A supersymmetric index for a class of $2 \mathrm{~d} \sigma$－models with large $\mathcal{N}=4$ superconformal symmetry

Based on 1804.09987 and WIP with Anne Taormina，Xin Tang

Sam Fearn

Durham University

September 12 ${ }^{\text {th }}, 2018$

Introduction \& Motivation

Mathieu Moonshine appears when considering a quantity known as the elliptic genus of a $K 3$ theory, which is an $\mathcal{N}=(4,4)$ theory with $c=6$.

Introduction \& Motivation

Mathieu Moonshine appears when considering a quantity known as the elliptic genus of a $K 3$ theory, which is an $\mathcal{N}=(4,4)$ theory with $c=6$.

Definition

The Elliptic Genus of an $\mathcal{N}=(4,4)$ conformal field theory is defined as

$$
\begin{equation*}
\varepsilon_{\mathcal{C}}(\tau, z):=\operatorname{Tr}_{\mathcal{H}^{R}}\left((-1)^{F} q^{L_{0}-\frac{c}{24}} \bar{q}^{L_{0}-\frac{\bar{c}}{24}} y^{2 J_{0}^{3}}\right) \tag{1}
\end{equation*}
$$

Introduction \& Motivation

Mathieu Moonshine appears when considering a quantity known as the elliptic genus of a $K 3$ theory, which is an $\mathcal{N}=(4,4)$ theory with $c=6$.

Definition

The Elliptic Genus of an $\mathcal{N}=(4,4)$ conformal field theory is defined as

$$
\begin{equation*}
\varepsilon_{\mathcal{C}}(\tau, z):=\operatorname{Tr}_{\mathcal{H}^{R}}\left((-1)^{F} q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}} y^{2 J_{0}^{3}}\right) \tag{1}
\end{equation*}
$$

The elliptic genus is a moduli space invariant given in terms of the partition function as

$$
\begin{equation*}
\varepsilon_{\mathcal{M}}(\tau, z):=Z_{\tilde{R}}(\tau, z ; \bar{\tau}, \bar{z}=0) \tag{2}
\end{equation*}
$$

Introduction \& Motivation

Mathieu Moonshine appears when considering a quantity known as the elliptic genus of a $K 3$ theory, which is an $\mathcal{N}=(4,4)$ theory with $c=6$.

Definition

The Elliptic Genus of an $\mathcal{N}=(4,4)$ conformal field theory is defined as

$$
\begin{equation*}
\varepsilon_{\mathcal{C}}(\tau, z):=\operatorname{Tr}_{\mathcal{H}^{R}}\left((-1)^{F} q^{L_{0}-\frac{c}{24}} \bar{q}^{\overline{L_{0}}-\frac{c}{24}} y^{2 J_{0}^{3}}\right) \tag{1}
\end{equation*}
$$

The elliptic genus is a moduli space invariant given in terms of the partition function as

$$
\begin{equation*}
\varepsilon_{\mathcal{M}}(\tau, z):=Z_{\tilde{R}}(\tau, z ; \bar{\tau}, \bar{z}=0) \tag{2}
\end{equation*}
$$

In terms of $\mathcal{N}=4$ characters we can expand the elliptic genus of $K 3$ as

$$
\begin{equation*}
\varepsilon_{K 3}(\tau, z)=24 \operatorname{ch}_{l=0}^{\tilde{R}}(\tau, z)+2 h_{2}(\tau) q^{\frac{1}{8}} \hat{c h}_{l=1 / 2}^{\tilde{R}}(\tau, z) \tag{3}
\end{equation*}
$$

Unitary Ramond HW Representations of A_{γ}

σ-models on group manifolds can possess a SCA larger than the usual $\mathcal{N}=4$, called $A_{\gamma}{ }^{1}$. This is an $\mathcal{N}=4$ SCA with an $S U(2) \oplus S U(2) \oplus U(1)$ Kac-Moody subalgebra and four free fermionic fields.

[^0]
Unitary Ramond HW Representations of A_{γ}

σ-models on group manifolds can possess a SCA larger than the usual $\mathcal{N}=4$, called $A_{\gamma}{ }^{1}$. This is an $\mathcal{N}=4$ SCA with an $S U(2) \oplus S U(2) \oplus U(1)$ Kac-Moody subalgebra and four free fermionic fields.

