

RHIC Au–Au results: the fashionable view

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

Ideal fluid dynamics reproduce both p_t spectra and elliptic flow $v_2(p_t)$ of soft ($p_t \leq 2 \text{ GeV/c}$) identified particles for minimum bias collisions, near central rapidity.

This agreement necessitates a soft equation of state, and very short thermalization times: $\tau_{\text{thermalization}} < 0.6 \text{ fm/}c$.

strongly interacting Quark-Gluon Plasma

Ideal fluid dynamics in heavy-ion collisions

- A few reminders on fluid dynamics
- Fluid dynamics in heavy ion collisions: theory
 - Overall scenario
 - General predictions of ideal fluid dynamics
 - Anisotropic flow
- Fluid dynamics and heavy ion collisions: theory vs. data

Reconciling data and theory (?)
(including predictions for Cu–Cu@RHIC and Pb–Pb@LHC)

R.S. Bhalerao, J.-P. Blaizot, N.B., J.-Y. Ollitrault, nucl-th/0508009

Fluid dynamics: various types of flow

Fluid dynamics: various types of flow

Three numbers:

$$Kn = rac{\lambda}{L}, \qquad Re = rac{Lv_{ ext{fluid}}}{\eta}, \qquad Ma = rac{v_{ ext{fluid}}}{c_s}$$

 \Rightarrow an important relation:

$$Kn \times Re = rac{\lambda v_{\text{fluid}}}{\eta} \sim rac{v_{\text{fluid}}}{c_s} = Ma$$

Compressible fluid: Thermalized means Ideal

Viscosity \equiv departure from equilibrium

Ideal fluid picture of a heavy-ion collision

0. Creation of a dense gas of particles

(1) At some time τ_0 , the mean free path λ is much smaller than *all* dimensions in the system

 \Rightarrow thermalization (T_0), ideal fluid dynamics applies

2) The fluid expands: density decreases, λ increases (system size also)

(3) At some time, the mean free path is of the same order as the system size: ideal fluid dynamics is no longer valid

"(kinetic) freeze-out"

Freeze-out usually parameterized in terms of a temperature $T_{\rm f.o.}$

If λ varies smoothly with temperature, consistency requires $T_{\rm f.o.} \ll T_0$

IF analytical predictions, see N.B. & J.-Y. Ollitrault, nucl-th/0506045

Heavy-ion observable: Anisotropic flow

Non-central collisions: parameters

Initial conditions in non-central collisions, will be characterized by

a parameter measuring the shape of the overlap region:

• spatial eccentricity
$$\epsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

• two numbers measuring the size of the overlap region:

• "reduced" radius
$$\frac{1}{\bar{R}} = \sqrt{\frac{1}{\langle x^2 \rangle} + \frac{1}{\langle y^2 \rangle}}$$

(anisotropic flow caused by pressure gradients)

• transverse area of the collision zone $S = 2\pi \sqrt{\langle x^2 \rangle \langle y^2 \rangle}$

If one can increase v_2 by increasing c_s

Anisotropic flow: predictions of hydro

- Characteristic build-up time of v_2 is \bar{R}/c_s
- v_2/ϵ constant across different centralities
- \bullet v₂ roughly independent of the system size (Au–Au vs. Cu–Cu)
- v_2 increases with increasing speed of sound c_s
- Mass-ordering of the $v_2(p_T)$ of different particles (the heavier the particle, the smaller its v_2 at a given momentum)
- Relationship between different harmonics: $\frac{v_4}{(v_2)^2} = \frac{1}{2}$

RHIC Au–Au data: a personal choice [1/4]

 $v_2(p_t)$ at midrapidity, minimum bias collisions: STAR Collaboration, Phys. Rev. C 72 (2005) 014904

RHIC Au–Au data: a personal choice [2/4]

 $v_2(p_t)$ for various centralities (impact parameters): STAR Collaboration, Phys. Rev. C 72 (2005) 014904

RHIC Au–Au data: a personal choice [2/4]

RHIC Au–Au data: a personal choice [3/4]

 v_2 (hydro) flatter than data

RHIC Au–Au data: a personal choice [4/4]

 $v_2(p_t) \text{ hydro } < \text{data}$ $v_2(y) \text{ hydro } \neq \text{data}$ $v_2(y) \text{ hydro } \neq \text{data}$ $v_4 \frac{v_4}{(v_2)^2} \text{ hydro } < \text{data}$

what is wrong with ideal fluid scenario?

 $v_2(p_t) \text{ hydro } < \text{data}$ $v_2(y) \text{ hydro } \neq \text{data}$ $v_2(y) \text{ hydro } \neq \text{data}$ $v_4 \frac{v_4}{(v_2)^2} \text{ hydro } < \text{data}$

what is wrong with ideal fluid scenario?

