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Abstract

Quantum Chromodynamics (QCD) is the theory of the strong interaction. The precise structure of its phase
diagram in the plane of temperature T and quark chemical potential µ, in particular the location and nature of
the phase transition lines and the possible existence of critical endpoints, is an unsolved problem. From mapping
out the phase diagram and studying the properties of the various phases, one expects to understand and interpret
observational data as well as to gain insight into the fundamental nature of strongly-interacting matter. For instance,
confinement and chiral symmetry breaking, both intimately related to the strong-coupling nature of QCD, depend on
temperature and density, i.e., for sufficiently large temperatures and/or quark chemical potentials, matter is believed
to be deconfined and chiral symmetry is restored. This expectation is borne out for instance in relativistic heavy-ion
collisions where a Quark-Gluon Plasma (QGP) appears to form in which the degrees of freedom are quarks and gluons
rather than baryons and mesons. QCD calculations from first principles on the lattice support this interpretation
of the data; more precisely, at zero chemical potential it is widely accepted that there is a crossover from confined
hadronic matter to the deconfined QGP, happening around a temperature of about Tc ! 170 MeV. However, detailed
properties of the matter in the vicinity of this crossover are extremely difficult to compute although we know the
precise form of the underlying theory. The main reason is the large effective value of the strong coupling constant at
the relevant energy scale. Only at much larger energies can we apply perturbative methods because, due to asymptotic
freedom, the coupling becomes small. In other words, QCD at sufficiently large temperatures and chemical potentials
is under good theoretical control. While the more challenging regime of intermediate T (and small µ) is probed by
heavy-ion collisions for instance in the Relativistic Heavy-Ion Collider (RHIC) in Brookhaven (and in the near future
at the Large Hadron Collider (LHC) at CERN), there is no experiment on earth that can probe the equally, or even
more, challenging region of moderately large µ (and small T ). (The so-called sign problem prevents lattice QCD from
making predictions for finite chemical potentials.) However, this does not mean that matter at these densities does
not exist. On the contrary, the cores of compact stars contain such cold and dense matter and thus constitute our
“laboratory” to gain experimental insight into strongly-interacting quark or nuclear matter. The first part of this
thesis,

• A. Schmitt, “Dense matter in compact stars - A pedagogical introduction,” arXiv:1001.3294 [astro-ph.SR],
to appear in Lect. Notes Phys. (Springer),

explains the interplay between microscopic calculations, based on perturbative QCD and effective theories, with
observational data such as the cooling curve or the rotation frequency of a compact star. The calculations and
conclusions are presented in a pedagogical way, which makes this part particularly suited for non-experts and graduate
students who are planning to do research in this field.

The second part of this thesis,

• M. G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer,“Color superconductivity in dense quark matter,”
Rev. Mod. Phys. 80, 1455 (2008) [arXiv:0709.4635 [hep-ph]] ,

is more specific, although also written in a review style, and is devoted to color superconductivity. At asymptotically
large densities, deconfined three-flavor quark matter is in the color-flavor locked (CFL) state. This is a particularly
symmetric color superconductor, where the quarks of all colors and flavors participate in pairing. This cold and ultra-
dense regime is maybe the best understood region of the QCD phase diagram. One reason is that all gluons acquire
Meissner masses such that there are no non-abelian infrared degrees of freedom. Going down in density is theoretically
challenging and two scenarios seem conceivable: firstly, CFL may persist down to densities where the hadronic phase
takes over, i.e., matter inside a compact star is made of nuclear and/or CFL matter. Or, secondly, there may be
other color superconductors between hadronic matter and CFL. The potential breakdown of CFL is suggested by a
mismatch between the Fermi surfaces of the quarks that form Cooper pairs. This mismatch increases with decreasing
µ, it is not certain, however, if and at which µ the mismatch is large enough (compared to the color-superconducting
gap) to disfavor CFL pairing. If CFL is indeed disfavored before the transition to hadronic matter, unconventional
color superconductors that break rotational and/or translational invariance are expected to be favored. Properties of
CFL and its description within an effective theory as well as a discussion of the unconventional superconductors are
discussed in detail in this second part.
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Cold and dense nuclear and/or quark matter can be found in the interior of compact stars. It is
very challenging to determine the ground state and properties of this matter because of the strong-
coupling nature of QCD. I give a pedagogical introduction to microscopic calculations based on
phenomenological models, effective theories, and perturbative QCD. I discuss how the results of
these calculations can be related to astrophysical observations to potentially rule out or confirm
candidate phases of dense matter.
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I. INTRODUCTION

The purpose and motivation of these lectures can be summarized in the following two questions:

• What is the ground state (and its properties) of dense matter?

• What is the matter composition of a compact star?

The two questions are, of course, strongly coupled to each other. Depending on your point of view, you can either
consider the first as the main question and the second as a consequence or application of the first, or vice versa.

If you are interested in fundamental questions in particle physics you may take the former point of view: you ask
the question what happens to matter if you squeeze it more and more. This leads to fundamental questions because
at some level of sufficient squeezing you expect to reach the point where the fundamental degrees of freedom and
their interactions become important. That is, at some point you will reach a form of matter where not molecules or
atoms, but the constituents of an atom, namely neutrons, protons, and electrons, are the relevant degrees of freedom.
This form of matter, and its variants, constitute one important topic of these lectures and is termed nuclear matter.
If you squeeze further, you might reach a level where the constituents of neutrons and protons, namely quarks and
gluons, become relevant degrees of freedom. This form of matter, termed quark matter or strange quark matter, is the
second important subject we shall discuss. By studying dense matter, we shall thus learn a lot about the fundamental
theories and interactions of elementary particles. When trying to understand this kind of dense matter, we would
like to perform experiments and check whether our fundamental theories work or whether there are new phenomena,
or maybe even new theories, that we have not included into our description. Unfortunately, there are currently no
experiments on earth which can produce matter at such ultra-high densities we are talking about. However, this does
not mean that this kind of matter does not exist in nature. On the contrary, we are pretty sure that we have observed
objects that contain matter at ultra-high density, namely compact stars. We may thus consider compact stars as our
“laboratory”. Thinking about the first question has therefore led us to the second.

If you are primarily interested in phenomenology, or if you are an astrophysicist, you may start from the second
question: you may simply say, I observe a compact star in nature and would like to understand its properties. In this
case you start from observations like the rotation frequency, the temperature of the star etc. and ask, why does the
star rotate so slow/so fast, why does it cool down so slow/so fast? And these questions will inevitably lead you to the
attempt to figure out the microscopic structure of the star, although you have started from macroscopic observables.
You need to know whether the star contains nuclear matter or quark matter or both, in which phase the respective
matter is present, and which properties these phases have. It is thus very natural, also from the astrophysicist’s point
of view, to study the first question.

In any case, we see that both questions are closely related and we don’t have to decide which of the two points
of view we take. If I have to characterize what awaits you in these lectures I would nevertheless say that we shall
lean a bit more towards the fundamental aspects. In other words, we shall neglect many complications that arise
from considering a realistic compact star. A star is a finite system, it is inhomogeneous, it underlies the laws of
general relativity etc. Although our discussions are always motivated by the astrophysical application, we mostly
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discuss infinite, homogeneous systems and do not elaborate on general relativistic effects. Only in discussing the
consequences of our microscopic calculations we shall, on a qualitative level, discuss the more realistic setting.

So what kind of physics will we discuss and which theoretical tools do we need? Since our focus is on nuclear and
quark matter, the dominant interaction that governs the states of matter we are interested in is the strong interaction.
The underlying theory for this interaction is Quantum Chromodynamics (QCD). Although this theory is uniquely
determined by very simple symmetry principles, it is extremely hard to solve for most applications. Unfortunately
(or fortunately, because this makes it interesting and challenging) matter at compact star densities eludes rigorous
first-principle calculations. Therefore, we often have to retreat to simple phenomenological models or have to perform
rigorous QCD calculations at asymptotically large densities and then extrapolate the results down to the density
regime we are interested in.

In the physics of compact stars also the weak interaction plays an important role. We shall see that it is responsible
for the chemical equilibration of the system, i.e., it fixes the various chemical potentials. It is also important for the
understanding of cooling mechanisms of the star or for transport properties of nuclear and quark matter. Further-
more, our (mostly field-theoretical) treatment always includes nonzero chemical potentials and sometimes nonzero
temperature (for many applications the zero-temperature approximation is sufficient). In this sense it goes beyond the
standard vacuum field theory formalism. Basic elements of thermal quantum field theory at finite chemical potential
are therefore explained in the appendix.

All this may sound exciting on the one hand, because it shows that the physics of compact stars is extremely rich (due
to the diversity of involved physics I found it helpful to include a glossary of important terms at the end of these lecture
notes). But on the other hand it may also sound like a big challenge for you if you are not familiar with advanced field
theory. Nevertheless, these lecture notes are not primarily intended as a review for researchers (although they might
find it useful too) but as a pedagogical introduction for graduate students and advanced undergraduate students. For
some of our discussions all you need as a prerequisite is some knowledge in thermodynamics and statistical physics, for
instance in chapter II, which deals almost exclusively with noninteracting systems. Some other sections, for instance
the calculation of the neutrino emissivity in chapter V indeed makes use of advanced field-theoretical methods at
finite temperature. It is not the intention of these lectures to develop the theoretical tools in all details before we
use them. More importantly, all calculations are physically motivated, thus by understanding the physics behind the
results and calculations, these lectures aim at making you familiar with the theories and technicalities via “learning
by doing”. So at the end of these lectures you will have heard about the basic phenomena and possible microscopic
explanations of the physics of compact stars, but also will be prepared to start theoretical research in this exciting
field yourself, to possibly contribute to the answer of the two questions we have started with.

A. What is dense matter?

The QCD phase diagram collects the equilibrium phases of QCD in the plane of quark (or baryon) chemical potential
µ and temperature T . We show a sketch of this phase diagram in Fig. 1. In this introduction, we are not concerned
with the details of this diagram. We observe that compact stars, on the scales of this diagram, live in the region of
small temperatures and intermediate densities. They may live in the region where quarks are confined, i.e., in the
hadronic phase. This would imply that they are neutron stars. They may also live in the deconfined region which
would make them quark stars. A compact star may also contain both deconfined and confined quark matter because
the star actually has a density profile rather than a homogeneous density. In the interior, we expect the density to be
larger than at the surface. Therefore, the third possibility is a hybrid star with a quark core and a nuclear mantle.

We do currently not know the exact location of most of the phase transition lines in Fig. 1. Therefore, we do not
know the ground state of strongly-interacting quark (or nuclear) matter at the relevant density. As a consequence,
we can to some extent only speculate about the matter composition of the star. The reason is, simply speaking, that
QCD is notoriously hard to solve for temperatures and densities present in a compact star. With the help of the
phase diagram we can put this statement in a wider context: QCD is asymptotically free, which means that for large
momentum exchange the interaction becomes weak. Hence, at sufficiently large temperatures and/or densities, we
deal with weakly interacting quarks and gluons. In the case of large densities (or large chemical potentials) this can
be understood from the uncertainty principle which relates small distances (the interacting particles are very close to
each other) to large momenta. As a result of asymptotic freedom, regions in the phase diagram where µ and/or T are
sufficiently large can be understood from rigorous first-principle calculations. These regions, although theoretically
under control, are far from being experimentally (even astrophysically) accessible.

If we now go to lower temperatures and densities we have to cross a large unknown territory. Only at small
temperatures and densities, when we are deep in the hadronic phase we have reached an area which again is under
control, at least to some extent. Theoretically, it is more complicated than the perturbatively treatable asymptotic
regions. After all, hadrons are quite complicated objects once we try to describe them in terms of their constituents.
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FIG. 1: Conjectured phase diagram of QCD in the plane of quark chemical potential µ and temperature T . While matter
at low density and high temperature is probed in heavy-ion collisions, cold and dense matter can only be found in neutron
stars (compact stars). We may find (superfluid) nuclear matter and/or deconfined quark matter inside a star. Deconfined
quark matter is, at high temperatures, termed quark-gluon plasma (QGP) and is, at low temperatures, expected to be in
a color-superconducting state, here labelled by CFL (color-flavor locking), discussed in Sec. IVB, and non-CFL (some color
superconductor other than CFL).

However, we can use effective descriptions which can be supported, confirmed, and improved by experiments in the
lab. Furthermore, at least for vanishing chemical potentials, we can perform brute-force QCD calculations on the
computer which gives us solid theoretical knowledge for certain quantities (at nonvanishing chemical potentials these
calculations are problematic due to the so-called sign problem).

We thus see that compact stars (as well as the quark-gluon plasma created in heavy-ion collisions) reside in a region
of the phase diagram which is hard to access. More positively speaking, this region is interesting and challenging
because exciting and unknown physics may be discovered and new theoretical tools may need to be developed. Or,
in other words, the cold and dense matter we talk about in these lectures is interesting from the theoretical point of
view because, on the characteristic scale of QCD, it is only moderately, not extremely, dense.

The theoretical tools used in current research to describe cold and dense matter are based on the above observations:
if we describe quark matter we may use perturbative methods which are valid at asymptotically large densities and
extrapolate the results down to intermediate densities. We shall do so for instance in chapter II where we treat
quarks as noninteracting or in Sec. IVC where we calculate the color-superconducting gap within perturbative QCD.
However, we have to be aware that the extrapolation of the results pushes the calculations out of their range of validity
by many orders of magnitude. On the other hand, we may use models for nuclear matter which are established at
low densities by experimental data. We do so for instance in chapter III. This time we have to extrapolate to larger
densities. Again, the extrapolation is in principle uncontrolled.

These theoretical challenges emphasize the significance of astrophysical observations: we do not simply like to
confirm the results of our calculations by using astrophysical data, we need astrophysical input to understand the
theory which we believe to be the underlying theory of strongly interacting matter, namely QCD. Therefore, the
connection between astrophysical observables and microscopic calculations is one of the main subjects of these lectures.

B. What is a compact star?

Only beaten by black holes, compact stars are the second-densest objects in nature. They have masses of the order
of the mass of the sun, M ∼ 1.4 M!, but radii of only about ten kilometers, R ∼ 10 km. Thus the mass of the sun
M! = 1.989·1033 g is concentrated in a sphere with a radius 105 times smaller than that of the sun, R! = 6.96·105 km.
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We thus estimate the average mass density in a compact star to be

ρ ! 7 · 1014 g cm−3 . (1)

This is a few times larger than the density present in heavy nuclei, the nuclear ground state density

ρ0 = 2.5 · 1014 g cm−3 , (2)

which corresponds to a baryon number density of n0 ! 0.15 fm−3. Mass and radius of the star are determined by the
equation(s) of state of the matter phase(s) inside the star. This is the subject of chapter II.

In the traditional picture of a compact star, the star is made out of neutron-rich nuclear matter. Hence the
traditional name is actually neutron star. This is sometimes still the preferred term, even if one talks about a star
that contains a quark matter core (which then might be called “exotic neutron star”). Here we shall always use the
more general term compact star to include the possibilities of more exotic matter; after all, a significant part of these
lectures is about this exotic matter. The term compact star will thus be used in these lectures for an object with
characteristic mass, radius etc. as given in this subsection. It can either be made of nuclear matter or variants thereof
(neutron star), of a quark matter core with a surrounding mantle of nuclear matter (hybrid star) or exclusively of
(strange) quark matter (quark star or strange star).1 Here are a few more basic properties of compact stars:

• Compact stars are born in a supernova, a spectacular explosion of a giant or supergiant star due to the gravita-
tional collapse of its core. Supernovae are very complex, nonequilibrium processes which astrophysicists try to
understand with hydrodynamic simulations. We shall not be concerned with supernovae in these lectures but
should keep in mind that some properties of the star may be a result of these violent explosions. A possible
example is the high velocity with which some of the compact stars travel through space.

• Compact stars are not only extreme with respect to their density. Some of them also rotate very fast with
rotation periods in the millisecond regime, such that their frequencies are

ν ! 1 ms−1 . (3)

To see that this is really fast, notice that a point on the equator has a velocity of 2πR/1ms ! 0.2 c, i.e., it moves
with 20% of the speed of light. The current record holder is the star PSR J1748-2446ad,2 rotating with a period
of 1.39 ms. Several observations are related to the rotation frequency. First of all, compact stars have been
discovered as pulsars, by observing pulsating radio signals, for the first time in 1967. These periodic signals
are due to the lighthouse effect, i.e., radio emission is aligned in a beam along the magnetic axis of the pulsar
which spins around the rotation axis, crossing the earth’s telescopes periodically. More interestingly for our
purpose, the pure fact that the rotation of some compact stars can be so fast requires some explanation. From
the microscopic point of view, this is related to transport properties such as viscosity of the matter inside the
star, see Sec. VI B. Also pulsar glitches, sudden jumps in the rotation frequency, must find an explanation in
the properties of dense matter.

• Compact stars also have huge magnetic fields,

B ∼ 1012 G . (4)

Even larger surface magnetic fields of the order of B ∼ 1015 G have been observed (the magnetic field in the core
of the star possibly being even higher). Such highly magnetized stars are also termed magnetars. Compare these
magnetic fields for instance to the earth’s magnetic field, B ∼ 0.6 G, a common hand-held magnet, B ∼ 100 G,
or the strongest steady magnetic fields in the laboratory, B ∼ 4.5 · 105 G.

• Compact stars are cold. This may sound odd, given their temperatures which, right after they are born in a
supernova explosion, can be as high as T ∼ 1011 K. This corresponds, in units where the Boltzmann constant is
one, kB = 1, to T ∼ 10 MeV. During the evolution of the star, the temperature decreases down to temperatures

1 The term compact star is in general also used to include white dwarfs, stars which are less dense than neutron stars, hybrid stars, or
quark stars, and sometimes even to include black holes. Since we are not concerned with either of these objects here, we can reserve the
term compact star as explained in the text.

2 The label of the star says that it is a “Pulsating Source of Radio emission” (PSR) located on the celestial sphere at right ascension
17 h 48 min with −24◦ 46’ declination; the ‘J’ indicates the use of the J2000 coordinate system, the suffix ‘ad’ is used to distinguish the
object from other pulsars in the same globular cluster Terzan 5.
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in the keV range. The dominant cooling mechanism is neutrino emission which we discuss in chapter V. There
are two reasons why in our context it is appropriate to call compact stars cold, in spite of the apparently large
temperatures. First, temperatures in the keV range are small compared to the scale set by QCD, for instance the
deconfinement transition at vanishing quark chemical potential of about Tc ! 170 MeV. This means compact
stars are located basically on the horizontal axis in the QCD phase diagram in Fig. 1. Second, temperatures in
compact stars are small compared to the quark (or baryon) chemical potential, T " µ. This is important for
our calculations since it implies that T = 0 is a good approximation in many cases.

C. Further reading

Before we start with the main part, let’s mention some literature. Extensive textbooks about compact stars are
Refs. [1–3]. A shorter introduction to compact stars and dense matter can be found in the review article [4]. Similar
reviews are Refs. [5, 6], with emphasis on quark matter, and Ref. [7], with emphasis on astrophysical observations.
A more theoretical review about quark matter (more precisely, about color-superconducting quark matter), with a
section about compact star applications is Ref. [8]. For an introduction to thermal field theory see the textbooks [9]
and [10], on which the appendix of these lecture notes is partially based. As became clear above, in this course we
shall deal with questions which are under debate in current research. Therefore, some of the material included here
has so far only been available in research papers. The respective references will be given in the various chapters. I
will not try to be exhaustive in the reference list but rather point out selected references which are useful for a deeper
understanding of what we discuss in these lectures. If you are interested in more references you can find plenty in the
quoted papers and textbooks.

II. MASS AND RADIUS OF THE STAR

In this chapter, we will discuss the most basic properties of a compact star, its mass and radius. We have already
given typical values for these quantities above. Below we shall connect them with microscopic properties of nuclear and
quark matter. This connection is made by the equation of state from which, in particular, an estimate for the maximum
mass of the star can be obtained. Let us begin with a simple estimate of mass and radius from general relativity. For
the stability of the star we need R > Rs where R is the radius of the star, and Rs = 2MG the Schwarzschild radius,
with the mass of the star M and the gravitational constant G = 6.672 · 10−11 m3kg−1s−2 = 6.707 · 10−39 GeV−2. (We
shall mostly use units common in nuclear and particle physics, ! = c = kB = 1, although astrophysicists often use
different units.) For R < Rs the star becomes unstable with respect to the collapse into a black hole. Let us build a
simple star made out of a number of nucleons A with mass m ! 939 MeV and a distance r0 ! 0.5 · 10−13 cm (that’s
where the nucleon interaction becomes repulsive). We thus cover a volume ∼ r3

0 A and thus have a radius

R ∼ r0 A1/3 , (5)

(for our rough estimate we are not interested in factors of π), and a mass

M ∼ m A . (6)

Now from the limit R = 2MG we obtain

A ∼
( r0

2mG

)3/2
∼ 2.6 · 1057 . (7)

This is the number of nucleons up to which we can fill our star before it gets unstable. In other words, the Schwarzschild
radius is proportional to the mass of the star and thus increases linearly in the number of nucleons A, while the radius
increases with A1/3; therefore, for A smaller than the limit A ∼ 2.6 · 1057 the star is stable, while it collapses into
a black hole for nucleon numbers larger than this limit. We can plug the limit value for A back into the radius and
mass of the star to obtain

R ∼ 7 km , M ∼ 2.3 M" . (8)

Adding more nucleons would make the star too heavy in relation to its radius. We see that these values are not too
far from the observed ones given in Sec. IB.

Besides giving an estimate for the baryon number in the star, we see from this simple exercise that general relativistic
effects will be important because the Schwarzschild radius will be a significant fraction of the radius of the star. We
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can also estimate the gravitational energy of the star. To this end, we need the differential mass of the star at a given
radius (i.e., the mass of a thin spherical layer)

dm = ρ(r) dV , (9)

where dV = 4πr2dr is the volume of the thin spherical layer at radius r. For a rough estimate let us (unrealistically)
assume a constant density ρ(r) = ρ such that the mass m(r) of the star up to a radius r ≤ R, is given by m(r) = 4π

3 r3ρ.
Then we obtain

Egrav "
∫ R

0

Gm(r) dm(r)

r
" 3

5

GM2

R
" 0.12 M . (10)

where we have used the above realistic values M " 1.4 M! and R " 10 km. We thus see that the gravitational energy
Egrav is more than 10% of the mass of the star. This suggests that for the mass-radius relation we need an equation
that incorporates effects from general relativity. For simplicity, let us first derive the equation that relates mass and
radius without general relativistic effects and include them afterwards. We are looking for an equation that describes
equilibrium between the gravitational force, seeking to compress the star, and the opposing force coming from the
pressure of the matter inside the star. In the case of a compact star, this pressure is the Fermi pressure plus the
pressure coming from the strong interactions of the nuclear or quark matter inside. The differential pressure dP at a
given radius r is related to the gravitational force dF via

dP =
dF

4πr2
, (11)

with

dF = −Gm(r) dm

r2
. (12)

The equation for the differential mass (9), together with Eq. (11) (into which we insert Eqs. (9) and (12)), yields the
two coupled differential equations,

dm

dr
= 4πr2ε(r) , (13a)

dP

dr
= −Gε(r)m(r)

r2
. (13b)

where we have expressed the mass density through the energy density ε(r) = ρ(r) (in units where c = 1). The second
equation, which is easy to understand from elementary Newtonian physics, receives corrections from general relativity.
It is beyond the scope of these lectures to derive these corrections. We simply quote the resulting equation,

dP

dr
= −Gε(r)m(r)

r2

[

1 +
P (r)

ε(r)

] [

1 +
4πr3P (r)

m(r)

] [

1 − 2Gm(r)

r

]−1

. (14)

This equation is called Tolman-Oppenheimer-Volkov (TOV) equation and the derivation can be found for instance
in Ref. [11]. In order to solve it, one first needs the energy density for a given pressure. Only then do we have a
closed system of equations. This input is given from the microscopic physics which yields an equation of state in
the form P (ε). We have thus found a first example how the microscopic physics can potentially be “observed” from
astrophysical data, namely from mass and radius of the star. We shall encounter many more of these examples. The
equations of state for noninteracting nuclear and quark matter will be discussed in the subsequent sections.

For a given equation of state one needs two boundary conditions for the TOV equation. The first is obviously
m(r = 0) = 0, the second is a boundary value for the pressure in the center of the star, P (r = 0) = P0. Then, the
solution of the equations will produce a mass and pressure profile m(r), P (r) with the pressure going to zero at some
point r = R, giving the radius of the star. The mass of the star is then read off at this point, M = m(R). Doing
this for varying initial pressures P0 yields a curve M(R) in the mass-radius plane, parametrized by P0. This curve of
course depends on the chosen equation of state.

A. Noninteracting nuclear matter

We start with a very simple system where we neglect all interactions. In this case, all we need is basic statistical
physics and thermodynamics. The thermodynamic potential for the grand-canonical ensemble is given by

Ω = E − µN − TS , (15)
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with the energy E, chemical potential µ, particle number N , temperature T and entropy S. The pressure is then

P = −Ω
V

= −ε + µn + Ts , (16)

where V is the volume of the system. Number density n ≡ N/V , energy density ε = E/V , and entropy density
s = S/V are, for a fermionic system, given by

n = 2

∫

d3k

(2π)3
fk , (17a)

ε = 2

∫

d3k

(2π)3
Ek fk , (17b)

s = −2

∫

d3k

(2π)3
[(1 − fk) ln(1 − fk) + fk ln fk] . (17c)

We shall first be interested in a system of neutrons (n), protons (p), and electrons (e) which each give a contribution
to the pressure according to Eqs. (16) and (17). Since they are spin- 1

2 fermions, we have included a factor 2 for the
two degenerate spin states. The Fermi distribution function is denoted by fk,

fk ≡ 1

e(Ek−µ)/T + 1
, (18)

and the single-particle energy is

Ek =
√

k2 + m2 . (19)

Inserting number density, energy density, and entropy density into the pressure (16) yields

P = 2T

∫

d3k

(2π)3
ln

[

1 + e−(Ek−µ)/T
]

. (20)

This corresponds to the result obtained from field-theoretical methods in appendix A2, see Eq. (A71). There also
the antiparticle contribution is included, which can here, due to the large positive chemical potential, safely be
neglected. One can easily check that number density and entropy are obtained from the pressure (20) via the usual
thermodynamic relations, i.e., by taking the derivatives with respect to µ and T . For the following we now take the
limit T = 0. This is a good approximation since the temperature of a compact star is typically in the keV range and
thus much smaller than the chemical potentials and masses of the nucleons.

For T = 0 the Fermi distribution is a step function, fk = Θ(kF − k), and thus the k integrals will be cut off at the
Fermi momentum kF , i.e.,

n =
1

π2

∫ kF

0
dk k2 =

k3
F

3π2
, (21a)

ε =
1

π2

∫ kF

0
dk k2

√

k2 + m2 =
1

8π2

[

(2k3
F + m2kF )

√

k2
F + m2 − m4 ln

kF +
√

k2
F + m2

m

]

. (21b)

Then, with µ =
√

k2
F + m2, the pressure is

P =
1

π2

∫ kF

0
dk k2(µ −

√

k2 + m2) =
1

24π2

[

(2k3
F − 3m2kF )

√

k2
F + m2 + 3m4 ln

kF +
√

k2
F + m2

m

]

. (22)

This can either be obtained by inserting Eqs. (21a) and (21b) into Eq. (16) or, equivalently, by taking the T = 0 limit
in Eq. (20). For the latter one makes use of limT→0 T ln(1 + ex/T ) = xΘ(x).

For n, p, e matter, the total pressure is

P =
1

π2

∑

i=n,p,e

∫ kF,i

0
dk k2(µi −

√

k2 + m2
i ) . (23)
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The Fermi momenta can be thought of as variational parameters which have to be determined from maximizing the
pressure, i.e., from the conditions

∂P

∂kF,i
= 0 , i = n, p, e , (24)

which implies

µi =
√

k2
F,i + m2

i . (25)

We have additional constraints on the Fermi momenta from the following two conditions. Firstly, we have to require
the star to be electrically neutral,3, i.e., the densities of protons and electrons has to be equal,

ne = np . (29)

With Eq. (21a) this means

kF,e = kF,p . (30)

Secondly, we require chemical equilibrium with respect to the weak processes

n → p + e + ν̄e , (31a)

p + e → n + νe . (31b)

The first of these processes is the usual β-decay, the second is sometimes called inverse β-decay or electron capture.
We shall assume that the neutrino chemical potential vanishes, µνe = 0. This is equivalent to assuming that neutrinos
and antineutrinos, once created by the above processes, simply leave the system without further interaction. This
assumption is justified for compact stars since the neutrino mean free path is of the order of the size of the star or
larger (except for the very early stages in the life of the star). Consequently, β-equilibrium, i.e., equilibrium with
respect to the processes (31), translates into the following constraint for the chemical potentials,

µn = µp + µe . (32)

Inserting Eq. (25) into this constraint yields
√

k2
F,n + m2

n =
√

k2
F,p + m2

p +
√

k2
F,e + m2

e . (33)

We can eliminate the electron Fermi momentum with the help of Eq. (30) and solve this equation to obtain the proton
Fermi momentum as a function of the neutron Fermi momentum,

k2
F,p =

(k2
F,n + m2

n − m2
e)

2 − 2(k2
F,n + m2

n + m2
e)m

2
p + m4

p

4(k2
F,n + m2

n)
. (34)

3 In fact, a compact star has to be electrically neutral to a very high accuracy, as one can see from the following simple estimate. Suppose
the star has an overall charge of Z times the elementary charge, Ze, and we consider the Coulomb repulsion of a test particle, say a
proton, with mass m and charge e (e having the same sign as the hypothetical overall charge of the star Ze). The Coulomb force,
seeking to expel the test particle, has to be smaller than the gravitational force, seeking to keep the test particle within the star. This
gives the condition

(Ze)e

R2
≤

GMm

R2
, (26)

with the mass M and radius R of the star. Even if we are generous with the limit on the right-hand side by assigning the upper limit
M < Am to the mass of the star (if the star contains A nucleons, its total mass will be less than Am due to the gravitational binding
energy), we will get a very restrictive limit on the overall charge. Namely, we find

(Ze)e

R2
<

GAm2

R2
⇒ Z < G

m2

e2
A . (27)

With the proton mass m ∼ 103 MeV, the elementary charge e2 ∼ 10−1 (remember α = e2/(4π) $ 1/137), and the gravitational constant
G ∼ 7 · 10−39 GeV−2, we estimate

Z < 10−37A , (28)

i.e., the average charge per nucleon has to be extremely small in order to ensure the stability of the star. Since we have found such
an extremely small number, it is irrelevant for the argument whether we use a proton or an electron as a test particle. The essence
of this argument is the weakness of gravitation compared to the electromagnetic interactions: a tiny electric charge per unit volume,
distributed over the star, is sufficient to overcome the stability from gravity.
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To illustrate the physical meaning of this relation, let us consider some limit cases. First assume a vanishing proton
contribution, kF,p = 0. Then the equation gives (which is most easily seen from Eq. (33))

k2
F,n = (mp + me)

2 − m2
n < 0 . (35)

This expression is negative because the neutron is slightly heavier than the electron and the proton together, mp "
938.3 MeV, mn " 939.6 MeV, me " 0.511 MeV. Therefore, kF,p = 0 is impossible and there always has to be at least
a small fraction of protons. Now let’s assume kF,n = 0, which leads to

k2
F,p =

(

m2
n + m2

e − m2
p

2mn

)2

− m2
e " 1.4 MeV2 . (36)

This is the threshold below which there are no neutrons and the charge neutral system in β-equilibrium contains only
protons and electrons of equal number density.

