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Introduction & Motivation
Mathieu Moonshine appears when considering a quantity known as the
elliptic genus of a K3 theory, which is an N = (4, 4) theory with c = 6.

Definition
The Elliptic Genus of an N = (4, 4) conformal field theory is defined as

εC(τ, z) := TrHR

(
(−1)F qL0− c

24 q̄L̄0− c̄
24 y2J3

0
)

(1)

The elliptic genus is a moduli space invariant given in terms of the
partition function as

εM(τ, z) := ZR̃(τ, z ; τ̄ , z̄ = 0). (2)

In terms of N = 4 characters we can expand the elliptic genus of K3 as

εK3(τ, z) = 24 chR̃
l=0(τ, z) + 2h2(τ)q

1
8 ĉhR̃

l=1/2(τ, z) (3)
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Unitary Ramond HW Representations of Aγ

σ-models on group manifolds can possess a SCA larger than the usual
N = 4, called Aγ1. This is an N = 4 SCA with an SU(2)⊕ SU(2)⊕ U(1)
Kac-Moody subalgebra and four free fermionic fields.

Characters for Aγ are defined by

ChAγ ,R = TrHR (qL0−c/24z2T +3
0

+ z2T−3
0

− χiU0). (4)

Considering the norm
|Q−k

0 G−k
0 |Ω+〉 | leads to a

unitarity bound

(h − c
24)k ≥ u2 + (l+

+ + l−+ )2

(5)

|Ω+〉

1Philippe Spindel et al. “Complex structures on parallelised group manifolds and supersymmetric σ-models”. In: Physics
Letters B 206.1 (1988), pp. 71–74.
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The Question

Does there exist a story similar to that of Mathieu
moonshine for this larger algebra?



The Index I1
Massive characters of Aγ have a double zero at z+ = z−, while massless
characters only have a single zero. This is due to the contribution of the
zero modes of the free fermions.

ChAγ = ChAQU ×ChÃγ (6)

Using this, one can construct an index for Aγ theories which is
deformation invariant.2

2Sergei Gukov et al. “An index for 2D field theories with large N = 4 superconformal symmetry”. In: arXiv preprint (2004).
eprint: hep-th/0404023.
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zero modes of the free fermions.

ChAγ = ChAQU ×ChÃγ (6)
Using this, one can construct an index for Aγ theories which is
deformation invariant.2

Definition
The index I1 of a theory D with partition function ZD, is given by

I1(D)(q, z+, z−, q̄, z̄) := −z̄+
∂

∂z̄−
ZD

H R̃ (q, z+, z−, q̄, z̄+, z̄−)
∣∣∣∣
z̄+=z̄−=z̄

,

= TrH R

(
−FR(−1)F qL0−c/24q̄L̄0−c̄/24z2T +3

0
+ z2T−3

0
− z̄2(T̄ +3

0 +T̄−3
0 )
)
,

(7)
2Gukov et al., “An index for 2D field theories with large N = 4 superconformal symmetry”.
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Charges of Contributing States

The contribution to the index of a massless Aγ representation is given by3

I1
(

ChAγ ,R̃
0 (k+, k−, l+, l−, u)

)
= (−1)2l−1qu2/kΘ−µ,k(τ, ω), (8)

where µ = 2(l+ + l−)− 1,

Θ−µ,k = qµ2/4k ∑
n∈Z

qkn2+nµ(z2kn+µ − z−2kn−µ). (9)

From here we can read that contributing states must satisfy

L0 −
c
24 = u2

k + 1
k
(

(T +3
0 + T−3

0 )2
)
. (10)

3Gukov et al., “An index for 2D field theories with large N = 4 superconformal symmetry”.
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The Zero Mode Subalgebra of Aγ and Supertableaux
In the Ramond sector, the zero mode subalgebra of Aγ is the direct sum of
a u(1) algebra and the simple Lie superalgebra A(1|1),

Aγ0 = A(1|1)⊕ u(1). (11)
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We can therefore study the branching of representations of Aγ into
representations of (the complexification) of su(2|2), which can be
classified by supertableaux4.

4A Baha Balantekin and Itzhak Bars. “Dimension and character formulas for Lie supergroups”. In: Journal of Mathematical
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The Sum Rules
The coset construction of Aγ has been used5 to construct character sum
rules for Ãγ (k− = 2).

HWS ⊗Hŝu(3)k̃+
Λ =

⊕
i

(
HÃγ

0,l+
i ,l
−
i
⊗HA3k

mi

)⊕
j

(
⊕nHÃγ

hn,l+
j
⊗HA3k

mj

)
In the R̃ sector, the sum rules for Aγ representations are of the form

θ1(q, z+z−)θ1(q, z−1
+ z−)

η2(q) ·
θ1(q, z−zy )θ1(q, z−z−1

y )
η2(q) χ

su(3)
Λ (q, z+, zy )

=
k−2∑
L=0

η(q)ML
Λ(q, zy ) ChAγ ,R̃

0 (L; q, z±)

+
k̃+−1∑
2̃l+=0

∑
n∈Zk

ĈhAγ ,R̃
m (l±; q, z±) η(q)χ3k

−2a1+2a2+6̃l++6n(q, zy )F Λ
2̃l+,n(q),

5Hirosi Ooguri, Jens Lyng Petersen, and Anne Taormina. “Modular invariant partition functions for the doubly extended
N = 4 superconformal algebras”. In: Nuclear Physics B 368.3 (1992), pp. 611–624; Jens Lyng Petersen and Anne Taormina.
“Coset construction and character sum rules for the doubly extended N = 4 superconformal algebras”. In: Nuclear Physics B
398.2 (1993), pp. 459–495.
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Aγ Theories From Diagonal su(3) Invariants
The sum rules give a way to construct modularly invariant partition
functions for Aγ theories using ̂su(3)k̃+ invariants.
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Aγ Theories From Diagonal su(3) Invariants
The sum rules give a way to construct modularly invariant partition
functions for Aγ theories using ̂su(3)k̃+ invariants.
In order to calculate the index we restrict to the R̃R̃ sector of the theory
where the (restricted) partition function is given by

