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INTRODUCTION



e Consider the Elliptic genus of K3.

Trpn < (—1) FR34FK3 2rizFKS 627ri7—(Lofc/24)éf27ri'F(Zofé/24)>
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The trace is taken over the Ramond sector.

The elliptic genus is holomorphic in 7, z.

Only the ground states of the left movers are counted.



Evaluating the index we obtain

F(K3;7,z) = 8

Il

oo
=
A
e

The Hodge diamond of K3 is given by

ho,0) = he2) = ho2) = heo) =1,
P11y = 20



Focus on 2 aspects in which the elliptic genus of K3 plays an
important role.

e Counting 1/4 BPS, dyons in A/ = 4 string compactifications of
type Il string theory on K3 x T2,

Dual to heterotic on T°.
e One loop corrections to gravitational/gauge couplings of

N = 2 string compactifications of heterotic string theory on
K3 x T2.

Dual to type Il on Calabi-Yau



Consider generalizations:
e Consider type Il Bon K3 x T2,

Orbifold this with g’:
Acts as a Z, involution on K3 together with a 1/2 shift on one
of the circles of S'.

The action preserves A/ = 4 supersymmetry.
The Hodge Diamond of the quotiented K3

ho,0) = h,2) = ho2) = heo) =1,
heray = 12



¢ On the heterotic side, this compactification is dual to the
simplest of the CHL compactifications.

Exchange the 2 Eg x Eg of the heterotic together with a 1/2
shift on one of the circles of T°.

Notice that the rank is reduced by 8.



To be explicit, let us provide an orbifold realization of this
compactification.

Realize the K3: T*/7Z»

gAYy ) = vy =y -yt =y )
The involution g’ acts as
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Orbifolding by g produces the K3 x T2 manifold.
Further orbifolding by g’ produces (K3 x T2)/Zs



Lets us now evaluate the following twisted elliptic genus of K3.

F)(r, 2)
1 K3 FK3 nizFKS orir B — priF (I
— NTrgI%;g” ((71)F +F g/sez izF e2 iT(Lo c/24)q 27iT(Lo c/24))
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0<r,s<1.



Using the orbifold realization of K3 and the g’ action, we obtain

F(O’O) = gA(Tv Z)7
FO1) gA(T, z) - gB(r, Z)Ea(7),
8 1 T
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En(T) = p.

Is @ modular form of weight 2 of the group I'o(N)



These twisted elliptic genera for the Zy quotients of K3 by g’
with N = 2, 3,5, 7 have been written down in
David, Jatkar, Sen (2006) .

g’ is a Zy automorphism of K3.
The Hodge diamond of K3/Zy becomes

ho,0) = hi2.2) = ho2) = hzo) =1,



N han kK
1 20 10
2 12 6
3 8 4
5 4 2
7 2 1

Let us call these CHL orbifolds. In fact there are 3 additional
CHL orbifolds N = 4,6, 8. with kK = 3,2, 1 respectively.

The heterotic duals of these orbifolds have been studied earlier.
Chaudhuri, Hockney, Lykken (1995), Chaudhuri, Lowe (1995)



The twisted elliptic genera on these quotients of K3 is the
crucial input

for constructing the generating function of

1/4 BPS dyons in compactifications of type Il on K3 x T2 /Zy
(N =4 supersymmetry).



With the discovery of Mathieu Moonshine symmetry in K3 it
was found that to each conjugacy class g’ in M4, one can
construct the twining character

FON(7, 2)

_ %Trggg ((_1 )FK3.|_/_—_K3g/e27rizFK3 eZWfT(Lo—C/24) G_ZWIF(ZO_C/24)>

)

There are 26 twining characters in all.
Cheng (2005), Eguchi, Hikami (2005), Gaberdiel, Hohenegger,
Volpato (2006)

The twining character character of the N = 2,3,5,7 CHL
constructed earlier coincides with the class pA, with
p=2,357.