In general, we may consider a given baryon density nB = nn + np to express the neutron Fermi momentum as

kF,n = (3π2nB − k3
F,p)

1/3 . (37)

Inserting this into Eq. (34) yields an equation for kF,p as a function of the baryon density. In the ultrarelativistic
limit, i.e., neglecting all masses, Eq. (34) obviously yields kF,p = kF,n/2 and thus np = nn/8 or

np =
nB

9
. (38)

One can check that this limit is approached from below, i.e., in a compact star containing nuclear matter we deal
with neutron-rich matter, which justifies the term neutron star.

As a crude approximation we may thus consider the simple case of pure neutron matter. We also consider the
nonrelativistic limit, mn # kF,n. In this case, the energy density (21b) and the pressure (22) become

ε " m4
n

3π2

[

k3
F,n

m3
n

+ O
(

k5
F,n

m5
n

)]

, (39a)

P " m4
n

15π2

[

k5
F,n

m5
n

+ O
(

k7
F,n

m7
n

)]

. (39b)

(To see this, note that the ln term cancels the term linear in kF in the case of ε, and the linear and cubic terms in kF

in the case of P .) Consequently, keeping the terms to lowest order in kF,n/mn,

P (ε) "
(

3π2

mn

)5/3
ε5/3

15mnπ2
. (40)

We have thus found a particularly simple equation of state, where the pressure is given by a power of the energy
density. The general (numerical) discussion of the equation of state, including protons and electrons, is left to the
reader, see problem II.1.

The next step to obtain the mass-radius relation of the star is to insert the equation of state into the TOV equation.
The simplest case is a power-law behavior as in Eq. (40). The general form of such a so-called “polytropic” equation
of state is

P (ε) = K εγ . (41)

Using the Newtonian form of the mass-radius equations, Eqs. (13), this yields

dm

dr
=

4π

K1/γ
r2P 1/γ(r) , (42)

dP

dr
= − G

K1/γ

P 1/γ(r)m(r)

r2
. (43)

Even in this simplest example, we need to solve the equations numerically, see problem II.2. The results of this problem
show that the maximum mass reached within this model is about M < 0.7M! which is well below observed neutron
star masses. (See also Refs. [12–14] for a pedagogical introduction into the equation of state and mass-radius relation
from solving the TOV equation.) This small maximum mass is a consequence of the assumption of noninteracting
nucleons. Taking into account interactions will increase the maximum mass significantly.
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B. Noninteracting quark matter

Whenever we talk about quark matter in these lectures we ignore the charm (c), bottom (b), and top (t) quarks.
The quark chemical potential inside the star is at most of the order of 500 MeV and thus much too small to create
a population of these states. Therefore, we only consider at most three quark flavors, namely up (u), down (d), and
strange (s). We shall mostly neglect the masses of the u and d quarks; their current masses are mu ! md ! 5 MeV "
µ ! (300 − 500)MeV. The mass of the strange quark, however, is not negligible. The current strange quark mass
is ms ! 90 MeV, and the density-dependent constituent mass can be significantly larger, making it non-negligible
compared to the quark chemical potential.

If we consider free quarks, the energy density ε, the number density n, and the pressure P , are obtained in the
same way as demonstrated for nucleons in the previous subsection. We only have to remember that there are three
colors for each quark flavor, Nc = 3, i.e., the degeneracy factor for a single quark flavor is 2Nc = 6, where the factor
2 counts the spin degrees of freedom. Consequently, for each quark flavor f = u, d, s we have at zero temperature (cf.
Eqs. (21), (22)),

nf =
k3

F,f

π2
, (44a)

εf =
3

π2

∫ kF,f

0
dk k2

√

k2 + m2
f , (44b)

Pf =
3

π2

∫ kF,f

0
dk k2

(

µf −
√

k2 + m2
f

)

. (44c)

Again, we need to impose equilibrium conditions with respect to the weak interactions. In the case of three-flavor
quark matter, the relevant processes are the leptonic processes (including a neutrino or an antineutrino)

d → u + e + ν̄e , s → u + e + ν̄e , (45a)

u + e → d + νe , u + e → s + νe , (45b)

and the non-leptonic process

s + u ↔ d + u . (46)

These processes yield the following conditions for the quark and electron chemical potentials,

µd = µe + µu , µs = µe + µu . (47)

(This automatically implies µd = µs.) The charge neutrality condition can be written in a general way as

∑

f=u,d,s

qfnf − ne = 0 , (48)

with the electric quark charges

qu =
2

3
, qd = qs = −1

3
, (49)

and the electron density ne.

1. Strange quark matter hypothesis

Before computing the equation of state, we discuss the strange quark matter hypothesis within the so-called bag
model. The bag model is a very crude phenomenological way to incorporate confinement into the description of quark
matter. The effect of confinement is needed in particular if we compare quark matter with nuclear matter (which is
ultimately what we want to do in this section). Put another way, although we speak of noninteracting quarks, we
need to account for a specific – in general very complicated – aspect of the interaction, namely confinement.

To understand how the bag constant accounts for confinement, we compare the pressure of a noninteracting gas of
massless pions with the pressure of a noninteracting gas of quarks and gluons at finite temperature and zero chemical
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potential. The pressure of a single bosonic degree of freedom at µ = 0 and at large temperatures compared to the
mass of the boson is

Pboson ! −T

∫

d3k

(2π)3
ln

(

1 − e−k/T
)

=
π2T 4

90
. (50)

This is derived in appendix A1 within thermal field theory, see Eq. (A37). Analogously, a single fermionic degree of
freedom gives (see Eq. (A72) of appendix A2)

Pfermion ! T

∫

d3k

(2π)3
ln

(

1 + e−k/T
)

=
7

8

π2T 4

90
. (51)

Therefore, since there are three types of pions, their pressure is

Pπ = 3
π2T 4

90
. (52)

This is a simple approximation for the pressure of the confined phase. In the deconfined phase, the degrees of freedom
are gluons (8 × 2) and quarks (4NcNf = 24). Thus with 2 × 8 + 7/8 × 24 = 37 we have

Pq,g = 37
π2T 4

90
− B , (53)

where the bag constant B has been subtracted for the following reason. If B were zero, the deconfined phase would
have the larger pressure and thus would be preferred for all temperatures. We know however, that at sufficiently
small temperatures, the confined phase (that’s the world we live in) must be preferred. This is phenomenologically
accounted for by the bag constant B which acts like an energy penalty for the deconfined phase. Without this penalty,
at least in this very simply model description, the deconfined phase would be “too favorable” compared to what
we observe. As a consequence, by including the bag constant there is certain critical temperature Tc below which
the confined phase is preferred, Pπ > Pq,g, and above which the deconfined phase is preferred, Pq,g > Pπ. This is
indeed what one expects from QCD, where the deconfinement transition temperature is expected to be in the range of
Tc ! 170 MeV. (As can be seen in the QCD phase diagram in Fig. 1, this deconfinement transition is rather expected
to be a crossover than a phase transition in the strict sense.)

In the context of compact stars we are not interested in such large temperatures. In this case, the chemical potential
is large and the temperature practically zero. Nevertheless we compare nuclear (confined) with quark (deconfined)
matter and thus have to include the bag constant in the pressure and the free energy of quark matter,

P + B =
∑

f

Pf , (54a)

ε =
∑

f

εf + B . (54b)

This phenomenological model of confinement is called the bag model [15, 16] because the quarks are imagined to be
confined in a bag. One can view the microscopic pressure

∑

f Pf of the quarks to be counterbalanced by the pressure
of the bag B and an external pressure P .

Equipped with the bag model, we can now explain the strange quark matter hypothesis. For simplicity we consider
massless quarks. A nonzero strange quark mass will slightly change the results but is not important for the quali-
tative argument. We will also ignore electrons. They are not present in three-flavor massless quark matter at zero
temperature. They are however required in two-flavor quark matter to achieve electric neutrality. But also in this
case their population is small enough to render their effect unimportant for the following argument.

With mf = 0 we simply have

nf =
µ3

f

π2
, εf =

3µ4
f

4π2
, Pf =

µ4
f

4π2
, (55)

which in particular implies

Pf =
εf

3
. (56)

For the strange quark matter hypothesis we consider the energy E per nucleon number A,

E

A
=

ε

nB
, (57)
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where nB is the baryon number density, given in terms of the quark number densities as

nB =
1

3

∑

f

nf , (58)

because a baryon contains Nc = 3 quarks. At zero pressure, P = 0, Eqs. (54) and (56) imply ε = 4B and thus

E

A
=

4B

nB
. (59)

We now apply this formula first to three-flavor quark matter (“strange quark matter”), then to two-flavor quark
matter of only up and down quarks. For strange quark matter, the neutrality constraint (48) becomes

2nu − nd − ns = 0 . (60)

Together with the conditions from chemical equilibrium (47) this implies

µu = µd = µs ≡ µ . (61)

We see that strange quark matter is particularly symmetric. The reason is that the electric charges of an up, down,
and strange quark happen to add up to zero. Now with nB = µ3/π2 and

B =
∑

f

Pf =
3µ4

4π2
(62)

(still everything at P = 0) we have

E

A

∣

∣

∣

∣

Nf=3

= (4π2)1/4 33/4 B1/4 # 5.714 B1/4 # 829 MeVB1/4
145 . (63)

We have expressed B1/4 in units of 145 MeV for reasons that will become clear below, B1/4
145 ≡ B1/4/(145 MeV).

For two-flavor quark matter (neglecting the contribution of electrons), the charge neutrality condition is

nd = 2nu . (64)

Hence,

µd = 21/3µu . (65)

Then, with nB = µ3
u/π2 and

B =
∑

f

Pf =
(1 + 24/3)µ4

u

4π2
, (66)

we find

E

A

∣

∣

∣

∣

Nf=2

= (4π2)1/4 (1 + 24/3)3/4 B1/4 # 6.441 B1/4 # 934 MeVB1/4
145 . (67)

By comparing this to Eq. (63) we see that two-flavor quark matter has a larger energy per baryon number than three-
flavor quark matter. This is a direct consequence of the Pauli principle: adding one particle species (and keeping
the total number of particles fixed) means opening a set of new available low-energy states that can be filled, thus
lowering the total energy of the system.

We can now compare the results (63) and (67) with the energy per nucleon in nuclear matter. For pure neutron
matter, it is simply given by the neutron mass,

E

A

∣

∣

∣

∣

neutrons

= mn = 939.6 MeV . (68)
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For iron, 56Fe, it is

E

A

∣

∣

∣

∣

56Fe

=
56 mN − 56 · 8.8 MeV

56
= 930 MeV , (69)

with the nucleon mass mN = 938.9 MeV and the binding energy per nucleon in iron of 8.8 MeV. Since we observe
iron rather than deconfined quark matter, we know that

E

A

∣

∣

∣

∣

56Fe

<
E

A

∣

∣

∣

∣

Nf =2

⇒ B1/4 > 144.4 MeV . (70)

We have thus found a lower limit for the bag constant from the stability of iron with respect to two-flavor quark
matter. Now what if the bag constant were only slightly larger than this lower limit? What if it were small enough
for three-flavor quark matter to have lower energy than iron? The condition for this would be

E

A

∣

∣

∣

∣

Nf=3

<
E

A

∣

∣

∣

∣

56Fe

⇒ B1/4 < 162.8 MeV . (71)

This would imply that strange quark matter is absolutely stable, while nuclear matter is metastable. This possibility,
which would be realized by a bag constant in the window 145 MeV < B1/4 < 162 MeV, is called strange quark matter
hypothesis, suggested by Bodmer [17] and Witten [18], see also [19].

Note that the existence of ordinary nuclei does not rule out the strange quark matter hypothesis. The conversion
of an ordinary nucleus into strange quark matter requires the simultaneous conversion of many (roughly speaking A
many) u and d quarks into s quarks. Since this has to happen via the weak interaction, it is practically impossible. In
other words, there is a huge energy barrier between the metastable (if the hypothesis is true) state of nuclear matter
and absolutely stable strange quark matter. This means that strange quark matter has to be created in another way
(“going around” the barrier), by directly forming a quark-gluon plasma. This can for instance happen in a heavy-ion
collision. Or, more importantly in our context, it may happen in the universe, giving rise to stars made entirely out
of quark matter, so-called strange stars.

Small “nuggets” of strange quark matter are called strangelets (a strange star would then in some sense simply
be a huge strangelet). If a strangelet is injected into an ordinary compact star (a neutron star), it would, assuming
the strange quark matter hypothesis to be true, be able to “eat up” the nuclear matter, converting the neutron
star into a strange star. Note the difference between this transition and the above described impossible transition
from ordinary nuclear matter to strange quark matter: once there is a sufficiently large absolutely stable strangelet,
successive conversion of up and down quarks into strange quarks increase the size of the strangelet; the energy barrier
originating from the simultaneous creation of a large number of strange quarks now cannot cause the system to relax
back into its original nuclear (metastable) state. This argument has important consequences. If there exist enough
sizable strangelets in the universe to hit neutron stars, every neutron star would be converted into a strange star. In
other words, the observation of a single ordinary neutron star would rule out the strange quark matter hypothesis.
Therefore, it is important to understand whether there are enough strangelets around. It has been discussed recently
in the literature that there may not be enough strangelets [20], in contrast to what was assumed before.

2. Equation of state

Next we derive the equation of state for strange quark matter. We include the effect of the strange quark mass
to lowest order and also include electrons. It is convenient to express the quark chemical potentials in terms of an
average quark chemical potential µ = (µu + µd + µs)/3 and the electron chemical potential µe,

µu = µ − 2

3
µe , (72a)

µd = µ +
1

3
µe , (72b)

µs = µ +
1

3
µe . (72c)

Written in this form, the conditions from β-equilibrium (47) are automatically fulfilled. Taking into account the
strange quark mass, the Fermi momenta for the approximately massless up and down quark and the massive strange
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quark are given by

kF,u = µu , (73a)

kF,d = µd , (73b)

kF,s =
√

µ2
s − m2

s . (73c)

The energy density and the pressure are

∑

i=u,d,s,e

εi =
3µ4

u

4π2
+

3µ4
d

4π2
+

3

π2

∫ kF,s

0
dk k2

√

k2 + m2
s +

µ4
e

4π2
, (74a)

∑

i=u,d,s,e

Pi =
µ4

u

4π2
+

µ4
d

4π2
+

3

π2

∫ kF,s

0
dk k2

(

µs −
√

k2 + m2
s

)

+
µ4

e

12π2
, (74b)

where we have neglected the electron mass. The neutrality condition can now be written as

0 =
∂

∂µe

∑

i=u,d,s,e

Pi = −2

3
nu +

1

3
nd +

1

3
ns + ne . (75)

(Note that µe is defined as the chemical potential for negative electric charge.) Solving this equation to lowest order
in the strange quark mass yields

µe " m2
s

4µ
. (76)

Consequently, the quark Fermi momenta become

kF,u " µ − m2
s

6µ
, (77a)

kF,d " µ +
m2

s

12µ
, (77b)

kF,s " µ − 5m2
s

12µ
. (77c)

We see that the Fermi momenta are split by an equal distance of m2
s/(4µ), and kF,s < kF,u < kF,d, see Fig. 2. The

splitting and the order of the Fermi momenta can be understood from the following physical picture: start from the
symmetric situation ms = µe = 0. In this case, all quark flavors fill their Fermi spheres to a common Fermi momentum
given by µ, and the system is neutral. Now switch on the strange quark mass. This lowers the Fermi momentum
of the strange quark according to Eq. (73c). Consequently, there are fewer strange quarks in the system and thus
there is a lack of negative charge. To counterbalance this missing negative charge, the system responds by switching
on a chemical potential µe. Because of β-equilibrium, the Fermi momenta of all quark flavors are rigidly coupled to
this change. Electric neutrality is regained by lowering the up quark Fermi momentum and raising the down and
strange quark Fermi momenta. Since the strange quark Fermi momentum was already lowered by the finite mass, it
is clear that the resulting order is kF,s < kF,u < kF,d. The electron contribution to the negative charge density is
negligibly low, ne ∝ µ3

e ∝ m6
s/µ3, while the contribution of the quarks due to the strange quark mass is proportional

to µm2
s. The splitting of the Fermi momenta due to the effects of the strange quark mass, β-equilibrium, and electric

neutrality is very important in the context of color superconductivity. Since color superconductivity is usually based
on Cooper pairing of quarks of different flavor, a mismatch in Fermi surfaces tends to disfavor this pairing. We shall
discuss superconductivity in quark and nuclear matter in chapter IV and give a brief qualitative discussion of the
consequences of Fermi surface splitting for color superconductivity at the end of that chapter.

Here we continue with unpaired quark matter and insert the result for µe (76) back into the energy density and the
pressure. Again keeping only terms to lowest order in the strange quark mass yields

∑

i

εi " 9µ4

4π2
− 3µ2m2

s

2π2
, (78a)

∑

i

Pi " 3µ4

4π2
− 3µ2m2

s

4π2
. (78b)
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FIG. 2: Illustration of the Fermi momenta for neutral, unpaired quark matter in β-equilibrium with quark chemical potential
µ. The splitting of the Fermi momenta is due to the strange quark mass ms which is assumed to be small compared to µ.

Consequently,

∑

i

εi ! 3
∑

i

Pi +
3µ2m2

s

2π2
. (79)

With Eq. (54a) the pressure, including the bag constant, becomes

P ! 3µ4

4π2
− 3µ2m2

s

4π2
− B , (80)

and, expressing P in terms of the energy density, we obtain with the help of Eq. (54b)

P ! ε − 4B

3
− µ2m2

s

2π2
. (81)

This is the equation of state of noninteracting, unpaired strange quark matter within the bag model with strange
quark mass corrections to lowest order.

C. Mass-radius relation including interactions

Let us briefly discuss the results for the mass-radius relation of a compact star for given equations of state for
nuclear and quark matter. Since the underlying calculations in general are complicated and have to be done on a
computer, we only quote some results to illustrate the physical conclusions. So far we have only discussed the simplest
cases of noninteracting matter. Interactions have a significant effect on both the equation of state and the mass-radius
relation. We now discuss these effects briefly, only in the subsequent chapters shall we study the nature and details
of these interactions (and discuss their relevance to other observables than the mass and the radius of the star).

The maximum mass of a star for noninteracting nuclear matter is ∼ 0.7M! (see for instance Ref. [14] or solve
problem II.2); including interactions increases the mass to values well above 2M!. The significance of the equation of
state and interactions for the maximum mass is easy to understand: if the pressure P (ε) for a given energy density ε is
large, the system is able to sustain a large gravitational force that seeks to compress it. Comparing two equations of
state over a given energy density range, the one with the larger pressure (for all energy densities in the given range) is
thus termed stiff, the one with the smaller pressure is termed soft. Soft equations of state can sustain less gravitational
force and thus lead to stars with lower maximum masses. In the case of noninteracting nuclear matter, it is only
the Fermi pressure from the Pauli exclusion principle that prevents the star from the collapse. Interactions increase
this pressure because the dominant effect in the case of nuclear matter at the relevant densities is the short-range
repulsion between the nucleons. Therefore, the maximum mass is significantly larger in this case.



17

8 10 12 14
R (km)

0_

0.5_

1_

1.5_

2_

2.5_

  M
(Mo.)

APR + Phenomenological QM EoS

APR only

c = 0.3 
ρc=2-6n0

c = 0 
ρc=2n0

c = 0
ρc=3n0

FIG. 3: Mass-radius plot from Ref. [22] which shows the dependence of the mass-radius curve on the (uncertain) parameters of
the quark matter equation of state in a hybrid star. We see that reasonable choices of the parameters lead to similar curves as
for nuclear matter (here with the APR equation of state). In this plot, the transition density ρc (in units of the nuclear ground
state density n0) between quark matter and nuclear matter has been used as a parameter, rather than the bag constant. From
our discussion it is clear that one can be translated into the other. The coefficient c describes QCD corrections to the quark
Fermi momentum and thus to the µ4 term in the pressure, see Eq. (82).

In Figs. 3 and 4 several models for the nuclear equation of state are applied to obtain maximum masses up to
2.4 M!. For the case of quark matter, we can understand some of the corrections through interactions in the following
simple way. A generalization of the pressure (80) is

P =
3µ4

4π2
(1 − c) − 3µ2

4π2
(m2

s − 4∆2) − B . (82)

This equation contains two corrections compared to Eq. (80). One is included in the coefficient c and originates from
the (leading order) correction of the Fermi momentum due to the QCD coupling αs,

pF = µ

(

1 − 2αs

3π

)

, (83)

resulting in a correction of the µ4 term in the pressure with c = 2αs/π. (This modification of the Fermi momentum
will also become important in the context of neutrino emissivity in chapter V.) Higher order calculations suggest
c ! 0.3 at densities relevant for compact stars. However, the exact value of c is unknown because perturbative
calculations are not valid in the relevant density regime, cf. discussion in Sec. I A. Therefore, c can only be treated
as a parameter with values around 0.3, as done for example in Fig. 3. To get an idea about perturbative calculations
beyond leading order in αs, you may consult the recent Ref. [21].

The second correction in Eq. (82) is the quantity ∆. This is the energy gap arising from color superconductivity
whose microscopic origin we discuss in chapter IV. It gives a correction to the µ2 term in the pressure. One might
think that this correction is negligible compared to the µ4 term and the bag constant. However, it turns out that for
reasonable values of the bag constant these two terms largely cancel each other and the µ2 term becomes important.
However, the effect of superconductivity is still hard to determine. Firstly, it would require a precise knowledge of
the strange quark mass. Secondly, it turns out that the maximum mass of a hybrid star is not very sensitive to the
value of m2

s − 4∆2 [22].
As a result of this discussion and the results in Figs. 3 and 4, two points are important for the further contents of

these lectures. Firstly, we should now be motivated to learn more about the nature and the consequences of interactions
in nuclear and quark matter. Secondly, we have learned that, given our ignorance of the precise quantitative effects
of the strong interaction and the uncertainty in astrophysical observations, the mass and the radius of the star are
not sufficient to distinguish between a neutron star, a hybrid star, and possibly a quark star. Therefore, we also have
to take into account other observables which are linked to the microscopic physics. While the equation of state is a
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FIG. 4: Mass-radius plot from Ref. [23]. A comparison of a neutron star, different hybrid stars, and a quark star is shown, using
several nuclear equations of state (DBHF, APR, HHJ) and several quark phases (CFL, 2SC). For more details and explanations
of the various abbreviations, see Ref. [23].

bulk property, i.e., it is determined by the whole Fermi sea, there are other phenomena which are only sensitive to
the low-energy excitations at the Fermi surface. One class of such phenomena is given by transport properties. They
can possibly be related to observables which are more restrictive than mass and radius for the question of the matter
composition of the star. We shall discuss such observables in chapter V where we relate the cooling of the star to
neutrino emissivity, and in chapter VI where we qualitatively discuss other such observables.

Problems

II.1 Equation of state for non-interacting nuclear matter

Find the full equation of state for noninteracting n, p, e matter at T = 0 numerically by plotting P versus ε.
You should see the onset of neutrons and identify a region where the equation of state is well approximated by
the power-law behavior of pure neutron matter in the nonrelativistic limit, Eq. (40).

II.2 Mass-radius relation

(a) Solve equations (42) numerically (for nonrelativistic pure neutron matter, i.e., γ = 5/3) and plot m(r), P (r)
for a given value of the pressure P0 = P (r = 0).
(b) Use P0 as a parameter to find the mass-radius relation M(R). To this end, you need to do (a) for several
values of P0 and find for each P0 the radius R at which P (R) = 0 and the corresponding mass M(R).
(c) You may incorporate general relativistic effects from the TOV equation (14) and/or the full (numerical)
equation of state for noninteracting nuclear matter from Problem II.1.

III. BASIC MODELS AND PROPERTIES OF DENSE NUCLEAR MATTER

There are numerous models to describe cold and dense interacting nuclear matter. Some of them have been used
to obtain the curves in Figs. 3 and 4. From these curves we see that the models may differ significantly in their
predictions of the properties of neutron stars and hybrid stars. The reason is that they all are extrapolated into a
regime where there is little theoretical control. In other words, for densities below the nuclear ground state density
there are experimental data for instance from atomic nuclei or neutron scattering which serve to fit the parameters
of the nuclear models unambiguously. However, it is very challenging to construct a model which reliably predicts
the properties of nuclear matter for larger densities. Put another way, currently the only “experiments” in this
density regime are astrophysical observations which themselves are naturally less controlled than experiments in the
laboratory. Therefore, the state of the art in describing interacting nuclear matter at high densities is a competition
between several models which all are prone to uncertainties. In these lectures we do not attempt to give an overview
over these models. We rather focus on two basic models and discuss them in detail. The first is the Walecka model
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and its extensions. The second is chiral perturbation theory, which is an effective model based on chiral symmetry
of QCD and spontaneous breaking thereof in nuclear matter. We shall use it to discuss kaon condensation in nuclear
matter.

To put the following in the perspective of understanding QCD, we should keep in mind that nucleons are ultimately
built of quarks and gluons which are the fundamental degrees of freedom of the strong interactions. It is a highly
nontrivial task to describe even the mass of a nucleon from quarks and gluons, let alone nuclear interactions. An
important tool for such a case is an effective theory which has non-fundamental degrees of freedom, baryons and
mesons instead of quarks and gluons. An effective theory can in principle be obtained by taking the low-energy limit
of the underlying fundamental theory, in this case QCD. However, this procedure may turn out to be very difficult.
Therefore, one tries to “guess” an effective theory, for instance guided by symmetry principles. One obtains a theory
with some unknown parameters which have to be fit, for instance to experimental results. Once the parameters are
fitted, one may extrapolate the theory beyond the regime where the fit has been done. In our case, this will be the
high-density region for which we have no experiments in the laboratory. There is of course no guarantee that this
extrapolation works. Models for interacting nuclear matter at high densities have to be understood in this spirit. Of
course, an upper density limit for the validity is the deconfinement phase transition to a phase where quarks and
gluons are the relevant degrees of freedom. This limit density is not precisely known but may well be reached in
compact stars.

A. The Walecka model

The Walecka model contains nucleons which interact via the exchange of the scalar σ meson and the vector ω
meson. The Lagrangian is

L = LN + Lσ,ω + LI , (84)

Here, the free nucleon Lagrangian is

LN = ψ̄
(

iγµ∂µ − mN + µγ0
)

ψ , (85)

where ψ̄ ≡ ψ†γ0, and ψ =

(

ψn

ψp

)

with the neutron and proton spinors ψn and ψp. For a basic discussion of the field-

theoretical treatment of noninteracting fermions, in particular the roles of finite temperature and chemical potential,
see appendix A2. The free mesonic Lagrangian is

Lσ,ω =
1

2

(

∂µσ∂µσ − m2
σσ2

)

− 1

4
ωµνωµν +

1

2
m2

ωωµωµ , (86)

where ωµν ≡ ∂µων − ∂νωµ, and the interaction Lagrangian with Yukawa interactions between the nucleons and the
mesons is

LI = gσψ̄σψ + gωψ̄γµωµψ . (87)

We shall consider isospin-symmetric matter, i.e., the masses and chemical potentials of protons and neutrons are
assumed to be identical. In general, µ is a matrix µ = diag(µn, µp) = diag(µB + µI , µB − µI) with the baryon and
isospin chemical potentials µB and µI . Thus, in other words, we assume the isospin chemical potential to vanish. We
can then simply denote µ ≡ µB = µn = µp. Also the interactions between the nucleons are assumed to be symmetric,
i.e., the nn, pp, and np interactions are identical. An isospin-asymmetry in the interactions can be included by adding
ρ-meson exchange. We will briefly discuss this in Sec. III B. Also kaon condensation induces an asymmetry, discussed
in Sec. III C.