ZR̃,R̃(q, z+, z−, zy ) =
∑

Λ∈P k̃+
+

∣∣∣∣∣θ1(q, z+z−)θ1(q, z−1
+ z−)

η2(q)

·
θ1(q, z−zy )θ1(q, z−z−1

y )
η2(q) χ

su(3)
Λ (q, z+, zy )

∣∣∣∣∣
2

,

(14)
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Aγ Theories From Diagonal su(3) Invariants
The sum rules give a way to construct modularly invariant partition
functions for Aγ theories using ̂su(3)k̃+ invariants.
Labelling the R̃R̃ sector of the partition function of the diagonal theory as
Z Dk̃+

R̃,R̃ and the theory itself as Dk̃+ , we can now calculate the index I1 of
this theory as,

I1(Dk̃+)(q, z+, z−, zy ; q̄, z̄ , z̄y ) := −z̄+
∂

∂z̄−
Z Dk̃+

R̃,R̃

∣∣∣∣
z̄+=z̄−

,

= |η(q)|2
∑

Λ∈P k̃+
+

(k−2∑
L=0

ML
Λ(q, zy ) ChAγ ,R̃

0 (L; q, z±)

+
k̃+−1∑
2̃l+=0

∑
n∈Zk

M̂Λ
2l+,n(q, z+, z−, zy )F Λ

2̃l+,n(q)


· I1
(k−2∑

L=0
ML

Λ(q̄, z̄y ) ChAγ ,R̃
0 (L; q̄, z̄±)

)
.

(15)
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The Functions Fi(q) for k̃+ = 2
In the simplest case we consider, k̃+ = 2, there are 6 independent
functions Fi (q).

Up to the offset, the coefficients of these functions agree
(to at least the first 29 terms) with some known functions. In particular,
the q-expansions we have obtained agree with,

F2(q) ∼ q2/5 f (−q5)2

f (−q2,−q3) ,

F3(q) ∼ q−2/5Ψ1(q),

F4(q) ∼ q1/5 f (−q5)2

f (−q,−q4) ,

F5(q) ∼ Ψ0(q),
(16)

where

f (a, b) =
∑
n∈Z

an(n+1)/2bn(n−1)/2, f (−a) = f (−a,−a2), (17)

is the Ramanujan general theta function, and Ψ0(q) and Ψ1(q) are 5th

order mock theta functions. Work to prove that these are indeed the
functions Fi (q) is ongoing.
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Conclusions and Summary
• In the Mathieu Moonshine story, we consider the moduli space

invariant elliptic genus of K3. This index gives the Witten Index of
the right-movers, counting only massless reps.

• There exists a larger N = 4 algebra Aγ , which is found by considering
WZW models on symmetric spaces (Wolf spaces). The index I1 is an
invariant of such theories, generalising the elliptic genus.

• The index I1 receives contributions only from massless states, but
unlike the elliptic genus, states throughout the representation.

• We can classify the representations of the 0-mode algebra by
supertableau and indentify the index contributing tableau.

• Using the character sum rules and the diagonal ŝu(3) invariant we can
construct partition functions for this class of Aγ theories and calculate
their indices.

• The functions Fi (q) describing the massive content of the partition
function, agree in some cases with 5th-order mock theta functions.
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construct partition functions for this class of Aγ theories and calculate
their indices.

• The functions Fi (q) describing the massive content of the partition
function, agree in some cases with 5th-order mock theta functions.
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Spectral Flow Orbits
There exists an automorphism of Aγ known as spectral flow which
moreover induces an isomorphism of representations of Aγ .

Under two-fold
symmetric spectral flow with n ∈ Z, the Virasoro and SU(2) zero modes
are transformed as

L2n,2n
0 = L0 − 2n(T +3

0 + T−3
0 ) + n2,

T 2n,2n;+3
0 = T +3

0 − nk+,

T 2n,2n;−3
0 = T−3

0 − nk−.

(18)

Under this spectral flow, the massless condition

L0 −
c
24 = u2

k + 1
k
(

(T +3
0 + T−3

0 )2
)
, (19)

is preserved. The index I1 is therefore seen to count two-fold symmetric
spectral flow orbits of the extremely charged states.
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Aγ in Supertableaux

Ground level for k+ = 3,
k− = 2, l+ = l− = 1.

= 2( , 1)⊕ 2(1, )⊕ ( , )⊕ ( , ) (20)
In general the ground level is always described by a single tableau

ChAγ ,R
0 =

(
2l−

2l+ )
qh−c/24 + . . .

(21)
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The Functions Fi(q)
The functions F Λ

2̃l+,n describe how the massive representation of Aγ embed
in the representation space.

A priori there are

ND(k̃+) = 1
2 k̃+(k̃+ + 1)(k̃+ + 2)(k̃+ + 3) (22)

such functions in the character sum rules, though symmetries in the
character sum rules can be used to show that there are only

NI(k̃+) = ND(k̃+)
12 + 1

2

⌈
k̃+

2

⌉⌈
k̃+ + 2

2

⌉
, (23)

independent such functions.

Generically we label the independent such functions as Fi (q). We have
calculated the first ∼15 terms of these q-series for k̃+ ∈ {2, 3, 4, 5} using
Mathematica.
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