Conjucay Class

Order Cycle shape

Cycle

1A 1 124 0
2A 2 18. 28 (1, 8)(2, 12)(4, 15)(5, 7)(9, 22)(1
3A 3 16. 38 (3, 18, 20)(4, 22, 2 )(5 19, 17)(6, 1
5A 4 14.54 (2,21, 13, 186, 23)(3, 15, 22, 14)(4, 12
7A 7 13.78 (1,17,5,21,24,10 (2,12,13 9, 2
1A 11 12.112 (1,3,10, 4, 14, 15, 5, 4,13,17 18)(2, 2
23A 23 1". 23 (a,7, 6,24, 14, 4,16, 12, 20, 9, 11, 5, 15,
23B 23 1'. 23 (1,4,11,18,8,6,12,15,17,21, 14, 9, 9
4B 4 14.22 .44 (1,17, 21, 9)(2, 13, 24, 15)(3, 23)(4, 14
6A 6 12.22.32.6°% (1, 8)(2, 24, 11, 12, 23, 18)(3, 20, 10)(4, 1!
8A 8 12.21.4".82 (1,18,17,24, 21,15, 9, 2)(3, 16, 23, 6)(4.
14A 14 | 1".2".7". 14" | (1,12,17,183,5,9, 21, 4, 24, 23, 10, 20, 6,
14B 14 | 1'.2'.7'.14" | (1,13,21,23,6,12,5,4,10,2,17,9, 24,2
15A 15 11.3".5".15" | (2,13, 23,21, 16)(3,7, 9, 5, 4, 8 15 12, 1¢
15B 15 | 1'.3".5'.15" | (2,23, 16, 13, 21)(3, 12, 24, 15, 17, 18, 14, .

Table: Conjugacy classes of Mag C Mo (Type 1)



Conjucay Class | Order Cycle shape
2B 4 212 (1, 8)(2, 10)(3, 20)(4, 22)(5, 17)(6, 11
3B 9 38 (1,10, 3)(2, 24, 18)(4, 13, 22)(5, 19,
12B 144 122 (1,12, 24, 23,10, 8, 18, 6, 3, 21, 2,
6B 36 6* (1, 24,10, 18, 3, 2)(4, 11, 13, 20, 22
4C 16 48 (1,23, 18, 21)(2, 12, 10, 6)(3, 7, 24,
10A 20 22.102 (1, 8)(2, 18,21,19, 13, 10, 16, 24, 2
21A 63 3". 211 (1,3,9, 15,5, 12 2,13, 20, 23, 17
21B 63 3. 21! (1,12,17,22, 16, 5, 23, 21, 11, 15,
4A 8 24 . 44 (1,4,8,15)(2, 9, 12, 22)(3, 6)(5 24,
12A 24 | 2'.4".6".12' | (1,15,8,4)(2, 19,24,9,11,7,12, 1

Table: Conjugacy classes of Moy & Mag (Type 2)



Using:
modular transformations and

correspondence with cycle structure in Mp4 (needed for
conjugacy class with composite orders)

We can construct the twisted elliptic genera given the twining
character for all classes g’ € Moy € Moy.

Chattopadhyaya, David (2017),

earlier Gaberdiel, Persson, Ronellenfitsch, Volpato (2012)

The classes are:



Conjucay Class | Order
1A 1
2A 2
3A 3
5A 5
7A 7

11A 11
23A/B 23
4B 4
6A 6
8A 8
14A/B 14
15A/B 15

Table: The classes 2A, 3A, 5A, 7A, 4B, 6A, 8A are the CHL orbifolds.



The twisted elliptic genera is of the form:

FOO(r,2) = olVA(r, 2),

Frs)(r,z) = @ér,’S)A(T, z)+ /7)5(;’3)(7)8(7', z),

r,s€{0,1,--- N —1} with (r,s) # (0,0)

ozg,’s) are numerical constants

Bg,’s) is a weight 2 modular form under I'o(N) which have been
explicitly constructed.



