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Introduction Motivation

Motivation
Why is equilibration interesting?

Early Universe

(P)reheating during inflation (→ Baryogenesis)

Heavy-Ion Collisions

Is a thermalized QGP achieved during the collisions?
Hydrodynamics point to short thermalization time (τ ∼ 1 fm/c).
Traditional QCD estimates give a larger thermalization time.
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Introduction Motivation

2PI Effective action as a tool to study equilibration

Exact representation of path integral in terms of a functional depending solely on
the connected 1- and 2-point functions φ and G.

Evolution equations derived from variational principle on the functional
(Φ(Functional)-derivable approximations)

Energy conservation

Respect global symmetries [Baym, Kadanoff’61]

Renormalization? Possible and systematic [van Hees, Knoll’02; Blaizot, Iancu, Reinosa’04;Cooper,Mihaila,

Dawson ’04; Berges, Borsányi, Reinosa’05]

Gauge invariance? Not completely [AA, Smit ’02; Carrington,Kunstatter,Zaraket ’03]

Recent out-of-equilibrium studies:
Equilibration in scalar fields (1+1 dim) [Berges,Cox ’00; Aarts,Berges’01; Berges’02, Cooper,Dawson,Mihaila’03. . . ]

Equilibration in scalar fields (2+1 dim) [Cassing,Juchem,Greiner’02]

Equilibration of fermions and scalars (3+1 dim) [Berges,Borsányi,Serreau’03]

Preheating [Berges,Serreau’03; AA,Tranberg,Smit’04]
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2PI Effective Action Basics

2PI Effective Action in scalar theory

Scalar λϕ4 theory

S[ϕ] =

Z
C

d4x
»

1
2

∂µϕ(x)∂µϕ(x)− 1
2

m2ϕ(x)2 − λ

4!
ϕ(x)4

–

Symmetric phase: v = 〈ϕ〉T=0 = 0

Broken phase: v 6= 0, vtree =
p

6|m2|/λ

2PI Effective Action

with G−1
0 (x , y) =

“
−∂2 −m2 − 1

2 λφ2
”

δC(x , y).
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2PI Effective Action Truncations

Truncations

Truncations of the 2PI Effective Action

Evolution equations obtained from variational principle
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2PI Effective Action Real-Time 2-Point Functions

2-point functions

2-point functions on the contour

Evolution equations are defined on the Schwinger-Keldysh contour C

G(x , y) = ΘC(x0−y0)G>(x , y)+ΘC(y0−x0)G<(x , y) with

(
G>(x , y) ≡ 〈ϕ(x)ϕ(y)〉
G<(x , y) ≡ 〈ϕ(y)ϕ(x)〉

Real scalar theory
ˆ
G>(x , y)

˜?
= G<(x , y) → only 2 independent real functions.

G>(x , y) = F (x , y)− i
2

ρ(x , y),

G<(x , y) = F (x , y) +
i
2

ρ(x , y).

The functions F /ρ contain statistical/spectral information

F (x , y) =
1
2
〈{ϕ(x), ϕ(y)}〉 , ρ(x , y) = i 〈[ϕ(x), ϕ(y)]〉
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2PI Effective Action Equations of Motion

Evolution Equations

2-point functions

h
∂

2
x + M2(x)

i
F (x, y) =

Z x0

0
dz0

Z
d3z Σρ(x, z)F (z, y) −

Z y0

0
dz0

Z
d3z ΣF (x, z)ρ(y, z),h

∂
2
x + M2(x)

i
ρ(x, y) =

Z x0

y0

dz0

Z
d3z Σρ(x, z)ρ(z, y),

with M2(x) = m2 +
λ

2
φ(x)2 +

λ

2
F (x, x)

ΣF (x, y) =
λ2

2
φ(x)φ(y)

"
F 2(x, y) −

ρ2(x, y)

4

#
+

λ2

6
F (x, y)

"
F 2(x, y) −

3ρ2(x, y)

4

#

Σρ(x, y) = λ
2
φ(x)φ(y)

ˆ
F (x, y)ρ(x, y)

˜
+

λ2

6
ρ(x, y)

