Transition from Baryonic to Mesonic Freeze-Out.

J. Cleymans

12 August 2005 Thermalization Workshop, Vienna

Outline

Overview

Present Knowledge of the Chemical Freeze-Out Diagram

The Horn in the K^+/π^+ Ratio

Possible Explanation for the Horn

Summary

Summary

Summary

Hadronic Gas before Chemical Freeze-Out

The number of particles of type *i* is determined by:

$$E\frac{dN_i}{d^3\rho} = \frac{g_i}{(2\pi)^3} \int d\sigma_\mu \rho^\mu \exp\left(-\frac{\rho^\mu u_\mu}{T} + \frac{\mu_i}{T}\right)$$

Integrating this over all momenta

$$N_{i} = \frac{g_{i}}{(2\pi)^{3}} \int d\sigma_{\mu} \int \frac{d^{3}p}{E} p^{\mu} \exp\left(-\frac{p^{\mu}u_{\mu}}{T} + \frac{\mu_{i}}{T}\right)$$

or

$$N_i = \int d\sigma_\mu u^\mu n_i(T,\mu)$$

If the temperature and chemical potential are unique along the freeze-out curve

$$N_i = n_i(T,\mu) \int d\sigma_\mu u^\mu$$

i.e. integrated (4π) multiplicities are the same as for a single fireball at rest (apart from the volume).

E/N in 1999

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

E/N in 2000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

E/N in 2005

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

μ_B as a function of $\sqrt{s_{NN}}$

 $\mu_{\rm B} = 1.27347/(1.0 + 0.25767*\sqrt{s_{\rm NN}})$

T as a function of $\sqrt{s_{NN}}$

The NA49 Collaboration has recently performed a series of measurements of Pb-Pb collisions at 20, 30, 40, 80 and 158 AGeV beam energies . When these results are combined with measurements at lower beam energies from the AGS they reveal an unusually sharp variation with beam energy in the $\Lambda/\langle \pi \rangle$, with $\langle \pi \rangle \equiv 3/2(\pi^+ + \pi^-)$, and K^+/π^+ ratios. Such a strong variation with energy does not occur in pp collisions and therefore indicates a major difference in heavy-ion collisions. This transition has been referred as the "horn".

NA49: Horn

Strangeness in Heavy Ion Collisions vs Strangeness in pp - collisions

Use the Wroblewski factor

$$\lambda_{m{s}} = rac{2\left< m{sar{m{s}}}
ight>}{\left< m{uar{m{u}}}
ight> + \left< m{dar{m{d}}}
ight>}$$

This is determined by the number of **newly** created quark – anti-quark pairs and **before** strong decays, i.e. before ρ 's and Δ 's decay.

Limiting values : $\lambda_s = 1$ all quark pairs are equally abundant, SU(3) symmetry. $\lambda_s = 0$ no strange quark pairs.

æ

æ

J.C., H. Oeschler, K. Redlich, S. Wheaton, Phys. Lett. B 2005

In the statistical model a rapid change is expected as the hadronic gas undergoes a transition from a baryon-dominated to a meson-dominated gas. The transition occurs at a temperature T = 140 MeV and baryon chemical potential $\mu_B = 410$ MeV corresponding to an incident energy of $\sqrt{s_{NN}} = 8.2$ GeV.

Overview Present Knowledg

planation for the He

<ロ> (四) (四) (三) (三) (三) (三)

It is to be expected that if these maxima do not all occur at the same temperature, i.e. at the same beam energy, then the case for a phase transition is not very strong. The observed behavior seems to be governed by properties of the hadron gas. More detailed experimental studies of multi-strange hadrons will allow the verification or disproval of the trends shown in this paper. It should be clear that the Ω^-/π^+ ratio is very broad and shallow and it will be difficult to find a maximum experimentally.

Maxima in Particle Ratios predicted by the Thermal Model.

Ratio	Maximum at $\sqrt{s_{NN}}$ (GeV)	Maximum Value
$\Lambda/\langle \pi \rangle$	5.1	0.052
$= \pi K^+/\pi^+$	10.2	0.011
Ω^{-}/π^{+}	27	0.0012

In conclusion, while the statistical model cannot explain the sharpness of the peak in the K^+/π^+ ratio, its position corresponds precisely to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature T = 140 MeV,
- baryon chemical potential $\mu_B = 410$ MeV,

• energy $\sqrt{s_{NN}} = 8.2$ GeV.

In the statistical model this transition leads to a sharp peak in the $\Lambda/\langle \pi \rangle$ ratio, and to moderate peaks in the K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios. Furthermore, these peaks are at different energies in the statistical model. The statistical model predicts that the maxima in the $\Lambda/\langle \pi \rangle$, Ξ^-/π^+ and Ω^-/π^+ occur at increasing beam energies.

In conclusion, while the statistical model cannot explain the sharpness of the peak in the K^+/π^+ ratio, its position corresponds precisely to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature T = 140 MeV,
- baryon chemical potential $\mu_B = 410$ MeV,

• energy $\sqrt{s_{NN}} = 8.2 \text{ GeV}.$

In the statistical model this transition leads to a sharp peak in the $\Lambda/\langle \pi \rangle$ ratio, and to moderate peaks in the K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios. Furthermore, these peaks are at different energies in the statistical model. The statistical model predicts that the maxima in the $\Lambda/\langle \pi \rangle$, Ξ^-/π^+ and Ω^-/π^+ occur at increasing beam energies.

In conclusion, while the statistical model cannot explain the sharpness of the peak in the K^+/π^+ ratio, its position corresponds precisely to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature T = 140 MeV,
- baryon chemical potential $\mu_B = 410$ MeV,
- energy $\sqrt{s_{NN}} = 8.2$ GeV.

In the statistical model this transition leads to a sharp peak in the $\Lambda/\langle \pi \rangle$ ratio, and to moderate peaks in the K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios. Furthermore, these peaks are at different energies in the statistical model. The statistical model predicts that the maxima in the $\Lambda/\langle \pi \rangle$, Ξ^-/π^+ and Ω^-/π^+ occur at increasing beam energies.