The parameters of the model are the masses and the coupling constants. The masses are

mN = 939 MeV , mω = 783 MeV , mσ = (500 − 600)MeV . (88)

The σ meson is in fact a broad resonance and thus we can only approximately assign a mass to this meson. Below we
shall use mσ = 550 MeV. The additional parameters are the coupling constants gσ, gω. We shall discuss below how
they are fixed.

In order to compute the equation of state, we need to consider the partition function

Z =

∫

Dψ̄DψDσDω exp

∫

X
L , (89)



20

where we abbreviated

∫

X
≡

∫ β

0
dτ

∫

d3x , (90)

with the inverse temperature β = 1/T . We shall allow for vacuum expectation values of the mesons. To this end, we
write the meson fields as a sum of the condensate and fluctuations,

σ → σ̄ + σ , (91a)

ωµ → ω̄0δ0µ + ωµ , (91b)

as explained in appendix A1 for a general bosonic field. Now the simplest approximation is to neglect the fluctuations.
This corresponds to the mean-field approximation. In this case the interaction between the nucleons and the mesons
is simplified to a mesonic background, or mesonic mean field, which is seen by the nucleons. We can then simply drop
all derivative terms of the mesons. As a consequence, the meson mean fields merely act as corrections to the nucleon
mass and chemical potential, and we obtain the Lagrangian

L = ψ̄ (iγµ∂µ − m∗
N + µ∗γ0)ψ − 1

2
m2

σσ̄2 +
1

2
m2

ωω̄2
0 , (92)

with

m∗
N ≡ mN − gσσ̄ , (93a)

µ∗ ≡ µ − gωω̄0 . (93b)

It is important to keep in mind that the actual chemical potential, associated with nucleon number is µ, not µ∗.
This becomes important for the correct thermodynamic relations, see footnote before Eqs. (107). The new effective
“chemical potential” µ∗ nevertheless has physical meaning since it determines the Fermi energy as we shall see below.

The partition function now becomes

Z = e
V
T (− 1

2
m2

σ σ̄2+ 1
2
m2

ωω̄2
0)

∫

Dψ̄Dψ exp

∫

X
ψ̄ (iγµ∂µ − m∗

N + µ∗γ0)ψ . (94)

The evaluation of the free fermionic part (with modified mass and chemical potential) is now straightforward and
is done in detail in appendix A2. Here we only repeat the most important steps. One first introduces the Fourier
transforms

ψ(X) =
1√
V

∑

K

e−iK·Xψ(K) , ψ̄(X) =
1√
V

∑

K

eiK·X ψ̄(K) . (95)

Our conventions are K = (−iωn,k), X = (−iτ,x), and K · X = k0x0 − k · x = −(ωnτ + k · x), with the fermionic
Matsubara frequencies ωn = (2n + 1)πT . Thus, after performing the X integral in the exponent one obtains

Z = e
V
T (− 1

2
m2

σσ̄2+ 1
2
m2

ωω̄2
0)

∫

Dψ†Dψ exp

[

−
∑

K

ψ†(K)
G−1(K)

T
ψ(K)

]

, (96)

with the inverse nucleon propagator

G−1(K) = −γµKµ − γ0µ
∗ + m∗

N . (97)

Now using the standard formula for the functional integral over Grassmann variables one obtains

Z = e
V
T (− 1

2
m2

σ σ̄2+ 1
2

m2
ωω̄2

0) det
G−1(K)

T
, (98)

where the determinant is taken over momentum space, Dirac space, and the (here trivial) neutron-proton space.
Consequently,

lnZ =
V

T

(

−1

2
m2

σσ̄2 +
1

2
m2

ωω̄2
0

)

+ 4V

∫

d3k

(2π)3

[

Ek

T
+ ln

(

1 + e−(Ek−µ∗)/T
)

+ ln
(

1 + e−(Ek+µ∗)/T
)

]

, (99)
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where we have performed the Matsubara sum and taken the thermodynamic limit, and where we have defined the
single-nucleon energy

Ek =
√

k2 + (m∗
N )2 . (100)

The pressure then becomes

P =
T

V
lnZ = −1

2
m2

σσ̄2 +
1

2
m2

ωω̄2
0 + PN , (101)

with the nucleon pressure (after subtracting the vacuum part)

PN ≡ 4T

∫

d3k

(2π)3

[

ln
(

1 + e−(Ek−µ∗)/T
)

+ ln
(

1 + e−(Ek+µ∗)/T
)]

. (102)

We have thus derived the fermionic pressure already used in chapter II, see Eq. (20), from thermal field theory. The
factor 4 counts the two spin degrees of freedom and the two baryon degrees of freedom (proton and neutron). We
also have obtained the contribution of antiparticles, for which µ∗ → −µ∗.

The meson condensates have to be determined by maximizing the pressure. We obtain

0 =
∂P

∂σ̄
= −m2

σσ̄ − gσ
∂PN

∂m∗
N

, (103a)

0 =
∂P

∂ω̄0
= m2

ωω̄0 − gω
∂PN

∂µ∗
. (103b)

In terms of the baryon and scalar densities

nB = 〈ψ†ψ〉 =
∂PN

∂µ
=

∂PN

∂µ∗
= 4

∑

e=±

e

∫

d3k

(2π)3
1

e(Ek−eµ∗)/T + 1
, (104a)

ns = 〈ψ̄ψ〉 = − ∂PN

∂m∗
N

= 4
∑

e=±

∫

d3k

(2π)3
m∗

N

Ek

1

e(Ek−eµ∗)/T + 1
, (104b)

we can write the equations for the condensates (103) as

σ̄ =
gσ

m2
σ

ns , (105a)

ω̄0 =
gω

m2
ω

nB . (105b)

It is useful to rewrite the first of these equations as an equation for the corrected mass m∗
N rather than for the

condensate σ̄,

m∗
N = mN − g2

σ

m2
σ

ns , (106)

where we have used Eq. (93a). We now take the zero temperature limit, T & mN , µ, which is justified since the
temperatures of interest are at most of the order of 10 MeV, while the baryon chemical potentials are above 1 GeV.
The Fermi distribution function then becomes a step function. In particular, all antiparticle contributions vanish. We
obtain

P =
1

2

g2
ω

m2
ω

n2
B − 1

2

g2
σ

m2
σ

n2
s +

1

4π2

[(

2

3
k3

F − (m∗
N )2kF

)

E∗
F + (m∗

N )4 ln
kF + E∗

F

m∗
N

]

, (107a)

ε =
1

2

g2
ω

m2
ω

n2
B +

1

2

g2
σ

m2
σ

n2
s +

1

4π2

[

(

2k3
F + (m∗

N )2kF

)

E∗
F − (m∗

N )4 ln
kF + E∗

F

m∗
N

]

, (107b)

where we have defined the Fermi energy

E∗
F = µ∗ =

√

k2
F + (m∗

N )2 , (108)
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and where the zero-temperature densities are

nB =
2k3

F

3π2
, (109a)

ns =
m∗

N

π2

[

kF E∗
F − (m∗

N )2 ln
kF + E∗

F

m∗
N

]

. (109b)

Pressure and energy density in Eqs. (107)4 define the equation of state which has to be determined numerically. We
may discuss the limits of small (kF → 0) and large (kF → ∞) density analytically. For small density we find

ns $ 2k3
F

3π2
= nB , (112)

neglecting terms of the order of k5
F /(m∗

N )2 % k3
F and higher. Therefore, from Eq. (106) we conclude

m∗
N $ mN , (113)

where we have suppressed terms of the order of k3
F /m2

σ % mN . The pressure and the energy density are, within this
small-density approximation, dominated by the nucleonic pressure PN ,

P $ 2k5
F

15π2mN
, ε $ 2mNk3

F

3π2
. (114)

Comparing with Eqs. (39) we see that we have exactly reproduced the noninteracting limit. This is no surprise because
the only effect of the interactions in the present approach is the modification of µ and mN . In the small-density limit
these effects are negligible and we are back to the noninteracting result, where the equation of state has the form
P ∝ ε5/3.

For large kF , on the other hand, we have

ns $ m∗
Nk2

F

π2
, (115)

and thus

m∗
N $ mN

1 +
g2

σk2
F

m2
σπ2

. (116)

We see that the effective nucleon mass goes to zero for large densities. For general values of the Fermi momentum,
the effective mass has to be computed numerically from Eqs. (106) and (109b), see Fig. 5.

At large densities, the nucleonic pressure PN as well as the pressure from the scalar meson (which is proportional
to n2

s/m2
σ) behave like k4

F . Therefore, the total pressure is dominated by the vector meson contribution which is
proportional to n2

B/m2
ω and thus behaves like k6

F ,

P $ ε $ 1

2

g2
ω

m2
ω

n2
B . (117)

Consequently, the speed of sound approaches the speed of light at large densities,

c2
s ≡ ∂P

∂ε
$ 1 . (118)

4 One has to be careful with the thermodynamic relations in deriving the energy density (107b): remember that the actual chemical
potential associated with baryon number nB is µ, not µ∗. This means that the pressure at zero temperature can be written as
P = −ε + µnB . The last term of the pressure (term in square brackets on the right-hand side of Eq. (107a)) comes from a term of the
structure −ε0 + µ∗nB, cf. for instance Eq. (22). With µ∗ = µ − gωω̄0 and the expression for ω̄0 in Eq. (105b) we can write this as

P = −ε0 + µ∗nB +
1

2

g2
ω

m2
ω

n2
B −

1

2

g2
σ

m2
σ

n2
s = −

„

ε0 +
1

2

g2
ω

m2
ω

n2
B +

1

2

g2
σ

m2
σ

n2
s

«

+ µnB . (110)

From this we can read off the energy density

ε = ε0 +
1

2

g2
ω

m2
ω

n2
B +

1

2

g2
σ

m2
σ

n2
s , (111)

which yields Eq. (107b).



23

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

nB!fm!3"

m
N
"
#m

N

FIG. 5: Density-dependent effective nucleon mass m∗

N at T = 0 in the Walecka model in units of the zero-density mass mN

and as a function of the baryon density nB . Solid line: full numerical result. Dashed line: high-density approximation from
Eq. (116).

!!

P#0

P$
0

saturation

0.0 0.1 0.2 0.3 0.4

!20

0

20

40

60

nB!fm!3"

Ε#
n B
!
m
N

FIG. 6: Binding energy per nucleon at zero temperature in the Walecka model as a function of baryon density, obtained
from computing the energy density with the density-modified nucleon mass. The binding energy has a minimum at which the
pressure P is zero, i.e., at this point nuclear matter is self-bound, and the corresponding density is called saturation density.
The two parameters of the model, namely the coupling constants gσ and gω, are fixed such that the binding energy per nucleon
is E0 = −16.3 MeV at the saturation density n0 = 0.153 fm−3.

So far, our model cannot be used quantitatively since we have not yet fixed the numerical values of the coupling
constants. To do so one requires the model to reproduce the saturation density n0 and the binding energy per nucleon
at saturation E0,

n0 = 0.153 fm−3 , E0 ≡
(

ε

nB
− mN

)

nB=n0

= −16.3 MeV . (119)

Note the difference between the binding energy in (infinite) nuclear matter and the binding energy in finite nuclei.
The latter is −8.8 MeV for iron, see Eq. (69).

We leave it as an exercise to compute the coupling constants from the values (119), see problem III.1. One obtains
g2

ω/(4π) = 14.717 and g2
σ/(4π) = 9.537. The result for the density-dependent binding energy with these values for the

coupling constants is shown in Fig. 6. This figure shows that there is a finite density n0 where the binding energy is
minimal. This is a basic feature of nuclear matter which has to be reproduced by any physically meaningful model,
reflecting the properties of the nuclear forces. It says in particular that if you add nucleons to a large nucleus the
density will stay approximately constant because there is a preferred distance between the nucleons that minimizes
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the energy. We have implicitly made use of this fact in our estimate of the nucleon number in a neutron star at
the beginning of chapter II. In the limit of infinite symmetric nuclear matter and ignoring the Coulomb forces, this
density at which the binding energy is minimal is n0 = 0.153 fm−3. It is called saturation density. At the saturation
density nuclear matter is self-bound, i.e., it is stable at zero pressure. We have indicated in Fig. 6 that the minimum
of the binding energy divides the stable density regime with positive pressure from the unstable regime with negative
pressure. The behavior of the pressure follows from the thermodynamic relation P = − ∂E

∂V , where E is the energy
E = εV and V the volume, which implies

P = n2
B

∂(ε/nB)

∂nB
. (120)

Consequently, at the minimum of ε/nB as a function of nB the system has zero pressure. Moreover, we see that a
decrease in the binding energy per baryon number upon increasing the baryon number leads to a negative pressure.
(At very small densities, barely visible in the plot, the energy also increases with density, i.e., P > 0. This is the
regime where the nucleons are too far apart to feel their attraction; the increasing energy is then a consequence of
the increasing kinetic energy.)

In our context of compact stars, the self-boundedness of nuclear matter implies that nuclear matter can exist at
the surface of the star where the pressure vanishes. In the interior, the gravitational pressure compresses the matter
to densities larger than n0. As we see from the figure, this compressed matter, in turn, has itself positive pressure
to counterbalance the pressure from gravity. This is the reason why the high-density part of the curve in Fig. 6 is
relevant for astrophysical applications. We shall see in the next subsection why the Walecka model in the simple
form discussed here cannot be trusted for densities much larger than n0 and how the model can be improved to yield
predictions for the high-density regime.

1. Including scalar interactions

The Walecka model accommodates important aspects of nuclear matter such as the existence of a saturation density
whose realistic value is reproduced upon fitting the parameters of the model. We have already discussed on general
grounds that extrapolations to high densities are uncontrolled, and thus the Walecka model (and all similar models of
this kind) have to be improved in an interplay with experimental observations, for example astrophysical data. But
there is even a more obvious shortcoming of the simple version of the Walecka model discussed so far. Even at the
saturation density it fails in its prediction for the incompressibility of nuclear matter which is defined as

K ≡ k2
F

∂2(ε/nB)

∂k2
F

. (121)

This quantity is a measure for the stiffness of nuclear matter. In some literature, K is also called compression modulus
or, somewhat misleadingly, “compressibility”. To see that a large value of K corresponds to “stiff” matter, start from
the usual thermodynamic definition for the compressibility χ,

1

χ
= nB

∂P

∂nB
= n2

B
∂2ε

∂n2
B

. (122)

This definition says that easily compressible (“soft”) matter has a small change in pressure upon changing the density.
For the second equality we have used Eq. (120).

On the other hand, from the definition (121) we obtain

K = k2
F

∂2(ε/nB)

∂n2
B

(

∂nB

∂kF

)2

= 9n2
B

∂2(ε/nB)

∂n2
B

= 9nB
∂2ε

∂n2
B

+ 18

(

ε

nB
− ∂ε

∂nB

)

, (123)

where ∂nB/∂kF = 3nB/kF (see Eq. (109a)) has been used. Now recall that in equilibrium, i.e., at the saturation
density where the pressure vanishes, ε/nB as a function of nB has a minimum,

0 =
∂(ε/nB)

∂nB

∣

∣

∣

∣

nB=n0

= − 1

nB

(

ε

nB
− ∂ε

∂nB

)

nB=n0

. (124)

Consequently, the second term on the right-hand side of Eq. (123) vanishes at nB = n0 and the relation between χ
and K becomes

1

χ
=

nBK

9
, (125)
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i.e., a large compressibility χ corresponds to a small incompressibility K, as it should be.
The calculation of the incompressibility in the given model yields K ! 560 MeV. This is more than twice as much

as the experimentally inferred value. Also the nucleon mass itself can be determined experimentally and compared to
the prediction of the model. In total, there are thus four values which the model should reproduce. To improve the
model, we add cubic and quartic scalar self-interactions of the form

LI,σ = − b

3
mN (gσσ)3 − c

4
(gσσ)4 (126)

to the Lagrangian (84). Besides the phenomenological need of these terms, there is also a theoretical reason for their
presence: the model becomes renormalizable. With the self-interactions we have introduced two new constants b and
c which can be used, together with the two couplings gσ, gω to fit four experimental values. Namely, the two from
Eq. (119) plus the incompressibility and the Landau mass

K ! 250 MeV , mL = 0.83 mN . (127)

The Landau mass is defined as

mL =
kF

vF
, (128)

where

vF =
∂Ek

∂k

∣

∣

∣

∣

k=kF

(129)

is the Fermi velocity. It is plausible that the Landau mass is experimentally more accessible than the mass parameter
m∗

N since it is an effective mass for fermions at the Fermi surface where all low-energy excitations are located.
In the mean field approximation, it is easy to include the effect of the scalar self-interactions. The pressure becomes

P = −1

2
m2

σσ̄2 − b

3
mN (gσσ̄)3 − c

4
(gσσ̄)4 +

1

2
m2

ωω̄2
0 + PN , (130)

with PN defined in Eq. (102). The implicit equation for the effective nucleon mass (106) now receives contributions
from the additional terms and becomes

m∗
N = mN − g2

σ

m2
σ

ns +
g2

σ

m2
σ

[

bmN (mN − m∗
N )2 + c(mN − m∗

N)3
]

. (131)

To fit the four above mentioned values, one has to choose g2
σ/(4π) = 6.003, g2

ω/(4π) = 5.948, b = 7.950 · 10−3, and
c = 6.952 · 10−4. The numerical evaluation of the binding energy is left as an exercise. The result is plotted in
Fig. 7 and shows that the behavior at large densities has changed significantly compared to the case without scalar
interactions. In particular, the lower value of the incompressibility goes along with a softer equation of state at large
densities. In other words, if you choose a fixed binding energy on the vertical axis you find a larger baryon density
after taking into account the scalar interactions. The matter has thus become easier to compress in the high-density
regime, in accordance with a lower incompressibility. (See also discussion about stiff and soft equations of state in
Sec. II C.)

B. Hyperons

In the interior of a compact star, densities can be as high as several times nuclear saturation density. Therefore,
baryons with strangeness, hyperons, may occur (as well as muons). The lightest of these states are given by the
baryon octet, see Table I. It is rather straightforward to incorporate hyperons in the kind of model discussed above.
Of course, the evaluation becomes more laborious, and the model has many more parameters. Let us therefore briefly
discuss the model with the hyperon octet without going into too much detail.

The interaction between the baryons is now extended by interactions mediated by the φ and ρ vector mesons. (The
φ meson has quark content s̄s; the ρ meson has the same quark content as a pion, i.e., it can be considered as an
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FIG. 7: Binding energy per nucleon as a function of density in the Walecka model, including cubic and quartic scalar self-
interactions (solid line). The four parameters of the model are fixed to the saturation density, the binding energy per nucleon
at the saturation density, the incompressibility, and the Landau mass. For comparison, the dashed line shows the result from
Fig. 6, i.e., without scalar interactions. The scalar interactions account for a much softer equation of state.

p n Λ Σ+ Σ0 Σ− Ξ0 Ξ−

m (MeV) 939 1115 1190 1315

I3 1/2 −1/2 0 1 0 −1 1/2 −1/2

Q 1 0 0 1 0 −1 0 −1

S 0 −1 −2

J 1/2

quark content uud udd uds uus uds dds uss dss

TABLE I: Mass, isospin, electric charge, strangeness, spin, and quark content for the spin-1/2 baryon octet.

excited state of the pion.) The Lagrangian is

L =
∑

j

ψ̄j

(

iγµ∂µ − mj + µjγ0 + gσjσ − gωjγ
µωµ − gφjγ

µφµ − gρjγ
µρa

µτa

)

ψj

+
1

2

(

∂µσ∂µσ − m2
σσ2

)

− b

3
mN (gσσ)3 − c

4
(gσσ)4

− 1

4
ωµνωµν +

1

2
m2

ωωµωµ

− 1

4
φµνφµν +

1

2
m2

φφµφµ

− 1

4
ρµν

a ρa
µν +

1

2
m2

ρρ
µ
aρa

µ . (132)

Here, j runs over all eight baryons and τa are the isospin generators. In a compact star, we have to require chemical
equilibrium with respect to the weak interactions. In the case of hyperons, the conditions are

µp = µn − µe , µΛ = µn (133a)

µΣ+ = µn − µe , µΣ0 = µn (133b)

µΣ− = µn + µe , µΞ0 = µn (133c)

µΞ− = µn + µe , (133d)

and, including muons, µe = µµ. The conditions (133) all come from weak processes which we have already discussed,
see Eqs. (45). For example the process n → Σ+ + e + ν̄e, which gives rise to the condition µΣ+ = µn − µe, can be
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FIG. 8: Density fractions of baryons and leptons (and quarks, for a bag constant B = 250 MeV/fm−3) as a function of the
baryon number density. The figure is taken from Ref. [6] where more details about the underlying calculation can be found.
For sufficiently large densities, hyperons and muons appear, and at densities of a few times nuclear ground state densities their
density fractions becomes comparable to the fractions of nucleons and electrons. There is a region of coexistence of deconfined
quark matter and baryonic matter, see Sec. IIID for a discussion of these mixed phases. The curves shown here depend on the
chosen models for nuclear and quark matter and the value of the bag constant.

understood from the elementary processes as

u + e → s + νe

d → u + e + ν̄e

d → u + e + ν̄e











udd → uus + e + ν̄e . (134)

Electric neutrality is given by the constraint

np + nΣ+ = ne + nµ + nΣ− + nΞ− . (135)

We show the result of baryon and lepton density fractions in a model similar to the one discussed here in Fig. 8.
As a result of this rough discussion and the curves in the figure we learn that hyperons can be included in a rather

straightforward extension of the simple Walecka model and that hyperons do appear for sufficiently large densities.
The physical reasons are that (i) they can appear because the baryon chemical potential is large enough to provide
energies larger than their mass, (ii) they do appear because (a) the systems seeks to acquire neutrality and does so
with electrons at low densities; if hyperons are available, electrons in high-energy states can be replaced by hyperons
in low-energy states and (b) the system seeks to become isospin symmetric; at low densities it is highly isospin
asymmetric, and hyperons with nonzero isospin number provide a means to symmetrize the system.

C. Kaon condensation

Another possible variant of dense nuclear matter, besides the occurrence of hyperons, is the condensation of mesons.
Originally, pion condensation was suggested [24]. Only many years later, it was realized that kaon condensation is
possible in compact stars [25]. This is somewhat surprising since kaons are much heavier than pions and thus pion
condensation seems more likely. However, in the medium, the effective kaon mass becomes sufficiently small to allow
for a kaon condensate.
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Kaon condensation is of interest for these lectures for several reasons. Besides being a variant of dense matter and
thus relevant for the physics of compact stars, its discussion requires the introduction of several important concepts in
the theory of the strong interaction. It thus is also interesting from a fundamental point of view. Moreover, we shall
encounter kaon condensation again later in these lectures, when we discuss the quark-matter relatives of the kaon, see
Sec. IVB1.

To explain kaon condensation, we will first have to say what a kaon is and will do so with the help of chiral symmetry
and spontaneous breaking thereof. Then, we will discuss chiral perturbation theory. This is one possible method to
study kaon condensation and has been used in the original work [25]. For another approach, using models similar
to the above discussed Walecka model, see for instance Ref. [26] and references therein. The evaluation of the chiral
model has to be done numerically, so we will more or less only be concerned with setting up and understanding the
basic equations. As a modest goal, we will try to understand the onset of kaon condensation, i.e., we will show how
to compute the critical baryon density at which there is a second-order phase transition to the kaon-condensed phase.

1. Chiral symmetry of QCD

Kaon condensation can be discussed in a low-energy effective theory, here chiral perturbation theory. This theory
should describe the fundamental theory, QCD, in the low-energy limit. In order to construct the theory, we need to
understand the underlying symmetries. The QCD Lagrangian is

LQCD = ψ̄(iγµDµ + µγ0 − M)ψ + Lgluons , (136)

with the quark spinor ψ in color, flavor, and Dirac space, the mass matrix in flavor space

M =







mu 0 0

0 md 0

0 0 ms






, (137)

and the covariant derivative Dµ = ∂µ − igTaAa
µ, where Ta = λa/2 (a = 1, . . . 8) are the generators of the color gauge

group SU(3)c with the Gell-Mann matrices λa, Aa
µ are the corresponding gauge fields, and g is the strong coupling

constant. The chemical potential µ is a diagonal matrix in flavor space. Without taking into account the weak
interactions, each flavor is conserved and there are three independent chemical potentials. We have already seen in
the previous sections that after taking into account weak interactions there are only two chemical potentials, one for
quark (baryon) number, and one for electric charge.

The purely gluonic contribution to the Lagrangian is given by

Lgluons = −1

4
Gµν

a Ga
µν , (138)

where Ga
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν with the SU(3)c structure constants is the gluon field strength tensor.

Here we are not interested in this gluonic part, since we focus on the transformations of the fermion fields and the
resulting symmetries of the Lagrangian. Also later, when we shall use QCD for explicit calculations, the gluonic part is
negligible because we always work at very small temperatures compared to the quark (or baryon) chemical potential.
The interactions of the quarks via gluon exchange, included in the covariant derivative, is of course important; in Sec.
IVC this interaction will be used on the microscopic level.

We now introduce the chirality projectors

PR =
1 + γ5

2
, PL =

1 − γ5

2
. (139)

They obey the identities

P 2
R/L = PR/L , P †

R/L = PR/L , PRPL = 0 , PR + PL = 1 , (140)

i.e., they form a complete set of orthogonal projectors. (These identities are obvious with γ2
5 = 1 and γ†

5 = γ5.) For a
physical picture, remember that, for massless quarks, chirality eigenstates are also eigenstates of helicity. Therefore,
in this case, there is a one-to-one correspondence between chirality and the projection of the fermion momentum onto
its spin. We define left- and right-handed quark spinors by

ψR/L ≡ PR/Lψ , (141)
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such that ψ = PRψ + PLψ = ψR + ψL. Then, using

{γ5, γµ} = 0 , (142)

we can write the Lagrangian as

LQCD = ψ̄R(iγµDµ + µγ0)ψR + ψ̄L(iγµDµ + µγ0)ψL − ψ̄RMψL − ψ̄LMψR + Lgluons . (143)

Let us first discuss the massless case, M = 0. In this case, separate rotations of left- and right-handed spinors leave
the Lagrangian invariant,

ψR → eiφa
RtaψR , ψL → eiφa

LtaψL . (144)

Since we are interested in three quark flavors, ta are the nine generators of the flavor group U(3), t0 = 1 and ta = Ta

(a = 1, . . . 8). Consequently, the Lagrangian is invariant under U(3)L × U(3)R. The corresponding Noether currents
are

Jµ
a,R/L = ψ̄R/Lγ

µtaψR/L . (145)

They can be rewritten in terms of vector and axial-vector currents

Jµ
a,V ≡ Jµ

a,R + Jµ
a,L = ψ̄γµtaψ , (146a)

Jµ
a,A ≡ Jµ

a,R − Jµ
a,L = ψ̄γµtaγ5ψ . (146b)

To see this, note that PRγ5 = PR and PLγ5 = −PL. In QCD the singlet axial-vector current is in general not
conserved,

∂µJµ
0,A = −g2Nf

16π2
Ga

µνG̃µν
a , (147)

where G̃µν = 1
2ε

µνσρGσρ is the dual field strength tensor. This is referred to as the axial anomaly. We are left
with the symmetry group SU(3)R × SU(3)L × U(1)V . The vector symmetry U(1)V corresponds to baryon number
conservation and is therefore also denoted as U(1)B. The flavor symmetry group SU(3)R × SU(3)L is referred to as
chiral symmetry. As we can see from Eq. (143), nonzero masses break the chiral symmetry explicitly. They do not
break the U(1)V symmetry, and for the special case mu = md = ms the subgroup SU(3)R+L of simultaneous R and
L rotations remains a symmetry of the Lagrangian.

Spontaneous breaking of chiral symmetry is realized by a chiral condensate of the form 〈ψ̄LψR〉. This is analogous to
spontaneous symmetry breaking in simple models such as φ4 theory, (see for instance the discussion of Bose-Einstein
condensation in appendix A1), or in a superconductor, or in the Higgs mechanism. The chiral condensate is only
invariant under simultaneous right- and left-handed rotations, i.e., the symmetry breaking pattern is

G ≡ SU(3)R × SU(3)L → H ≡ SU(3)R+L . (148)

As a comparison, in φ4 theory with a complex scalar field φ, we have G = U(1), H = 1, which gives rise to the
familiar “Mexican hat” potential with a negative quadratic and a positive quartic term in |φ|. Spontaneous breaking
of a global symmetry goes along with massless Goldstone bosons. In the Mexican hat, there is one massless excitation
along the bottom of the Mexican hat, given by the angular component of the order parameter (while the radial
component corresponds to a massive mode). Here, the bottom of the Mexican hat is not just a one-dimensional
line. It is rather given by the coset space G/H (which is simply U(1) in φ4 theory). This space has dimG − dimH
generators. Consequently, with dimG = 8+8 = 16 and dimH = 8, there are 8 Goldstone modes. They are described
by the SU(3) matrix

U = eiθaλa/fπ , (149)

with the pion decay constant fπ ' 93 MeV. The meson fields θa of the Goldstone octet are usually reparametrized as

θaλa =

















π0

√
2

+
η√
6

π+ K+

π− − π0

√
2

+
η√
6

K0

K− K̄0 −
√

2

3
η

















. (150)
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Since the rows (columns) of this matrix carry left-handed flavor (right-handed anti-flavor) labels, it is easy to read
off the quark content of the various mesons, e.g., K+ ∼ s̄u, π+ ∼ d̄u etc. According to its chiral structure, the chiral
matrix transforms under a transformation g = (gL, gR) ∈ G as

U → gLUg†R . (151)

2. Chiral Lagrangian

In the (unrealistic) case of vanishing quark masses, the chiral symmetry is an exact symmetry and the Goldstone
bosons are exactly massless. Exploiting the analogy to the Mexican hat potential, this means that the bottom of
the Mexican hat is truly flat. Quark masses break the chiral symmetry explicitly. However, if the masses are small
compared to the characteristic scale of chiral symmetry breaking Λ ∼ 1 GeV we can still consider the chiral symmetry
as approximate. The bottom of the Mexican hat then gets distorted on a scale small compared to the deepness
of the potential, and the Goldstone bosons acquire small masses. In this case it is more appropriate to speak of
pseudo-Goldstone bosons. One might still hope to describe the system at low energies by an effective theory which
is built on the underlying chiral symmetry, although this symmetry is strictly speaking broken. The mass matrix M ,
now nonvanishing, is required to transform just as the chiral field U , i.e.,

M → gLMg†R . (152)

We require the chiral Lagrangian to be invariant under G. The kinetic term and the mass term of the resulting
effective theory are

LU =
f2

π

4
Tr[∂µU∂µU †] + cTr[M †(U + U †)] , (153)

where the trace is taken over flavor space. The two constants fπ and c have to be fitted to experimental values,
similarly to the constants of the Walecka model. In principle, higher order terms in U are allowed but shall be
neglected here. Note that the Goldstone fields themselves appear in the exponent of the field U , i.e., they are already
present to all orders.