Characters for A_{γ} are defined by

$$
\begin{equation*}
\mathrm{Ch}^{A_{\gamma}, R}=\operatorname{Tr}_{\mathcal{H}^{R}}\left(q^{L_{0}-c / 24} z_{+}^{2 T_{0}^{+3}} z_{-}^{2 T_{0}^{-3}} \chi^{i U_{0}}\right) \tag{4}
\end{equation*}
$$

${ }^{1}$ Spindel et al., "Complex structures on parallelised group manifolds and supersymmetric σ-models".

Unitary Ramond HW Representations of A_{γ}

σ-models on group manifolds can possess a SCA larger than the usual $\mathcal{N}=4$, called $A_{\gamma}{ }^{1}$. This is an $\mathcal{N}=4$ SCA with an $S U(2) \oplus S U(2) \oplus U(1)$ Kac-Moody subalgebra and four free fermionic fields.

Characters for A_{γ} are defined by

$$
\begin{equation*}
\mathrm{Ch}^{A_{\gamma}, R}=\operatorname{Tr}_{\mathcal{H}^{R}}\left(q^{L_{0}-c / 24} z_{+}^{2 T_{0}^{+3}} z_{-}^{2 T_{0}^{-3}} \chi^{i U_{0}}\right) \tag{4}
\end{equation*}
$$

[^1]
Unitary Ramond HW Representations of A_{γ}

σ-models on group manifolds can possess a SCA larger than the usual $\mathcal{N}=4$, called $A_{\gamma}{ }^{1}$. This is an $\mathcal{N}=4$ SCA with an $S U(2) \oplus S U(2) \oplus U(1)$ Kac-Moody subalgebra and four free fermionic fields.

Characters for A_{γ} are defined by

$$
\begin{equation*}
\mathrm{Ch}^{A_{\gamma}, R}=\operatorname{Tr}_{\mathcal{H}^{R}}\left(q^{L_{0}-c / 24} z_{+}^{2 T_{0}^{+3}} z_{-}^{2 T_{0}^{-3}} \chi^{i U_{0}}\right) \tag{4}
\end{equation*}
$$

[^2]
The Question

Does there exist a story similar to that of Mathieu moonshine for this larger algebra?

The Index I_{1}

Massive characters of A_{γ} have a double zero at $z_{+}=z_{-}$, while massless characters only have a single zero. This is due to the contribution of the zero modes of the free fermions.

$$
\begin{equation*}
\mathrm{Ch}^{A_{\gamma}}=\mathrm{Ch}^{A_{Q U}} \times \mathrm{Ch}^{\tilde{A_{\gamma}}} \tag{6}
\end{equation*}
$$

[^3]
The Index I_{1}

Massive characters of A_{γ} have a double zero at $z_{+}=z_{-}$, while massless characters only have a single zero. This is due to the contribution of the zero modes of the free fermions.

$$
\begin{equation*}
\mathrm{Ch}^{A_{\gamma}}=\mathrm{Ch}^{A_{Q U}} \times \mathrm{Ch}^{\tilde{A_{\gamma}}} \tag{6}
\end{equation*}
$$

Using this, one can construct an index for A_{γ} theories which is deformation invariant. ${ }^{2}$

[^4]
The Index I_{1}

Massive characters of A_{γ} have a double zero at $z_{+}=z_{-}$, while massless characters only have a single zero. This is due to the contribution of the zero modes of the free fermions.

$$
\begin{equation*}
\mathrm{Ch}^{A_{\gamma}}=\mathrm{Ch}^{A_{Q U}} \times \mathrm{Ch}^{\tilde{A_{\gamma}}} \tag{6}
\end{equation*}
$$

Using this, one can construct an index for A_{γ} theories which is deformation invariant. ${ }^{2}$

Definition

The index I_{1} of a theory \mathcal{D} with partition function $Z^{\mathcal{D}}$, is given by

$$
\begin{aligned}
& I_{1}(\mathcal{D})\left(q, z_{+}, z_{-}, \bar{q}, \bar{z}\right):=-\left.\bar{z}_{+} \frac{\partial}{\partial \bar{z}_{-}} Z_{\mathscr{H}_{\mathscr{R}} \tilde{R}^{\mathcal{R}}}\left(q, z_{+}, z_{-}, \bar{q}, \bar{z}_{+}, \bar{z}_{-}\right)\right|_{\bar{z}_{+}=\bar{z}_{-}=\bar{z}} \\
& \quad=\operatorname{Tr}_{\mathscr{H}^{R}}\left(-F_{R}(-1)^{F} q^{L_{0}-c / 24} \bar{q}^{\bar{L}_{0}-\bar{c} / 24} z_{+}^{2 T_{0}^{+3}} z_{-}^{2 T_{0}^{-3}} \bar{z}^{2\left(\bar{T}_{0}^{+3}+\bar{T}_{0}^{-3}\right)}\right),
\end{aligned}
$$

