , ZNS−(D6; q) =

θ6
4
η6 .



• The indices on the combined D2K 3, (6,6) conformal field
theory are given by

Φ
(r ,s)
R =

1
N
TrR R,gr [gs(−1)FR qL0−c/24q̄L̄0−c̄/24],

= F (r ,s)(τ,
1
2

)

Φ
(r ,s)
NS+ =

1
N
TrNS R,gr [gs(−1)FR qL0−c/24q̄L̄0−c̄/24],

= q1/4F (r ,s)(τ,
τ + 1

2
),

Φ
(r ,s)
NS− =

1
N
TrNS R,gr [gs(−1)FR+FLqL0−c/24q̄L̄0−c̄/24],

= q1/4F (r ,s)(τ,
τ

2
)



Use the expressions for the twisted elliptic genus and using
identities relating theta functions and Eisenstein series we
obtain

Znew(q, q̄) = −2
1
η24 Γ

(r ,s)
2,2 E4

[
1
4
α

(r ,s)
g′ E6 − β

(r ,s)
g′ f (r ,s)

g′ E4

]
.

• Only the lattice sum is dependent on both (τ, τ̄).

• The Eisenstein series E6,E4 as well as f (r ,s) are holomorphic
in τ .

• The sum over r , s from 0, · · ·N − 1 is understood.



• This result for the new supersymmetric index,
though obtained using some what abstract arguments
was verified using explicit orbifold limits of K 3.
Datta, David, Lust (2015) Chattopadhyaya, David (2016)

•When there is no-orbifold: the new supersymmetric index
reduces to well known

E4E6

η24

Harvey, Moore (1995)



We read out Nh − Nv from the new supersymmetric index.

f (r ,s)(τ) =
1

2η24(τ)
E4

[
1
4
α

(r ,s)
g′ E6 − β

(r ,s)
g′ (τ)E4

]
,

=
∑
l∈ Z

N

c(r ,s)
−1 (l)ql .

Nh − Nv = −
N−1∑
s=0

c(0,s)
−1 (0).

Evaluating this for each of the orbifolds in M23 we obtain



Orbifold Nh − Nv χ

1A 240 -480
2A -16 32
3A -138 276
5A -260 520
7A -321 642
11A -380 760
23A - 442 884

4B -200 400
6A -262 524
8A -322 644
14A -382 764
15A -382 764

Table: Nh − Nv , χ



GRAVITATIONAL CORRECTIONS



• Given the new supersymmetric index, we can evaluate the
gravitational corrections.

Following the analysis of
Atoniadis, Gava, Narain, Taylor (1995)

The one loop string amplitude with 2 graviton and 2g − 2 one
gravi-photon insertions for the orbifold theory we arrive at the
following.



Consider the generating function

F (λ,T ,U) =
∞∑

g=1

λ2gFg(T ,U).

Then the Fg ’s can be obtained by performing the integral

F (λ,T ,U) =
1
π2

∫
d2τ

τ2

1
η24(τ)

Γ
(r ,s)
2,2 E4

[
1
4
α

(r ,s)
g′ E6 − β

(r ,s)
g′ (τ)E4

]

×

[(
2πiλη3

θ1(λ̃, τ)

)2

e−
πλ̃2
τ2

](r ,s)

.

where

λ̃ =
p(r ,s)

R λ
√

2T2U2
.



• The integral can be performed by the unfolding method.

• The integral is a generalization of that performed by
Harvey, Moore (1998) The integrand involves modular form
under Γ0(N).

• The result for the holomorphic part, topological part of the
integral is the following.



Start from the twisted elliptic genus

f (r ,s)(τ) =
1

2η24(τ)
E4

[
1
4
α

(r ,s)
g′ E6 − β

(r ,s)
g′ (τ)E4

]
,

G2k = 2ζ(2k)E2k .