In the context of compact stars, we do not only want to describe isolated mesons. We also need to include baryons
and their interactions. The baryon octet fields are given by the matrix

B =

















Σ0

√
2

+
Λ√
6

Σ+ p

Σ− −Σ0

√
2

+
Λ√
6

n

Ξ− Ξ0 −
√

2

3
Λ

















, (154)

which includes the proton p, the neutron n, and the hyperons from Table I. A simple way to understand the structure
of this matrix is as follows. Consider the baryons as composed of a diquark and a quark. The diquarks form an
antitriplet, i.e., one can think of the columns of the matrix as labelled by (ū, d̄, s̄) which corresponds to the quark
content (ds, us, ud). Then the rows are simply labelled by the flavors in the fundamental representation (u, d, s), and
one easily checks that this yields the quark content of the baryons as given in Table I.

The free baryon Lagrangian is

LB = Tr[B̄(iγµ∂µ − mB)B] , (155)

where mB & 1.2 GeV is the SU(3)L×SU(3)R symmetric baryon mass. To write down the interaction between baryons
and the mesons it is convenient to decompose the chiral field into left- and right-handed fields,

U = ξLξ†R , (156)

where, without loss of generality, we may choose

ξ ≡ ξL = ξ†R , (157)

such that

U = ξ2 . (158)
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We now add the meson-baryon interaction terms

LI = iTr[B̄γµ[Jµ
V , B]] + D Tr[B̄γµγ5{Jµ

A, B}] + F Tr[B̄γiγ5[JA,i, B]]

+a1Tr[B†(ξMξ + ξ†M †ξ†)B] + a2Tr[B†B(ξMξ + ξ†M †ξ†)]

+a3Tr[B†B]Tr[Mξ2 + M †(ξ†)2] , (159)

with the additional constants D, F , a1, a2, a3, and the vector and axial-vector currents

Jµ
V =

1

2
(ξ†∂µξ + ξ∂µξ†) , (160a)

Jµ
A =

i

2
(ξ†∂µξ − ξ∂µξ†) . (160b)

The Lagrangian is an expansion in M/Λ and ∂/Λ with the scale of chiral symmetry breaking Λ. Higher order terms
in these parameters are omitted. We shall also drop the terms coming from γ · JV and γ0γ5J0

A which is consistent
with this expansion, for more details see for instance Ref. [27]. In summary, we have the Lagrangian

L = LU + LB + LI . (161)

Later we shall also add electron and muon contributions, but they are simple and we ignore them for now to keep the
notation brief.

3. Kaon-nucleon matter

Since we expect (charged) kaon condensation in a compact star rather than any other meson condensation (possibly
there is pion condensation) let us for simplicity drop all mesons other than the kaons. We can then write

U = eiQ = cosQ + i sinQ , (162)

with

Q =
7

∑

a=4

φaλa =







0 0 φ4 − iφ5

0 0 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 0






, (163)

where we have absorbed fπ into the fields φa ≡ θa/fπ such that the φa’s are dimensionless. We can now compute a
simple expression for the matrix U . To this end we first verify by explicit matrix multiplication

Q3 = φ2Q , (164)

where

φ2 ≡ φ2
4 + φ2

5 + φ2
6 + φ2

7 . (165)

From Eq. (164) we obtain (for instance via complete induction)

Q2n = φ2(n−1)Q2 , (166)

for all n ≥ 1, which can be used to compute

cosQ = 1 −
(

Q2

2!
− Q4

4!
+ . . .

)

= 1 − Q2

(

1

2!
− φ2

4!
+ . . .

)

= 1 − Q2

φ2
(1 − cosφ) , (167)

and

sinQ = Q

(

1 − Q2

3!
+

Q4

5!
− . . .

)

= Q

(

1 − Q2

3!
+

φ2Q2

5!
− . . .

)

= Q − φ2Q

3!
+

φ4Q

5!
− . . . =

Q

φ
sinφ . (168)
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As a further simplification let us now drop the neutral kaon fields, φ6 = φ7 = 0, because we expect charged kaon
condensation. Then, from Eqs. (167) and (168) we obtain

U =















cosφ 0 i
φ4 − iφ5

φ
sinφ

0 1 0

i
φ4 + iφ5

φ
sinφ 0 cosφ















. (169)

Now we interpret the fields φ4,5 as vacuum expectation values, φ4,5 → 〈φ4,5〉, and neglect the fluctuations around this
background. The general procedure to describe Bose-Einstein condensation, including fluctuations, is explained in
appendix A1 for the φ4 model. The condensates are assumed to be constant in space and to have the time dependence
φ(t,x) → φe−iµK t, i.e., our ansatz is

〈K−〉 = 〈φ4〉 + i〈φ5〉 = φe−iµK t , (170a)

〈K+〉 = 〈φ4〉 − i〈φ5〉 = φeiµK t . (170b)

The real, constant (i.e., space-time independent) value of φ has to be determined later from minimizing the free
energy; µK plays the role of a kaon chemical potential, as we shall see more explicitly below. More precisely, µK is
the chemical potential for K− while −µK is the chemical potential for K+. We thus arrive at

U =











cosφ 0 ieiµKt sinφ

0 1 0

ie−iµKt sinφ 0 cosφ











. (171)

We are now prepared to evaluate LU from Eq. (153). We shall neglect the masses of the up and down quarks such
that M % diag(0, 0, ms). We also define the kaon mass

m2
K =

2cms

f2
π

. (172)

Rather than c, we shall later use the kaon mass mK % 494 MeV as a parameter of the model. This yields

LU = −V (φ) (173)

with the tree-level potential

V (φ) = −f2
πµ2

K

2
sin2 φ + m2

Kf2
π(1 − cosφ) , (174)

where we have subtracted the constant vacuum contribution V (φ = 0). This potential contains the kaon condensate
to all orders. We shall work with this expression below, but it is instructive to expand it up to fourth order in φ,

V (φ) % m2
K − µ2

K

2
(fπφ)2 +

4µ2
K − m2

K

24f2
π

(fπφ)4 . (175)

This is the familiar expression from a φ4 model for the free energy of a Bose condensate with chemical potential
µK , mass mK , and effective coupling (4µ2

K − m2
K)/(6f2

π), see for instance Eq. (A18) in the appendix. As expected,
condensation occurs for µ2

K > m2
K because in this case the quadratic term is negative and the quartic term positive,

i.e., we have recovered the Mexican hat potential (where we have already picked one direction since φ is real).
For the baryonic Lagrangian we only keep the lightest baryons, the proton and the neutron. From Eq. (155) we

thus obtain

LB = p̄(iγµ∂µ − mB + γ0µp)p + n̄(iγµ∂µ − mB + γ0µn)n , (176)

where we have added the proton and neutron chemical potentials µp and µn. For the interaction terms we need

ξ =











cos(φ/2) 0 ieiµKt sin(φ/2)

0 1 0

ie−iµKt sin(φ/2) 0 cos(φ/2)











, (177)
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which obviously fulfills ξ2 = U . By inserting this into Eqs. (160) we obtain the spatial axial-vector current JA = 0
(since there is no spatial dependence in the condensate) and the temporal component of the vector current

J0
V = iµK sin2(φ/2)







−1 0 0

0 0 0

0 0 1






. (178)

Hence the various nonzero terms needed for LI in Eq. (159) become

iTr[B̄γ0[J
0
V , B]] = µK (2p†p + n†n) sin2(φ/2) , (179a)

a1Tr[B†(ξMξ + ξ†M †ξ†)B] = −2a1ms p†p sin2(φ/2) , (179b)

a2Tr[B†B(ξMξ + ξ†M †ξ†)] = 2a2ms(p
†p + n†n) cos2(φ/2) , (179c)

a3Tr[B†B]Tr[Mξ2 + M †(ξ†)2] = 2a3ms(p
†p + n†n)[1 − 2 sin2(φ/2)] . (179d)

It is left as an exercise to verify these results. Inserting this into Eq. (159), and putting together the contributions
from the chiral field, the baryons, and the interactions between them, the total Lagrangian can be written as

L = −V (φ) + p̄[iγµ∂µ − mB + γ0(µp + µ∗
p)]p

+n̄[iγµ∂µ − mB + γ0(µn + µ∗
n)]n . (180)

Similar to the Walecka model in Sec. III A, the effect of the kaon condensate on the nucleons can be absorbed into
an effective chemical potential. In a slightly different notation than in Sec. III A (where µ was absorbed into µ∗), we
have kept the real thermodynamic chemical potentials separate, and we have

µ∗
p = 2(a2 + a3)ms + [2µK − 2(a1 + a2 + 2a3)ms] sin

2(φ/2) , (181a)

µ∗
n = 2(a2 + a3)ms + [µK − 2(a2 + 2a3)ms] sin

2(φ/2) . (181b)

We can now, analogously to Sec. III A, evaluate the partition function at T = 0 to obtain the thermodynamic potential
density Ω = −T/V lnZ which can be written as

Ω = V (φ) + εB − (µ∗
n + µn)nn − (µ∗

p + µp)np , (182)

with the nucleon number densities nn and np, and the nucleon energy density

εB = 2
∑

i=p,n

∫

d3k

(2π)3

√

k2 + m2
B Θ(kF,i − k) , (183)

where kF,i are the respective Fermi momenta.
Before adding the lepton contribution we need to find the relations between the various chemical potentials through

the conditions of chemical equilibrium. The leptonic processes including nucleons are

n → p + ' + ν̄! , p + ' → n + ν! . (184)

Here, ' = e, µ can either be an electron or a muon. We also have the purely leptonic processes,

e → µ + ν̄µ + νe , µ → e + ν̄e + νµ , (185)

and the processes involving kaons,

n ↔ p + K− , e ↔ K− + νe . (186)

These processes lead to the independent conditions

µe = µK = µµ , µn = µp + µe . (187)

The system is thus characterized by two independent chemical potentials, say µe and µn. We implement the constraint
µn = µp+µe by rewriting the terms containing the nucleon chemical potentials in the potential (182) as µnnn+µpnp =
µnnB −µenp. Since we want to work at fixed nB = nn +np, we perform a Legendre transformation of Ω with respect
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to the variables µn and ∂Ω
∂µn

= −nB. This amounts to adding the term µnnB to Ω which yields the relevant free
energy for the baryons and the kaon condensate,

ΩB,K = V (φ) + εB −
[

(µ∗
p − µe)xp + (1 − xp)µ

∗
n

]

nB . (188)

Here we have introduced the proton fraction

xp ≡ np

nB
, (189)

which has to be determined dynamically from minimizing the free energy. We can now add the lepton contributions
to arrive at

ΩB,K," = ΩB,K + εe − µene + Θ(µ2
e − m2

µ)(εµ − µenµ) , (190)

where we have used µe = µµ, where ε" are the lepton energy densities (# = e, µ), and where

ne =
µ3

e

3π2
, nµ =

(µ2
e − m2

µ)3/2

3π2
(191)

are the corresponding lepton number densities. The step function in the muon contribution accounts for the fact that
muons only appear if µe is larger than their mass mµ = 106 MeV. On the relevant energy scale, electrons are massless
to a very good approximation and thus are present for any nonzero µe.

For a given baryon number nB, the variables of ΩB,K," are the proton fraction xp, the kaon condensate φ, and the
chemical potential for (negative) electric charge µe. They are determined by minimizing the free energy with respect
to xp and φ and by requiring charge neutrality,

∂ΩB,K,"

∂xp
=

∂ΩB,K,"

∂φ
=

∂ΩB,K,"

∂µe
= 0 . (192)

It is straightforward to compute the various derivatives, and after a few lines of algebra the result can be written as

µe = − 1

nB cos2(φ/2)

∂εB

∂xp
− 2a1ms tan2(φ/2) , (193a)

0 = cosφ − m2
K

µ2
e

+
nB

µ2
ef

2
π

[µe

2
(1 + xp) − (a1xp + a2 + 2a3)ms

]

, (193b)

0 = f2
πµe sin2 φ − nB

[

xp cos2(φ/2) − sin2(φ/2)
]

+ ne + nµΘ(µ2
e − m2

µ) . (193c)

The second equation has been obtained after dividing both sides by sinφ. This means that φ = 0 is always a solution
and Eq. (193b) is only valid for nonvanishing condensates. In the third equation we recover the various contributions
to the electric charge density: the first term on the right-hand side is the pure contribution from the kaon condensate.
It gives a positive contribution to the negative charge density for µe > 0, i.e., in this case there is a K− condensate.
The second term on the right-hand side arises from the nucleons and their interactions with the kaon condensate.
Only for φ = 0 does it give the pure proton contribution −np = −xpnB. Finally, the other two terms are the expected
contributions from the leptons.

The onset of kaon condensation can be determined by setting φ = 0 in all three equations. This yields three
equations which can be solved for xc

p, µc
e, and nc

B, where nc
B is the critical density beyond which there is a condensate

and xc
p, µc

e the values of the proton fraction and the charge chemical potential at this density. Since Eq. (193b) is
only valid for φ #= 0, this has to be understood as approaching nc

B from above.
We leave the numerical evaluation of the critical density and the general evaluation for all nB as an exercise, see

problem III.3. An important modification, which we have neglected for simplicity, has to be taken into account for
this evaluation. Namely, the energy density εB has to be modified due to interactions among nucleons. It is beyond
the scope of these lectures to derive this modification, see Ref. [27] and references therein for more details. Here
we simply quote this modification which is needed in order to get physically sensible results. One needs to use an
expansion of εB around symmetric nuclear matter xp = 1/2 of the form

εB → ε0 + nB(1 − 2xp)
2S(u) , u ≡ nB

n0
. (194)
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FIG. 9: Density fractions of neutrons (n), protons (p), electrons (e−), muons (µ−), and the kaon condensate (K−) from Eqs.
(193) with εB modified as given in Eqs. (194), (195). The parameters are (see Ref. [27]) a1ms = −67MeV, a2ms = 134 MeV,
a3ms = −222MeV, mµ = 106 MeV, fπ = 93 MeV, mK = 494 MeV, mB = 1200 MeV. We see that for this parameter choice
the onset of kaon condensation is at about three times nuclear saturation density, nc

B " 3.2n0 .

Here ε0 is the energy density of symmetric nuclear matter, whose form is not relevant because we only need the
derivative of εB with respect to xp. The nuclear saturation density is denoted by n0, and

S(u) = (22/3 − 1)
3

5

(3π2n0/2)2/3

2mB

[

u2/3 − F (u)
]

+ S0F (u) (195)

is the nuclear symmetry energy (see Ref. [28] for a discussion of the nuclear symmetry energy in the context of the
maximum mass of neutron stars). For the numerical evaluation shown in Fig. 9, the nuclear symmetry energy at the
saturation point S0 = 30 MeV has been used, as well as the function F (u) = u. See caption of the figure for the choice
of the other parameters.

D. From hadronic to quark phases: possibility of a mixed phase

We have already mentioned the possibility of a hybrid star, i.e., a star with a quark matter core surrounded by
nuclear matter. How does the interface between these two phases look? Is it a sharp interface or is there a shell in
a hybrid star where the hadronic and quark phases coexist in a mixed phase? If the former is true, there will be a
jump in the density profile of the star, while the latter allows for a continuous change in density.

Mixed phases are a very general phenomenon. In the context of compact stars, not only the mixed hadronic/quark
matter phase is of relevance. Also in the inner crust of a hybrid or neutron star one may find mixed phases. There
one expects a neutron superfluid coexisting with a lattice of ions, i.e., a mixed phase of neutron matter and nuclei.
In these lectures, we shall not discuss the properties of the crust of a compact star in detail. See Sec. VI B for a brief
discussion and Ref. [29] for an extensive review. Other examples of mixed phases in different systems are liquid-gas
mixtures or simply a solid, which is a mixture of an electron gas and nuclear matter (sitting in the lattice of ions).

In Fig. 10 the possibility of a mixed phase is illustrated. We see that the condition of charge neutrality plays an
important role here. It is important that in a compact star charge neutrality is required globally, not locally. In other
words, certain regions in the star may very well have a nonzero electric charge as long as other regions have opposite
charge to ensure an overall vanishing charge.

It is plausible that such a mixed phase will have a crystalline structure. For instance, one phase may form spheres
sitting at the points of a lattice which is immersed in the other phase. Other possibilities are rods or slabs [30], such
that the mixed phase looks like spaghetti or lasagna, wherefore astrophysicists have termed such phases nuclear pasta.
In any case, if a mixed phase is possible because of a general argument such as given in Fig. 10, this does not mean
that it is indeed realized. One has to take into account Coulomb forces (which seek to break charged regions into
smaller regions) and surface forces (which seek to minimize the surface and thus work in the opposite direction). We
shall not discuss these forces quantitatively but rather give some general arguments about mixed phases.

We start from the simple picture that at small quark density (or quark chemical potential µ) the hadronic phase is
preferred and that there is a first-order phase transition to the quark matter phase at some critical chemical potential.
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FIG. 10: Illustration of the possibility of a mixed phase. The pressure P of two phases A and B is given by the respective
curves as a function of a chemical potential µ. Note that ∂P/∂µ has to increase with increasing µ (increasing µ cannot lead to
a decrease of the corresponding charge; this would lead to an instability). Suppose µ is the electric charge chemical potential
and we require charge neutrality. Then the squares mark the points at which a given phase is charge neutral. The circle in the
left panel marks a point where the two phases have equal pressure and opposite charge. Since this point has higher pressure
than either of the squares, this is the ground state (neglecting surface tension and Coulomb energy). In this state, phase A
and B coexist and occupy different volume fractions, determined by the different slopes of the curves. In the right panel, there
is no point where both phases have equal pressure and opposite charges. Therefore, the square on the curve B is the ground
state.

The question is whether there is a mixed phase between these two pure phases. The pressures of the two phases
Ph(µ, µe) and Pq(µ, µe) depend on the quark chemical potential and the charge chemical potential µe (we work at
zero temperature). Phase coexistence is possible when the pressures of the two phases are equal,

Ph(µ, µe) = Pq(µ, µe) . (196)

Now suppose the neutrality condition were local (which it isn’t in our context). Then the charge must vanish in each
phase separately,

Qh(µ, µe) = Qq(µ, µe) = 0 . (197)

These two conditions yield µe for each phase separately as a function of µ, µh
e (µ) and µq

e(µ). Consequently, the
condition of equal pressure,

Ph(µ, µh
e (µ)) = Pq(µ, µq

e(µ)) , (198)

yields a unique µ. Only at this µ do the phases coexist. This amounts to a sharp interface at a given value for
the pressure, where on both sides of the interface the pure hadronic and the pure quark phases exist with different
densities, i.e., there is a density jump in the profile of the star.

Now we impose the weaker (and realistic) condition of global charge neutrality. This means that in any mixed phase
only the total charge has to vanish. We denote the quark volume fraction by

χq ≡ Vq

Vh + Vq
∈ [0, 1] , (199)

where Vq and Vh are the volumes occupied by the quark and hadron phases, respectively. Then, neutrality reads

(1 − χq)Qh(µ, µe) + χqQq(µ, µe) = 0 . (200)

This yields a function µe(χq, µ) which is then inserted into the condition of equal pressure,

Ph(µ, µe(χq, µ)) = Pq(µ, µe(χq, µ)) . (201)

The result is a chemical potential as a function of χq, µ(χq). Thus there is a finite interval on the µ-axis where a
mixed phase is possible. We see that the looser condition of global charge neutrality allows for a shell with a mixed
phase in a hybrid star. These formal arguments become more transparent in a geometric picture, see Fig. 11.
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FIG. 11: Schematic picture of a hadron-quark mixed phase in a finite interval of µ. Left panel: the pressures of the two phases
define two surfaces parametrized by µ and µe. The intersection of the two surfaces forms a line where coexistence of the two
phases is possible. Right panel: the neutrality condition for each of the phases defines a curve in the µ-µe plane, and thus a
curve on the respective surfaces (for illustrative purposes let the charge be nonzero – denoted by c – since for zero charge there
would have to be a valley of the pressure). A mixed phase may exist from A (where χq = 0) to B (where χq = 1), provided
that, for a given µ, the pressure on this line is larger than the respective pressure on the neutrality curves of each phase. In
this segment none of the phases is neutral separately, but they may combine to a globally neutral phase. Note that the extra
direction µe is crucial to have a finite segment along the µ axis where a mixed phase is possible. If the mixed phase is realized,
the arrows indicate the ground state for increasing values of µ (the pressure also has to increase along this line).

We shall not go into the details of an explicit calculation of the quark/hadron mixed phase because, even neglecting
surface tension and Coulomb energy, this calculation eventually has to be performed numerically. Instead we show
the result of such a calculation [31] in Fig. 12 (cf. also Fig. 8 where we have already seen a mixed phase). One recovers
the (projection of the) topology of Fig. 11 in Fig. 12. The figure shows the mixed phase being the preferred phase
in a certain µ interval without taking into account Coulomb energy and surface energy. In the complete calculation
one finds that a relatively small surface energy is needed to destroy the mixed phase. It thus appears unlikely that a
mixed phase of quarks and hadrons exists in a hybrid star.

Problems

III.1 Binding energy and saturation density in the Walecka model

Solve Eq. (106) at zero temperature numerically for different values of the baryon density. Use the solution to
compute the binding energy per nucleon and check that the values (119) are obtained upon using the values of
the coupling constants g2

ω/(4π) = 14.717, g2
σ/(4π) = 9.537. In other words, reproduce the results from Fig. 6. If

you are a bit more ambitious you can also do it the other way around: set up and solve the two equations that
are needed to determine the coupling constants from the conditions (119).

III.2 Walecka model with scalar interactions

Reproduce the result of Fig. 7 numerically.

III.3 Onset of kaon condensation

Solve equations (193) – with the modifications given in Eqs. (194) and (195) – numerically to determine the
density fractions of nucleons, kaons, and leptons at T = 0 as a function of baryon density. In particular,
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FIG. 12: Figure from Ref. [31] showing the transition from nuclear matter (NM) to a mixed phase (mix) to a quark matter
phase (CFL) (color-flavor locking (CFL) is explained in Sec. IVB). In the mixed phase, µe is lowered in order to make the
nuclear phase positively charged and the CFL phase negatively charged. Taking into account Coulomb energy and surface
energy shows that the µ interval for the mixed phase shrinks with increasing surface tension σ until it completely disappears
for σ ! 40MeV/fm2. The exact value of σ is not known but it is likely to be larger than that limit value such that a mixed
phase appears unlikely. The limit value does not depend much on whether the mixed phase has spheres, rods, or slabs.

compute the critical baryon density for the onset of kaon condensation. See caption of Fig. 9 for the values of
the parameters and compare your result to the plot in this figure.

IV. SUPERCONDUCTIVITY AND SUPERFLUIDITY IN A COMPACT STAR

In our discussion of interacting nuclear matter we have so far ignored a very important physical effect. We have
not included the possibility of superfluidity and/or superconductivity, although we have briefly mentioned the effect
of superconductivity on the equation of state of quark matter, see Sec. II C. In the following, we shall discuss these
effects in more detail. But first let us recapitulate what superconductivity is. Once we have introduced the basic
concept we shall see that it may appear in several variants in a compact star. And we will see that it is crucial for
the understanding of transport properties of dense matter. And the transport properties of dense matter, in turn, are
related to the phenomenology of the star.

Consider a system of fermions at zero temperature with chemical potential µ and free energy

Ω = E − µN . (202)

Now first suppose the fermions are non-interacting. Then, adding a fermion with energy µ, i.e., at the Fermi surface,
leaves the free energy Ω obviously unchanged: the energy E is increased by µ, but the second term subtracts the
same amount since we add N = 1 fermion. Now let us switch on an arbitrarily small attractive interaction between
the fermions. Then, by adding two fermions at the Fermi surface, we can actually lower the free energy because the
attractive interaction will lead to an energy gain from the binding energy. Therefore, the Fermi surface we have started
with is unstable. A new ground state is formed in which pairs of fermions are created at the Fermi surface. Since two
fermions formally can be viewed as a boson, these fermion pairs will form a Bose condensate.5 This formation of a

5 In fact, the fermions are correlated in momentum space, not in real space. Consequently, in the weak-coupling limit, the fermion pairs
are not spatially separated bosons. The typical size of a pair is rather larger than the mean distance between fermions. Therefore, one
apparently has to be careful to describe the pairs as bosons. However, recent experiments with cold fermionic atoms show that there is
no phase transition between the weak-coupling limit (where the pairs are wide spread) and the strong-coupling limit (where the pairs
are actual difermions, i.e., bosons). This is the so called BCS-BEC crossover. This observation suggests in particular that it is not too
bad to think of the fermion pairs as bosons even in the weak-coupling limit.
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FIG. 13: Left panel: particle and hole excitations (solid lines) in a system of noninteracting ultrarelativistic fermions with
chemical potential µ. The dashed lines are the antiparticle and antiparticle hole excitations. Right panel: quasiparticle
excitations after switching on small interactions which, via Cooper’s Theorem, give rise to an energy gap ∆ according to Eq.
(203), here chosen to be ∆ = 0.5µ. What were pure particle and pure hole excitations in the left panel have now become
momentum-dependent mixtures of particles and holes.

condensate of fermion pairs due to an arbitrarily small interaction is called Cooper’s Theorem and the fermion pairs
are called Cooper pairs.

This mechanism is completely general, i.e., it holds for arbitrary fermions with a Fermi surface as long as their
interaction is attractive. It holds for electrons in a usual superconductor, i.e., a metal or alloy, for 3He atoms
in superfluid helium, for fermionic atoms in an optical trap etc. In our context, it can be applied to protons,
neutrons, and quarks. Anticipating that the Cooper mechanism leads to superfluidity for neutral fermions and to
superconductivity for charged fermions, we thus expect (i) neutron superfluidity, (ii) proton superconductivity, and
(iii) quark superconductivity to be in principle possible in a compact star. Quarks are of course a bit more complicated
since they not only carry electric charge but also color charge. Therefore, we need to make more precise what we
mean by quark superconductivity, see Sec. IVB.

Let us first stay on a very general level and discuss the basic consequences of Cooper pairing. A Cooper pair is held
together by sort of a ”binding energy” (although it is not a bound state), i.e., one needs a finite amount of energy to
break a pair. Consequently, the single-particle dispersion relation acquires an energy gap ∆,

εk =
√

(Ek − µ)2 + ∆2 , (203)

with Ek =
√

k2 + m2 as in the previous chapters. One might think that εk does not reproduce the usual dispersion
Ek − µ for a vanishing gap, rather εk → |Ek − µ|. This is no contradiction after taking into account the fermion hole
excitations, such that in the ungapped system εk = ±(Ek − µ) to which the ∆ = 0 limit of εk = ±

√

(Ek − µ)2 + ∆2

is indeed equivalent. The excitation described by Eq. (203) is also called quasiparticle since it contains the interaction
of the original particles in an effective way. To excite a quasifermion in a superconductor, a finite amount of energy
is needed, while a fermion at the Fermi surface of a noninteracting system can be excited by an infinitesimally small
energy, see Fig. 13. The energy gap in the dispersion relation is responsible for most of the phenomenological properties
of a superconductor. For instance, it gives rise to the frictionless charge transport in an electronic superconductor,
since (sufficiently low energy) scattering of electrons off phonons cannot excite a single-electron state. Or, in the
context of superfluidity, the energy gap explains the frictionless flow in the same way. For quantitative predictions it
is thus crucial to compute the magnitude of ∆. We shall perform this calculation within perturbative QCD for quarks
in Sec. IVC.