[^5]
Charges of Contributing States

The contribution to the index of a massless A_{γ} representation is given by ${ }^{3}$

$$
\begin{equation*}
I_{1}\left(\mathrm{Ch}_{0}^{A_{\gamma}, \tilde{R}}\left(k^{+}, k^{-}, I^{+}, I^{-}, u\right)\right)=(-1)^{2 I^{-} 1} q^{u^{2} / k} \Theta_{\mu, k}^{-}(\tau, \omega) \tag{8}
\end{equation*}
$$

where $\mu=2\left(I^{+}+I^{-}\right)-1$,

$$
\begin{equation*}
\Theta_{\mu, k}^{-}=q^{\mu^{2} / 4 k} \sum_{n \in \mathbb{Z}} q^{k n^{2}+n \mu}\left(z^{2 k n+\mu}-z^{-2 k n-\mu}\right) \tag{9}
\end{equation*}
$$

[^6]
Charges of Contributing States

The contribution to the index of a massless A_{γ} representation is given by ${ }^{3}$

$$
\begin{equation*}
I_{1}\left(\mathrm{Ch}_{0}^{A_{\gamma}, \tilde{R}}\left(k^{+}, k^{-}, I^{+}, I^{-}, u\right)\right)=(-1)^{2 I^{-} 1} q^{u^{2} / k} \Theta_{\mu, k}^{-}(\tau, \omega) \tag{8}
\end{equation*}
$$

where $\mu=2\left(I^{+}+I^{-}\right)-1$,

$$
\begin{equation*}
\Theta_{\mu, k}^{-}=q^{\mu^{2} / 4 k} \sum_{n \in \mathbb{Z}} q^{k n^{2}+n \mu}\left(z^{2 k n+\mu}-z^{-2 k n-\mu}\right) \tag{9}
\end{equation*}
$$

From here we can read that contributing states must satisfy

$$
\begin{equation*}
L_{0}-\frac{c}{24}=\frac{u^{2}}{k}+\frac{1}{k}\left(\left(T_{0}^{+3}+T_{0}^{-3}\right)^{2}\right) \tag{10}
\end{equation*}
$$

${ }^{3}$ Gukov et al., "An index for 2D field theories with large $\mathcal{N}=4$ superconformal symmetry".

The Zero Mode Subalgebra of A_{γ} and Supertableaux

In the Ramond sector, the zero mode subalgebra of A_{γ} is the direct sum of a $\mathfrak{u}(1)$ algebra and the simple Lie superalgebra $A(1 \mid 1)$,

$$
\begin{equation*}
A_{\gamma 0}=A(1 \mid 1) \oplus \mathfrak{u}(1) \tag{11}
\end{equation*}
$$

The Zero Mode Subalgebra of A_{γ} and Supertableaux

In the Ramond sector, the zero mode subalgebra of A_{γ} is the direct sum of a $\mathfrak{u}(1)$ algebra and the simple Lie superalgebra $A(1 \mid 1)$,

$$
\begin{equation*}
A_{\gamma_{0}}=A(1 \mid 1) \oplus \mathfrak{u}(1) . \tag{11}
\end{equation*}
$$

We can therefore study the branching of representations of A_{γ} into representations of (the complexification) of $\mathfrak{s u}(2 \mid 2)$, which can be classified by supertableaux ${ }^{4}$.

[^7]
The Zero Mode Subalgebra of A_{γ} and Supertableaux

 In the Ramond sector, the zero mode subalgebra of A_{γ} is the direct sum of a $\mathfrak{u}(1)$ algebra and the simple Lie superalgebra $A(1 \mid 1)$,$$
\begin{equation*}
A_{\gamma_{0}}=A(1 \mid 1) \oplus \mathfrak{u}(1) \tag{11}
\end{equation*}
$$

We can therefore study the branching of representations of A_{γ} into representations of (the complexification) of $\mathfrak{s u}(2 \mid 2)$, which can be classified by supertableaux ${ }^{4}$.

[^8]
The Zero Mode Subalgebra of A_{γ} and Supertableaux

 In the Ramond sector, the zero mode subalgebra of A_{γ} is the direct sum of a $\mathfrak{u}(1)$ algebra and the simple Lie superalgebra $A(1 \mid 1)$,$$
\begin{equation*}
A_{\gamma_{0}}=A(1 \mid 1) \oplus \mathfrak{u}(1) . \tag{11}
\end{equation*}
$$

We can therefore study the branching of representations of A_{γ} into representations of (the complexification) of $\mathfrak{s u}(2 \mid 2)$, which can be classified by supertableaux ${ }^{4}$.

