IN-MEDIUM FORMATION OF J/#: PROBE OF CHARM QUARK THERMALIZATION

R. L. THEWS UNIVERSITY OF ARIZONA

WORKSHOP ON QGP THERMALIZATION VIENNA AUGUST 10-12, 2005

QUARKONIUM FORMATION

MATSUI-SATZ: R_{plasma screening} < R_{quarkonium} : SUPPRESSION

KHARZEEV-SATZ: Ionization with deconfined gluons

NA50: Anomalous Suppression

ALTERNATIVES: Dense hadronic medium, comovers

Multiple ccbar pairs in high energy AA Collisions

$$N_{c\bar{c}}(b=0) \simeq 30\sigma_{c\bar{c}}^{pp}(mb)$$

CENTRAL VALUES:

- 10-15 from extrapolation of low energy
- 20 from PHENIX electrons
- 40 from STAR electrons and Kπ

$709 \pm 85 \pm \frac{332}{281} \mu b$: PHENIX nucl-ex/0403057 (pp) $622 \pm 57 \pm 160 \mu b$: PHENIX nucl-ex/0409028 (Au-Au) $1.4 \pm 0.2 \pm 0.4 \ mb$: STAR nucl-ex/0407006 (d-Au)

$709 \pm 85 \pm \frac{332}{281} \mu b$: PHENIX nucl-ex/0403057 (pp) $622 \pm 57 \pm 160 \mu b$: PHENIX nucl-ex/0409028 (Au-Au) $1.4 \pm 0.2 \pm 0.4 \ mb$: STAR nucl-ex/0407006 (d-Au)

PROBE REGION OF COLOR DECONFINEMENT WITH MULTIPLE PAIRS OF HEAVY QUARKS

Avoids Matsui-Satz Condition

Form Quarkonium directly in the Medium

Formation and Suppression Competition

Scenario supported by lattice calculations of quarkonium spectral functions

Probability for charm quark to combine with anticharm:

 $\varepsilon = N_c / N_{u,d} \propto N_{c\overline{c}} / N_{ch}$ Since $\varepsilon \ll 1$, sum for each \overline{c} :

$$N_{\it quarkonium} \propto {N_{c\overline{c}}}^2$$
 / $N_{\it ch}$

Average over fluctuations:

$$< J/\psi > = \lambda < N_{c\bar{c}} > (< N_{c\bar{c}} > +1)/N_{ch}$$

Centrality dependence in terms of participants N_p :

Parameterize $N_{ch} \propto N_p^{1+\Delta}$, $\langle J/\psi \rangle / \langle N_{c\overline{c}}(binary) \rangle = a N_p^{\frac{1}{3}-\Delta} + b N_p^{-1-\Delta}$

FORMATION CENTRALITY SIGNATURES

Centrality Dependence of Quarkonium Formation

FORMATION OF QUARKONIUM IN REGION OF COLOR DECONFINEMENT

R. L. Thews, M. Schroedter, and J. Rafelski, Phys. Rev. C63:054905 (2001)

Formation process is Inverse of dissociation

Model evolution of region with initial temperature and isentropic expansion, depends on contours of participant density

Final population determined by competition between formation and dissociation rates

M. Asakawa and T. Hatsuda, Phys. Rev. Lett: 012001 (2004)

S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Phys. Rev. D69:094507 (2004)

OPE Cross Sections $g + J/\psi < -- > c + \overline{c}$

Evolution of Charmonium Formation and Dissociation Rates

J/Psi yield is Quadratic in Total Charm

 $\mathbf{N}_{\mathrm{J}/\psi}(\tau_{\mathrm{f}}) = \varepsilon(\tau_{\mathrm{f}}) \times \mathbf{N}_{\mathrm{cc}}^{2} \int_{\tau_{\mathrm{f}}}^{\tau_{\mathrm{f}}} \lambda_{\mathrm{F}} \left[V(\tau) \varepsilon(\tau) \right]^{1} \mathrm{d}\tau$

$$\varepsilon(\tau) = \exp[-\int_{\tau_0}^{\tau} \lambda_{\rm D} \rho_{\rm g} d\tau]$$

COMPARISON WITH INITIAL PHENIX DATA AT RHIC 200

Rates very sensitive to quark momentum distribution Centrality signature varies with magnitude of N_{cc}

PHENIX – Phys. Rev. C69, 014901 (2004)

Model predictions very sensitive to N_{cc} and distribution

Model predictions very sensitive to N_{cc} and distribution

DO THE Y AND P_T SPECTRA PROVIDE A QUARK THERMALIZATION SIGNATURE?