"
3F 2(x, y) −

ρ2(x, y)

4

#

1-point function

h
∂

2
x + M2(x)

i
φ(x) =

λ

3
φ(x)3 +

Z x0

0
dz0

Z
d3z eΣρ(x, z)φ(z),

with eΣρ(x, z) = −
λ2

6
ρ(x, z)

"
3F (x, z)2 −

ρ(x, z)2

4

#
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2PI Effective Action Initial Conditions

Initial Conditions
Spatially homogeneous situation

F (x, y) = F (t, t′, x − y), ρ(x, y) = ρ(t, t′, x − y)

ff
=⇒


Fk(t, t′), ρk(t, t′)

ff
Mean Field φ = 0 Symmetric Phase φ = vtree Broken Phase

Spectral Function ρk(t, t) = 0, ∂t ρk(t, t′)
˛̨

t=t′ = 1

Symmetric Function

Fk(t, t′)
˛̨

t=t′=0 = 〈{ϕk(t), ϕ−k(t
′)}〉|t=t′=0 =

1
ωk

»
nk +

1
2

–
∂t Fk(t, t′)

˛̨
t=t′=0 = 〈{πk(t), ϕ−k(t

′)}〉|t=t′=0 = 0

∂t ∂t′Fk(t, t′)
˛̨

t=t′=0 = 〈{πk(t)π−k(t
′)}〉|t=t′=0 = ωk

»
nk +

1
2

–

Thermal

nk =
1

e(ωk/Tin) − 1

with ωk =
q

m2
in + k2

“Top-Hat”

nk = H Θ(k2
max−k2)Θ(k2−k2

min)

Alejandro Arrizabalaga (NIKHEF) Equilibration in ϕ4 theory in 3+1 dimensions QGP Thermalization, Aug 10-12 9 / 21



2PI Effective Action Observables

Observables

Quasiparticle distribution function nk(t) + 1
2 = ck

q
∂t∂t′Fk(t , t ′)

˛̨
t=t′ Fk(t , t)

Dispersion relation ωk(t) =
q

∂t∂t′Fk(t , t ′)
˛̨
t=t′/Fk(t , t)

Total Particle number density ntot(t) =
R

k nk(t)

Close to equilibrium

Effective quasiparticle mass meff ω
2
k(t) = c2(t)

“
meff(t)

2 + k2
”

Effective Temperature Teff and chemical potential µeff np(t) =
1

e
h
ωp(t)−µeff(t)

i
/Teff(t) − 1

Energy and Memory Kernels

We monitor the memory kernels, i.e. ΣF (t , t ′), Σρ(t , t ′) and eΣρ(t , t ′)

Only a finite memory is kept, i.e. Σ(t , t ′) → for|t − t ′| > tcut
We check that the energy E(t) =

R
d3x T 00(x, t) is conserved
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2PI Effective Action Observables

Numerical Implementation

The system is discretized on a N3 = 163 spatial lattice of spacing a.

Time is discretized with spacing at

Renormalization

General method quite involved (solution of Bethe-Salpeter equations)

In our discretized case we use an approximate 2-loop renormalization
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Symmetric Phase Equilibration

Symmetric Phase: Equilibration
Simulation Parameters: φ = 0, am = 0.7, λ = 6, at = 0.1a, mtcut = 28

T1, T2 and T3: same energy

T1 and T2: similar total particle number density

Distribution function
nk vs. ωk, Hartree and Basketball for T1

Dispersion relation
ω2

k vs. k2, Hartree and Basketball for T1

Equilibration seems to occur at mt ∼ 100!
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Symmetric Phase Kinetic vs. Chemical Equilibration

Kinetic vs. Chemical Equilibration

Evolution of individual modes Evolution of total particle number ntot

Kinetic equilibration occurs relatively fast (mt ∼ 100), dominated by
2↔ 2 processes
Chemical equilibration is much slower (caused by 1↔ 3, 2↔ 4, . . .
processes).
Kinetically preequilibrated state remembers the initial particle number.
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Symmetric Phase Kinetic vs. Chemical Equilibration

Evolution of effective mass, temperature and chemical potential

Very slow evolution towards final equilibrium (mτ ∼ 104−5)

Exponential fits suggest asympotic values T/m = 1.36 and µ/m = 0.7(!)