[^9]
The Zero Mode Subalgebra of A_{γ} and Supertableaux

In the Ramond sector, the zero mode subalgebra of A_{γ} is the direct sum of a $\mathfrak{u}(1)$ algebra and the simple Lie superalgebra $A(1 \mid 1)$,

$$
\begin{equation*}
A_{\gamma_{0}}=A(1 \mid 1) \oplus \mathfrak{u}(1) . \tag{11}
\end{equation*}
$$

We can therefore study the branching of representations of A_{γ} into representations of (the complexification) of $\mathfrak{s u}(2 \mid 2)$, which can be classified by supertableaux ${ }^{4}$.

[^10]
The Sum Rules

The coset construction of A_{γ} has been used ${ }^{5}$ to construct character sum rules for $\tilde{A}_{\gamma}\left(k^{-}=2\right)$.

[^11]
The Sum Rules

The coset construction of A_{γ} has been used ${ }^{5}$ to construct character sum rules for $\tilde{A}_{\gamma}\left(k^{-}=2\right)$.

[^12]
The Sum Rules

The coset construction of A_{γ} has been used ${ }^{5}$ to construct character sum rules for $\tilde{A}_{\gamma}\left(k^{-}=2\right)$.

$$
\mathcal{H}^{W S} \otimes \mathcal{H}_{\Lambda}^{\widehat{s u(3)} \tilde{k}_{k}^{+}}=\bigoplus_{i}\left(\mathcal{H}_{0, l_{i}^{+}, l_{i}^{-}}^{\tilde{A}_{\gamma}} \otimes \mathcal{H}_{m_{i}}^{\mathcal{A}_{3 k}}\right) \bigoplus_{j}\left(\oplus_{n} \mathcal{H}_{h_{n}, l_{j}^{+}}^{\tilde{A}_{\gamma}} \otimes \mathcal{H}_{m_{j}}^{\mathcal{A}_{3 k}}\right)
$$

In the \tilde{R} sector, the sum rules for A_{γ} representations are of the form

$$
\begin{aligned}
& \frac{\theta_{1}\left(q, z_{+} z_{-}\right) \theta_{1}\left(q, z_{+}^{-1} z_{-}\right)}{\eta^{2}(q)} \cdot \frac{\theta_{1}\left(q, z_{-} z_{y}\right) \theta_{1}\left(q, z_{-} z_{y}^{-1}\right)}{\eta^{2}(q)} \chi_{\Lambda}^{\mathfrak{s u l}(3)}\left(q, z_{+}, z_{y}\right) \\
& =\sum_{L=0}^{k-2} \eta(q) M_{\Lambda}^{L}\left(q, z_{y}\right) \mathrm{Ch}_{0}^{A_{\gamma}, \tilde{R}}\left(L ; q, z_{ \pm}\right) \\
& \quad+\sum_{2 \tilde{\eta}^{+}=0}^{\tilde{k}^{+}-1} \sum_{n \in \mathbb{Z}_{k}} \hat{C h}_{m}^{A_{\gamma}, \tilde{R}}\left(I^{ \pm} ; q, z_{ \pm}\right) \eta(q) \chi_{-2 a_{1}+2 a_{2}+6 \eta^{+}+6 n}^{3 k}\left(q, z_{y}\right) F_{2^{+}, n}^{\Lambda}(q),
\end{aligned}
$$

[^13]
A_{γ} Theories From Diagonal $\mathfrak{s u}(3)$ Invariants

The sum rules give a way to construct modularly invariant partition functions for A_{γ} theories using $\widehat{\mathfrak{s u}(3) \tilde{k}^{+}}$invariants.

A_{γ} Theories From Diagonal $\mathfrak{s u}(3)$ Invariants

The sum rules give a way to construct modularly invariant partition functions for A_{γ} theories using $\widehat{\mathfrak{s u}(3)_{\tilde{k^{+}}}}$invariants.
In order to calculate the index we restrict to the $\tilde{R} \tilde{R}$ sector of the theory where the (restricted) partition function is given by

$$
\begin{align*}
z_{\tilde{R}, \tilde{R}}\left(q, z_{+}, z_{-}, z_{y}\right)= & \sum_{\Lambda \in P_{+}^{\tilde{k}+}} \left\lvert\, \frac{\theta_{1}\left(q, z_{+} z_{-}\right) \theta_{1}\left(q, z_{+}^{-1} z_{-}\right)}{\eta^{2}(q)}\right. \tag{14}\\
& \left.\cdot \frac{\theta_{1}\left(q, z_{-} z_{y}\right) \theta_{1}\left(q, z_{-} z_{y}^{-1}\right)}{\eta^{2}(q)} \chi_{\Lambda}^{\mathfrak{s u}(3)}\left(q, z_{+}, z_{y}\right)\right|^{2},
\end{align*}
$$