With the twisted genera we can explore its role in

e Dyons in type IIB on (K3 x T?)/Zy: N' = 4 compactifications.
e One loop corrections: gravitational/gauge

on heterotic Egx, Eg theory on (K3 x T?)/Zy: N =2

compactifications.

The rest of the talk will focus on the second aspect.



HETEROTIC Eg x Eg on
(K3 x T?)/Zn



Let us describe the heterotic compactification briefly.

Consider first the Eg x Eg theory on K3 x T2,

This is well studied compactificatiion in the context of V' = 2
string duality.

This theory is dual to type Il A on a Calabi-Yau.



To preserve supersymmetry one needs to embed the spin
connection of K3 in a SU(2) of the gauge group.

The simplest way to see this is from the supersymmetry
variations.

This requires
Tr(FAF)—Tr(RAR)=0

We must pick the gauge connection from SU(2) from say one
of the Eg’s and set it equal to the spin connection of K3 to
ensure this equation is true.



Lets describe this more from the conformal field theory point of
view.

We take the right moving sector to be supersymmetric.

Consider the fermionic description of the Eg in terms of

left moving fermions

M I=1,...16.

We break this lattice to D2 with / = 1.2, 3,4 and the rest D6.

The world sheet has a term of

4
Gg=> NB/\oxa
1,J=1
B, refers to the SU(2) spin connection.

The 4 fermions get coupled to the bosons of K3 .
The remaining fermions are free.



Thus the internal CFT splits into

,Hintema/ _ 7_[(525,323 & H(Dﬁéo) ® H(Essvo) ® 7‘[(7-22"3) )

The left moving fermions together with bosons and their right
moving bosons and their super partners form the (6,6) SCFT
of K3.

With this decomposition, we can specify the action of g'.

The g’ acts as a Zy automorphism on the (6,6) CFT Hpoxs

together with a 1 /N shift on one of the circles in H(Tzz’s).



e These compactifications preserve /' = 2 supersymmetry.

e The un-broken gauge group is U(1) x E7 x Eg

e The orbifold by g’ reduces the number of hypers in the theory.
Note that for the K3 x T2 compactification due to the up-lift to 6
dimensions, there is a constraint on number of

N, — N, = 240

These compactifications cannot be lifted to 6d, (note the shift
by 1/N on one of the radii of T2.



« Recall the heterotic Eg x Eg string theory on K3 x T2 with the
standard embedding is dual to type Il on Calabi-Yau (K3
fibered) with

x = —480

Kachru, Vafa (1995), Klemm, Lerche, Mayr (1995)

« Compactifications on orbifolds (K3 x T2)/Zy give rise to
generalizations of this heterotic-type Il string duality



e The dual theory is type Il string compactified on Calabi-Yau.

The properties of this Calabi-Yau can be predicted by
evaluating one loop corrections/ certain supersymmetric indices
on the heterotic side.

The one loop gravitational corrections contain information of
Gopakumar-Vafa invariants.



e With this aim, we examine the one loop correction
S= / Fo(y,y)F?92R?

F, R are the self dual part of the gravi-photon and the Riemann
curvature.

The coupling F4(y, y) depends on the vector multiplet moduli.

We will restrict our attention to the Kahler and complex
structure of the torus.



NEW SUPERSYMMETRY INDEX

AND
THE TWISTED ELLIPTIC GENUS



e The coupling F, is obtained by performing a one loop integral
over the fundamental domain.

The input to obtain the integrand is the new supersymmetric
index

F refers to the right moving fermions number.
Sum of the right moving fermion number of the 72 CFT and
right moving fermion number of the K3 CFT

F—FT 1 FK3,

The trace is taken over the Ramond sector of the right moving
supersymmetric internal conformal field theory.
Note that (¢, ¢) = (22,9).