Define:

f (r ,s)(τ)P2g(G2,G4,G6, · · · ,G2g) =
∑
l∈ Z

N

c(r ,s)
g−1 (l ,0)ql ,

P2g is related to the Schur polynomial S of order g by

P2g(x1, x2, · · · xg) = −S(x1,
1
2

x2, · · ·
1
g

xg).

P0 = −1, P2(Ĝ2) = −Ĝ2, P4(Ĝ2,G4) = −1
2

(Ĝ2
2 + G4),

P3(Ĝ2,G4,G6) = −1
6

(Ĝ3
2 + Ĝ2Ĝ4)− 1

3
G6.

where the G’s are normalized Eisenstein series

G2k = 2ζ(2k)E2k , Ê2(τ) = E2 −
3
πτ2

.



Then the topological amplitude F̄g is given by

F̄hol
g (y)

=
(−1)g−1

π2

N−1∑
s=0

(∑
m>0

e−2πin2s/Nc(r ,s)
g−1 (m2/2,0)Li3−2g(e2πim·y )

+
1
2

c(0,s)
g−1 (0,0)ζ(3− 2g)

)
.

The sum over lattice points m > 0 refers to the following lattice
points (n1,n2), n1 ∈ Z

N ,n2 ∈ Z with the restrictions

n1,n2 ≥ 0, but (n1,n2) 6= (0,0),

(r/N,−n2), with n2 > 0 and rn2 ≤ N.

y = (T ,U) is the Kähler and complex structure of the torus
T 2, m2 = 2n1n2 and m · y = n1T + n2U.
The functions Li3−2g are polylogarithm functions of order
3− 2g.



•We see that indeed it is the
coefficients of the twisted elliptic genus of K 3 which
forms the basic input data for the topological amplitude F̄g(y).

• It is in this sense M24 symmetry of K 3 is carried over to the
topological amplitude.

• This is a generalization of the observation
Cheng, Dong, Duncan, Harvey, Kachru, Wrase (2013) in which the
elliptic genus of K 3 which results in
E4E6/η

24,
for the new supersymmetric index
is the crucial input data for the topological amplitude for the
unorbifolded model.



GOPAKUMAR-VAFA INVARIANTS



The genus g topological amplitude on a Calabi-Yau admits the
following expansion For g > 1, this is given by

FGV
g =

(−1)g |B2gB2g−2|χ(X )

4g(2g − 2)(2g − 2)!

+
∑

m

[
|B2g |n0

m

2g(2g − 2)!
+

2(−1)gn2
m

(2g − 2)!
± ...− g − 2

12
ng−1

m + ng
m

]
Li3−2g(e2πim·y ).

We have included the constant term which is the contribution
to the topological amplitude due to holomorphic maps from
genus g surface to a single point.
Review by Marino (2002)



For g = 0 we have we obtain

FGV
0 = ζ(3)

χ(X )

2
+
∑
m>0

n0
mLi3(e2πim·y ),

where have included the contribution due to the Euler
characteristic of the Calabi-Yau target.
Finally for g = 1 we have

FGV
1 =

∑
m>0

(
1

12
n0

m + n1
m

)
Li1(e2πim·y ).



• It is not obvious that the topological amplitude evaluated for
the orbifolds g′: K 3× T 2/ZN
can be written in the Gopakumar-Vafa form with integer
invariants ng

m.

• Comparing the constant terms in the Gopakumar-Vafa form of
the topological amplitude and that evaluated using the one loop
calculation
we fix the normalization relating the amplitudes

FGV
g =

(−1)g+1

2(2π)2g−2 F̄hol
g .



• Once the normalization is fixed:
We read out the invariants ng

m in terms of c(r ,s)
g−1 (m2/2,0)

which in turn is determined from the expansion of the twisted
elliptic genus of K 3.



• For example

n0
(n1,n2) = 2

N−1∑
s=0

e−
2πin2s

N c(r ,s)
−1 (m2/2,0), r = n2N mod N

= −2
N−1∑
s=0

e−
2πin2s

N c(r ,s)(n1n2).



