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Motivation

• Success of hydro models seems to imply fast isotropization (and
possibly thermalization) of matter created at RHIC.

• Previous ”naive” perturbative estimates don’t seem to explain this.
• One possibility is that perturbation theory should be thrown out the

window and replaced by a new (as of yet unspecified) calculational
framework.

• However, the perturbative estimates to date have overlooked an
important aspect of the physics, namely that in anisotropic
plasmas the collective modes (aka mean field dynamics) are
fundamentally different than in isotropic ones.

• This results in some things previously not considered in this
context, namely the spontaneous generation of large soft color
fields which provide additional scattering of hard particles, and a
very efficient method for transferring energy from hard to soft
scales.
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1 space × 3 velocity Lattice results

A. Rebhan, P. Romatschke, and MS, PRL 94, 102303 (2005); hep-ph/0412016.
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Jx Visualization
ti

m
e

z (longitudinal) axis

N
o

is
e

A
b

e
li

a
n

 E
v

o
lu

ti
o

n
N

o
n

a
b

e
li

a
n

QGP Thermalization Workshop, Vienna, Austria – August 11 2005 – p.4/26



Parallel transported Jx Visualization
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~ Abelianization Correlation Length
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Why anisotropic distribution functions?

Because of the natural expansion of the system the gluon distribution
functions created during relativistic heavy ion collisions are generically
locally anisotropic in momentum space.

<pT > ∼ Qs (nuclear saturation scale)

<pL > ∼ 1/τ

small plarge p large p
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Collective Modes of an Isotropic QGP

The isotropic hard-thermal-loop (HTL) gluon propagator is given by

∆ij = (k2 − ω2 + ΠT )−1(δij − kikj/k2) −
k2

ω2
(k2 − ΠL)−1kikj/k2

with

ΠT (ω, k) =
m2

D

2

ω2

k2

[

1 −
ω2 − k2

2ωk
log

ω + k

ω − k

]

,

ΠL(ω, k) = m2
D

[

ω

2k
log

ω + k

ω − k
− 1

]

,

and mD ∝ gT .

lim
ω→0

ΠL(ω, k) = m2
D electric screening

lim
ω→0

ΠT (ω, k) = 0 no magnetic screening
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Collective Modes of an Isotropic QGP

In the isotropic case the only poles are at real timelike (ω > k)
momentum. In order to determine the dispersion relations for these
excitations we can then explicitly look for the poles in the propagator.

0 = k2 − ω2
T + ΠT (ωT , k)

0 = k2 − ΠL(ωL, k)

ω/k
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Anisotropic Gluon Polarization Tensor

In order to determine the HL gluon self-energy in a homogeneous
anisotropic system we can use either three-dimensional kinetic theory
or diagrammatic techniques.4,5 The result is

Πij(K) = −g2

∫

d3p

(2π)3
vi∂lf(p)

(

δjl −
vjkl

K · V + iǫ

)

.

S. Mrówczyński first pointed out that within anisotropic QCD plasmas
there are unstable modes which are the equivalent of QED Weibel
type instabilities.6 Recently there was renewed interest in this
phenomena.7,8

4 H. Elze and U. Heinz, 89; J. Blaizot and E. Iancu, 94.
5 S. Mrówczyński, 93; S. Mrówczyński and M. Thoma, 00.
6 E. Weibel, 59.
7 P. Romatschke and MS, April 03.
8 P. Arnold, J. Lenaghan, and G. Moore, July 03.
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The nature of the anisotropy

We assume that the anisotropic distribution function can be obtained
from an arbitrary isotropic distribution function by a change of its
argument. (Romatschke and MS, 03)

f(p2) →
√

1 + ξ f(p2 + ξ(p · n)2) .

The polarization tensor can then be
written as

Πij(K) = m2
D

√

1 + ξ

∫

dΩ

4π
vi vl + ξ(v · n)nl

(1 + ξ(v · n)2)2

(

δjl −
vjkl

K · V + iǫ

)

,

where mD is the isotropic Debye mass

m2
D = −

g2

2π2

∫

∞

0
dp p2 df(p2)

dp
.

n

k

^

θ
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Tensor basis

We can construct a symmetric 3d tensor basis with the following four
tensors

Aij = δij − kikj/k2 Bij = kikj/k2 ,

Cij = ñiñj/ñ2 Dij = kiñj + ñikj ,

where ñ ≡ niAij . We can then decompose the propagator and gluon
polarization tensor in this tensor basis.

Πij = αAij + βBij + γCij + δDij ,

where
kiΠijkj = k2β ,

ñiΠijkj = ñ2k2δ ,

ñiΠijñj = ñ2(α + γ) ,

TrΠij = 2α + β + γ .
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Anisotropic Propagator and Static Limit

This allows us to express the propagator in terms of three functions

∆−1
A (K) = k2 − ω2 + α ,

∆−1
±

(K) = ω2 − Ω2
± ,

where
2Ω2

± = Ω̄2 ±
√

Ω̄4 − 4((α + γ + k2)β − k2ñ2δ2) ,

and Ω̄2 = α + β + γ + k2.

Taking the static limit we can define three mass scales: m± and mα.