A_{γ} Theories From Diagonal $\mathfrak{s u}(3)$ Invariants

The sum rules give a way to construct modularly invariant partition functions for A_{γ} theories using $\widehat{\mathfrak{s u}(3)_{\tilde{k^{+}}}}$invariants.
Labelling the $\tilde{R} \tilde{R}$ sector of the partition function of the diagonal theory as $Z_{\tilde{R}, \tilde{R}}^{D_{\tilde{\kappa}}+}$ and the theory itself as $\mathcal{D}_{\tilde{k}^{+}}$, we can now calculate the index l_{1} of this theory as,

$$
\begin{align*}
& I_{1}\left(\mathcal{D}_{\tilde{k}^{+}}\right)\left(q, z_{+}, z_{-}, z_{y} ; \bar{q}, \bar{z}, \bar{z}_{y}\right):=-\left.\bar{z}_{+} \frac{\partial}{\partial \bar{z}_{-}} Z_{\tilde{R}, \tilde{R}}^{D_{\tilde{R}^{+}}}\right|_{\bar{z}_{+}=\bar{z}_{-}} \\
& =|\eta(q)|^{2} \sum_{\Lambda \in P_{+}^{\tilde{k}^{+}}}\left(\sum_{L=0}^{k-2} M_{\Lambda}^{L}\left(q, z_{y}\right) \mathrm{Ch}_{0}^{A_{\gamma}, \tilde{R}}\left(L ; q, z_{ \pm}\right)\right. \\
& \left.\quad+\sum_{2 \tilde{\eta^{+}=0}}^{\tilde{k}^{+}-1} \sum_{n \in \mathbb{Z}_{k}} \hat{M}_{2 l_{+}, n}^{\wedge}\left(q, z_{+}, z_{-}, z_{y}\right) F_{2^{I^{+}}, n}^{\wedge}(q)\right) \tag{15}\\
& \quad \cdot I_{1}\left(\sum_{L=0}^{k-2} M_{\Lambda}^{L}\left(\bar{q}, \bar{z}_{y}\right) \mathrm{Ch}_{0}^{A_{\gamma}, \tilde{R}}\left(L ; \bar{q}, \bar{z}_{ \pm}\right)\right) .
\end{align*}
$$

The Functions $F_{i}(q)$ for $\tilde{k}^{+}=2$

In the simplest case we consider, $\tilde{k}^{+}=2$, there are 6 independent functions $F_{i}(q)$.

The Functions $F_{i}(q)$ for $\tilde{k}^{+}=2$

In the simplest case we consider, $\tilde{k}^{+}=2$, there are 6 independent functions $F_{i}(q)$. Up to the offset, the coefficients of these functions agree (to at least the first 29 terms) with some known functions. In particular, the q-expansions we have obtained agree with,

$$
\begin{array}{ll}
F_{2}(q) \sim q^{2 / 5} \frac{f\left(-q^{5}\right)^{2}}{f\left(-q^{2},-q^{3}\right)}, & F_{4}(q) \sim q^{1 / 5} \frac{f\left(-q^{5}\right)^{2}}{f\left(-q,-q^{4}\right)} \tag{16}\\
F_{3}(q) \sim q^{-2 / 5} \Psi_{1}(q), & F_{5}(q) \sim \Psi_{0}(q)
\end{array}
$$

where

$$
\begin{equation*}
f(a, b)=\sum_{n \in \mathbb{Z}} a^{n(n+1) / 2} b^{n(n-1) / 2}, \quad f(-a)=f\left(-a,-a^{2}\right), \tag{17}
\end{equation*}
$$

is the Ramanujan general theta function, and $\Psi_{0}(q)$ and $\Psi_{1}(q)$ are $5^{\text {th }}$ order mock theta functions.