•We have evaluated the GV invariants for all the orbifolds g′

corresponding to the M23 conjugacy classes M23 for
g = 0,1,2,3 and shown that they are integers.

In fact the way this works is the formulae are such that once the
genus zero invariant n0

m are integers,

Then the we can show that the higher genus ( g = 1,2,3) GV
invariants are integers.
A list of the GV invariants is provided
Chattopadhyaya, David (2017)



(n1, n2) (1,−1) (1,0) (1,1) (1,2) (1,3)

n0
(n1,n2)

−2 480 282888 17058560 477516780

(n1, n2) (1,4) (1,5) (1,6) (1,7) (1,8)

n0
(n1,n2)

8606976768 115311621680 1242058447872 11292809553810 89550084115200

Table: N = 1, K 3 itself.

(n1, n2) (0, n2) (1,1) (1,2) (1,3) (1,4)

n0
(n1,n2)

−32 151552 8387328 47890048 4294949632

(n1, n2) (1/2, 0) (1/2,2) (1/2,4) (1/2,6) (1/2,8)

n0
(n1,n2)

512 151552 8671232 240009216 4312027136

(n1, n2) (1/2,−1) (1/2,1) (3/2,1) (5/2,1) (7/2,1)

n0
(n1,n2)

16 8128 1212576 47890048 1055720304

Table: N = 2, 2A orbifold.



•We can locate conifold sigularities from the toplogical
amplitude.

These occur at m · y → 0.

These singularities occur only in the twisted sector at lattice
points

m = (
r
N
,−n2), r ,n2 > 0,

m2

2
= − rn2

N
, rn2 ≤ N.

There are no singularities in the untwisted sector.



• The strength of the singularity is

F̄hol
g |m·y→0 =

1
2π2 (2π)gχ(Mg)× n0

( r
N ,−n2)

1
{1− e2πim·y}2g−2

It is determined by the genus zero GV invariant.

• For the un-orbifolded K 3× T 2 the conifold singularity lies at
only the lattice point m = (1,−1) and n0

(1,−1) = −2.



GAUGE COUPLING CORRECTIONS



•We have also studied the one loop corrections to gauge
coupling constants, including the an additional Wilson line V
along the T 2.

It can be shown that for the standard embedding, the difference
of the one loop corrections between the the two gauge groups:
E7 and E8
is determined by Siegel modular forms Φk (U,T ,V ).



Consider 1-loop corrections to the gauge couplings

1
g2(E7)

= ∆G′(T ,U,V ),
1

g2(E8)
= ∆G′(T ,U,V )

which depend on the Kähler and complex structure moduli
T ,U of the torus T 2.

We turn on the Wilson line

V = A1 + iA2

with values in say a U(1) of the unbroken E8.



•We show that the difference in one loop threshold corrections

∆G(T ,U,V )−∆G′(T ,U,V ) = −48 log
[
(det ImΩ)k |Φk (T ,U,V )|2

]
,

where Φk is a weight k modular form transforming under
subgroups of Sp(2,Z) with k
Datta, David, Lust (2015) Chattopadhyaya, David (2016)

• Again, the gauge coupling corrections also depend only of the
coefficients of the twisted elliptic genus.



• This generalises the result due to
Stieberger (1998)
who observed this phenomenon for the unorbifolded theory.
In this case the Seigel modular form is the Igusa cusp form
Φ10(U,T ,V ).



CONCLUSIONS



•We have studied the E8 × E8 heterotic string theory
compactified on orbifolds g′: K 3× T 2/ZN inspired by the
Moonshine symmetry of K 3.

•We have shown that the data which determines one loop
corrections are the coeffiicents elliptic genus of K 3 twisted by
g′.



• Our study provides some topological information of the type II
theory on the putative Calabi-Yau.

• It will be interesting to explore the type II theory directly in
detail.