The new supersymmetric index is a different quantity from the
Elliptic genus/twisted elliptic genus of K3

e We will show that the twisted elliptic genus determines the
new supersymmetric index.



The internal conformal field theory

i / 6,6 (6,0) (8,0) (2.3)
ginternal — 3460 o HE @ HED @ HEY .

The CFT #.5;5). is orbifolded by ¢’ with 1/N shifts in the #5°).



Keeping track of the zero modes on the torus, evaluating the
trace

- rss)(q.q)
Zrew =) R
98(7) ( s) HS(T)q)(r.,s)_eg(T) (r,s)
BT TR T () e
E4(q)
né(r)’

The sum over the sectors (r, s) is implied and r, s run from 0 to
N —1.



Let us understand the origin of each term
r(’vs)

2 arises from the lattice sum on T2 together with the left
moving bosonic oscillators.

The lattice sum

@a = Y qrgremmeN,
my,Mo,No €7,
fhiZ—‘rﬁ
1p2 = ! |—m1U+m2+n1T+n2TU\2
2R 2ToUs ’
1 2

]
épZR + MmNy + Mons.



e T, U are the Kahler and complex structure of the T2.

The lattice sum is the only part of the index that contains
anti-holomorphic dependence.

e The insertion of (9')° and the twisted sectors of (g')°:
Result in the phase g™/ms/N
The winding modes to shift from integers by .



e The term 5;;57‘_’)) arises
from the partition function of the second Eg gauge group which

is untouched in the standard embedding.

E, is the Eisenstein series of weight 4.



e The terms in the square bracket arises from evaluating the
index on the D6 lattice together with the combined D2K3.

The partition function on the D6 lattice in the various sectors
are given by

03 03 02
Zp(D6: q) = o Zns+(D6; q) = el Zns-(D6; q) = B



e The indices on the combined D2K3, (6, 6) conformal field
theory are given by

()
q)Ff

1 o =
*TI“RR,gf[QS(—UFHqLO ¢/24glo—c/24]

N q
1
(rs) (- _
FOo)(r, 5)
1 -
NTrNSR,g’[gS(—1)FHqLO 0/24q/_0 C/24]’
q'/AEES) (1, 7+ 1 ),

1 i -
NTTNS R,g’ [gs(_-l )FH+FLqLO C/24qL0 0/24]’
q1/4F(r,S)(T’

T

5)



Use the expressions for the twisted elliptic genus and using
identities relating theta functions and Eisenstein series we
obtain

> 1 1 ¢ o
Znew(q7 Q) — _Zﬁrg;) E4 Zoéé(;;,s) EG o BS(J/;S) fé/f S) E4 .

e Only the lattice sum is dependent on both (7, 7).

o The Eisenstein series Es, £, as well as f("5) are holomorphic
in 7.

e The sumover r,sfrom 0, --- N — 1 is understood.



e This result for the new supersymmetric index,
though obtained using some what abstract arguments
was verified using explicit orbifold limits of K3.

Datta, David, Lust (2015) Chattopadhyaya, David (2016)

e When there is no-orbifold: the new supersymmetric index

reduces to well known
E,Eg

7}24

Harvey, Moore (1995)



We read out N, — N, from the new supersymmetric index.

1 1
9r) = gz B [4 o) Es — B ()|

= Y P d.

le%

N—1
Np— Ny =— " c%(0)
s=0

Evaluating this for each of the orbifolds in M»3 we obtain



Orbifold

Np — Ny X
1A 240 -480

2A -16 32
3A -138 276
5A -260 520
7A -321 642
11A -380 760
23A -442 884
4B 200 | 400
6A -262 524
8A -322 644
14A -382 764
15A -382 764

Table: N, — Ny, x




GRAVITATIONAL CORRECTIONS



e Given the new supersymmetric index, we can evaluate the
gravitational corrections.