The Functions $F_{i}(q)$ for $\tilde{k}^{+}=2$

In the simplest case we consider, $\tilde{k}^{+}=2$, there are 6 independent functions $F_{i}(q)$. Up to the offset, the coefficients of these functions agree (to at least the first 29 terms) with some known functions. In particular, the q-expansions we have obtained agree with,

$$
\begin{array}{ll}
F_{2}(q) \sim q^{2 / 5} \frac{f\left(-q^{5}\right)^{2}}{f\left(-q^{2},-q^{3}\right)}, & F_{4}(q) \sim q^{1 / 5} \frac{f\left(-q^{5}\right)^{2}}{f\left(-q,-q^{4}\right)} \tag{16}\\
F_{3}(q) \sim q^{-2 / 5} \Psi_{1}(q), & F_{5}(q) \sim \Psi_{0}(q)
\end{array}
$$

where

$$
\begin{equation*}
f(a, b)=\sum_{n \in \mathbb{Z}} a^{n(n+1) / 2} b^{n(n-1) / 2}, \quad f(-a)=f\left(-a,-a^{2}\right), \tag{17}
\end{equation*}
$$

is the Ramanujan general theta function, and $\Psi_{0}(q)$ and $\Psi_{1}(q)$ are $5^{\text {th }}$ order mock theta functions. Work to prove that these are indeed the functions $F_{i}(q)$ is ongoing.

Conclusions and Summary

- In the Mathieu Moonshine story, we consider the moduli space invariant elliptic genus of K3. This index gives the Witten Index of the right-movers, counting only massless reps.

Conclusions and Summary

- In the Mathieu Moonshine story, we consider the moduli space invariant elliptic genus of K3. This index gives the Witten Index of the right-movers, counting only massless reps.
- There exists a larger $\mathcal{N}=4$ algebra A_{γ}, which is found by considering WZW models on symmetric spaces (Wolf spaces). The index I_{1} is an invariant of such theories, generalising the elliptic genus.

Conclusions and Summary

- In the Mathieu Moonshine story, we consider the moduli space invariant elliptic genus of K3. This index gives the Witten Index of the right-movers, counting only massless reps.
- There exists a larger $\mathcal{N}=4$ algebra A_{γ}, which is found by considering WZW models on symmetric spaces (Wolf spaces). The index I_{1} is an invariant of such theories, generalising the elliptic genus.
- The index I_{1} receives contributions only from massless states, but unlike the elliptic genus, states throughout the representation.

Conclusions and Summary

- In the Mathieu Moonshine story, we consider the moduli space invariant elliptic genus of K3. This index gives the Witten Index of the right-movers, counting only massless reps.
- There exists a larger $\mathcal{N}=4$ algebra A_{γ}, which is found by considering WZW models on symmetric spaces (Wolf spaces). The index I_{1} is an invariant of such theories, generalising the elliptic genus.
- The index I_{1} receives contributions only from massless states, but unlike the elliptic genus, states throughout the representation.
- We can classify the representations of the 0 -mode algebra by supertableau and indentify the index contributing tableau.

Conclusions and Summary

- In the Mathieu Moonshine story, we consider the moduli space invariant elliptic genus of K3. This index gives the Witten Index of the right-movers, counting only massless reps.
- There exists a larger $\mathcal{N}=4$ algebra A_{γ}, which is found by considering WZW models on symmetric spaces (Wolf spaces). The index I_{1} is an invariant of such theories, generalising the elliptic genus.
- The index I_{1} receives contributions only from massless states, but unlike the elliptic genus, states throughout the representation.
- We can classify the representations of the 0 -mode algebra by supertableau and indentify the index contributing tableau.
- Using the character sum rules and the diagonal $\widehat{\mathfrak{s u}(3)}$ invariant we can construct partition functions for this class of A_{γ} theories and calculate their indices.

Conclusions and Summary

- In the Mathieu Moonshine story, we consider the moduli space invariant elliptic genus of K3. This index gives the Witten Index of the right-movers, counting only massless reps.
- There exists a larger $\mathcal{N}=4$ algebra A_{γ}, which is found by considering WZW models on symmetric spaces (Wolf spaces). The index I_{1} is an invariant of such theories, generalising the elliptic genus.
- The index I_{1} receives contributions only from massless states, but unlike the elliptic genus, states throughout the representation.
- We can classify the representations of the 0 -mode algebra by supertableau and indentify the index contributing tableau.
- Using the character sum rules and the diagonal $\widehat{\mathfrak{s u}(3)}$ invariant we can construct partition functions for this class of A_{γ} theories and calculate their indices.
- The functions $F_{i}(q)$ describing the massive content of the partition function, agree in some cases with $5^{\text {th }}$-order mock theta functions.

Thanks for listening!

Spectral Flow Orbits

There exists an automorphism of A_{γ} known as spectral flow which moreover induces an isomorphism of representations of A_{γ}.