The energy gap is in general a temperature-dependent quantity. It typically decreases with temperature and
becomes zero at and above a certain critical temperature Tc. This critical temperature indicates the phase transition
from the superconducting to the non-superconducting phase, as we shall demonstrate with the discontinuity of the
specific heat in the following section. Since the onset of superconductivity or superfluidity is a phase transition, there
must be a symmetry which is spontaneously broken below the critical temperature. In particular for quark matter,
the symmetry breaking pattern is very useful to characterize the superconductor, see Sec. IVB.
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A. Specific heat for isotropic and anisotropic superconductors

As a example of the effect of ∆ let us compute the specific heat of a superconductor.6 The specific heat is easy to
compute and shows characteristic features of a superconductor. We start from the free energy of a superconductor
made of fermions with two degenerate (spin-) degrees of freedom,

Ω = 2T

∫

d3k

(2π)3
ln

(

1 + e−εk/T
)

, (204)

where the quasiparticle energy εk is given by Eq. (203). We shall, for simplicity, consider massless fermions, Ek =
k. The entropy (density) is given by the derivative with respect to the temperature (with respect to the explicit
temperature dependence only, there is also an implicit temperature dependence in ∆)

s =
∂Ω

∂T
= −2

∫

d3k

(2π)3
[(1 − fk) ln(1 − fk) + fk ln fk] . (205)

with the Fermi distribution

fk =
1

eεk/T + 1
. (206)

To derive Eq. (205) one uses the identities

εk

T
= ln(1 − fk) − ln fk , ln

(

1 + e−εk/T
)

= − ln(1 − fk) . (207)

From the entropy we then compute the specific heat (at constant volume)

cV ≡ T
∂s

∂T
= 2

∫

d3k

(2π)3
εk

∂fk

∂T
. (208)

For the temperature dependence of the gap we assume the following simple form,

∆(T ) = Θ(Tc − T )∆0

√

1 − T 2

T 2
c

, (209)

such that the zero-temperature gap is ∆0, the gap approaches zero at T = Tc and vanishes for all temperatures larger
than Tc. Then, for T < Tc we have

∂∆

∂T
= −∆2

0

T 2
c

T

∆
⇒ ∂εk

∂T
= − T

εk

∆2
0

T 2
c

⇒ ∂fk

∂T
=

1

εk

eεk/T

(

eεk/T + 1
)2

(

ε2k
T 2

+
∆2

0

T 2
c

)

, (210)

and consequently

cV = 2

∫

d3k

(2π)3
eεk/T

(

eεk/T + 1
)2

(

ε2k
T 2

+
∆2

0

T 2
c

)

. (211)

We are only interested in temperatures much smaller than the chemical potential, T $ µ. Then, the main contribution
comes from the Fermi surface, and we can approximate dk k2 → µ2dk. We introduce the new variable x = (k−µ)/T ,
and define

ϕ ≡ ∆

T
. (212)

6 More precisely, here we compute the fermionic contribution to the specific heat. There may be light Goldstone modes which dominates
the specific heat at small temperatures. In this section we ignore such modes for the purpose of illustrating the effect of the fermionic
energy gap.
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This yields

cV ! µ2T

π2

∫ ∞

0
dx

∫ π

0
dθ sin θ

(

x2 + ϕ2 +
∆2

0

T 2
c

)

e
√

x2+ϕ2

(

e
√

x2+ϕ2

+ 1
)2 , (213)

where we have approximated the lower boundary by −µ/T ! −∞ and have used that the integrand is even in x
(which gives rise to the new integration boundaries [0,∞] and a factor 2). We have not yet performed the θ integral
since we shall allow for anisotropic gaps. From this general expression we easily get the limit of a vanishing gap,
ϕ = ∆0 = 0, i.e., the result for the non-superconducting state,

c0
V ! µ2T

π2

∫ ∞

0
dx

x2

1 + coshx
=

µ2T

3
. (214)

Before evaluating the specific heat in the superconducting phase at small temperatures, let us discuss the behavior of
cV at the critical temperature. This is best done by looking at Eq. (211). Approaching Tc from above, cV is given by
setting ∆0 and ∆(T ) (appearing in εk) to zero in that equation. In the superconducting phase, approaching Tc from
below, we only set ∆ in εk to zero. Consequently, at Tc there is a jump in the specific heat which is given by

∆cV = 2
∆2

0

T 2
c

∫

d3k

(2π)3
eεk/T

(

eεk/T + 1
)2 ! ∆2

0µ
2

π2Tc

∫ ∞

0
dx

1

1 + coshx
=

∆2
0µ

2

π2Tc
, (215)

where we have assumed the gap to be isotropic. This jump is a typical signature for a second-order phase transition,
since the specific heat is the second derivative of the thermodynamic potential.

Next we evaluate Eq. (213) for temperatures much smaller than the gap, i.e., in the limit ϕ → ∞. First we consider
an isotropic gap. We can approximate

e
√

x2+ϕ2

(

e
√

x2+ϕ2

+ 1
)2 ! e−

√
x2+ϕ2 ! e−ϕ−x2

2ϕ . (216)

Consequently,

cV ! 2µ2T

π2
e−ϕ

[
∫ ∞

0
dxx2e−
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∆2

0

T 2
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)
∫ ∞

0
dx e−

x2
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!
√
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where we used
∫ ∞

0
dxx2e−

x2

2ϕ = ϕ3/2

√

π

2
,

∫ ∞

0
dx e−

x2

2ϕ = ϕ1/2

√

π

2
. (218)

The main result is that the specific heat is exponentially suppressed by the factor e−ϕ = e−∆/T for temperatures
much smaller than the gap. The suppression of the specific heat in a superconductor provides a good example to get
some intuition for the properties of superconductors. To this end, note that the specific heat is a measure of how many
degrees of freedom are available to store heat. A large number of degrees of freedom means a lot of ”storage room”
and thus a large specific heat. A small specific heat, such as for a superconductor at sufficiently small temperature,
thus means there are very few states available. This is a direct consequence of the energy gap which obviously leads
to a region in the energy spectrum with no allowed states. Only by increasing the temperature does the exponential
suppression disappear because temperature provides the energy to populate states above the gap which in turn are
then available to store thermal energy.

Next let us assume an anisotropic gap of the form

∆ → ∆sin θ . (219)

In a compact star, anisotropic gaps may be realized in neutron superfluidity and possibly for quark superconductivity.
The reason is very different in the two kinds of matter: at large density, the s-wave interactions between neutrons
become repulsive and thus only interactions in the p-wave channel can lead to superfluidity (this is in contrast to
protons which do form s-wave superconductors). In the case of quark matter, anisotropic gaps may occur due to a
mismatch in Fermi momenta of the quarks that form Cooper pairs; anisotropies then arise either because the mismatch
allows only for pairing in certain directions in momentum space or because pairing occurs in the spin-one channel
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which does not suffer from the mismatch. In either case, there are several possibilities for the specific form of the
angular dependence of the gap and it is not entirely clear which one is realized in the relevant density regime. For
more details see for instance Refs. [32, 33] for nuclear matter and Ref. [34] for quark matter.

With θ being the angle between the momentum and the z-axis, the form (219) implies point-like nodes of the gap
function at the north and south pole of the Fermi sphere. In other words, although there is a nonzero order parameter
for superfluidity, there are directions in momentum space where quasiparticles can be excited with infinitesimally
small energy. For sufficiently small temperatures, these directions give the dominant contribution to the specific heat.
Therefore, in the low-temperature approximation, we only integrate over angles in the vicinity of the nodes. We
restrict the angular integration by requiring the quasiparticle energy (with respect to the Fermi surface) to be at most
of the order of the scale set by the temperature,

∆0 sin θ ! πT , (220)

which, for small angles θ and small temperatures implies θ ! π/ϕ. Therefore, the specific heat becomes (note the
factor 2 since we obtain the same result for north and south pole)

cV ! µ2T

π2

∫ ∞

0
dx

1

1 + cosh x

∫ π/ϕ

0
dθ θ(x2 + ϕ2θ2) ! 5π2

4

µ2T

3

1

ϕ2
(221)

We see that instead of an exponential suppression we now get a power-law suppression ∝ (T/∆)2 of the specific heat
compared to the non-superconducting result. In this sense, the specific heat measures how effectively the quasiparticle
excitations are suppressed by the gap. Our result shows that the dimensionality of the zero-energy excitations in
momentum space translates into the temperature dependence of the specific heat: in the normal phase, there is a
two-dimensional Fermi surface that contributes at T = 0, while for an isotropic gap, this Fermi surface is, simply
speaking, gone. The anisotropic gap (219) is an intermediate case, its suppression lies between the normal and the
completely gapped phase. One may thus expect that between the zero-dimensional point nodes and the fully gapped
spectrum there is another intermediate case, namely one-dimensional line nodes, see problem IV.1.

The low-temperature results for the specific heat are relevant for the physics of compact stars because the supercon-
ducting gap of either nucleonic superconductivity/superfluidity or quark superconductivity may well be much larger
than the temperature of the star. In particular, the specific heat is important in the context of the cooling of the
star, for example through neutrino emissivity εν . With εν being the energy loss per unit time and volume through
neutrino emission (for example through the processes (31) in nuclear matter or the processes (45) in quark matter),
the relation between εν , cV , and the change in temperature is

εν(T ) = −cV (T )
dT

dt
. (222)

(The minus sign is needed since a positive εν is an energy loss, i.e., the temperature will decrease, dT/dt < 0.)
Integrating this relation from a time t0 (with temperature T (t0) = T0) yields

t − t0 = −
∫ T

T0

dT ′ cV (T ′)

εν(T ′)
. (223)

This shows that the ratio of the specific heat and the neutrino emissivity enters the cooling behavior of the star.
Typically, for a given phase, the neutrino emissivity will exhibit a similar behavior as the specific heat. For instance,
in a superconductor, the emissivity as well as the specific heat are exponentially suppressed in which case the subleading
behavior becomes important. In a real compact star, however, there is most likely not just a single phase and the
phase that dominates the behavior of the emissivity is not necessarily the one that dominates the specific heat.

The neutrino emissivity is much more difficult to compute than the specific heat, and we devote a whole chapter
to its discussion and to a detailed calculation for the case of quark matter, see chapter V.

B. Color-flavor locked (CFL) quark matter

In our discussion of superconductivity and superfluidity in compact stars we first focus on a density regime where
we can perform rigorous calculations from first principles. This is the regime of asymptotically large densities, where
we deal with weakly coupled, deconfined quark matter.7 The quarks are weakly coupled due to asymptotic freedom,

7 We shall not go into details of neutron superfluidity and proton superconductivity. For a detailed review of these matters, see Ref. [35].
A shorter discussion can be found for instance in Sec. 3.2 of Ref. [4].
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which says that the coupling of QCD becomes weak for large exchanged momenta. For our purpose, the QCD
coupling can be considered as a function of the quark chemical potential and becomes arbitrarily small for large
chemical potentials. In other words, quarks at infinite chemical potential are free. Because of this important property
of QCD we may use perturbative methods at high densities. The high-density region of the QCD phase diagram
shown in Fig. 1 is therefore maybe the best understood regime of QCD. The other regimes in that phase diagram
are more complicated: we have seen that for nuclear matter one usually relies on phenomenological models; the high-
temperature, small-density region, where the QCD coupling also becomes small, has subtle nonperturbative effects
because of infrared degrees of freedom; first-principle QCD calculations via computer simulations (lattice QCD) are
much more complicated than perturbative physics at high densities and are so far restricted to vanishing chemical
potential.

This possibility of understanding a region of the phase diagram rigorously from first principles is a good theoretical
motivation to study ultra-dense quark matter. However, for our astrophysical purposes we need to point out that
these studies are valid at densities much larger than expected in compact stars. In a compact star, the quark chemical
potential is at most of the order of µ ! 500 MeV. The perturbative calculation of the energy gap ∆, to be discussed
in Sec. IVC, can be estimated to be reasonable at chemical potentials of the order of µ " 108 MeV (!) Given this
difference of many orders of magnitude, extrapolation of perturbative results down to compact star densities may
seem bold. However, the (rough) quantitative agreement of these extrapolations with different approaches, using
phenomenological models, gives us some confidence that the ultra-high density calculation may be of relevance for
astrophysical calculations. Furthermore, we shall also apply general arguments, based on symmetries, which we can
expect to hold even at moderate density where the coupling is strong. In summary, the following discussion, strictly
speaking only valid for extreme densities, is of theoretical interest and may also give us insight into compact star
physics.

At this point we may remember that we have already discussed the approach to compact star densities from
the opposite side. In the Walecka model of Sec. III A we have constructed the model such that we have reproduced
properties of nuclear matter at densities accessible in the laboratory. These densities are lower than the ones in compact
stars. We had to extrapolate up to higher densities to obtain predictions of astrophysical relevance. Therefore, we
learn that matter inside compact stars is quite hard to tackle; we have to approach it from different sides, and currently
we do not have rigorous control over our approaches. This reflects the discussion begun in the introduction: it shows
that the question “What is the matter composition inside a compact star?” is, due to our lack of understanding of
dense, strongly-interacting matter, not only an application of QCD but also relevant to understand QCD.

From this somewhat philosophical discussion now back to superconductivity in quark matter. Cooper’s Theorem
tells us that an attractive interaction, however small it may be, leads to the formation of a quark Cooper pair
condensate. At asymptotically high densities, this attractive interaction is provided by single-gluon exchange. We
can formulate quark pairing in terms of representations of the color gauge group SU(3)c,

SU(3)c : [3]c ⊗ [3]c = [3̄]Ac ⊕ [6]Sc . (224)

On the left-hand side we have two quarks in the fundamental representation, i.e., two complex three-vectors since the
number of colors is three, Nc = 3. They interact in an antisymmetric (A) anti-triplet channel and a symmetric (S)
sextet channel which are attractive and repulsive, respectively. The attractive channel thus provides an anti-triplet
of diquarks which has (anti-)color charge. The attractiveness of this channel can be understood for instance from
the existence of baryons. Namely, in a simple picture a baryon contains a diquark in the [3̄]Ac representation. If it is
made of, say, a red and a green quark it has color anti-blue. The baryon is then color-neutralized by combining this
anti-blue diquark with a blue quark.

An obvious property of a quark Cooper pair is that it is color-charged. Therefore, it breaks the color symmetry
SU(3)c spontaneously. In analogy to electronic superconductors, which break the electromagnetic U(1)em, quark
Cooper pairing is thus termed color superconductivity. For an extensive review of color superconductivity see Ref.
[8]. The order parameter of color superconductivity is the expectation value of the quark-quark two-point function
〈ψψ〉. The color structure of this object has to be antisymmetric because the antisymmetric representation [3̄]Ac is
the attractive channel. The flavor structure is governed by the chiral symmetry group SU(3)R × SU(3)L,8 discussed
in Sec. III C 1. For now, we may consider these symmetries to be exact, since at the high densities we are working
we may neglect all three quark masses compared to the chemical potential. Each of these global SU(3)’s leads to the

8 As already mentioned in the introduction, we neglect the heavy quark flavors although in this section we consider asymptotically large
densities. Since we are ultimately interested in extrapolating our results down to compact star densities, we only take u, d, and s quarks
into account.
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same representations as the color group,

SU(3)f : [3]f ⊗ [3]f = [3̄]Af ⊕ [6]Sf , (225)

with f = L, R. Since the overall wave function of the Cooper pair has to be antisymmetric and since pairing in
the antisymmetric spin-zero channel is preferred, we need to pair in the flavor [3̄]Af channel. In other words, the
color-flavor structure of the Cooper pair is

〈ψψ〉 ∈ [3̄]Ac ⊗ [3̄]Af . (226)

More specifically, with A, α, β ≤ 3 being color indices and B, i, j ≤ 3 being flavor indices,

〈ψα
i Cγ5ψ

β
j 〉 ∝ εαβAεijBφB

A . (227)

Here, we have added the Dirac structure with the charge-conjugation matrix C ≡ iγ2γ0, leading to even-parity, spin-
singlet pairing. The 3× 3 matrix φ now determines the specific color-flavor structure within the given antisymmetric
representations. This shows that there are in principle many different possible color-superconducting phases. They
are distinguished by different pairing patterns, i.e., by which quark pairs with which other quark. (At asymptotically
large densities, where the flavor symmetries are exact, many pairing patterns are equivalent by symmetry and only a
few physically distinct phases exist.) In particular, one may construct phases in which some of the quarks are paired
while some others are not.

At high densities, the favored phase is the color-flavor locked (CFL) phase [36]. We can characterize it by the
following properties,

(i) The CFL order parameter is given by

φB
A = δB

A ⇒ 〈ψα
i Cγ5ψ

β
j 〉 ∝ εαβAεijA . (228)

(ii) In the CFL phase, all quarks are paired with pairing pattern rd − gu, bu − rs, bd − gs, ru − gd − bs (where rd
is a red down quark, gu a green up quark etc.), and there are 8 quasiparticles with gap ∆ and 1 quasiparticle
with gap 2∆.

(iii) The CFL phase has the following symmetry breaking pattern,

SU(3)c × SU(3)R × SU(3)L × U(1)B → SU(3)c+L+R × Z2 . (229)

These three properties are in fact equivalent. Before discussing their physical implications, many of which can be
read off from properties (ii) and (iii), let us show how the physical statement (ii) follows from the more abstract
statement (i). To get a clear picture of the matrix structure of the order parameter, let us denote the bases of the
color and flavor antitriplet [3̄]Ac and [3̄]Af by (JA)αβ = −iεαβA, (IB)ij = −iεijB. Then, we can write Eq. (228) as

〈ψCγ5ψ〉CFL ∝ J · I = i
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
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















. (230)

This 9 × 9 matrix is obviously symmetric, as required (the color-flavor structure is symmetric, giving overall anti-
symmetry through the antisymmetric Dirac structure). Its rows and columns are labelled with the nine quarks, ru,
rd, rs, gu, gd, gs, bu, bd, bs. A nonzero entry indicates that the corresponding quarks pair. We see that the matrix
has a block structure with three 2 × 2 blocks and one 3 × 3 block. This leads to the pairing pattern given in point
(ii). Note that this is a basis dependent statement. In particular, since the color symmetry is a gauge symmetry,
〈ψCγ5ψ〉 is a gauge variant object. The physically relevant statement, however, is the second part of point (ii) about
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the quasiparticle excitations. This statement is gauge invariant. The gap structure is given by the eigenvalues of the
square of the above 9 × 9 matrix,

εk,r =
√

(k − µ)2 + λr∆2 , (231)

where λr are the eigenvalues of

L ≡ (J · I)2 . (232)

We shall prove the form of the quasiparticle excitations (231) in Sec. IV C. Here we simply compute the eigenvalues
λr. They are given by the solutions of

det(λ − L) = 0 . (233)

This can be rewritten as

0 = exp [Tr ln(λ − L)] = exp

[

Tr

(

lnλ −
∞
∑

n=1

Ln

nλn

)]

. (234)

We now have to compute Ln. First note that

(J · I)αβ
ij = −εαβAεijA = −δα

i δβ
j + δα

j δβ
i ⇒ Lαβ

ij = δαβδij + δα
i δβ

j . (235)

This result can be used to compute

L2 = 5L − 4 . (236)

Consequently, all powers of L only have the matrix structures L and 1. Thus we make the ansatz

Ln = anL + bn . (237)

Multiplying both sides of this equation by L and using Eq. (236) yields

an+1 = 5an + bn , bn+1 = −4an . (238)

These recursion relations can be solved with the ansatz an = pn. This yields the equation p2 = 5p− 4 which is solved
by p1 = 4 and p2 = 1. Consequently, the general solution is the linear combination

an = αpn
1 + βpn

2 = 4nα + β . (239)

From above we know a1 = 1 and a2 = 5 which yields α = −β = −1/3. Hence

Ln =
4n − 1

3
L − 4n − 4

3
. (240)

Inserting this into Eq. (234) yields

0 = exp

{

Tr

[

L − 1

3
ln(λ − 4) − L − 4

3
ln(λ − 1)

]}

. (241)

Now we use Tr1 = 9 and, from Eq. (235), TrL = 12. Thus we have

0 = exp [ln(λ − 4) + 8 ln(λ − 1)] = (λ − 4)(λ − 1)8 . (242)

Consequently, the eigenvalues of L are 1 (8-fold) and 4 (1-fold). Physically speaking, together with Eq. (231) this
means that in the CFL phase 8 quasiparticle excitations have a gap ∆ and 1 quasiparticle excitation has a gap 2∆.
This is the second part of point (ii). Of course, this discussion says nothing about the magnitude of ∆, which has to
be computed from the QCD gap equation, see subsequent section. We leave it as an exercise to show that (iii) follows
from (i), see problem IV.2.

Points (ii) and (iii) reveal many important physical properties of the CFL state. Since these points are solely based
symmetry considerations, they are independent of the details of the interaction. Therefore, they can be expected to
hold also at lower densities where perturbative QCD is not applicable. First, one may ask why CFL is the ground state
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and not any other order parameter given by a different matrix φB
A . The simple answer is that the CFL order parameter

is the only one in which all quarks participate in pairing, as we have seen. All other possible order parameters leave
several excitations ungapped. Therefore, the CFL phase leads to the largest condensation energy and thus is the
ground state at high densities (at lower densities the situation is much more complicated). A more formal argument
is that the CFL phase is the color superconductor with the largest residual symmetry group. It is thus a particularly
symmetric state which also indicates that it is preferred over other color superconductors, although this is not a
rigorous argument.

From (iii) we read off the following properties of CFL,

• CFL breaks chiral symmetry. We see that the CFL symmetry breaking pattern (229) is, regarding chiral
symmetry, the same as in Eq. (148). However, the mechanisms are different. The latter is caused by a chiral
condensate of the form 〈ψ̄RψL〉, while the CFL condensate has the form 〈ψRψR〉 (and the same with R → L). At
first sight, the CFL condensate thus preserves the full chiral symmetry, i.e., apparently one can still do separate
L and R rotations without changing the ground state. However, the symmetry breaking occurs through the
“locking” with color, i.e., in order to leave the order parameter invariant, a color rotation has to be undone
by equal rotations in the left- and right-handed sectors. Although caused by different mechanisms, the two
scenarios lead to similar physics. As for the usual chiral symmetry breaking, the CFL phase also has an octet of
Goldstone modes. Since all fermions acquire an energy gap, these Goldstone modes become very important for
the phenomenology of the CFL phase. Moreover, at lower densities, where the strange quark mass cannot be
neglected, kaon condensation, is expected in the CFL phase, not unlike its nuclear matter relative discussed in
Sec. III C. The kaon-condensed CFL phase is usually called CFL-K0 and will be discussed in the next subsection,
Sec. IVB 1.

• The color gauge group is completely broken. While spontaneous breaking of a global group leads to Goldstone
bosons, spontaneous breaking of a gauge group leads to masses for the gauge bosons. Here, all gluons acquire
a Meissner mass, just as the photon acquires a Meissner mass in an electronic superconductor. A nonzero
Meissner mass for a gauge boson is the field-theoretical way of saying that there is a Meissner effect, i.e., that
the magnetic field can penetrate the superconductor only up to a certain penetration depth. The inverse of
this penetration depth corresponds to the Meissner mass. In the CFL phase, one linear combination of a gluon
and the photon remains massless. In other words, there is an unbroken U(1)Q̃ ⊆ SU(3)c+L+R, generated by

Q̃ which is a linear combination of the original charge generator Q and the eighth gluon generator T8 (if you
have done problem IV.2 you can easily show this and determine the exact form of the linear combination). This
phenomenon is also called rotated electromagnetism. Since the admixture of the gluon to the new gauge boson
is small, one may say that the CFL phase is a color superconductor but no electromagnetic superconductor.
This is of relevance for compact stars since it implies that the CFL phase does not expel magnetic fields.

• The CFL phase is a superfluid since it breaks the baryon number conservation group U(1)B. This is important
since this is an exact symmetry, even at lower densities where finite quark masses become important. Therefore,
there is always one exactly massless Goldstone mode in the CFL phase.

1. Kaon condensation in CFL quark matter

We have pointed out that chiral symmetry is not only broken in the hadronic phase, but also in CFL. This is by
itself an interesting fact since it means that in QCD chiral symmetry is spontaneously broken at very low and very
high densities. How about the region in between? This is unknown, but the possibility remains that chiral symmetry
is, at small temperatures, broken for all densities. Since the symmetry breaking patterns of nuclear matter and CFL
are identical (note that in a neutron superfluid also the U(1)B is broken), this implies that possibly there is no real
phase transition at moderate densities and small densities in the QCD phase diagram. In Fig. 1 this corresponds to
the possibility that the “non-CFL” region is absent, at least at T = 0.

Now let us use the chiral symmetry breaking of CFL for a concrete calculation. Since in the CFL phase all
(quasi)fermions acquire energy gaps of at least ∆ – whose magnitude we compute from first principles in Sec. IV C –
the physics of the CFL phase at temperatures smaller than ∆ is determined by the pseudo-Goldstone modes associated
to chiral symmetry breaking (and the exact Goldstone mode from breaking of U(1)B which we do not discuss here).
As we discuss below, ∆ can be expected to be of the order of 10 MeV at densities present in compact stars. This
is large enough to make fermionic excitations in a possible CFL phase in a star essentially irrelevant. Therefore, for
astrophysical applications, the discussion of the physical properties of the Goldstone modes is crucial.

In the context of kaon condensation in nuclear matter, Sec. III C, we have used an effective theory for the chiral
field U and its interactions with nucleons. Also for the mesons in CFL we can write down such a theory. In this case,
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the chiral field is given by

Σ = φ†
LφR , (243)

where φL and φR are the 3× 3 matrix order parameters in the left- and right-handed sector. In our above discussion
we have not distinguished between φL and φR since in “pure” CFL we have φL = φR = 1. For unitary 3 × 3
matrices φL and φR, Σ is unitary, Σ ∈ U(3). It thus contains 9 degrees of freedom, one of which one usually ignores
since it corresponds to the η′ which is heavy due to the explicitly broken U(1)A. Eight degrees of freedom remain,
Σ ∈ SU(3), and we can identify them as pions, kaons etc. just like in hadronic matter, see Eq. (150). Despite the
similarities, there is an important difference to hadronic matter: as one can see from the definition of the chiral
field (243), a meson in CFL is composed of two fermions and two fermion holes (each φ in Eq. (243) represents a
diquark). For example, a neutral kaon should be viewed as an excitation K0 ∼ ūs̄du. Note that this “CFL kaon”
has the same quantum numbers as the “usual kaon”, composed of a particle and an antiparticle, K0 ∼ s̄d. Hence, if
you want to construct a CFL kaon from a usual kaon you need to replace s → d̄ū and d → ūs̄. This identification
reflects the anti-triplet representation in Eq. (225). As a consequence, the meson masses in CFL are ordered inversely
compared to the usual mesons. To see this, first note that the quark flavors (u, d, s), ordered with increasing mass,
mu < md < ms, have the anti-triplet counterpart (d̄s̄, ūs̄, ūd̄). Here the masses (squared) have become ordered in the
opposite way, mdms > mums > mumd. Therefore, in nuclear matter (and ignoring finite density effects), mπ0 < mK0

because mπ0 ∝ mu + md and mK0 ∝ ms + md, whereas in CFL mK0 < mπ0 because m2
K0 ∝ mumd + mums and

m2
π0 ∝ mdms + mums. We shall verify the form of the kaon mass in CFL below within the effective theory.
The effective Lagrangian for mesons in CFL is given by

L =
f2

π

4
Tr[∇0Σ∇0Σ

† − v2
π∂iΣ∂iΣ

†] +
af2

π

2
detM Tr[M−1(Σ + Σ†)] , (244)

with

∇0Σ ≡ ∂0Σ+ i[A,Σ] , A ≡ −M2

2µ
, (245)

where M = diag(mu, md, ms) is the quark mass matrix. The matrix A enters the theory as the temporal component of
a gauge field; it plays the role of an effective chemical potential for the field Σ. We shall see below how this translates
into effective chemical potentials for the neutral and charged kaons.

The original works where this Lagrangian has been proposed are Refs. [37, 38]. There you can find detailed
explanations about the structure of the effective Lagrangian and its differences to the effective meson Lagrangian for
hadronic matter (153). Comparing with Eq. (153) we see that in CFL we do not have a term linear in the quark
masses, rather only quadratic, M−1detM ∝ m2 (and higher even powers which we have neglected). We also have
different coefficients in front of the temporal and spatial part of the kinetic term, originating from the breaking of
Lorentz invariance in a medium, vπ = 1/

√
3. As for the hadronic phase, there are two constants fπ and a. This

reminds us of the nature of effective theories like the ones given by Eqs. (153) and (244): they are expected to give
at least a qualitatively correct description even beyond the regime where the theory can be tested experimentally or
from first-principle calculations. The reason is that they are almost entirely determined by symmetries. Only the
coefficients have to be taken from the experiment or an underlying microscopic theory. The former is done in the
effective theory of the hadronic phase. The latter, namely fixing the constants fπ and a from perturbative QCD, is
done for the effective theory of CFL. In particular, one can expect that, if CFL is the ground state of dense quark
matter at densities relevant for compact stars, the effective theory is a powerful tool to compute the phenomenology
of a potential quark core of the star.