Following the analysis of
Atoniadis, Gava, Narain, Taylor (1995)

The one loop string amplitude with 2 graviton and 2g — 2 one
gravi-photon insertions for the orbifold theory we arrive at the
following.



Consider the generating function

FILT,U)=> X9Fy(T, V).
g=1

Then the F, 's can be obtained by performing the integral

1 a’r (rS) 1 (rs) (r,s)

, T, = — r Es |- Ees — E.
FONTO) = 5 [ e o6 - A 0
(2mn > 2]

X ~ e mn
91()‘77—)
where (rs)
r,s
- Pa

V2ToUs



e The integral can be performed by the unfolding method.

e The integral is a generalization of that performed by
Harvey, Moore (1998) The integrand involves modular form
under o(N).

e The result for the holomorphic part, topological part of the
integral is the following.



Start from the twisted elliptic genus
1 1
2n?4(t )E4
Gok = 2¢(2k)Exk.

a9 Es — 5( )( JEa4|,

f(9)(r) 4%



Define:

") (1) Pag(Ga, Ga. Go, -+ . Gag) = _5"(1.0)q,

Pog is related to the Schur polynomial S of order g by

1 1
Pag(X1, X2, Xg) = —=S(x1, X §Xg)-

where the G’s are normalized Eisenstein series

2 3
ng - 2<(2k)E2k7 EQ(T) - E2 - .

T2



Then the topological amplitude l_-'g is given by

)
g-1 =1 .
_ ( 1 Z( g 2minzs/N g’ (m 2/270)L1372g(927r/m‘y)
s=0 >0
1
+§cé’ )(0,0)¢(3 —2g)> .

The sum over lattice points m > 0 refers to the following lattice
points (11, n2), Ny € 5. N € Z with the restrictions

ny, e > 0, but (n1an2) 7& (070)7
(r/N,—no), with no >0 and rn, < N.

y = (T, U) is the Kahler and complex structure of the torus
T2, m?»=2nmpandm-y =mnT + nU.

The functions Liz_», are polylogarithm functions of order
3—2g.



e We see that indeed it is the
coefficients of the twisted elliptic genus of K3 which
forms the basic input data for the topological amplitude Fy(y).

e ltis in this sense M., symmetry of K3 is carried over to the
topological amplitude.

e This is a generalization of the observation

Cheng, Dong, Duncan, Harvey, Kachru, Wrase (2013) in which the
elliptic genus of K3 which results in

E4Es/n?*,

for the new supersymmetric index

is the crucial input data for the topological amplitude for the
unorbifolded model.



GOPAKUMAR-VAFA INVARIANTS



The genus g topological amplitude on a Calabi-Yau admits the
following expansion For g > 1, this is given by

av _ (=1)91BagBag2|x(X)

¢ 49(29 — 2)(2g - 2)!

| Bag| i, 2(—1)9n%, g—2 41 gl 2mim-y -
+..— N, | Liz_pg(e=™™Y
N Z{Qg 2g-2) " (29-2) 13 m M| Lis—zq( '

We have included the constant term which is the contribution
to the topological amplitude due to holomorphic maps from
genus g surface to a single point.

Review by Marino (2002)



For g = 0 we have we obtain

FOGV _|_ Z n L 27ﬂmy

m>0

where have included the contribution due to the Euler
characteristic of the Calabi-Yau target.
Finally for g = 1 we have

1 .
FPv=>" (12n +n >Li1(62”’””’).

m>0



e It is not obvious that the topological amplitude evaluated for
the orbifolds g': K3 x T2/Zy

can be written in the Gopakumar-Vafa form with integer
invariants n,.

e Comparing the constant terms in the Gopakumar-Vafa form of
the topological amplitude and that evaluated using the one loop
calculation

we fix the normalization relating the amplitudes



e Once the normalization is fixed:
We read out the invariants n?, in terms of cé’j)(mz/z 0)

which in turn is determined from the expansion of the twisted
elliptic genus of KS3.



e For example

N—
o = 2Y e W (m?/2,0),  r=nNmod N

(n1 7”2)

_;

S

_;

=0
N- 2mn25
= -2 e I71 n2) .
s=0



e We have evaluated the GV invariants for all the orbifolds g’
corresponding to the M3 conjugacy classes Mg for
g =0,1,2,3 and shown that they are integers.