Spectral Flow Orbits

There exists an automorphism of A_{γ} known as spectral flow which moreover induces an isomorphism of representations of A_{γ}. Under two-fold symmetric spectral flow with $n \in \mathbb{Z}$, the Virasoro and $S U(2)$ zero modes are transformed as

$$
\begin{align*}
L_{0}^{2 n, 2 n} & =L_{0}-2 n\left(T_{0}^{+3}+T_{0}^{-3}\right)+n^{2}, \\
T_{0}^{2 n, 2 n ;+3} & =T_{0}^{+3}-n k^{+} \tag{18}\\
T_{0}^{2 n, 2 n ;-3} & =T_{0}^{-3}-n k^{-} .
\end{align*}
$$

Spectral Flow Orbits

There exists an automorphism of A_{γ} known as spectral flow which moreover induces an isomorphism of representations of A_{γ}. Under two-fold symmetric spectral flow with $n \in \mathbb{Z}$, the Virasoro and $S U(2)$ zero modes are transformed as

$$
\begin{align*}
L_{0}^{2 n, 2 n} & =L_{0}-2 n\left(T_{0}^{+3}+T_{0}^{-3}\right)+n^{2}, \\
T_{0}^{2 n, 2 n ;+3} & =T_{0}^{+3}-n k^{+}, \tag{18}\\
T_{0}^{2 n, 2 n ;-3} & =T_{0}^{-3}-n k^{-} .
\end{align*}
$$

Under this spectral flow, the massless condition

$$
\begin{equation*}
L_{0}-\frac{c}{24}=\frac{u^{2}}{k}+\frac{1}{k}\left(\left(T_{0}^{+3}+T_{0}^{-3}\right)^{2}\right) \tag{19}
\end{equation*}
$$

is preserved.

Spectral Flow Orbits

There exists an automorphism of A_{γ} known as spectral flow which moreover induces an isomorphism of representations of A_{γ}. Under two-fold symmetric spectral flow with $n \in \mathbb{Z}$, the Virasoro and $S U(2)$ zero modes are transformed as

$$
\begin{align*}
L_{0}^{2 n, 2 n} & =L_{0}-2 n\left(T_{0}^{+3}+T_{0}^{-3}\right)+n^{2}, \\
T_{0}^{2 n, 2 n ;+3} & =T_{0}^{+3}-n k^{+}, \tag{18}\\
T_{0}^{2 n, 2 n ;-3} & =T_{0}^{-3}-n k^{-} .
\end{align*}
$$

Under this spectral flow, the massless condition

$$
\begin{equation*}
L_{0}-\frac{c}{24}=\frac{u^{2}}{k}+\frac{1}{k}\left(\left(T_{0}^{+3}+T_{0}^{-3}\right)^{2}\right) \tag{19}
\end{equation*}
$$

is preserved. The index I_{1} is therefore seen to count two-fold symmetric spectral flow orbits of the extremely charged states.

A_{γ} in Supertableaux

> Ground level for $k^{+}=3$ $k^{-}=2, I^{+}=I^{-}=1$

A_{γ} in Supertableaux

A_{γ} in Supertableaux

In general the ground level is always described by a single tableau

$$
\begin{equation*}
\mathrm{Ch}_{0}^{A_{\gamma}, R}=\left(2 I^{-} \square^{2 I^{+}}\right) q^{h-c / 24}+\ldots \tag{21}
\end{equation*}
$$

The Functions $F_{i}(q)$

The functions $F_{2^{\dagger}+, n}^{\wedge}$ describe how the massive representation of A_{γ} embed in the representation space.

The Functions $F_{i}(q)$

The functions $F_{2^{+}, n}^{\wedge}$ describe how the massive representation of A_{γ} embed in the representation space. A priori there are

$$
\begin{equation*}
N_{D}\left(\tilde{k}^{+}\right)=\frac{1}{2} \tilde{k}^{+}\left(\tilde{k}^{+}+1\right)\left(\tilde{k}^{+}+2\right)\left(\tilde{k}^{+}+3\right) \tag{22}
\end{equation*}
$$

such functions in the character sum rules, though symmetries in the character sum rules can be used to show that there are only

$$
\begin{equation*}
N_{l}\left(\tilde{k}^{+}\right)=\frac{N_{D}\left(\tilde{k}^{+}\right)}{12}+\frac{1}{2}\left\lceil\frac{\tilde{k}^{+}}{2}\right\rceil\left\lceil\frac{\tilde{k}^{+}+2}{2}\right\rceil \tag{23}
\end{equation*}
$$

independent such functions.