Although terms of higher order in the fields and the mass matrix have already been neglected in Eq. (244), the
Lagrangian still looks complicate. The meson fields θa appear in the exponent of Σ,

Σ = eiθaλa/fπ , (246)

with the Gell-Mann matrices λa, and thus they appear to all orders even in the given truncated theory. Let us first
rewrite the Lagrangian by abbreviating Q ≡ θaλa/fπ such that

Σ = eiQ = cosQ + i sinQ . (247)

Then, the various terms of the Lagrangian become

Tr[∂0Σ∂0Σ
†] = Tr[(∂0 cosQ)2 + (∂0 sinQ)2] , (248a)

Tr[∂iΣ∂iΣ
†] = Tr[(∇ cosQ)2 + (∇ sinQ)2] , (248b)

Tr
[

[A,Σ][A,Σ]†
]

= 2Tr[A2 − (A cos Q)2 − (A sin Q)2] , (248c)

iTr[−∂0Σ[A,Σ]† + [A,Σ]∂0Σ
†] = 2iTr[(∂0 cosQ)[A, cos Q] + (∂0 sinQ)[A, sinQ]] , (248d)
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and thus

L =
f2

π

2
Tr[A2 − (A cosQ)2 − (A sinQ)2 + 2a(detM)M−1 cosQ]

+
f2

π

4
Tr[(∂0 cosQ)2 + (∂0 sinQ)2 − v2

π [(∇ cosQ)2 + (∇ sinQ)2]]

+i
f2

π

2
Tr[(∂0 cosQ)[A, cosQ] + (∂0 sinQ)[A, sinQ]] . (249)

Let us first interpret Q as a constant background, i.e., as the meson condensate, and neglect the fluctuations. This will
allow us to compute the values of the various condensates at zero temperature. In general, all mesons may condense
and the parameters of the theory determine which of the condensates becomes nonzero. We recall from the above
discussion that we expect the kaons, not the pions, to be the lightest mesons in CFL. Therefore, let us simplify Q by
setting all fields except the kaon fields to zero,

Q =
7

∑

a=4

φaλa =







0 0 φ4 − iφ5

0 0 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 0






, (250)

with the dimensionless condensates φa ≡ θa/fπ. With this ansatz we shall be able to construct a zero-temperature
phase diagram that contains regions of no condensates, charged kaon condensates, neutral kaon condensates, and
possibly coexistence of both. This is exactly the same ansatz as we have made in Sec. III C 3 for kaon condensation
in nuclear matter, see Eq. (163). We can thus follow the steps below Eq. (163) to obtain

cosQ = 1 − Q2

φ2
(1 − cosφ) , (251)

and

sinQ =
Q

φ
sinφ , (252)

where

φ2 ≡ φ2
4 + φ2

5 + φ2
6 + φ2

7 . (253)

Since we assume our condensates to be constant in time and space, only the first line of the Lagrangian (249) survives.
The tree-level zero-temperature free energy is the negative of this Lagrangian and becomes

U =
f2

π

2
Tr

[

2
1 − cosφ

φ2

(

a(detM)M−1Q2 − A2Q2
)

+
(1 − cosφ)2

φ4
(AQ2)2 +

sin2 φ

φ2
(AQ)2

]

, (254)

where we have subtracted the “vacuum” contribution

UCFL = U(Σ = 1) = −f2
πa detM Tr[M−1] , (255)

such that the state without kaon condensates, i.e., the pure CFL state has free energy U = 0. With the definitions of
the matrices A and Q in Eqs. (245) and (250), the notations

φ2
K+ ≡ φ2

4 + φ2
5 , φ2

K0 ≡ φ2
6 + φ2

7 , (256)

and abbreviating A = diag(a1, a2, a3), the various traces are

Tr[a(detM)M−1Q2 − A2Q2] = (m2
K+ − µ2

K+)φ2
K+ + (m2

K0 − µ2
K0)φ2

K0 − 2a3(a1φ
2
K+ + a2φ

2
K0) , (257a)

Tr[(AQ2)2] = (a1φ
2
K+ + a2φ

2
K0)2 + a2

3φ
4 , (257b)

Tr[(AQ)2] = 2a3(a1φ
2
K+ + a2φ

2
K0) , (257c)

where we have defined the kaon chemical potentials and masses

µK+ ≡ m2
s − m2

u

2µ
, µK0 ≡ m2

s − m2
d

2µ
, (258a)

m2
K+ ≡ amd(ms + mu) , m2

K0 ≡ amu(ms + md) . (258b)
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It will become clear below that these quantities really act as masses and chemical potentials for the kaons. For
simplicity we have omitted the electric charge chemical potential in the Lagrangian which would have appeared in
µK+ as an additional contribution. Inserting Eqs. (257) into Eq. (254), we can write the free energy as

U(φ1, φ2)

f2
π

= (1 − cosφ)

[

(m2
1 − µ2

1)
φ2

1

φ2
+ (m2

2 − µ2
2)

φ2
2

φ2

]

+
1

2
(1 − cosφ)2

(

µ1
φ2

1

φ2
+ µ2

φ2
2

φ2

)2

. (259)

Here and in the following we use, for notational convenience, the subscript 1 for K+ and 2 for K0. To understand
the expression for the free energy we consider the limit case of small condensates, θi " fπ, i.e., φi = θi/fπ " 1 for
i = K+, K0. Then we can expand U(φ1, φ2) up to fourth order in the condensates to obtain

U(θ2
1 , θ

2
2) # m2

1 − µ2
1

2
θ2
1 +

m2
2 − µ2

2

2
θ2
2 +

β1

4
θ4
1 +

β2

4
θ4
2 +

α

4
θ2
1θ

2
2 , (260)

with

βi ≡
4µ2

i − m2
i

6f2
π

(i = K+, K0) , α ≡ β1 + β2

2
− (µ1 − µ2)2

4f2
π

. (261)

We have thus reduced the effective theory to a two-component φ4 theory, cf. Eq. (A18) in appendix A1, with effective
coupling constants βi for the self-coupling of the kaons and an effective coupling constant α for the interaction between
charged and neutral kaons.

We may come back to the full free energy (259) to find the ground state of the system for arbitrary chemical
potentials µ1, µ2. To this end, one has to minimize the free energy through the equations

∂U

∂φ1
=

∂U

∂φ2
= 0 . (262)

By construction, the free energy of the CFL state without kaon condensation, φ1 = φ2 = 0, is given by U = 0. If
one of the condensates vanishes, say φ2 = 0, one of the equations (262) is automatically fulfilled, and the other one
becomes

0 =
1

f2
π

∂U

∂φ1

∣

∣

∣

∣

φ2=0

= sinφ1

(

m2
1 − µ2

1 cosφ1

)

. (263)

This has a nontrivial solution for m2
1 < µ2

1,

cosφ1 =















1 for m2
1 > µ2

1

m2
1

µ2
1

for m2
1 < µ2

1

, (264)

and the free energy density becomes

U(φ2 = 0) =















0 for m2
1 > µ2

1

−f2
π(m2

1 − µ2
1)

2

2µ2
1

for m2
1 < µ2

1

. (265)

By symmetry, we find the same solution for φ2 if we set φ1 = 0. Equating the free energies of the two phases φ1 = 0,
φ2 %= 0 and φ1 %= 0, φ2 = 0 one finds the condition for coexistence of two condensates,

µ2
2(µ

2
1 − m2

1)
2 = µ2

1(µ
2
2 − m2

2)
2 . (266)

This condition can also be obtained by assuming two nonvanishing condensates in Eqs. (262). As a result we obtain
the phase diagram shown in Fig. 14, where we restrict ourselves to µ1, µ2 > 0 without loss of generality.

What are the values of the kaon chemical potentials in the real world? In other words, where in the phase diagram
of Fig. 14 does a compact star sit? Let us first see whether in a star we can expect the kaon chemical potentials to be
larger than their mass, i.e., whether kaon condensation is possible. As discussed above, for quantitative predictions
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FIG. 14: Zero-temperature phase diagram for kaon condensation in the µK+ -µK0 -plane. No condensation occurs if the chemical
potential is smaller than the meson mass. Coexistence of the two condensates is only possible along the (solid) line that separates
the CFL-K0 from the CFL-K+ phase. This line is given by Eq. (266) and marks a first order phase transition. For large chemical
potentials, it approaches the line µK+ = µK0 . The (dashed) lines separating either of the two meson-condensed phases from
the pure CFL phase are second order phase transition lines. In the condensed phases, the condensate and free energy are given
by Eqs. (264) and (265), respectively.

of the effective theory we rely on the results for the constants fπ and a at asymptotically large densities and their
extrapolation down to densities in a compact star. This extrapolation yields

f2
π =

21 − 8 ln 2

18

µ2

2π2
" (100 MeV)2 , a =

3∆2

π2f2
π

" 0.03 , (267)

where we used a quark chemical potential µ " 500 MeV and a fermionic energy gap ∆ " 30 MeV. Then, from Eqs.
(258) we conclude that both kaon masses are of the order of mK+ " mK0 " (a mlight ms)1/2 " 5 MeV, where we
used a quark mass for u and d quarks mlight " 5 MeV and a strange quark mass ms " 150 MeV. The kaon chemical
potential then is µK+ " µK0 " m2

s/(2µ) " 20 MeV. This suggests that the interior of the star sits outside the
rectangle given by the dashed lines in Fig. 14, i.e., if there is a color-flavor locked core in a compact star it is likely to
be kaon-condensed CFL matter rather than “pure” CFL matter (we shall confirm this conclusion below for nonzero
temperatures). Does this matter contain a charged or a neutral kaon condensate? Firstly, the slightly heavier d quark
compared to the u quark makes the K+ slightly heavier than the K0. This asymmetry is taken into account in Fig.
14. Moreover, the electric charge of a potential K+ condensate would require the presence of electrons to neutralize
the system, which further disfavors the charged kaon condensate. We thus expect the CFL-K0 phase to be the most
likely meson-condensed phase in CFL.

As a second application of the effective theory for mesons in CFL let us compute an estimate of the critical
temperature of (neutral) kaon condensation. This is important to answer the question: if there is CFL matter in a
compact star and if there is kaon condensation at zero temperature, at which temperature (i.e., at which point in the
life of the star) does condensation set in?

The full temperature-dependent theory defined by the effective Lagrangian is very complicated. We therefore
expand the Lagrangian (249) up to fourth order in the matrix-valued field Q to obtain

L =
f2

π

2
Tr

[

(A2 − a(det M)M−1)

(

Q2 − A2Q4

12

)

− (AQ)2 − (AQ2)2

4
+

(AQ2)Q2

3

]

+
f2

π

4
Tr

[

(∂0Q)2 − v2
π(∇Q)2 + 2i(∂0Q)[A, Q]

]

, (268)

where we have neglected terms of fourth order in Q which contain derivatives such as Tr[(Q∂0Q)2] etc, and where
we have dropped the contribution constant in Q, which serves to normalize the free energy of the pure CFL state to
zero, see remark below Eq. (254). Next, one has to separate the condensate from the fluctuations, as demonstrated
in appendix A1. The resulting Lagrangian has the same structure as given in the appendix for the φ4 model, see Eq.
(A17): a tree-level potential; terms of second order in the fluctuations which define the tree-level propagator; terms
cubic in the fluctuations which correspond to interactions due to the presence of the condensate; and finally terms
quartic in the fluctuations. Here we do not discuss the explicit structure of these terms in general, for details you may
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consult Ref. [39]. We rather restrict ourselves again to the kaon degrees of freedom. As a further simplification, we
set the charged kaon condensate to zero, θ4 = θ5 = 0 (but keep the charged kaon fluctuations). This is motivated by
the above discussion about the more favorable neutral kaon condensate. For the neutral kaon condensate we choose,
without loss of generality, a direction in the degeneracy space of the condensate by setting θ7 = 0, and we denote
θ ≡ θK0 = θ6. The tree-level potential from Eq. (260) then simply becomes

U(θ) =
m2

2 − µ2
2

2
θ2 +

β2

4
θ4 . (269)

The kaon sector of the inverse tree-level propagator is block diagonal,

D−1
0 =

(

D−1
01 0

0 D−1
02

)

, (270)

where

D−1
01 =

(

−K2 + m2
1 − µ2

1 + αθ2 −2iµ1k0

2iµ1k0 −K2 + m2
1 − µ2

1 + αθ2

)

, (271a)

D−1
02 =

(

−K2 + m2
2 − µ2

2 + 3β2θ2 −2iµ2k0

2iµ2k0 −K2 + m2
2 − µ2

2 + β2θ2

)

, (271b)

with the abbreviation K2 ≡ k2
0 − v2

πk2. The verification of this form of the kaon tree-level propagator is left as an
exercise, see problem IV.3. Analogously to the calculation in the appendix, we obtain the kaon dispersion relations.
They are given by the poles of the propagator D0, which are the zeros of the determinant of the inverse propagator
D−1

0 . The dispersion for the charged kaon is

ε±1 (k) =
√

v2
πk2 + m2

1 + αθ2 ∓ µ1 . (272)

We see that the K0 condensate gives a contribution to the mass of the K+. For the neutral kaon we obtain

ε±2 (k) =

√

E2
k + µ2

2 ∓
√

4µ2
2E

2
k + δM4 , (273)

where

Ek ≡
√

v2
πk2 + m2

2 + 2β2θ2 , δM2 = β2θ
2 . (274)

Since kaon condensation breaks a global symmetry of the system, namely the U(1) associated to conservation of
strangeness, we expect a Goldstone mode. (Notice the two-fold condensation process: due to the condensation of
quark Cooper pairs, chiral symmetry is broken and pseudo-Goldstone bosons appear in the system; on top of that,
these pseudo-Goldstone modes – here the neutral kaons – condense themselves, breaking the global symmetry further
and giving rise to another Goldstone mode.) This mode is expected to be gapless.9 To check this expectation, we
first compute the condensate from the tree-level potential (269). The nontrivial minimum of this potential is

θ2 =
µ2

2 − m2
2

β2
. (275)

This implies 4µ2
2E

2
k=0 + δM4 = (3µ2

2 −m2
2)

2 and E2
k=0 + µ2

2 = 3µ2
2 −m2

2 which we can insert into the kaon dispersion
(273). The result is

ε+2 (k = 0) = 0 , (276)

confirming the existence of a gapless mode.

9 Due to the weak interactions this mode acquires a small energy gap in the keV range which we neglect here.
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Following the calculation in the appendix, we can immediately write down the thermodynamic potential at finite
temperature,

Ω = U(θ) + T
∑

i=1,2

∑

e=±

∫

d3k

(2π)3
ln

(

1 − e−εe
i /T

)

. (277)

In order to extract an estimate for the critical temperature, we expand the potential for large T ,

Ω " U(θ) − 2π2

45v3
π
T 4 +

(

α + 2β2

12v3
π

θ2 +
m2

1 + m2
2 − 2(µ2

1 + µ2
2)

12v3
π

)

T 2 + . . .

=

(

m2
2 − µ2

2

2
+

α + 2β2

12v3
π

T 2

)

θ2 +
β2

4
θ4 − 2π2

45v3
π
T 4 +

m2
1 + m2

2 − 2(µ2
1 + µ2

2)

12v3
π

T 2 + . . . (278)

The T 4 term is easy to obtain and has also been discussed in appendix A1. For the T 2 term we have neglected δM
in the neutral kaon dispersions (273). Then they assume the same form as the ones for the charged kaons (272) and
we can use the expansion for the pressure of a non-interacting Bose gas, see for instance the appendix of Ref. [9].

We have arrived at a potential with terms constant, quadratic, and quartic in θ. Since we assume the existence of a
condensate at T = 0, we have µ2 > m2, which we have argued to be realistic for densities in compact stars. Therefore,
the quartic term is always positive, while the quadratic term starts from a negative value at T = 0 and becomes
positive for sufficiently large temperatures. Consequently, the nontrivial solution for the condensate ceases to exist
when the coefficient in front of the quadratic term vanishes. This yields the condition for the critical temperature
which we thus estimate to be

T 2
c " 6v3

π
µ2

2 − m2
2

α + 2β2
. (279)

With the definitions (261) we can express Tc as a function of kaon chemical potentials and masses.10 Before we
interpret the result we point out a problem of the current approach. We have seen that at zero temperature, with
θ(T = 0) given by Eq. (275), we have ε+2 (k = 0) = 0. At finite temperature we expect the condensate to melt,
i.e., θ(T ) < θ(T = 0) for all T . In this case, however, the excitation of the Goldstone mode (which should remain
gapless for all T < Tc due to the Goldstone theorem) becomes imaginary if written in the form (273). This is clearly
unphysical and due to the approximation we have made. The solution to this problem is to set up a more elaborate
approximation scheme which evaluates the thermal kaon masses self-consistently. This is beyond the scope of these
lectures, see Ref. [39] for such a treatment.

It turns out that our estimate of the critical temperature coincides with the self-consistent calculation. We can
therefore use Eq. (279) for a physical conclusion. With the definition of the effective coupling constants α and β2 in
Eq. (261) and the approximate numbers for the kaon chemical potentials and masses discussed below Eq. (267) we
obtain Tc " 60 MeV. This is of the order of or even larger than the critical temperature T CFL

c for CFL itself. We do
not aim to compute the critical temperature of CFL in these lectures. We simply give the (mean-field) result,

T CFL
c " 21/3 · 0.57∆ , (280)

where ∆ is the zero-temperature gap. This relation differs by a prefactor of order one from the relation obtained
from the usual Bardeen-Cooper-Schrieffer (BCS) theory, Tc " 0.57∆; see remark below Eq. (300) for the origin of
this prefactor. For our present purpose it is sufficient to notice that the critical temperature in a superconductor is
typically of the same order as the zero-temperature gap. Since ∆ is also of the order of tens of MeV, we may apparently
conclude that the kaon condensate does not melt before the CFL phase itself melts. However, we need to remember
that our effective theory is only valid for temperatures smaller than the gap ∆. Therefore, the estimated critical
temperature for kaon condensation is close to or beyond the limit of validity of our effective description. Nevertheless,
as a tentative conclusion we can say that as soon as quark matter is cold enough to be in the CFL state, we also expect
it to be cold enough for kaon condensation, provided that the parameters are such that kaon condensation is present
at zero temperature. In other words, upon decreasing the temperature, one encounters the transition from unpaired
quark matter to CFL-K0, not from unpaired quark matter to CFL and then to CFL-K0. The critical temperature
we have found is larger than all temperatures we are interested in for compact star applications. Therefore, we have
learned that the temperature inside a compact star is, for all times in the life of the star, sufficiently low for the
CFL-K0 phase.

10 Notice that for α+2β2 < 0 the critical temperature formally becomes imaginary, i.e., the condensate apparently “refuses” to melt. This
situation cannot occur for realistic parameters in our case but is an interesting theoretical possibility. See appendix C in Ref. [39] and
references therein for more information.
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C. Color-superconducting gap from QCD

Let us now go through a true QCD calculation from first principles. Our goal is to compute the gap ∆ with
perturbative methods. As explained above, this calculation can be expected to be strictly valid only at densities much
larger than present in compact stars.

In the theoretical treatment of superconductivity one introduces charge-conjugate fermions, which can be thought of
as hole degrees of freedom. A hole is left in the Fermi sea if you remove a fermion. One might thus say that introducing
fermion holes leads to an overcounting of the degrees of freedom because if the theory knows about all fermions it also
knows about where a fermion is missing. And indeed, we have formally doubled the degrees of freedom. However,
since in a superconductor quasiparticles are mixtures of fermions and fermion holes, this is a necessary extension of
the theory. The fermion spinors become spinors in the so-called Nambu-Gorkov space and the fermion propagator
becomes a 2 × 2 matrix in this space. The Cooper pair condensate is taken into account in the off-diagonal elements
of this propagator, i.e., it couples fermions with holes. The inverse tree-level propagator in Nambu-Gorkov space is

S−1
0 =

(

[G+
0 ]−1 0

0 [G−
0 ]−1

)

, (281)

with the inverse tree-level fermion and charge-conjugate fermion propagators

[G±
0 ]−1 = γµKµ ± µγ0 =

∑

e=±

[k0 ± (µ − ek)]γ0Λ
±e
k , (282)

where

Λ±e
k ≡ 1

2

(

1 + eγ0γ · k̂
)

(283)

are projectors onto positive and negative energy states. Since our QCD calculation applies to asymptotically large
densities, we can safely neglect all quark masses. See appendix A2 for a derivation of the tree-level fermion propagator
and its representation in terms of energy projectors. From Eq. (282) we immediately get the tree-level propagators

G±
0 =

∑

e=±

Λ±e
k γ0

k0 ± (µ − ek)
. (284)

The full inverse propagator S−1 is obtained from a Dyson-Schwinger equation

S−1 = S−1
0 + Σ , (285)

with the self-energy

Σ $
(

0 Φ−

Φ+ 0

)

. (286)

In principle, Σ also has nonvanishing diagonal elements which we neglect here. The off-diagonal elements contain the
gap function ∆(K),

Φ+(K) = ∆(K)Mγ5 , Φ−(K) = −∆(K)M†γ5 , (287)

where M specifies the color-flavor structure of the color-superconducting phase, in the CFL phase M = J · I, see
Eq. (230). From the Dyson-Schwinger equation (285) we obtain the inverse propagator, which we formally invert to
obtain the propagator,

S =

(

G+ F−

F+ G−

)

, (288)

with

G± =
(

[G±
0 ]−1 − Φ∓G∓

0 Φ
±

)−1
, (289a)

F± = −G∓
0 Φ

±G± . (289b)
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The off-diagonal elements F± are termed anomalous propagators. They are typical for all superconductors, see for
example Ref. [40]. From their structure (289b) we see that they describe the propagation of a charge-conjugate fermion
that is converted into a fermion through the condensate (or vice versa). One can thus think of the condensate as a
reservoir of fermions and holes, and the quasiparticles are not just single fermions but superpositions of states with
fermion number . . . ,−5,−3,−1, 1, 3, 5, . . ..

Inserting Eqs. (282), (284), and (287) into Eq. (289a), we compute the diagonal elements of the propagator (for
simplicity we assume M† = M which is true in the CFL phase, but may not be true in other phases),

G± =

{

∑

e=±

[

k0 ± (µ − ek) − ∆2L

k0 ∓ (µ − ek)

]

Λ∓e
k γ0

}−1

, (290)

with L = M2, as defined for the CFL phase in Eq. (232). Now we write L in its spectral representation,

L =
∑

r=1,2

λrPr , (291)

with λr being the eigenvalues of L, λ1 = 1, λ2 = 4, and Pr the projectors onto the corresponding eigenstates,

P1 = −L − 4

3
, P2 =

L − 1

3
. (292)

Obviously, these projectors are complete, P1 + P2 = 1; they are also orthogonal, P1P2 = 0, as one can see with the
help of Eq. (236). We obtain

G± =

{

∑

e,r

[

k0 ± (µ − ek) − λr∆2

k0 ∓ (µ − ek)

]

PrΛ
∓e
k γ0

}−1

=
∑

e,r

[

k0 ± (µ − ek) − λr∆2

k0 ∓ (µ − ek)

]−1

Prγ0Λ
∓e
k

= [G∓
0 ]−1

∑

e,r

PrΛ
∓e
k

k2
0 − (εe

k,r)
2

, (293)

with

εe
k,r =

√

(ek − µ)2 + λr∆2 . (294)

The poles of the propagator are k0 = ±εe
k,r, i.e., εe

k,r are the dispersion relations of the quasiparticles (e = +) and
quasiantiparticles (e = −). We have thus confirmed Eq. (231), in particular we now understand why the eigenvalues of
L appear in the excitation energies. Note that the structure of the dispersion relations is thus determined entirely by
the color-flavor (and Dirac) structure of the order parameter, and thus ultimately by the symmetry breaking pattern.
Only the calculation of the magnitude of ∆ goes beyond simple symmetry considerations and depends on the form of
the interaction between the fermions.

Using the result (293) for G± and Eq. (289b), one easily obtains the anomalous propagators,

F± = ±∆Mγ5

∑

e,r

PrΛ
∓e
k

k2
0 − (εe

k,r)
2

. (295)

The gap equation is a self-consistent equation for the off-diagonal elements of the self-energy Σ. We shall not discuss
the detailed derivation of the gap equation (see Sec. IV.A in Ref. [8] for this derivation). The gap equation reads

Φ+(K) = g2 T

V

∑

Q

γµT T
a F+(Q)γνTbD

ab
µν(K − Q) , (296)

where g is the QCD coupling constant, which will be our expansion parameter, where Dab
µν is the gluon propagator,

and where Ta = λa/2 (a = 1, . . . , 8) with the Gell-Mann matrices λa. In Figs. 15 and 16 we show the self-energy and
the gap equation diagrammatically.

The first step is to transform the matrix equation (296) into an equation for the scalar gap function ∆(K). To
this end, we multiply both sides of the gap equation with γ5MΛ+

k from the right and take the trace on both sides.
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FIG. 15: Diagrammatic representation of the one-loop self-energy in Nambu-Gorkov space. Curly lines are gluon propagators,
double lines correspond to G+ (left-pointing arrow) and G− (right-pointing arrow), single lines to G+

0 (left-pointing arrow) and
G−

0 (right-pointing arrow), and the circles are the gap matrices Φ+ (cross-hatched) and Φ− (hatched). The vertices have the
form gγµTa with the QCD coupling g.

=

FIG. 16: Diagrammatic representation of the gap equation which arises as follows. On the one hand, the one-loop self-energy
is given by cutting a fermion line in the corresponding two-loop diagram of the effective action. In Nambu-Gorkov space, this
yields the matrix of four diagrams shown in Fig. 15. On the other hand, the self-energy is given by Eq. (286). Equating these
two matrices leads to the gap equation in the off-diagonal elements. The algebraic form of the gap equation is given in Eq.
(296). It is a self-consistent equation for Φ+ (equivalently, one may solve the equation for Φ−), and thus for the gap function
∆(K).

Furthermore, we neglect the antiparticle contribution e = − (and denote εk,r ≡ ε+k,r) and use the fact that the gluon

propagator can be taken to be diagonal in color space, Dab
µν = δabDµν . This yields

∆(K) =
g2

24

T

V

∑

Q

∑

r

∆(Q)

q2
0 − ε2q,r

Tr[γµγ5Λ
−
q γνγ5Λ

+
k ] Tr[T T

a MPrTaM]Dµν(P )

= −g2

3

T

V

∑

Q

[

2

3

∆(Q)

q2
0 − ε2q,1

+
1

3

∆(Q)

q2
0 − ε2q,2

]

Tr[γµγ5Λ
−
q γνγ5Λ

+
k ] Dµν(P ) , (297)

where we abbreviated P ≡ K − Q, and where we have used the results for the color-flavor traces

Tr[T T
a MP1TaM] = 2 Tr[T T

a MP2TaM] = −16

3
. (298)

It is left as an exercise to verify these traces. With the gluon propagator in Coulomb gauge,

D00(P ) = D"(P ) , D0i(P ) = 0 , Dij = (δij − p̂ip̂j)Dt(P ) , (299)

where D" and Dt are the longitudinal and transverse components, we have

∆(K) =
g2

3

T

V

∑

Q

[

2

3

∆(Q)

q2
0 − ε2q,1

+
1

3

∆(Q)

q2
0 − ε2q,2

]

[

(1 + q̂ · k̂)D"(P ) − 2(1 − p̂ · q̂ p̂ · k̂)Dt(P )
]

. (300)

Again, it is left as an exercise to verify this result by performing the trace in Dirac space. The two terms on the
right-hand side arising from εq,1 and εq,2 are due to the two-gap structure of CFL. Let us for simplicity ignore this
structure in the following, i.e., we replace εq,2 by εq,1 (for more details about the QCD gap equation for CFL, see Ref.
[42]). This simplification does not change the main result which is the dependence of the gap on the QCD coupling
g. The two-gap structure has a nontrivial effect for instance on the relation between the critical temperature and the

zero-temperature gap, see Eq. (280). In fact the 21/3 in that equation is actually (λ2/3
1 λ1/3

2 )1/2 where the exponents
2/3 and 1/3 are the prefactors in front of the two fractions in Eq. (300).
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For the sake of brevity, let us now skip a few steps in the calculation. One inserts the specific form of the longitudinal
and transverse gluon propagators (in the so-called hard-dense loop approximation), performs the Matsubara sum and
the angular integral. Details of all these steps can be found for instance in Ref. [41], and one obtains

∆k ! g2

24π2

∫ µ+δ

µ−δ
dq
∆q

εq
tanh

εq

2T

(

ln
4µ2

3m2
g

+ ln
4µ2

M2
+

1

3
ln

M2

|ε2q − ε2k|

)

. (301)

Here, the three terms in parentheses arise from static electric gluons, non-static magnetic gluons, and (Landau-
damped) soft magnetic gluons, respectively. The last of these terms is responsible for the leading behavior of the
gap which will turn out to be different from the usual BCS behavior in electronic superconductors. The reason is
the existence of a long-range interaction mediated by the magnetic gluons in QCD for which there is no analogue
in the interaction of electrons in a metal. We have defined m2

g ≡ Nfg2µ2/(6π2) (Nf being the number of flavors),
and M2 ≡ (3π/4)m2

g, and we have restricted the momentum integral to a small vicinity around the Fermi surface,
q ∈ [µ− δ, µ + δ] (δ % µ), where we expect the gap function ∆q to be peaked. The three logarithms can be combined
to obtain

∆k = ḡ2

∫ δ

0
d(q − µ)

∆q

εq

1

2
ln

b2µ2

|ε2q − ε2k|
, (302)

with

ḡ ≡ g

3
√

2π
, b ≡ 256π4

(

2

Nfg2

)5/2

, (303)

and where we have taken the zero-temperature limit tanh εq

2T → 1. The logarithm can be approximated by

1

2
ln

b2µ2

|ε2q − ε2k|
! Θ(k − q) ln

bµ

εk
+Θ(q − k) ln

bµ

εq
. (304)

Moreover, we define the new integration variable

y ≡ ḡ ln
2bµ

q − µ + εq
, (305)

and abbreviate

x ≡ ḡ ln
2bµ

k − µ + εk
, x∗ ≡ ḡ ln

2bµ

∆
, x0 ≡ ḡ ln

bµ

δ
, (306)

where ∆ is the zero-temperature value of the gap at the Fermi surface, ∆ ≡ ∆q=µ. We have

dy = − ḡ

εq
d(q − µ) , εq = bµe−y/ḡ

[

1 +
∆2

q

(q − µ + εq)2

]

. (307)

With the latter relation we approximate ln(bµ/εq) ! y/ḡ, ln(bµ/εk) ! x/ḡ to obtain

∆(x) = x

∫ x∗

x
dy∆(y) +

∫ x

x0

dy y∆(y) . (308)

We can rewrite this integral equation as a second-order differential equation,

d∆

dx
=

∫ x∗

x
dy∆(y) ⇒ d2∆

dx2
= −∆(x) . (309)

This equation is solved by

∆(x) = ∆cos(x∗ − x) , (310)

such that the value of the gap at the Fermi surface (which corresponds to x = x∗) is ∆, and such that the first
derivative of the gap at the Fermi surface vanishes, since the gap peaks at the Fermi surface. To compute the value
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of the gap at the Fermi surface, we insert the solution (310) back into the gap equation (308) and consider the point
x = x∗,

∆ = ∆

∫ x∗

x0

dy y cos(x∗ − y) = ∆ [cos(x∗ − y) − y sin(x∗ − y)]y=x∗

y=x0

= ∆ [1 − cos(x∗ − x0) + x0 sin(x∗ − x0)] . (311)

Since x0 is of order ḡ, we approximate cos(x∗ − x0) = cosx∗ cosx0 + sinx∗ sinx0 " cosx∗ + x0 sinx∗, sin(x∗ − x0) =
sinx∗ cosx0 − cosx∗ sinx0 " sinx∗ − x0 cosx∗, and thus

∆ " ∆(1 − cosx∗) . (312)

Hence, cosx∗ " 0 and thus

∆ = 2bµ exp

(

− 3π2

√
2g

)

. (313)

This important result, first derived in Ref. [43], shows that the color-superconducting gap is parametrically enhanced
compared to the BCS gap in conventional superconductors. In BCS theory there is a contact interaction instead of
gluon exchange, and the resulting gap equation has the form

∆ ∝ g2

∫ δ

0
d(q − µ)

∆

εq
. (314)

Here the gap does not depend on momentum and one obtains ∆ ∝ exp(−const/g2), i.e., the coupling appears quadratic
in the denominator of the exponential. This is in contrast to the color-superconducting gap (313) where the coupling
appears linear in the denominator of the exponential. As mentioned above, this is due to the long-range interaction
from magnetic gluons. For more details and a more general solution of the QCD gap equation see Sec. IV in Ref. [8]
and references therein.