In fact the way this works is the formulae are such that once the
genus zero invariant n%, are integers,

Then the we can show that the higher genus (g =1,2,3) GV
invariants are integers.

A list of the GV invariants is provided

Chattopadhyaya, David (2017)



(1, np) 1,-1 (1,0) (1,1) (1,2) (
n° -2 480 282888 17058560 477
(ny,n2)
(n1, n2) (1,4) (1,5) (1,6) (1,7) (
n?n1 n,) | 8606976768 | 115311621680 | 1242058447872 | 11292809553810 | 895501
Table: N = 1, K3 itself.

(ny, M) (0,m) (1,1) 1,2) (1,3) (1,4)

n?m ) -32 151552 | 8387328 | 47890048 | 4294949632

(n,m) | (1/2,0) (1/2,2) (1/2,4) (1/2,6) (1/2,8)

n?m ) 512 151552 | 8671232 | 240009216 | 4312027136

(n,m) | (1/2,=1) | (1/2,1) (3/2,1) (5/2,1) (7/2,1)

n?m ) 16 8128 | 1212576 | 47890048 | 1055720304

Table: N = 2, 2A orbifold.



e We can locate conifold sigularities from the toplogical
amplitude.

These occurat m-y — 0.
These singularities occur only in the twisted sector at lattice
points

2
r m rno
m=\(—,—no), r,no >0 —=——,rm <N.

There are no singularities in the untwisted sector.



e The strength of the singularity is

_ 1 1
hol . 0
Fg |m-ye0 ~ on2 (ZW)QX(MQ) X n(ﬁ,fng) (1- eZwim-y}2g72

It is determined by the genus zero GV invariant.

e For the un-orbifolded K3 x T2 the conifold singularity lies at
only the lattice point m = (1, —1) and ”?1.71) = -2.



GAUGE COUPLING CORRECTIONS



e We have also studied the one loop corrections to gauge
coupling constants, including the an additional Wilson line V
along the T2.

It can be shown that for the standard embedding, the difference
of the one loop corrections between the the two gauge groups:
E; and Eg

is determined by Siegel modular forms &, (U, T, V).



Consider 1-loop corrections to the gauge couplings
1 Ag(T,U,V) 1
PE) " gP(E)

which depend on the Kahler and complex structure moduli
T, U of the torus T2.

We turn on the Wilson line

= Ag(T, U, V)

V =A; +iA

with values in say a U(1) of the unbroken Eg.



e We show that the difference in one loop threshold corrections

AG(T, U, V) — Ag(T, U, V) = —48log [(det mQ)K |b(T, U, V)],

where X is a weight kK modular form transforming under
subgroups of Sp(2,Z) with k
Datta, David, Lust (2015) Chattopadhyaya, David (2016)

e Again, the gauge coupling corrections also depend only of the
coefficients of the twisted elliptic genus.



e This generalises the result due to

Stieberger (1998)

who observed this phenomenon for the unorbifolded theory.
In this case the Seigel modular form is the Igusa cusp form
d10(U, T, V).



CONCLUSIONS



e We have studied the Eg x Eg heterotic string theory
compactified on orbifolds g': K3 x T?2/Zy inspired by the
Moonshine symmetry of K3.

e We have shown that the data which determines one loop
corrections are the coeffiicents elliptic genus of K3 twisted by

g.



e Our study provides some topological information of the type Il
theory on the putative Calabi-Yau.

e It will be interesting to explore the type Il theory directly in
detail.