M. Mangano and R. L. Thews: nucl-th/0505055

- 1. Generate sample of ccbar pairs from NLO pQCD (smear LO q_t)
- 2. Supplement with k_t to simulate initial state and confinement effects
- 3. Integrate formation rate using these events to define particle distributions (no cquark-medium interaction)
- 4. Repeat with cquark thermal+flow distribution (maximal cquark-medium interaction)

All combinations of c and cbar contribute
Total has expected (N_{ccbar})² / V behavior
Prefactor is integrated flux per ccbar pair

Charm Quark y Distributions NLO pQCD at RHIC200 Energy

Charm Quark y Distributions Variation with intrinsic $\langle k_T^2 \rangle$, NLO pQCD at RHIC200 Energy

$c\bar{c}$ Pair y Distributions Variation with intrinsic $\langle k_T^2 \rangle$, NLO pQCD at RHIC200 Energy

Rapidity Spectra Comparison, RHIC energy

Rapidity Spectra for pp -> J/ψ Comparison with cc diagonal pairs 0.6 cc Diagonal pairs PHENIX hep-ex/0307019 PHENIX Run 3 prelim $c\bar{c}$, Formation weights 0.4 [.] ^{M/[}[N/Np ₋N] 0.2 0 -2 2 0 -4

y

p-p data "select" unbiased diagonal c-cbar pairs

p-p data determine intrinsic k_t

$$< k_t^2 >_{c-quarks} = 0.5 \pm 0.1 \ GeV^2$$

1.2 < y < 2.4, 84K NLO diagonal $c\bar{c}$ pairs, Sensitivity to k₊ broadening

Use dAu broadening to determine nuclear k_t $\Rightarrow < k_t^2 >_{AA} = 1.3 \pm 0.3 \text{ GeV}^2$

Cross section versus p_{T}

p_T is broadened for dAu

16 January 2004

QM04 - Raphaël Granier de Cassagnac

S. Gavin and M. Gyulassy, Phys. Lett. B214 (1988

 $< p_T^2 >_{AB} = < p_T^2 >_{DD} + \lambda^2 \{ \overline{n}_A + \overline{n}_B - 2 \}$

Nuclear broadening from Initial state parton scattering, extract $\lambda^2 = 0.35$ +/- 0.14 GeV² for Au-Au at RHIC, compare with 0.12 +/- .02 GeV² at fixed-target energy

P. Steinberg, Hot Quark 2004 Workshop, July 2004

J. Burward-Hoy, Winter Workshop on Nuclear Dynamics, 2004

- RdA: average over centrality consistent with minimum bias result.
- Weak nuclear effects at forward rapidities (green points at midrapidity)
- Stronger centrality dependence at backward rapidities

Formation through "off-diagonal" pairs narrows rapidity distribution

Formation through "off-diagonal" pairs narrows p_t distribution

Comparison with Thermal + Transverse Flow c-Quark Distributions

K.A.Bugaev, M. Gazdzicki, M.I.Gorenstein, Phys.Lett.B544,127(2002)

S.Batsouli, S.Kelly, M.Gyulassy, J.L.Nagle, Phys.Lett.B557,26 (2003)

Charm Quark p_T Distributions

Thermal plus flow comparison with pQCD

$c\bar{c}$ Pair p_{T} Distributions

Thermal plus flow comparison with pQCD

Comparison with coalescence model: V Greco, C. M. Ko, R. Rapp, Phys. Lett. B595:202 (2004)

J/ ψ Formation p_T Distributions

Comparison with direct Thermal Distribution

J/ψ Transverse Momentum Width Evolution

J/ψ Transverse Momentum Width Evolution

J/ψ Formation Comparison with Initial Production

$J/\psi p_T$ width vs centrality for Au-Au at RHIC200

$J/\psi p_T$ width vs centrality for Au-Au at RHIC200

$J/\psi p_T$ width vs centrality for Cu-Cu at RHIC200

SUMMARY

- Absolute magnitude and centrality dependence tests require both open and hidden flavor measurements
- J/Psi p_T and y measurements alone can provide signatures of in-medium recombination processes
- The difference of pQCD quark pair spectra for diagonal vs off-diagonal combinations survives in the J/Psi results
- Non-monatonic behavior of widths of transverse momentum spectra signal recombination
- In-medium formation process very sensitive to heavy quark thermalization and flow

J/ ψ Formation p_T Distributions

Comparisons using various quark distributions

J/ ψ Formation plus Suppression p_T Distributions $10^4 \times 10^4 \text{ cc}$ pairs, NLO pQCD, RHIC energy, all y

Rapidity Variation of J/ ψ Formation p_T Spectra

J/ ψ Formation plus Suppression p_T Distributions

 $10^4 \text{ x } 10^4 \text{ cc}$ pairs, NLO pQCD, RHIC energy, all y