The solution of the QCD gap equation is a weak-coupling result and thus only valid at very large chemical potentials
where the QCD coupling is sufficiently small. It is nevertheless interesting to extrapolate this result to larger couplings.
Of course one should keep in mind that this extrapolation has no theoretical justification. We show the gap as a
function of the coupling in Fig. 17. We see the exponentially small gap at small coupling and observe a maximum of
the gap at a coupling of about g " 4.2. For compact stars we make the following rough estimate. According to the
two-loop β-function (which should not be taken too seriously at these low densities), the coupling at µ = 400 MeV
is g " 3.5. From Fig. 17 we then read off ∆ " 80 MeV. However in our derivation of the result we have ignored a
subleading effect which yields an additional prefactor " 0.2. Therefore, we can estimate the color-superconducting
gap for compact star densities to be of the order of ∆ ∼ 10 MeV.

This result suggests that the critical temperature of color superconductivity is also of the order of Tc ∼ 10 MeV,
cf. Eq. (280). Remember that compact stars have temperatures well below that value (only in the very early stages
of the life of the star, temperatures around 10 MeV are reached). This suggests that color superconductors are viable
candidates for the matter inside the star. More precisely, if there is deconfined quark matter inside the star, it is very
likely that it is in a color-superconducting state.

We conclude this chapter about color superconductivity by noticing that, besides the strong-coupling nature, other
interesting questions arise at lower densities. We have seen in Sec. II B 2, that in unpaired quark matter the Fermi
momenta of up, down, and strange quarks split apart, see Fig. 2. This is due to the nonzero strange quark mass and
the conditions of neutrality and weak equilibrium. In our discussion of superconductivity we have always assumed
that the fermions that form Cooper pairs have identical Fermi momenta. This is true in the region of asymptotically
large densities where the strange quark mass can be neglected. It is not true, however, at lower densities. The different
Fermi momenta rather impose a “stress” on the pairing.11 It is a quantitative question whether the pairing gap is large
enough to overcome this stress. Roughly speaking, if the gap is larger than the mismatch in Fermi momenta, the usual
pairing is still possible. It is therefore conceivable that the CFL phase persists down to densities where the transition
to hadronic matter takes place. If the gap is too small, however, or the mismatch too large, Cooper pairing in the

11 Cooper pairing with mismatched Fermi momenta is an interesting general phenomenon and not only relevant for quark matter, but also
in condensed matter physics and atomic physics. See for instance Ref. [44] where mismatched pairing of fermionic atoms is investigated
experimentally in an optical trap.
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FIG. 17: Color-superconducting gap ∆ over quark chemical potential µ as a function of the QCD coupling g. The curve shows
the result from Eq. (313) with Nf = 2, predicting a weak-coupling behavior ∆/µ ∝ exp(−const/g). The values of ∆/µ for
large coupling is a simple (and in principle unreliable) extrapolation of the weak-coupling result.

conventional way is not possible anymore. There are several versions of unconventional pairing which may take over
and constitute one or several phases between the CFL phase at high densities and hadronic matter. Some of them break
rotational invariance and may lead to nodes of the gap in certain directions in momentum space as discussed in the
context of the specific heat in Sec. IVA. Others even break translational invariance and exhibit crystalline structures.
All of the unconventional phases have in common that there is less, and less symmetric, pairing than in the CFL
phase. There is less pairing because the CFL phase is the only color superconductor where all quarks are gapped in
all directions in momentum space. There is less symmetric pairing because the CFL phase is the color superconductor
with the largest residual symmetry group. In the phase diagram of Fig. 1 all color superconductors other than CFL
are collectively denoted by non-CFL. From what we just said it is clear that this region of the phase diagram may
either be completely absent or, if present, may itself contain several phase transition lines separating different color
superconductors. More details about stressed pairing in quark matter and unconventional color superconductors can
be found in Ref. [8].

In summary, we emphasize that not only the strong-coupling nature but also the less symmetric situation (due to
the finite strange quark mass) complicates our understanding of quark matter in compact star. This supports the
theme of these lectures that we need to compute properties of candidate phases and check them for their compatibility
with astrophysical observations. In the following section we shall turn to one of these properties, namely the neutrino
emissivity.

Problems

IV.1 Specific heat for anisotropic superfluid

Compute the low-temperature behavior of the specific heat for a gap function with line nodes, i.e., instead of
Eq. (219), take ∆ → ∆| cos θ| and apply analogous approximations as for the case of point nodes.

IV.2 Symmetries of CFL

Show that from the structure of the CFL order parameter given in Eq. (228) it follows that the CFL symmetry
breaking pattern is given by Eq. (229). Hints: it is sufficient to treat the chiral group SU(3)L × SU(3)R as
one single flavor group SU(3)f . A color-flavor transformation (U, V ) ∈ SU(3)c × SU(3)f with U = exp(iφc

aTa),
V = exp(iφf

aTa) acts on the order parameter as (U, V )(J · I) = (UJAUT ) (V IAV T ). One then has to show that
only SU(3)c+f transformations leave the order parameter invariant.

IV.3 Kaon propagator

Derive the inverse tree-level propagator for neutral and charged kaons given in Eqs. (270) and (271) from the
Lagrangian (268).
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V. NEUTRINO EMISSIVITY AND COOLING OF THE STAR

We have seen in Sec. II that measuring mass and radius of a compact star is not sufficient to deduce the matter
composition inside the star; it is neither conclusive for a distinction between nuclear matter and quark matter nor
between unpaired quark matter and color-superconducting quark matter. We now turn to an observable which is
more sensitive to the microscopic properties of dense matter, namely the temperature of the star. More precisely,
its cooling curve, i.e., the temperature as a function of the age of the star. Approximately one minute after the star
is born, the temperature has cooled below 1 MeV and the star becomes transparent for neutrinos. Consequently,
neutrinos (and antineutrinos) which are produced in the star can leave the system and carry away energy. Neutrino
emission is thus the dominant cooling mechanism of a compact star in about the first million years of its life. After
that, photon emission takes over. We shall not be concerned with this late regime here.

A very detailed review about neutrino emissivity in nuclear matter is Ref. [45]. If you are interested in a shorter
review, also discussing quark matter, I recommend Ref. [46]. Before turning to the microscopic calculation of the
neutrino emissivity εν , let us discuss its importance for the cooling curves. First of all, as already discussed briefly
in Sec. IVA it is not only the emissivity which is important for the cooling. Once you know how much energy per
time and volume is carried away, you need to know how this affects the temperature of the star. Hence you also need
to know the specific heat. The specific heat cV is a thermodynamic quantity and thus much easier to compute than
the neutrino emissivity. We have done so in Sec. IVA and have seen that superconductivity has a huge effect on cV ,
namely, due to the energy gap, cV is exponentially suppressed at sufficiently small temperatures. We shall see that
superconductivity has a similar effect on the neutrino emissivity. Besides εν and cV , also the heat conductivity is
important for the cooling behavior. Most forms of dense matter are very good heat conductors, such that the star
becomes isothermal. As a consequence, in a realistic star which may have layers of different phases of dense matter,
cooling tends to be dominated by the phase with the highest emissivity and the phase with the highest specific heat.

A. Urca processes in nuclear matter

In Fig. 18 we show some data and schematic comparison with calculations for the cooling curves. We see that there
are different classes of processes which lead to significantly different cooling scenarios. The most efficient process is
the so-called direct Urca process which leads to a very fast cooling.12 In nuclear matter, the direct Urca processes are

n → p + e + ν̄e , p + e → n + νe . (315)

We have discussed these processes in the context of β-equilibrium, where they serve to establish the relation µp +µe =
µn, assuming that neutrinos and antineutrinos escape from the star, µν = 0. Here we are interested in the question
how both processes contribute to the neutrino emissivity. Since it does not matter for the energy balance whether
neutrinos or antineutrinos are emitted, both processes contribute – in chemical equilibrium – equally to the emissivity.
For the neutron, proton, and electron, the dominant contribution in momentum space to the processes comes from
the momenta close to the Fermi momentum. The neutrino momentum is of the order of the temperature T which can
be neglected compared to the Fermi momenta. Therefore, momentum conservation for both processes in Eq. (315)
reads

kF,n = kF,p + kF,e . (316)

In other words, the Fermi momenta kF,n, kF,p, and kF,e must form a triangle. For this triangle to exist, the triangle
inequality has to be fulfilled,

kF,n < kF,p + kF,e . (317)

We know that in a neutral system we have kF,p = kF,e, and thus the triangle inequality becomes

kF,n < 2kF,p . (318)

Consequently, with ni ∝ k3
F,i (i = n, p),

nn < 8np ⇒ np

nB
>

1

9
, (319)

12 This process is as efficient in sucking energy out of the star as the Casino de Urca in Rio de Janeiro is in sucking money out of the
pockets of the gamblers. Hence the name.
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FIG. 18: Effective surface temperature Ts and luminosity Ls vs. age of compact stars, taken from Ref. [6]. Observed values are
compared with different cooling scenarios, each represented by a band that reflects the large uncertainties in the microscopic
calculations.

i.e., the proton fraction has to be larger than 11%. We have seen in Sec. II A that this is not the case for noninteracting
nuclear matter. Interactions can change this, especially for very large densities. At lower densities, this means that
the direct Urca process is strongly suppressed in nuclear matter.

This brings us to a second class of processes which are less efficient than the direct Urca process, but may be the
most efficient ones to emit neutrinos when the direct Urca process is suppressed. Momentum conservation can be
fulfilled by adding a spectator neutron or proton. This is the so-called modified Urca process,

N + n → N + p + e + ν̄e , N + p + e → N + n + νe , N = n, p . (320)

As can be seen from Fig. 18, this process typically results in a much slower cooling. The cooling is thus very sensitive
to the proton fraction of nuclear matter, especially around the threshold of 11%. In other words, this sensitivity
provides a good check on the equation of state. Phenomenological models with equations of state which predict the
proton fraction to be below this threshold can be excluded since the star would cool too fast. There are several other
neutrino emissivity processes in nuclear matter which we shall not discuss here. Some of these processes happen only
with superconducting protons and superfluid neutrons, and are due to constant formation of Cooper pairs.

B. Direct Urca process in quark matter

The direct Urca processes in quark matter are

d → u + e + ν̄e , u + e → d + νe , (321a)

s → u + e + ν̄e , u + e → s + νe . (321b)

These processes obviously require the availability of single quarks. If quarks are paired in Cooper pairs one first
has to break a pair. This costs energy. Therefore, in a phase where all quarks are paired (gapped), such as the
CFL phase, we can expect the direct Urca process to be strongly suppressed. As for the specific heat, we expect an
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exponential suppression at temperatures small compared to the gap (at larger temperatures, but still below the color-
superconducting phase transition, thermal energy is available to break the pairs). Recall that the gap is of the order
of 10 MeV, and the temperature of the star is well below that. Therefore, the exponential suppression exp(−∆/T )
forbids any sizable effect of the Urca process. Other processes coming from Goldstone modes dominate the neutrino
emissivity in the CFL phase [47]. However, their contribution is much lower than that of the unsuppressed direct
Urca process. Therefore, if the core of a hybrid star is made of CFL quark matter, with outer layers of nuclear matter
where any kind of Urca process is possible, the cooling properties are utterly dominated by these outer layers.

We have briefly discussed that at lower densities the CFL phase may not be the ground state anymore. Any other
color-superconducting phase will have ungapped modes.13 The simplest example is the so-called 2SC phase where all
blue and strange quarks are ungapped while the others are gapped. There are more complicated candidate phases
with ungapped modes only in certain directions in momentum space. In any case, the neutrino emissivity of these
phases will be dominated by these ungapped modes, and thus will be comparable to the emissivity of unpaired quark
matter. We are thus interested in the neutrino emissivity of unpaired quark matter. To be a bit more ambitious, let
us discuss the emissivity in the 2SC phase. From this calculation we will obtain the result for the unpaired phase “for
free” because of the unpaired modes in the 2SC phase. Furthermore, we learn something about computing reaction
rates in a superconductor which show some interesting features. And also we will see in an actual calculation why
the emissivity of the gapped modes is exponentially suppressed. In other words, the goal of this section will be to
understand

• the role of the Cooper pair condensate and the energy gap on the Urca process (we shall estimate this qualita-
tively)

• the result of the emissivity of unpaired (ultrarelativistic) quark matter (we shall compute this quantitatively).

All we shall need from the 2SC phase is the propagator. From Eq. (293) we know that the general form of the
propagator can be written as

G± = γ0Λ∓
k

∑

r

Pr
k0 ∓ (µ − k)

k2
0 − ε2k,r

, (322)

where we used Eq. (284) and where we dropped the antiparticle contribution. Note that this form of the propagator
assumes that all flavor chemical potentials are the same. For the neutrino emissivity we need to drop this assumption,
see below. The order parameter in the 2SC phase is characterized by φB

A = δA3δB3 where φ is the color-flavor matrix
from Eq. (227). For simplicity, we drop the strange quarks and consider only a two-flavor system of up and down
quarks.14 Then, the color-flavor structure of the gap matrix is

M = τ2J3 , (323)

with the second Pauli matrix τ2 in flavor space and J3 in color space, as defined above Eq. (230). The color-flavor
structure of the 2SC phase is much easier to deal with than the one of the CFL phase because color and flavor matrices
factorize. Since τ2

2 = 1, we have M2 = J2
3 , whose eigenvalues are λ1 = 1 (4-fold) and λ2 = 0 (2-fold). This is the

formal way of saying that in the 2SC phase quarks of one color, say blue, remain ungapped. The projectors onto the
corresponding eigenspaces in color-flavor space are

P1 = J2
3 , P2 = 1− J2

3 . (324)

They are trivial in flavor space and project onto red and green quarks (which are gapped) and blue quarks (which are
ungapped), respectively.

In a neutral two-flavor system, up and down chemical potentials are different, namely µu +µe = µd, where µe turns
out to be nonzero due to the neutrality constraint. The generalization of the propagator (322) to this case can be

13 A possible exception is the color-spin locked phase which has Cooper pairs with total angular momentum one and which we do not
discuss here.

14 The weak interaction between u and s quarks is suppressed compared to the one between u and d quarks due to the Cabibbo angle.
However, the finite strange quark mass may partially compensate this effect because it leads to a larger phase space for the Urca process.
Here in these lectures we do not want to deal with these complications and thus simply consider a system of massless up and down
quarks, and thus only the processes (321a).
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FIG. 19: Neutrino self-energy Σν and W -boson polarization tensor Π needed for the neutrino emissivity from the quark Urca
process.

written in terms of the flavor components (see problem V.1)

G±
u = γ0Λ∓

k

∑

r

k0 ∓ (µu − k)

(k0 ∓ δµ)2 − ε2k,r

Pr , (325a)

G±
d = γ0Λ∓

k

∑

r

k0 ∓ (µd − k)

(k0 ± δµ)2 − ε2k,r

Pr , (325b)

with

εk,r ≡
√

(µ̄ − k)2 + λr∆2 , δµ ≡ µd − µu

2
, µ̄ ≡ µd + µu

2
, (326)

and λr, Pr as above (Pr now being only matrices in color space since the flavor components are written separately).
This structure of the propagator and the resulting quasiparticle dispersion relations are interesting on their own, since
they describe Cooper pairing with a mismatch in Fermi momenta, as discussed at the end of Sec. IVC. However, in
the present context of neutrino emissivity, we are only interested in the qualitative features of the gapped modes. Thus
we shall ignore this complicated structure of the propagator and temporarily set µu = µd. Only when we compute
the emissivity from the unpaired modes we shall reinstate the difference in up and down chemical potentials.

Next we need to set up the equation that determines the neutrino emissivity. One possible formalism is the
finite temperature real-time formalism. We shall not explain this formalism but refer the reader for more details
to the textbooks [9] and [10]. For our purpose it is enough to know that the real-time formalism can be used
for nonequilibrium calculations. Therefore it is well suited for transport properties and neutrino emissivity. Since
these properties are always close-to-equilibrium properties, one often simply uses an equilibrium formalism, such as
the imaginary-time formalism, and adds whatever is needed as a small out-of-equilibrium feature by hand. In the
real-time formalism we can start from the kinetic equation

i
∂

∂t
Tr[γ0G

<
ν (Pν)] = −Tr[G>

ν (Pν)Σ<
ν (Pν) − Σ>

ν (Pν)G<
ν (Pν)] , (327)

where G>
ν and G<

ν are the so-called “greater” and “lesser” neutrino propagators, and Pν is the neutrino four-
momentum. The greater and lesser propagators are obtained from the retarded propagator in the same way as
given in Eqs. (328) for the case of the W -boson polarization tensor. The trace in Eq. (327) is taken over Dirac space.
The two terms on the right-hand side correspond to the two directions of both processes (321a), i.e., there is a neutrino
gain term from d → u + e + ν̄e, u + e → d + νe, and a neutrino loss term from u + e + ν̄e → d, d + νe → u + e.
Since neutrinos, once created, simply leave the system, only the gain terms, namely the directions given in Eq. (321a),
contribute. The neutrino self-energies Σ<,>

ν are given by the diagram in Fig. 19. The present formalism amounts to
cutting this diagram. The figure shows that a cut through the internal u, d, and e lines produces two diagrams which
represent the Urca process. One part of the neutrino self-energies are the W -boson polarization tensors Π<,>, as
shown diagrammatically in Fig. 19. They are defined through the imaginary part of the retarded polarization tensor
Im ΠR,

Π>(Q) = −2i[1 + fB(q0)]Im ΠR(Q) , (328a)

Π<(Q) = −2ifB(q0)Im ΠR(Q) , (328b)
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with the Bose distribution function fB. We shall discuss the calculation of Π<,> in detail below. The kinetic equation
(327) becomes

∂

∂t
fν(t,pν) =

G2
F

8

∫

d3pe

(2π)3pνpe
Lλσ(pe,pν)fF (pe − µe)fB(pν + µe − pe)ImΠλσ

R (Q) , (329)

where, due to four-momentum conservation,

Q = (pe − pν − µe,pe − pν) , (330)

and where

Lλσ(pe,pν) ≡ Tr
[

(γ0pe − γ · pe) γσ(1 − γ5)(γ0pν − γ · pν) γλ(1 − γ5)
]

. (331)

(In this section, Lorentz indices are denoted λ, σ, . . . in order to avoid confusion with the subscript ν which indicates
neutrino quantities.) If you are interested in the details of the derivation of Eq. (329) or more details about the real-
time formalism, see Ref. [48] and references therein. In this reference the neutrino emissivity is computed in the same
formalism; however, for anisotropic phases, which leads to more complicated calculations than we shall present here.
The following is equally understandable if you simply start with Eq. (329) whose features are physically plausible as
we explain now.

The left-hand side of Eq. (329) is the change of the neutrino occupation number in time. It is related to the
emissivity by

εν ≡ −2
∂

∂t

∫

d3pν

(2π)3
pν fν(t,pν) , (332)

where the factor 2 accounts for the contribution from antineutrinos. The neutrino emissivity is thus the change in
energy per unit time and volume. Our task is to compute the right-hand side of Eq. (329) and integrate over the
neutrino momentum according to Eq. (332) to obtain εν . To understand the right-hand side of Eq. (329) first note
that the vertex Γµ for the processes d ↔ u + W− and e ↔ ν + W− is given by

Γµ = − e

2
√

2 sin θW

γµ(1 − γ5) , (333)

with the Weinberg angle θW . (For the process d ↔ u + W− there is an additional factor Vud from the Cabibbo-
Kobayashi-Maskawa (CKM) matrix; however, Vud % 1.) The W -boson propagators can be approximated by the inverse
W -boson mass squared M2

W since all momenta we are interested in are much smaller than this mass MW % 80 GeV.
Thus, pulling out the constant factors of the vertices in the W -boson polarization tensor, we obtain the overall factor
G2

F with the Fermi coupling

GF =

√
2e2

8M2
W sin2 θW

= 1.16637 · 10−11 MeV−2 . (334)

The additional factors in the trace of Eq. (331) come from the electron and neutrino propagators. And finally, the
distribution functions in Eq. (329) belong to the electron and the W -boson. Eventually, the Bose distribution of
the W will drop out since the W -boson polarization tensor will turn out to be ∝ f−1

B , see below. This makes sense
because the W does not appear in the initial or final state of the process we are interested in.

1. W -boson polarization tensor

Next we need to compute ImΠλσ
R for which we first compute

Πλσ(Q) =
T

V

∑

K

Tr[Γλ
−S(K)Γσ

+S(P )] , (335)

where the trace is taken over Dirac, color, flavor, and Nambu-Gorkov space. We have defined P ≡ K + Q; K and P
will play the role of the u and d quark momentum, respectively. The weak vertices in Nambu-Gorkov space are

Γλ
± =

(

γλ(1 − γ5) τ± 0

0 −γλ(1 + γ5) τ∓

)

, (336)
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FIG. 20: Anomalous contribution to the W -boson polarization tensor Π. The loop consists of two anomalous fermion prop-
agators, according to Eq. (289b). The lower propagator consists of a full fermion propagator (double line), the condensate
(hatched circle), and a charge-conjugate free propagator (single line in opposite direction), and analogously for the upper one.
Electric charge conservation at the weak vertices determines the flavor content of each line. As a consequence, one reads off
that the condensate acts as a reservoir that can convert a u quark into a d quark hole and vice versa.

where τ± ≡ (τ1 ± iτ2)/2 are matrices in flavor space, constructed from the Pauli matrices τ1, τ2. They take care of
the fact that a u and a d quark interact at the vertices. Recall that, for notational convenience, we have pulled out
the constants of the weak vertices already and absorbed them in the overall factor G2

F . With the quark propagator
S from Eq. (288), the trace over Nambu-Gorkov space yields

Πλσ(Q) =
T

V

∑

K

{

Tr
[

γλ(1 − γ5)τ−G+(K)γσ(1 − γ5)τ+G+(P )
]

+ Tr
[

γλ(1 + γ5)τ+G−(K)γσ(1 + γ5)τ−G−(P )
]

−Tr
[

γλ(1 − γ5)τ−F−(K)γσ(1 + γ5)τ−F+(P )
]

− Tr
[

γλ(1 + γ5)τ+F+(K)γσ(1 − γ5)τ+F−(P )
]

}

.(337)

We see that there is a contribution from the anomalous propagators F±. The corresponding diagram in Fig. 20 is an
instructive example for processes in a superconductor which are only possible due to the Cooper pair condensate, see
explanation in the caption of the figure. The anomalous contribution is thus only present for the gapped modes. We
shall ignore it here for simplicity (it is smaller than the contribution from the normal propagators, but not negligibly
small [49]). This leaves us with the first two traces in Eq. (337) which are the contribution of the normal propagators
(they of course also contain the superconducting gap). It turns out that both traces are identical which we use without
explicit proof. We thus continue simply with twice the first term,

Πλσ(Q) # 2
T

V

∑

K

∑

r,s

Tr
[

γλ(1 − γ5)τ−γ0PrΛ
−
k γσ(1 − γ5)τ+γ0PsΛ

−
p

] k0 − (µ − k)

k2
0 − ε2k,r

p0 − (µ − p)

p2
0 − ε2p,s

, (338)

where we have inserted the propagator (322). (Recall that we have set µu = µd temporarily to avoid complications;
this is sufficient to discuss the effects of superconductivity qualitatively, but eventually we shall reinstate the difference
in µu and µd to compute the result for unpaired quark matter. In principle, for the 2SC phase we would have to use
the propagators given in Eq. (325)). The color-flavor traces are

Tr[τ−P1τ+P1] = 2 , (339a)

Tr[τ−P1τ+P2] = 0 , (339b)

Tr[τ−P2τ+P1] = 0 , (339c)

Tr[τ−P2τ+P2] = 1 . (339d)

Recalling that P1 projects onto the gapped red and green quarks and P2 onto the ungapped blue quarks, this is easy
to interpret: the weak interaction cannot change colors. Therefore, the quark loop in the polarization tensor – see
right diagram in Fig. 19 – contains an up quark and a down quark of the same color. They are either both gapped
(then they are red or green, hence the result 2 in Eq. (339a)), or they are both ungapped (then they are blue). There
is no term involving one gapped and one ungapped quark. We thus get two contributions,

Πλσ(Q) # 2
T

V

∑

K

T λσ(k̂, p̂)

[

2
k0 − (µ − k)

k2
0 − ε2k,1

p0 − (µ − p)

p2
0 − ε2p,1

+
k0 − (µ − k)

k2
0 − ε2k,2

p0 − (µ − p)

p2
0 − ε2p,2

]

, (340)

where we abbreviated the Dirac trace

T λσ(k̂, p̂) ≡ Tr
[

γλ(1 − γ5)γ0Λ
−
k γσ(1 − γ5)γ0Λ

−
p

]

. (341)
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We notice that the second contribution in Eq. (340) is obtained from the first upon setting ∆ = 0. Thus, for notational
convenience, let us simply continue with one color degree of freedom, say the first term without the factor 2, and
denote εk ≡ εk,1. In the end it is then straightforward to get the full result.

Next one has to perform the sum over the fermionic Matsubara frequencies. This technique is discussed in detail
for a simple example in appendix A2 a. Here we need the more complicated result from problem A.2,

T
∑

k0

k0 − (µ − k)

k2
0 − ε2k

p0 − (µ − p)

p2
0 − ε2p

= − 1

4εkεp

∑

e1,e2

[εk + e1(µ − k)][εp + e2(µ − p)]

q0 − e1εk + e2εp

fF (−e1εk)fF (e2εp)

fB(−e1εk + e2εp)
. (342)

(Remember P = Q+K.) We comment on the physical meaning of the sum over the signs e1, e2 = ± below. To obtain
the retarded polarization tensor, we need to replace q0 → q0 − iη. Then, the imaginary part is obtained by using the
identity

lim
η→0+

1

x ± iη
= P 1

x
∓ iπδ(x) , (343)

where P denotes the principal value. This yields

Im Πλσ
R (Q) % −2π

∑

e1e2

∫

d3k

(2π)3
T λσ(k̂, p̂)Be1

k Be2

p
fF (−e1εk)fF (e2εp)

fB(−e1εk + e2εp)
δ(q0 − e1εk + e2εp) , (344)

where we have defined the Bogoliubov coefficients

Be
k ≡ 1

2

(

1 + e
µ − k

εk

)

. (345)

These coefficients appear in the theory of any kind of superconductor or superfluid, see for instance Ref. [40]. Inserting
the result (344) back into Eq. (329) yields

∂

∂t
fν(t,pν) = −πG2

F

4

∑

e1e2

∫

d3ped3k

(2π)3(2π)3pνpe
Lλσ(pe,pν)T λσ(k̂, p̂)Be1

k Be2

p

× fF (pe − µe)fF (−e1εk)fF (e2εp)δ(q0 − e1εk + e2εp) . (346)

As expected, the Bose distribution from Eq. (329) cancels with the denominator from Eq. (344) since on the one hand
q0 = pe − pν − µe according to Eq. (330) and on the other hand q0 = e1εk − e2εp according to the δ-function.

2. Effect of superconductivity on Urca process

Eq. (346) describes the change in the neutrino occupation number due to the process u + e → d + νe. (The other
relevant process d → u + e + ν̄e yields the same result and is taken into account by the factor 2 in Eq. (332).) For
this process one expects Fermi distributions of the form fefu(1− fd), the factors fe and fu standing for the incoming
fermions, and the factor 1− fd standing for the outgoing fermion (for the neutrino, fν % 0). So what is the meaning
of the sum over e1, e2? With f(−x) = 1− f(x) it seems that all combinations fefufd, fefu(1− fd), fe(1− fu)fd, and
fe(1−fu)(1−fd) appear. In other words, also processes where both the up and down quark are created or annihilated
apparently give a contribution. More precisely, the quasiparticles, which are mixtures of up and down particles and
holes, are allowed to appear on either side of the reaction. This is an interesting property of a superconductor or
superfluid where particle number conservation is spontaneously broken and particles can be created from or deposited
into the condensate.