0. Creation of a dense gas of particles

(1) At some time τ_0 (~ 0.6 fm/c in hydro models), the mean free path λ is much smaller than *all* dimensions in the system ($Kn \ll 1$) \Rightarrow thermalization, ideal fluid dynamics applies

2.) The fluid expands: density decreases, λ increases (system size also)

(3) At some time, the mean free path is of the same order as the system size: ideal fluid dynamics is no longer valid

 $v_2(p_t) \text{ hydro } < \text{data}$ $v_2(y) \text{ hydro } \neq \text{data}$ $v_2(y) \text{ hydro } \neq \text{data}$ $v_4 \frac{v_4}{(v_2)^2} \text{ hydro } < \text{data}$

what is wrong with ideal fluid scenario?

0. Creation of a dense gas of particles

(1) At some time τ_0 (~ 0.6 fm/c in hydro models), the mean free path λ is much smaller than *all* dimensions in the system ($Kn \ll 1$)

Is this really true?

 $v_2(p_t) \text{ hydro } < \text{data}$ $v_2(y) \text{ hydro } \neq \text{data}$ $v_2(y) \text{ hydro } \neq \text{data}$ $v_4 \frac{v_4}{(v_2)^2} \text{ hydro } < \text{data}$

what is wrong with ideal fluid scenario?

0. Creation of a dense gas of particles

(1) At some time τ_0 (~ 0.6 fm/c in hydro models), the mean free path λ is much smaller than *all* dimensions in the system ($Kn \ll 1$)

Is this really true?

Can we estimate the number of collisions per particle Kn^{-1} ? How do v_2 , v_4 depend on Kn^{-1} ?

Anisotropic flow vs. number of collisions Kn^{-1}

An exact computation of the dependence of v_2 , v_4 on the number of collisions per particle Kn^{-1} requires some cascade model...

- ... but we can guess the general tendency!
- in the absence of reinteractions ($Kn^{-1} = 0$), no flow develops
- the more collisions, the larger the anisotropic flow
- for a given number of collisions, the system thermalizes: further collisions no longer increase v_2

Anisotropic flow vs. number of collisions Kn^{-1}

An exact computation of the dependence of v_2 , v_4 on the number of collisions per particle Kn^{-1} requires some cascade model...

- ... but we can guess the general tendency!
- in the absence of reinteractions ($Kn^{-1} = 0$), no flow develops

the more collisions, the larger the anisotropic flow

• for a given number of collisions, the system thermalizes: further collisions no longer increase v_2 should be quantified!

Incomplete equilibration & RHIC data [1]

Ideal fluid dynamics predicts $\frac{v_4}{(v_2)^2} = \frac{1}{2}$, RHIC data are above (~ 1.2) increase can be explained by incomplete equilibration naturally: v_n proportional to the number of collisions $Kn^{-1} \Rightarrow \frac{v_4}{(v_2)^2} \propto \frac{1}{Kn^{-1}}$ fully thermalized (hydro) incomplete thermalization Kn^{-1} v_4 Kn⁻

Number of collisions Kn^{-1} : a control parameter

The natural time (resp. length) scale for v_2 is \overline{R}/c_s (resp. \overline{R}) \Rightarrow number of collisions per particle to build up v_2 :

$$Kn^{-1} \simeq \frac{\bar{R}}{\lambda} = \bar{R} \sigma n \left(\frac{\bar{R}}{c_s}\right) \simeq \frac{c_s}{c} \frac{\sigma}{S} \frac{\mathrm{d}N}{\mathrm{d}y}$$

 σ interaction cross section, $n(\tau)$ particle density, S transverse surface $\frac{1}{S} \frac{\mathrm{d}N}{\mathrm{d}u}$ control parameter for v_2 : to vary Kn^{-1} , one can study

• centrality dependence (using the universality of v_2/ϵ)

- beam-energy dependence
- **system**-size dependence \rightarrow importance of lighter systems!
- rapidity dependence

transverse momentum dependence $(p_T \nearrow \Rightarrow \sigma \searrow \Rightarrow Kn^{-1} \searrow)$

Control parameter: centrality dependence

The number of collisions to build up v_2 is $Kn^{-1} = \frac{\bar{R}}{\lambda} \propto \frac{\sigma}{S} \frac{\mathrm{d}N}{\mathrm{d}y}$

In Au–Au collisions at RHIC:

b (fm)	$ar{R}$ (fm)	$\frac{\mathrm{d}N}{\mathrm{d}y}$	$n\left(\frac{\bar{R}}{c_s}\right)$ (fm ⁻³)
0	2.07	1050	5.4
2	2.02	975	5.4
4	1.89	790	5.5
6	1.68	562	5.3
8	1.45	344	4.9
10	1.22	167	3.8

