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A short introduction

• Appearance of unstable gauge modes for anisotropic parton
distribution functions
⇒ they may speed up thermalization.

• Gauge fields have an initial stage of exponential growth
A(t) ∼ eγta. For how long?

• The conjecture: Abelianization of the process
Arnold and Lenaghan

Recently tested in numerical simulations:
⇒ ok in 1 + 1 d
Arnold and Lenaghan, 04; Rebhan, Romatschke, Strickland, 04;

Dumitru and Nara, 05

⇒ but not ok in 1 + 3 d.
Arnold, Moore and Yaffe, 05; Rebhan, Romatschke, Strickland, 05



Dynamical Evolution

Dynamics studied with

Seff = SYM + SHL

the Hard Loop effective action obtained from the transport
equation, in a (covariant) linear expansion around the anisotropic
state (or equivalently in a diagrammatic expansion)

HL requires not too large gauge field amplitudes.

gA ∼ phard

Is it legitimate to remain at the HL level?
Instability growth is ”faster” than collisions, so it is ok to neglect
the collision term in the studies.
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Dynamical Evolution: Abelianization ?

If the system is such that only depends in one spatial direction z
(Arnold and Lenaghan)

The static effective potential

Veff [A] = VYM + VHL =
g2

4
f abc f ade(Ab · Ad)(Ac · Ae)− µ2Aa

T · Aa
T

suggest that the system Abelianizes, as the Abelian directions
correspond to the steepest decrease in Veff .



Dynamical Evolution

Going beyond the HL level

(warning: it is still one-loop physics)

• Solve the transport equation beyond the (covariant) linear
approximation

• Exacts solutions can be found in special cases
(otherwise, they are awfully complicated!)
when there are time and/or space translational invariances

Reason: existence of constants of motion.
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Toy Example: Electromagnetic charged particle

Suppose an invariance in the system

Aµ(xα + εnα) = Aµ(xα)

Then it is easy to check that

nµ(muµ + eAµ) = ct. , uµ =
dxµ

dτ

From the Hamiltonian equations

dxµ

dτ
=

∂H

∂pµ
,

dpµ

dτ
= − ∂H

∂xµ
= euλ∂µAλ

⇒ d(n · p)

dτ
= 0

d

dt
f (x , u) = {f ,H}P.B. = 0



Classical colored charged particles

The same philosophy works for classical colored particles.
M. Laine and C.M. 02

Wong equations

m
dxµ

dτ
= pµ , m

dpµ

dτ
= gQa Fµν

a pν , m
dQa

dτ
= −gf abcpµ Ab

µQc

When there is an translational invariance in the system then a
solution of

d

dτ
f (x , p,Q) = {f ,H}P.B. = 0

is given by

f
(
nµ(pµ + gQaA

a
µ)

)



Quantum color transport equations

Transport equation for quarks (anal. for antiquarks and gluons)
Q : a matrix in the fundamental representation of SU(Nc)

pµDµQ(p, x) +
g

2
pµ

{
Fµν(x),

∂Q(p, x)

∂pν

}
= 0

Color current

jµ(x) = −g

2

∫
dP pµ

[
Q(p, x)− 1

Nc
TrQ(p, x)

]
Generated by the effective action

jµa (x) = − δS

δAa
µ(x)

Fast way to get the effective action and effective potential



Exact Solutions

Suppose an invariance in the direction of the index(ces) αi .

Q(p, x) = f (pαi − gAαi (x))

=
∞∑

n=0

(−g)n

n!
Aα1(x) Aα2(x) · · ·Aαn(x)

∂nf (pαi )

∂pα1 ∂pα2 . . . ∂pαn

is a solution iff [DµAαi ,Aαj ] = 0
the associated effective action is then given by

Leff = −
∞∑

n=0

(−g)n+1

(n + 1)!
Tr[Aα1(x) · · ·Aαn+1(x)]

∫
dP pα1

∂nf (pαi )

∂pα2 · · · ∂pαn+1



Unstable
With an anisotropic f , at the HL level, one always gets a first
negative term

In the Abelian direction



Strongly and Weakly Unstable

But higher order terms can change the shape of V!

• If V remains always negative and unbound ⇒ strongly
unstable

• V may get positive contributions and develop local minima ⇒
weakly unstable

The final shape of V depends on the parton distribution function.
(general criteria ??)

Note for strongly unstable solutions, the Abelianization should
work perfectly ok.



Example: Strongly Stable

Gaussian function for a system with only z dependence

f (px , py , p0) = 23π3/2
√

β(β − αx)(β − αy ) ρ exp
(
αxp

2
x + αyp2

y − β p2
0

)

Veff = −g2
{

αx

〈 p2
x

Ep

〉
Tr[A2

x ] + αy

〈 p2
y

Ep

〉
Tr[A2

y ]
}

−g4

{(1

3
α3

x

〈 p4
x

Ep

〉
+

1

2
α2

x

〈 p2
x

Ep

〉)
Tr[A4

x ] + (x ↔ y)

(
(αxα

2
y + α2

xαy )
〈p2

xp
2
y

Ep

〉
+

1

2
αxαy

〈p2
x + p2

y

Ep

〉)
Tr[A2

xA
2
y ]

}
+O(g6)



Example: Weakly Unstable

f (px , py , p0) =
2π2β2

1 + βP
eβP ρ

[
δ(px − P) + δ(px + P)

]
e−βp0

Veff =
g2

2!
ρ β

1− βP
1 + βP

Tr[A2
x ] +

g4

4!
ρ β3 3− βP

1 + βP
Tr[A4

x ]

+ · · ·+
g2n

(2n)!
ρ β2n−1 2n − 1− βP

1 + βP
Tr[A2n

x ] + · · ·



c = βP , s = gβAx



Estimates

When are quartic terms as important as quadratic terms?

Veff ∼ −µ2A2 + λA4

A2 ∼ µ2

λ

µ2 ∼ g2 ρ

phard
, λ ∼ g4 ρ

p3
hard

⇒ A ∼ phard/g

assuming exponential growth, this happens at a time

t ∼ 1

gphard
ln 1/g

This was an estimate for a 1+1 d system, assuming Abelianization.



Outlook

According to numerical simulations in 1+3 d, saturation of the
non-Abelian instabilities occur before.

A ∼ psoft

g

and psoft < phard

Can terms beyond the HL modify that conclusion?


