

What experiments tell us about thermalization at RHIC?

Grazyna Odyniec Lawrence Berkeley National Laboratory Berkeley, US

Info comes from:

- V2 / quark partonic collectivity
- V₂ of non-photonic electrons
 - Heavy flavor collectivity = >

1

- Light flavor thermalization
- Away-side jets

are we there yet ?

Grazyna Odyniec

Event anisotropies -> Flow

The initial spatial anisotropy evolves (via interactions and density gradients) into a momentum space anisotropy

$$E \frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n\Delta\varphi) \right)$$

 v_{0} "radial flow", v_{1} "directed flow"
 v_{2} "elliptic flow" (largest).

Azimuthal space-momentum anisotropy: a <u>self quenching</u> probe of early interactions

Grazyna Odyniec

Workshop on Quark-Gluon-Plasma Thermalization, Vienna, August 10-12, 2005

 $v_2 vs. p_T$

Hydro calculations break-down at higher p_T (as expected). ???:

-how is v_2 established at p_T above 2 GeV/c?

-why is baryon v₂ so large?

Grazyna Odyniec

Extended p_T

Year 4 data gives RHIC higher statistics and greater coverage for identified particle v₂

$\boldsymbol{\varphi}$ flows as strongly as other mesons

Grazyna Odyniec

constituent quark scaling

- v_2 appears to scale with number of constituent quarks for $p_T/n > 0.6$ GeV/c.

-quark coalescence.

Pions deviate: may be due to resonance decays

constituent quark DOF !

???:

gluons not present at hadronization?

a closer look

jet fragmentation contribution + spatial correlations can spoil the scaling of v2/n: *D. Molnar nucl-th/0406066*

work in progress

if hydro works ...

Partonic collectivity observed experimentally and

- observed substantial signal related to flow
- resulting from large pressure gradient
- assuming hydro: THERMALIZATION

Grazyna Odyniec

Charm as a probe to test early thermalization

Why Charm ? *Heavy !!*

Charm quarks created at early stage of HIC \rightarrow total yields scaled by N_{bin}

Sensitive to the partonic rescatterings

Collectivity, flow \rightarrow light flavor thermalization

Heavy flavor collectivity \rightarrow light flavor thermalization

- favors scenario in which charm quark flows as light quarks
- strong coupling of charm quark to the medium

Grazyna Odyniec

Workshop on Quark-Gluon-Plasma Thermalization, Vienna, August 10-12, 2005

before and after QM 2005

Heavy Flavor R_{AA}

Clear evidence of large heavy quark energy loss!

(J.Nagle, yesterday's talk)

Grazyna Odyniec

Before any physics conclusion, experimental data must agree!

Non-photonic electrons arise primarily from c and b.

Large charm suppression and flow at intermediate p_{T} :

 $P_{2}(e) \text{ favors non-zero } v_{2}(c) !?$ $P_{AA}(e) \approx R_{AA}(h) !?$ I if confirmedHeavy flavor collectivity! I ight flavor thermalization!

jets and thermalization...

forget Hydro ! look at data, model independent experimental results ...

how medium responds to jets ?

di-jets = way to study medium

Grazyna Odyniec

Au+Au, pp and d+Au

J.Adams et al., PRL 91 (2003) 072304

• d+Au and pp similar

- Implies jet suppression not an initial nuclear effect.
- Au+Au suppressed on away side for higher associated p_T

away side peak is back !

to understand quenching – go beyond leading hadrons

Grazyna Odyniec

What happens to a hard probe that traverses a colored medium?

away

near

.eading

hadrons

Surprise !

M.Horner QM2005 poster (STAR)

Expected: jet center hardest, especially if we increase associated p_t , but data shows <u>depletion</u> in this region

Study of away-side jets as function of pt

M.Horner QM2005 poster (STAR) wing: $97.5^{\circ} < |\Delta \Phi| < 120^{\circ}$

core: 157.5⁰<|∆Φ|<180⁰

ratio of yields in core and wing as function of associated pt shows that <u>excess in the core</u> <u>diminish relative to the</u> <u>wing as associated pt</u> <u>increases</u>

dependence on centrality

M.Horner QM2005 poster (STAR)

correlated yields and shapes are very similar over the centrality range 0-20 %

Workshop on Quark-Gluon-Plasma Thermalization, Vienna, August 10-12, 2005

PHENIX vs STAR @QM2005

BERKELEY LAB

Three-particle correlations

Ulery, Wang QM 2005 (STAR)

- Conical flow: associated particles may appear on opposite sides of $\Delta \phi = \pi$

- Deflected jets: associated particles on the same side of $\Delta \phi = \pi$

Casalderrey-Solana, Shuryak and Teaney, hep-ph/0411315 Stocker, NP A750, 121 Ruppert and Muller, PL B618, 123

Three-particle correlations in d+Au and Au+Au

experimental situation for today

So far the picture is consistent !

Measurements show:

- 1. <u>elliptic flow</u> \iff large number of initial interactions, collective behavior amongst partons (particularly from Φ and Ωv_2)
- 2. <u>high p_T suppression</u> \iff initial density, partons lose energy in a hadronic or partonic medium
- 3. <u>non-photonic electron $v_2 \iff$ interactions copious enough for</u>
- 4. the u-, d-, and s-quarks to be in a QGP state
- 5. $\underline{<p_T}$ of the away side associated particles \iff even hard probes start to become thermalized in the medium.

do we see thermalization ... ?

Thanks !

Grazyna Odyniec