Chemical equilibration seems to be much smaller than in 2+1 dimensions [Juchem,Cassing,Greiner

’03]

Effective mass: Comparison with Hartree estimate MH(Teff, µeff) indicates that the
contribution to the mass from the basketball not very large.
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Symmetric Phase Damping

Symmetric Phase: Damping

Close to thermal equilibrium (Initial conditions: Thermal)

Mean field slightly displaced from φ = 0

..

φ(t) + M2(T , t)φ(t) = −
λ

6
φ(t)3 −

Z t

0
dt′ Σ̃ρ

0 (t, t′) φ(t′)

⇓ Linearization
..

φ(t) + M2(T )φ(t) = −
Z t

0
dt′ Σ̃ρ

0 (t − t′) φ(t′)

⇓ Solvable

φ(t) =
2φi

π

Z ∞

0
dω

ω ImΣ̃R
0 (ω) cos(ωt)h

ω2 − M2 − ReΣ̃R
0 (ω)

i2
+ ImΣ̃R

0 (ω)2

⇓ Narrow width

φ(t) ≈ φi Ze−γt cos
`
Mefft − α

´
,

γ = Z
ImΣ̃R

0 (Meff)

Meff
, M2

eff = M2 + ReeΣR
0 (ω)

Spectral Function ρk(t , t ′) = 1
ωk

e−γk|t−t′| sin [ωk(t − t ′)]
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Symmetric Phase Damping

Damping: 2-loop vs. Basketball

Effective masses almost identical and close to Hartree

Basketball damping slightly larger than 2-loop damping

Basketball damping (20-40)% larger than Perturbative

Spectral function zero-mode mass and damping closely
follow mean field values
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Broken Phase Equilibration

Broken Phase: Equilibration

φ 6= 0 allows to compare 2-loop and basketball for the equilibration of 2-point
functions

The 2-loop perturbative approximation contains no on-shell scattering,

But the 2-loop Φ-derivable approximation contains on-shell scattering (through
resummation of higher orders)

We take φ = vtree ≈ v so that the time evolution of φ(t) does not affect the
dynamics of the 2-point functions
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Broken Phase Equilibration

Broken Phase: Equilibration

Simulation Parameters: φ = vtree, am = 0.7, λ = 1, at = 0.1a, mtcut = 84,

Distribution function
nk vs. ωk, 2-loop and Basketball for T1

Dispersion relation
ω2

k vs. k2, 2-loop and Basketball for T1

Early equilibration in 2-loop almost as fast as in Basketball
Further chemical and final equilibration very slow
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Broken Phase Damping

Broken Phase: Damping

Close to thermal equilibrium (Initial conditions: Thermal)

Mean field φ = vtree slightly displaced from true v

Linearization around v: φ(t) = v + σ(t)

..
σ(t) + M2(T , t)σ(t) = −

Z t

0
dt ′ Σ̃ρ

0 (t , t ′)σ(t ′)

Vacuum expectation value v

M2(T , t)v −
λ

3
v3 +

Z t

0
dt ′ Σ̃ρ

0 (t , t ′)v = 0

Close enough to equilibrium

σ(t) ≈ σinZe−γt cos
`
Mefft − α

´
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Broken Phase Damping

Damping: 2-loop vs. Basketball

Effective masses and v practically identical and close to Hartree

Similar damping in both approximations (rough estimates)
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Conclusions and comments

Conclusions

Equilibration stages

Early Kinetic Equilibration (“Stabilization” of occupation numbers and
dispersion relation)

Late Chemical and final equilibration

Prethermalization? (J. Berges and S. Borsányi’s talks)

Hartree/2-loop/Basketball Φ-derivable approximations

Hartree vs. 2-loop/Basketball: Not large changes in masses and v
Enhanced mean field damping (w.r.t perturbation theory)
Possible to study 2-point function equilibration in 2-loop (broken phase)
Equilibration almost as fast in 2-loop as in Basketball (broken phase)

Larger couplings: Secular-like Instabilities?, Renormalization?
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