The Functions $F_{i}(q)$

The functions $F_{2^{+}+, n}^{\prime}$ describe how the massive representation of A_{γ} embed in the representation space. A priori there are

$$
\begin{equation*}
N_{D}\left(\tilde{k}^{+}\right)=\frac{1}{2} \tilde{k}^{+}\left(\tilde{k}^{+}+1\right)\left(\tilde{k}^{+}+2\right)\left(\tilde{k}^{+}+3\right) \tag{22}
\end{equation*}
$$

such functions in the character sum rules, though symmetries in the character sum rules can be used to show that there are only

$$
\begin{equation*}
N_{l}\left(\tilde{k}^{+}\right)=\frac{N_{D}\left(\tilde{k}^{+}\right)}{12}+\frac{1}{2}\left\lceil\frac{\tilde{k}^{+}}{2}\right\rceil\left\lceil\frac{\tilde{k}^{+}+2}{2}\right\rceil \tag{23}
\end{equation*}
$$

independent such functions.
Generically we label the independent such functions as $F_{i}(q)$. We have calculated the first ~ 15 terms of these q-series for $\tilde{k}^{+} \in\{2,3,4,5\}$ using Mathematica.

[^0]: ${ }^{1}$ Philippe Spindel et al. "Complex structures on parallelised group manifolds and supersymmetric σ-models". In: Physics Letters B 206.1 (1988), pp. 71-74.

[^1]: ${ }^{1}$ Spindel et al., "Complex structures on parallelised group manifolds and supersymmetric σ-models".

[^2]: ${ }^{1}$ Spindel et al., "Complex structures on parallelised group manifolds and supersymmetric σ-models".

[^3]: ${ }^{2}$ Sergei Gukov et al. "An index for 2D field theories with large $\mathcal{N}=4$ superconformal symmetry". In: arXiv preprint (2004). eprint: hep-th/0404023.

[^4]: ${ }^{2}$ Gukov et al., "An index for 2D field theories with large $\mathcal{N}=4$ superconformal symmetry".

[^5]: ${ }^{2}$ Gukov et al., "An index for 2D field theories with large $\mathcal{N}=4$ superconformal symmetry".

[^6]: ${ }^{3}$ Gukov et al., "An index for 2D field theories with large $\mathcal{N}=4$ superconformal symmetry".

[^7]: ${ }^{4}$ A Baha Balantekin and Itzhak Bars. "Dimension and character formulas for Lie supergroups". In: Journal of Mathematical Physics 22.6 (1981), pp. 1149-1162; Sam Fearn. "Young Supertableaux and the large $\mathcal{N}=4$ superconformal algebra". In:
 arXiv preprint (2018). eprint: 1804.09987.

[^8]: ${ }^{4}$ Balantekin and Bars, "Dimension and character formulas for Lie supergroups"; Fearn, "Young Supertableaux and the large $\mathcal{N}=4$ superconformal algebra".

[^9]: ${ }^{4}$ Balantekin and Bars, "Dimension and character formulas for Lie supergroups"; Fearn, "Young Supertableaux and the large $\mathcal{N}=4$ superconformal algebra".

[^10]: ${ }^{4}$ Balantekin and Bars, "Dimension and character formulas for Lie supergroups"; Fearn, "Young Supertableaux and the large $\mathcal{N}=4$ superconformal algebra".

[^11]: ${ }^{5}$ Hirosi Ooguri, Jens Lyng Petersen, and Anne Taormina. "Modular invariant partition functions for the doubly extended $\mathcal{N}=4$ superconformal algebras". In: Nuclear Physics B 368.3 (1992), pp. 611-624; Jens Lyng Petersen and Anne Taormina. "Coset construction and character sum rules for the doubly extended $\mathcal{N}=4$ superconformal algebras". In: Nuclear Physics B 398.2 (1993), pp. 459-495.

[^12]: ${ }^{5}$ Ooguri, Petersen, and Taormina, "Modular invariant partition functions for the doubly extended $\mathcal{N}=4$ superconformal algebras"; Petersen and Taormina, "Coset construction and character sum rules for the doubly extended $\mathcal{N}=4$ superconformal algebras".

[^13]: ${ }^{5}$ Ooguri, Petersen, and Taormina, "Modular invariant partition functions for the doubly extended $\mathcal{N}=4$ superconformal algebras"; Petersen and Taormina, "Coset construction and character sum rules for the doubly extended $\mathcal{N}=4$ superconformal algebras".