In the isotropic limit, ξ → 0, m2
α = m2

− = 0 and m2
+ = m2

D and for finite ξ

it is possible to evaluate these masses analytically.9

P. Romatschke and MS, 03.
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New Mass Scales – ξ > 0
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P. Romatschke and MS, 03.
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Isotropic Collective Modes

ω/k

Isotropic poles (ξ = 0).
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Anisotropic Collective Modes

ω/k

Anisotropic poles at positive ξ.
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Unstable Modes – ξ > 0
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Anisotropic HL Effective Action

Using the requirement of gauge invari-
ance it is possible to determine all n-
point functions in the same way as in the
isotropic case.10

SHL = −
g2

2

∫

x

∫

p

{

f(p)F a
µν(x)

(

pνpρ

(p · D)2

)

ab

F b µ
ρ (x)

+i
CF

2
f̃(p)Ψ̄(x)

p · γ

p · D
Ψ(x)

}

.

For example, from this we can obtain the anisotropic 3-gluon vertex

Γµνλ(k, q, r) =
g2

2

∫

p

∂f(p)

∂pβ
p̂µp̂ν p̂λ

(

rβ

p̂·q p̂·r
−

kβ

p̂·k p̂·q

)

.

S. Mrówczyński, A. Rebhan, and MS, 04.
QGP Thermalization Workshop, Vienna, Austria – August 11 2005 – p.17/26



Real-Time Lattice Simulation

In order to answer this we must numerically solve the equations of
motion resulting from the HL effective action.

jµ[A] = −g2

∫

p

1

2|p|
pµ ∂f(p)

∂pβ
W β(x;v)

with
[v · D(A)]Wβ(x;v) = Fβγ(A)vγ

and vµ = pµ/|p| = (1,v).

This has to be solved with

Dµ(A)Fµν = jν

where ν = 0 is the Gauss law constraint.

A. Rebhan, P. Romatschke, and MS, PRL 94, 102303 (2005); hep-ph/0412016.
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~v-discretized equations of motion

Assuming cylindrically symmetric anisotropies, we can parameterize
them by f(p) = f(|p|, pz) allowing us express the current in terms of
two auxiliary W fields

jµ = −
1

2
g2

∫

p

vµ [f1(|p|, p
z)W 0(x, v) + f2(|p|, p

z)W z(x, v)]

A closed set of gauge-covariant equations is obtained when the
angular integral over p̂ is discretized. The full HL dynamics is then
approximated by the following set of equations

[v · D(A)]Wv = (avF 0µ + bvF zµ)vµ

Dµ(A)Fµν = jν =
1

N

∑

v

vνWv,

which can be systematically improved by increasing N .
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1s × 3v Lattice results

A. Rebhan, P. Romatschke, and MS, PRL 94, 102303 (2005); hep-ph/0412016.
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3s × 3v Lattice results
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A. Rebhan, P. Romatschke, and MS, hep-ph/0505261.

See also: P. Arnold, G. Moore, L. Yaffe, hep-ph/0505212.
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3s × 3v Lattice results contd.
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A. Rebhan, P. Romatschke, and MS, hep-ph/0505261.

See also: P. Arnold, G. Moore, L. Yaffe, hep-ph/0505212.
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Conclusions
• Anisotropic plasmas are qualitatively different than isotropic ones.

An entirely new phenomena associated with unstable modes
appears.

• In 1s×3v soft unstable modes grow non-perturbatively large until
their energy is on the order of the energy in the hard particles (and
the HL approximation breaks down at long times).

• 3s×3v lattice simulations show, however, that soft unstable modes
grow only to the “nonabelian” scale and then become power-law.

• Method less efficient due to the reduced field amplitudes but it
means that the system stays within the bounds of the HL effective
theory and therefore we can study the generated soft field and its
affects on the hard particles in a systematic way!

• In the next talk by A. Dmitru we will hear about impressive
attempts to include the backreaction of the hard particles using 1s
× 3v nonabelian ”color particle-in-cell” (CPIC) simulations.
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To do list
• Study effect of linear growth phase:

◦ What is the size of the field correlations as a function of time?
◦ Does this behavior change in going from SU(2) to SU(3)?
◦ What is the effect on hard particles flying in this background?
◦ Is it similar to the mechanism of ”collisionless magnetic

reconnection” in Abelian plasmas?
◦ Can the properties of this phase be determined by a

linearization around the 1+1 solutions?

• Include expansion dynamically
• Inhomogeneous systems
• NLO hard loops ... unsolved in isotropic case
• 1s × 3v CPIC simulations including elastic collisions
• 3s × 3v CPIC simulations including elastic and inelastic collisions
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The Big Question
• How relevant is this heavy-ion collisions?

4d Lattice "Pure Glue" (Boyd et al)

   Hard Thermal Loop
   Perturbation Theory
(Andersen, Braaten, Petitgirard, MS)

Ideal Gas Limit

NLO Approximately 

Self-Consistent

HTL Phi-Derivable

(Blaizot, Iancu, Rebhan)

QGP Thermalization Workshop, Vienna, Austria – August 11 2005 – p.25/26



More Questions . . .
• Are there distinctive signatures of plasma instabilities and/or their

”late-time” consequences?

◦ v2 fluctuations?
◦ enhanced energy loss/broadening??
◦ rapidity dependence of photons/dielectrons???
◦ photon bremsstrahlung due to isotropization of hard

particles????

• Are large background fields enough to provide the enhanced cross
sections deemed necessary for the creation of the ’sQGP’?

• Does this mean that parton cascade codes need to be rewritten to
include realistic mean-field dynamics?
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