 $n\left(\frac{\bar{R}}{c_s}\right)$, hence λ , varies little for b = 0-8 fm, while \bar{R} varies by 30% **Contrality**-dependence of $\frac{v_2}{\epsilon} \Leftrightarrow \frac{1}{S} \frac{\mathrm{d}N}{\mathrm{d}u}$ -dependence

Incomplete equilibration & RHIC data [2]

Centrality and beam-energy dependence:

NA49 Collaboration, Phys. Rev. C 68 (2003) 034903

Incomplete equilibration & RHIC data [2]

Centrality and beam-energy dependence:

NA49 Collaboration, Phys. Rev. C 68 (2003) 034903

Scaling law seems to work for RHIC data (+ matching with SPS) $v_2(Kn^{-1})$ increases steadily (no hint at hydro saturation in the data)

Incomplete equilibration & RHIC data [3]

Reconciling data and theory

In hydrodynamical fits, the speed of sound is constrained by p_t spectra, which require a soft equation of state

 \rightarrow with a hard equation of state, the energy per particle is too high

All relies on the assumption that the energy per particle is related to the density, i.e., that chemical equilibrium is maintained

- Chemical equilibrium is more fragile than kinetic equilibrium
- the only experimental indication of chemical equilibrium is in the particle-abundance ratios (cf. however $e^+e^-...$)

If there is no chemical equilibrium, energy per particle and density are independent variables, as in ordinary thermodynamics

there is no constraint on the equation of state from p_t spectra: one can consider a larger c_s to increase v_2 in central collisions

Incomplete equilibration: predictions for Cu–Cu flow

The matching between central SPS and peripheral RHIC suggests that we can even compare systems with different densities, i.e., different σ (and c_s)

IF compare Au–Au at b = 8 fm with Cu–Cu at b = 5.5 fm (similar centrality)

• If hydro holds, v_2 should scale like ϵ : $v_2(Cu) = 0.69 v_2(Au)$

• If thermalization is incomplete, $\frac{v_2}{\epsilon} \propto \frac{1}{S} \frac{dN}{du} \propto Kn^{-1}$, i.e. $v_2(Cu) = 0.34 v_2(Au)$

• Cu–Cu further from equilibrium than Au–Au $\Rightarrow \frac{v_4}{(v_2)^2} > 1.2$

Cu–Cu collisions at RHIC: anisotropic flow [1/2]

Steve Manly (PHOBOS Collaboration) @ QM'05:

 \square Cu–Cu results seem to be compatible with Kn^{-1} -scaling

Cu–Cu collisions at RHIC: anisotropic flow [2/2]

Gang Wang (STAR Collaboration) @ QM'05:

Measurements with different methods give very different v_2 values (not a surprise...)

Wait and see!

Hints of incomplete equilibration in RHIC data

R.S. Bhalerao, J.-P. Blaizot, N.B., J.-Y. Ollitrault, nucl-th/0508009

- A reminder: the natural time scale for anisotropic flow is $\frac{R}{c_s}$
 - no knowledge about early times
 - anisotropic flow cannot conclude on *early* thermalization
- Size of v_2 controlled by $Kn^{-1} \propto \frac{1}{S} \frac{\mathrm{d}N}{\mathrm{d}y}$, but data do not saturate:

incomplete equilibration

- v_2 overshoots the hydrodynamical prediction... because the latter is over-constrained by a non-existent chemical equilibrium
 - Predictions for Cu–Cu collisions at RHIC...

data shown at QM'05 too preliminary

• ... and for Pb–Pb at LHC!

Predictions for LHC

Measuring anisotropic flow at LHC, you will find

- $\frac{v_2}{\epsilon}$ larger than at RHIC (getting closer to thermalization) larger signal, larger statistics \mathbf{n} easier measurement
- $\frac{v_4}{(v_2)^2}$ smaller than at RHIC (closer to the ideal fluid value $\frac{1}{2}$) Well... that definitely means a smaller signal...
- Smaller systems yield complementary values of $\frac{1}{S} \frac{dN}{dy} \propto Kn^{-1}$, allowing checks (thermalization or not? onset of equilibration?)

Hints of incomplete equilibration in RHIC data

Extra slide

Methods of flow analysis

Anisotropic flow is usually measured using two-particle correlations:

 $\langle \cos 2(\phi_1 - \phi_2) \rangle \approx \langle \cos 2(\phi_1 - \Phi_R) \rangle \langle \cos 2(\Phi_R - \phi_2) \rangle = (v_2)^2$

Assumption: all two-particle correlations are due to flow...

... which is obviously wrong!

"Non-flow" sources of correlations: jets, decays of short-lived particles, global momentum conservation, quantum effects between identical particles, etc. can bias the "standard" flow analysis The bias is comparatively larger for smaller systems

New methods for measuring flow have been developed cumulants of multiparticle correlations, Lee–Yang zeroes

(N.B., P.M. Dinh, J.-Y. Ollitrault, R.S. Bhalerao, 2000–2004)