To see explicitly that in the unpaired phase only one of the four subprocesses survives, let us define the new
Bogoliubov coefficients and the new dispersion relations

B̃e
k ≡ 1

2

(

1 + e
k − µ

ε̃k

)

, ε̃k ≡ sgn(k − µ)εk . (347)

Then we use that for any function F we have

∑

e

∫ ∞

0
dk Be

kF (eεk) =
∑

e

∫ ∞

0
dk B̃e

kF (−eε̃k) . (348)
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This reformulation is useful to understand the mixing of particles and holes, which is manifest in the Bogoliubov
coefficients. Had we taken the limit ∆ → 0 with the original formulation in Be

k, εk, we would have obtained the
excitation energy εk = |k − µ| which describes a hole for k < µ and a particle for k > µ. The more conventional
excitation εk = k − µ which describes a particle for all k is only obtained as a limit using B̃e

k, ε̃k (both formulations
are of course physically equivalent). Now, since in the unpaired phase B̃+

k = 1, B̃−
k = 0, we see that only the

subprocess with e1 = e2 = 1 survives in the unpaired phase. The other three subprocesses are only possible in the
superconducting phase.

The general result in the superconducting phase has to be computed numerically. Here we proceed with a discussion
of the behavior at temperatures much smaller than the gap, T # ∆. The neutrino emissivity is obtained by integrating
Eq. (346) over the neutrino momentum according to Eq. (332). For the purpose of a simple estimate we may consider
the expression

εν ∼
∑

e1,e2=±

∫

v,x,y

(

ev+e1

√
y2+ϕ2−e2

√
x2+ϕ2

+ 1
)−1 (

e−e1

√
y2+ϕ2

+ 1
)−1 (

ee2

√
x2+ϕ2

+ 1
)−1

, (349)

where we have abbreviated

ϕ ≡ ∆

T
,

∫

v,x,y
≡

∫ ∞

0
dv v3

∫ ∞

0
dx

∫ ∞

0
dy , (350)

and introduced the new dimensionless variables

x =
p − µd

T
, y =

k − µu

T
, v =

pν

T
. (351)

The integration over the electron momentum has been rewritten as an integration over the d-quark momentum. We
shall discuss the calculation more explicitly for the case of unpaired quark matter below. Especially the angular
integral, i.e., the phase space for the process, needs to be considered in detail. For now we are only interested in the
suppression due to the gap. In the integrand of Eq. (349) one recovers the distribution functions for the electron, the u-

quark, and the d-quark. We may now perform the sum over e1 and e2 and approximate e
√

x2+ϕ2 ' 1 and e
√

y2+ϕ2 ' 1,
since ϕ → ∞ for small temperatures. Then the four terms, in the order (e1, e2) = (+, +), (−,−), (−, +), (+,−), become

εν ∼
∫

v,x,y

(

1

e
√

x2+ϕ2

+ ev+
√

y2+ϕ2
+

1

ev+
√

x2+ϕ2

+ e
√

y2+ϕ2
+

1

ev + e
√

x2+ϕ2+
√

y2+ϕ2
+

1

ev+
√

x2+ϕ2+
√

y2+ϕ2

)

.(352)

The terms where e1, e2 assume different signs, i.e., the third and fourth term, yield contributions of the order of
e−2ϕ. They are thus even stronger suppressed than the first two terms which are identical and yield contributions
proportional to e−ϕ,

∫

v,x,y

1

e
√

x2+ϕ2

+ ev+
√

y2+ϕ2
)

∫

v,x,y

e−ϕ

ex2/(2ϕ) + ev+y2/(2ϕ)
= 2ϕe−ϕ

∫

v,x,y

1

ex2 + ev+y2 ) 21.27 ϕe−ϕ . (353)

In the last step we have performed the remaining integral numerically which yields a numerical factor, unimportant
for our present purpose. The main result is the expected exponential suppression of the neutrino emissivity for case of
gapped u and d quarks, εν ∝ e−∆/T for T # ∆. The full numerical solution, also taking into account the temperature
dependence of the gap ∆, shows that this approximation is valid up to temperatures of about T ! Tc/3 where Tc is
the critical temperature of superconductivity.

3. Result for unpaired quark matter

With the help of the new Bogoliubov coefficients (347) we can easily take the limit of unpaired quarks. For an
explicit calculation of the emissivity for this case we need the following ingredients. First we need to perform the
remaining traces in Dirac space and do the contraction over Lorentz indices. This is done in problem V.2 with the
result

Lλσ(pe,pν)T λσ(k̂, p̂) = 64(pe − pe · k̂)(pν − pν · p̂) . (354)

Next we observe that the result for the right-hand side of Eq. (346) would be zero without further corrections: we
have to take into account so-called Fermi liquid corrections which are induced by the strong interaction. We have
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FIG. 21: Illustration of how Fermi liquid effects from the strong interaction open up the phase space for the direct Urca process
in unpaired quark matter. Right-hand side (solid Fermi momenta): without Fermi liquid corrections, the Fermi momenta of the
ultrarelativistic quarks are given by pF,u = µu, pF,d = µd. Start with the momentum of the up-quark, pu. The circle with center
at its tip indicates possible endpoints of the electron momentum pe. Since pF,e = µe and µu + µe = µd (β-equilibrium), one
cannot form a triangle with pu, pe and the down-quark momentum pd, unless one chooses the three vectors to be collinear. In
this case, the triangle collapses to a line and the phase space for the Urca process vanishes. Note that the neutrino momentum
pν ∼ T is negligibly small on the scale of the figure. Left-hand side (dashed Fermi momenta): the strong interaction changes
the quark Fermi momenta to pF,u " µu(1− κ), pF,d " µd(1− κ) with κ = 2αs/(3π). In other words, both Fermi momenta are
reduced, but the down-quark Fermi momentum is reduced by a larger absolute amount. Since the electron Fermi momentum
is not changed, a finite region in phase space opens up. The resulting triangle has a fixed angle between up- and down-quark
momenta given by the values of the chemical potentials and κ.

mentioned these corrections briefly in Sec. II C, see Eq. (83). To lowest order in the strong coupling constant αs –
which is related to the coupling g from Sec. IVC by αs = g2/(4π) – we have

pF,u/d = µu/d(1 − κ) , κ ≡ 2αs

3π
. (355)

We illustrate in Fig. 21 how these corrections open up the phase space for the direct Urca process. As a consequence,
there is a fixed angle θud between the u and d quarks, and the δ-function in Eq. (346) can be approximated by

δ(pe − pν + k − p) # µe

µuµd
δ(cos θud − cos θ0) , cos θ0 ≡ 1 − κ

µ2
e

µuµd
. (356)

(We have reinstated the different chemical potentials µu, µd.) We denote the angle between the neutrino and the d
quark by θνd and approximate the factor

(pe − pe · k̂)(pν − pν · p̂) # 2µepνκ(1 − cos θνd) . (357)

This factor vanishes for the case of collinear scattering. The αs effect renders it nonzero, hence this factor and in
consequence the total neutrino emissivity is proportional to αs. Putting all this together and changing the integration
variable from pe to the d quark momentum p yields

∂

∂t
fν(t,pν) = −64G2

F αsµeµdµu

∫

dp dΩp

(2π)3

∫

dk dΩk

(2π)3
(1 − cos θνd)

× δ(cos θud − cos θ0) fF (pe − µe)fF (k − µu)[1 − fF (p − µd)] . (358)
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Since we have taken only one color degree of freedom from Eq. (340), we have reinstated a factor Nc = 3. Next
we introduce the dimensionless variables x, y, v from Eq. (351), and with the definition (332) of the total neutrino
emissivity we obtain

εν = 128αsG
2
F µeµuµdT

6

∫

dΩpν

(2π)3

∫

dΩp

(2π)3

∫

dΩk

(2π)3
(1 − cos θνd)δ(cos θud − cos θ0)

×
∫ ∞

0
dv v3

∫ ∞

−∞

dx

∫ ∞

−∞

dy fF (v + x − y)fF (y)[1 − fF (x)] . (359)

Here we have approximated the lower boundaries by −µu/d/T # ∞. With the integral

∫ ∞

0
dv v3

∫ ∞

−∞

dx

∫ ∞

−∞

dy fF (v + x − y)fF (y)[1 − fF (x)] =
457

5040
π6 , (360)

and the (trivial) angular integral

∫

dΩpν

(2π)3

∫

dΩp

(2π)3

∫

dΩk

(2π)3
(1 − cos θνd)δ(cos θud − cos θ0) =

1

16π6
, (361)

we obtain the final result

εν # 457

630
αsG

2
F µeµuµdT

6 . (362)

This result has first been computed by Iwamoto in 1980 [50].

C. Cooling with quark direct Urca process

From the result for the neutrino emissivity we can now get a simple cooling curve for unpaired quark matter. Of
course we shall ignore a lot of details of realistic stars. The result will simply show how a chunk of unpaired two-flavor
quark matter cools via the direct Urca process. Nevertheless, the result is very illustrative and shows that the direct
Urca process is indeed an efficient cooling mechanism. We use Eq. (223), which relates the temperature as a function
of time to the emissivity and the specific heat. For the emissivity we use the result (362). For the specific heat, recall
the result (214) which is valid for two fermionic degrees of freedom, taking into account spin; we thus have to multiply
this result by the number of colors and add up the contributions of u and d quarks,

cV = (µ2
u + µ2

d)T . (363)

Then, performing the integration in Eq. (223) yields

T (t) =
T0τ1/4

(t − t0 + τ)1/4
, (364)

where we have defined

τ =
315

914

µ2
u + µ2

d

αsG2
F µeµuµd

1

T 4
0

. (365)

To get an estimate for this characteristic time scale, we assume µd = 500 MeV, µu = 400 MeV, µe = 100 MeV, αs = 1,
an initial temperature of T0 = 100 keV at an initial time t0 = 100 yr, and use the value of the Fermi coupling (334) to
obtain

τ # 10−5 yr # 5 min . (366)

This is a very short time compared to the astrophysical time scales we are interested in. The function T (t) is plotted
in Fig. 22. We see the rapid drop in temperature on a time scale of minutes down to a few keV. We thus recover the
shape of the direct Urca cooling from Fig. 18. For late times t % t0, we have T (t) ∝ t−1/4.
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FIG. 22: Cooling curve from the direct Urca process in two-flavor, unpaired, ultrarelativistic quark matter, see Eq. (364).

Problems

V.1 2SC propagator

Show that for the case of different flavor chemical potentials the fermion propagator of the 2SC phase is given
by Eqs. (325) and (326).

V.2 Trace over Dirac space

Show that

Lλσ(pe,pν)T λσ(k̂, p̂) = 64(pe − pe · k̂)(pν − pν · p̂) , (367)

with Lλσ(pe,pν) and T λσ(k̂, p̂) defined in Eqs. (331) and (341), respectively.

VI. DISCUSSION

Let us summarize what we have learned about compact stars and dense matter, having in mind the two questions
we have formulated in the preface. In addition, let us also list a few things which would in principle have fitted into
these lectures topic-wise. We haven’t discussed them in the main part because either I found them not suitable for
a concise, and yet pedagogical, introduction or because they are simply beyond the scope of these lectures, such as
some of the theoretical approaches to dense matter listed at the end of Sec. VI B. And, well, some selection has to be
made, so for some of the following points there is no good reason why they appear here and not in the main part. The
volume of the main part is chosen such that it should conveniently fit into a one-semester course, maybe dropping one
or two of the more specialized subsections. In Sec. VI B I will give some selected references where interested readers
can find more information about the questions we haven’t addressed in the main part.

A. What we have discussed

• Astrophysical observables and their relation to microscopic physics. The first thing you should have learned
in these lectures is in which sense compact stars are laboratories for the understanding of dense matter. The
experiments we can do in this laboratory are less controlled as for example tabletop experiments in condensed
matter physics. This means we cannot always measure the quantities we would like to know, or at least not to
an accuracy we would need for our purposes. And it means that it is often impossible to switch on or off certain
unwanted effects at will, which would be desirable to extract an exact value for a given quantity. For instance
we would ideally like to have a precise look into the interior of a compact star, but these kind of observations
will always be indirect at best since the information we get from the interior is filtered through the surface and
the atmosphere of the star. However, in spite of these restrictions (which, to some extent, have been and will
be overcome through improvements in observational technology), we have seen that our observational data of
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compact stars can be closely linked to the properties of dense matter. Examples we have discussed in detail are
the mass-radius relation which is related to the equation of state and the cooling curve which is related to the
neutrino emissivity and the specific heat.

• Theoretical approaches to dense matter. We have emphasized at several points in these lectures that the density
regime which is of interest for the physics of compact stars is very difficult to tackle. After all, this difficulty led
us to consider compact stars not only as an application of QCD but also as an important means to understand
QCD. The main reason for the theoretical difficulty is the strong-coupling nature of QCD. We have discussed
attempts to approach the relevant density regime from two sides, coming from lower and higher density.

First, we have discussed nuclear matter, for which we have solid knowledge at low densities. This knowledge is
strongly built upon experimental data. In principle, even a single nucleon is theoretically a very complicated
object if considered from first principles. First-principle calculations, at least for sufficiently simple properties
of nucleons, are possible in computer simulations, but effective theories remain an important tool to describe
nuclear matter, and they work well (by construction) at sufficiently low densities. One of the basic examples we
have discussed is the Walecka model. However, finding the correct description of nuclear matter at high density
is a challenge, and astrophysical data can be used to rule out or confirm certain models.

Second, we have discussed QCD from first principles in the context of deconfined quark matter. This approach
is rigorous at asymptotically high density and therefore is interesting on its own right. We have discussed that
it predicts the CFL state. Whether CFL persists down to densities relevant for compact stars is unknown. We
have discussed that, to get a rough idea about the low-density region, one may simply extrapolate the rigorous
results. But this of course stretches the results beyond their range of validity. We have also introduced a more
powerful approach to deduce intermediate-density properties from the high-density calculations. This approach
relies on the symmetries of the CFL state. Building on these symmetries, one can construct an effective theory
which can give us at least qualitative insight into the properties of CFL at lower densities, although this approach
cannot tell us whether CFL is indeed the ground state of matter at densities present in the core of a compact
star.

B. What we could have, but haven’t, discussed

• r-modes – bulk/shear viscosity. We have said little about the rotation of a compact star except for stating that
it can rotate very fast, up to almost a thousand times per second. For the purpose of our lecture, however, the
rotation frequency is a very interesting observable because it is sensitive to the microscopic physics. One of the
reasons is as follows.

Certain non-radial oscillatory modes of a rotating star, in particular the so-called r-modes,15 are generically
unstable with respect to gravitational radiation. The reason can be understood in a rather simple argument.
Consider the situation where the star rotates counterclockwise, seen from the polar view, and where an observer
in the co-rotating frame sees non-radial oscillations which propagate clockwise. These modes lower the total
angular momentum of the star, i.e., if the star’s angular momentum is positive, the oscillations have negative
angular momentum. Now assume that these propagating modes are seen from a distant observer to move
counterclockwise, i.e., they are “dragged” by the star’s rotation or, in other words, their angular velocity in the
co-rotating frame is smaller in magnitude than the angular velocity of the star, seen from a distant observer. The
pulsations now couple to gravitational radiation. The emitted radiation has positive angular momentum since a
distant observer sees the pulsations move counterclockwise. Consequently, the total angular momentum of the
star must be lowered. This, however, means that the angular momentum of the oscillations, which is already
negative, is increased in magnitude (becomes more negative). Therefore, the emission of gravitational radiation
tends to increase the amplitude of the pulsation which in turn leads to a stronger gravitational radiation etc.
This is the r-mode instability. Note that the rotation of the star is crucial for this argument. In a non-rotating
star, the effect of gravitational radiation is dissipative, i.e., the non-radial oscillations would be damped. For a
nice pedagogical introduction into this general relativistic effect see Ref. [51].

The energy loss from gravitational radiation due to the r-mode instability makes the star spin down drastically
and quickly. Consequently, the observation of sufficiently high rotation frequencies implies that some mechanism
must be at work to avoid the instability. The above argument for the instability is generic for all rotating perfect

15 Oscillatory modes of compact stars are classified according to their restoring force. In the case of r-modes, this is the Coriolis force.
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FIG. 23: Critical rotation frequency (normalized to the Kepler frequency ΩK , the upper limit for the rotation frequency beyond
which the star would start shedding mass from its equator) as a function of temperature for hybrid and quark stars. If a star
is put somewhere above the respective curves, the r-mode instability will set in and the star will spin down quickly. “APR”
stands for a certain nuclear equation of state, “Bag” denotes unpaired quark matter in the bag model and the box labelled
LMXB indicates the location of observed low-mass X-ray binaries. Within the given calculation they are located in a stable
region for both hybrid and quark stars. For more explanations and details see Ref. [52] where this figure is taken from.

fluid stars. If there is dissipation, i.e., if the matter inside the star has a nonzero viscosity, the instability can be
damped. Put differently, in order to rotate fast the star has to be viscous. This statement seems paradoxical at
first sight but makes sense with the above explanation. In Fig. 23 we show an example for critical frequencies
of hybrid and quark stars, derived from viscosity calculations.

In hydrodynamics, there are two kinds of viscosity, shear and bulk viscosity.16 Bulk viscosity describes dissipation
for the case of volume expansion or compression while shear viscosity is relevant for shear forces. Both kinds
of viscosities are relevant for the damping of the r-mode instability, typically they act in different temperature
regimes, bulk viscosity at rather large, shear viscosity at rather small temperatures. What is the microscopic
physics behind the viscosity? Let us explain this for the case of the bulk viscosity.

Imagine a chunk of nuclear or quark matter in thermal and chemical equilibrium in a volume V0. Now we
compress and expand this volume periodically, V (t) = V0 + δV0 cosωt. In the astrophysical setting, these will
be local volume oscillations where ω is typically of the order of the rotation frequency of the star. Through the
volume change the matter gets out of thermal and, possibly, chemical equilibrium. The latter may happen if the
matter is composed of different components whose chemical potentials react differently on a density change. An
example is unpaired quark matter with massless up and down quarks and massive strange quarks. The system
now seeks to reequilibrate. For instance, if the compression has increased the down quark chemical potential
compared to the strange quark chemical potential (in chemical equilibrium they are equal), the system reacts
by producing strange quarks, for instance via the process u + d → u + s. If it does so on the same time scale as
the external oscillation, there can be sizable dissipation (think of compressing a spring which changes its spring
constant during the process; you will not get back the work you have put in). Consequently, the calculation of
the bulk viscosity requires the calculation of the rate of processes such as u + d → u + s which indeed turns out
to be the dominant process for the bulk viscosity in unpaired quark matter. Other processes which contribute
are leptonic processes, such as the direct Urca process we have discussed in the context of neutrino emissivity

16 In the case of a superfluid, there are in fact several bulk viscosities.
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in Sec. VB. It is important to note that again the weak processes are the relevant ones. In principle, also
strong processes contribute to the bulk viscosity since they reequilibrate the system thermally. However, they
do so on time scales much smaller than the external oscillation. Therefore, the system reequilibrates basically
instantaneously during the compression process and no energy is dissipated. These arguments also show that
the bulk viscosity is a function of the (external) frequency. Maximum bulk viscosity is obtained when the rate
of the respective microscopic process (which is a function of temperature) is closest to this frequency. Hence,
it may well be that for a certain temperature regime a superconducting state has larger bulk viscosity than
a non-superconducting state. This may sound counterintuitive but note that the (partial) suppression of the
rate of the microscopic process by exp(−∆/T ) may actually help the viscosity if it brings the rate closer to the
external frequency. See for instance Sec. VII in Ref. [8] for a brief review about viscosity in quark matter phases,
and Refs. [53, 54] for examples of detailed microscopic calculations of bulk viscosity in quark matter.

• Magnetic fields. We have mentioned in the introduction that compact stars can have huge magnetic fields, the
highest magnetic fields measured for the surface of a star (then called magnetar) are about 1015 G. The first
question one might ask is what the origin of these magnetic fields is. The conventional explanation is that they
are inherited from the star’s progenitor, a giant star that has exploded in a supernova. While the magnetic flux
is conserved in this process, the magnetic field is greatly enhanced because the magnetic field lines are confined
in a much smaller region after the explosion.

Other questions regarding the magnetic field concern their interplay with dense matter. We have learned
that nuclear matter can contain superconducting protons. Protons form a type-II superconductor where the
magnetic field is confined into flux tubes. Since at the same time the rotating neutron superfluid forms vortices,
a complicated picture emerges, where arrays of flux tubes and vortices intertwine each other. Their dynamics
is complicated and relevant for instance for the observed precession times of the star, see for instance Ref. [55].
This issue is also related to pulsar glitches, see below.

In the main part we have only touched the interplay of color superconductors with magnetic fields. We have
stated without calculation that the CFL phase is not an electromagnetic superconductor, i.e., a magnetic field
can penetrate CFL matter. More precisely, Cooper pairs in CFL are neutral with respect to a certain mixture
of the photon and one of the gluons. Because of the smallness of the electromagnetic coupling compared to the
strong coupling, the gluon admixture is small and the new gauge boson is called “rotated photon”. There are
color superconductors which do expel magnetic fields, for instance the color-spin-locked (CSL) phase. In this
case, Cooper pairs are formed of quarks with the same flavor, and a Cooper pair carries total spin one (instead
of zero in the CFL phase). The CSL phase is an electromagnetic superconductor. It is of type I, i.e., expels
magnetic fields completely. For a short review about spin-one color superconductors in compact stars and their
effect on magnetic fields see Ref. [56].

Magnetic fields also play a role in the cooling of the star since they have an effect on the heat transport, resulting
in an anisotropic surface temperature, see Ref. [46] and references therein. An extensive review about magnetic
fields in compact stars is Ref. [57].

• Crust of the star. The crust of the star is a very important ingredient for the understanding of observations. In
the conventional picture of a neutron star there is an outer crust with an ion lattice, and an inner crust with a
neutron (super)fluid immersed in this lattice. This crust typically has a thickness of about 1 km. A lot about
the crust can be found in Refs. [3, 29]. In our discussion of neutron stars vs. hybrid stars vs. quark stars it is
important that the crust provides a crucial distinction between an ordinary neutron star (or a hybrid star) and
a quark star. How does the crust of a quark star look? Several scenarios have been suggested. First suppose
that the surface of a quark star exhibits an abrupt transition from strange quark matter to the vacuum. This
is possible under the assumption of the strange quark matter hypothesis we discussed in Sec. II B 1, because,
if the hypothesis is true, strange quark matter is stable at zero pressure. “Abrupt” means that the density
drops to zero on a length scale of about 1 fm, given by the typical length scale of the strong interaction. Now
recall that (unpaired) three-flavor quark matter contains electrons. They interact with quark matter through
the electromagnetic interaction, therefore their surface will be smeared (several hundred fm) compared to the
sharp surface of the quark matter. As a consequence, an outward-pointing electric field develops (i.e., at the
surface positively charged test particles are accelerated away from the center of the star). This electric field can
support a thin layer of positively charged ions, separated from the quark matter by a layer of electrons. Hence a
“normal” crust for a quark star is conceivable, consisting of an ion lattice. In contrast to the crust of a neutron
star, such a crust of a quark star would be very thin, at most of the order of 100 m. See Ref. [58] for more
details about this picture of the surface of a quark star (and for other properties of quark stars). This picture
may be challenged by the possibility of a mixed phase at the surface of the star. Here, mixed phase refers to a
crystalline structure of strangelets immersed in a sea of electrons. In this case, there would be no electric field
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and thus no possibility for a “normal” crust. The quark matter would rather have its own crystalline crust.
Estimates in Ref. [59] show that it is unlikely that such a mixed phase is formed once surface tension is taken
into account. In any case, a rigid crust, if at all present, will be much thinner in a quark star than in a neutron
star or a hybrid star.

This qualitative difference is relevant in the context of “magnetar seismology”. Quasi-periodic oscillations
observed in the aftermath of X-ray bursts from magnetars can be related to typical oscillation frequencies of the
crust. In other words, “star quakes” have significantly different properties depending on whether one assumes
the star to be a neutron star or a quark star. In fact, the ordinary crust explains the data quite well while the
crust of a quark star seems to be incompatible with the observed phenomenology [60].

• Pulsar glitches. Pulsar glitches are an interesting phenomenon related to the rotation frequency, the crust
(more precisely the crystalline structure of the crust), and superfluidity. For spinning-down pulsars one observes
sudden spin-ups, i.e., in the overall trend of a decreasing rotation frequency, the frequency increases in irregular
intervals significantly on a very short time scale. This is conventionally explained through superfluid vortices in
the neutron superfluid that pin at the lattice sites of the inner crust [61].

To understand this statement and the consequences for glitches, we recall the following property of superfluids.
A superfluid, be it superfluid helium, superfluid neutron matter, or any other superfluid, is irrotational in the
sense that the superfluid velocity has vanishing curl. Therefore, if the superfluid is rotated it develops regions
where the order parameter vanishes, i.e., where it becomes a normal fluid.17 The angular momentum is then
“stored” in these regions which are called vortices. An array of vortices, which are “strings” in the direction
of the angular momentum, is formed with the total angular momentum of the superfluid being proportional to
the density of vortices (because each vortex carries one quantum of circulation). Consequently, if the rotation
frequency decreases, the array of vortices becomes sparser, i.e., the vortices move apart.

The next ingredient in the glitch mechanism is the pinning of the vortices at the lattice of nuclei in the inner
crust. Generally speaking, there is an effective interaction between the vortices and the nuclei, resulting in a
certain path of the vortex string through the lattice which minimizes the free energy of the system. You may
think of this preferred configuration as follows. Superfluidity, i.e., neutron Cooper pairing, lowers the free energy
of the system. Therefore, the system may want to put the vortices, where there is no Cooper pairing, through
the lattice sites because they are not superfluid anyway. Otherwise, i.e., by putting them between the lattice
sites, one loses pairing energy. The actual details of the pinning mechanism are complicated and, depending on
the density, the preferred path of the vortices may in fact be between the sites, in contrast to the above intuitive
argument. However, this does not matter for our argument for the mechanism of glitches:

In a rotating neutron star, the neutron vortices pin at the lattice of the inner crust. Now the star spins down.
On the one hand, the vortices “want” to move apart. On the other hand, there is an effective pinning force
which keeps them at there sites. Hence, for a while they will not move which implies that the superfluid (the
vortex array) is spinning faster than the rest of the star. At some point, when the tension is sufficiently large,
the vortices will un-pin, move apart and thus release their angular momentum which spins up in particular the
surface of the star whose rotation is observed. Then, they re-pin and the process starts again.

An alternative scenario, where nuclear matter is replaced by quark matter has been suggested [62]. In our
discussion of the CFL phase we have seen that quark matter can be a superfluid. This means that one of the
conditions for the mechanism of vortex pinning is fulfilled. The second condition, a sufficiently rigid lattice,
may be provided by one of the unconventional color-superconducting phases which are possible in the case of
mismatched Fermi momenta, see discussion at the end of in Sec. IVC. Some of these phases indeed exhibit a
crystalline structure. Such a quark crystal is of very different nature than the ion lattice because it is the energy
gap from superconductivity which varies periodically in space, giving rise to crystals characterized by surfaces
where the gap vanishes. It remains to be seen in the future which of these scenarios passes all observational
constraints and can explain the pulsar glitches or if there is a yet unknown mechanism for these curious spin-ups.

• Other theoretical approaches to dense matter. What are the alternatives to understand QCD at large, but
not asymptotically large, densities? Lattice QCD, i.e., solving QCD by brute force on a computer, is by now a
powerful tool for strong-coupling phenomena at zero chemical potential. However, at nonzero chemical potential,

17 It is instructive to view this phenomenon in analogy to a type-II superconductor. There, a magnetic field (if sufficiently large but not
too large) penetrates the superconductor through flux tubes. It partially destroys superconductivity, i.e., in the center of the flux tubes
the order parameter is zero. Hence the analogy is superfluid – superconductor; angular momentum – magnetic field; vortices – flux
tubes.
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one encounters the so-called sign problem which renders lattice calculations unfeasible. Progress has been made
to extend lattice calculations to small chemical potentials, more precisely to small values of µ/T . But calculations
at large µ and small T , as needed for compact stars, are currently not within reach. See Ref. [63] for a non-
technical recent overview article about lattice QCD, in particular its contributions to the QCD phase diagram
and about the sign problem; you may also try Ref. [64].

Because of the problems of lattice calculations at finite chemical potential one has to rely on model calculations
or on extrapolations similar to the ones discussed in these lectures. One model for quark matter we have
not discussed is the Nambu-Jona-Lasinio (NJL) model. This model does not contain gluons and describes the
interaction between quarks by an effective pointlike interaction. It has been used to compute the QCD phase
diagram at intermediate densities. Since the result depends strongly on the parameters of the model, it should be
taken as an indicator for how the phase diagram might look, not as an accurate prediction. Due to its simplicity
it is widely used and can indeed give some interesting results which serve as a guideline for the understanding
of QCD. For an extensive review about the NJL model in dense quark matter see Ref. [65]; for an application
of the NJL model in the context of compact stars, see for instance Ref. [66].

Finally, we point out that arguments for large numbers of colors Nc may be applied to gain some insight to
QCD where Nc = 3. In particular, it has been argued that at Nc = ∞ an interesting novel phase, termed
quarkyonic matter, populates the T -µ phase diagram [67]. The (yet unsolved) problem is to find out whether
this phase, or some modification of it, survives for Nc = 3. More generally speaking, the large Nc approach is
another approach where calculations can be performed in a regime where everything is under rigorous control.
From these rigorous results one then tries to get closer to the regime one is interested in. In this sense, this
approach is not unlike the perturbative approach. In view of the possible, but not at all obvious, relevance of
large-Nc physics to Nc = 3 physics, one can also apply the duality of certain string theories to field theories
similar to QCD, based on the so-called AdS/CFT correspondence. For pedagogical reviews see Refs. [68, 69].
This somewhat speculative but popular approach to QCD has recently been pursued especially for large-T ,
small-µ physics, but is, in certain variants, also suited for the physics at finite chemical potential.
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Appendix A: Basics of quantum field theory at finite temperature and chemical potential

Many of the discussions in the main part of these lectures rely on field-theoretical methods, in particular on quantum
field theory at finite temperature and chemical potential. One purpose of the following basic discussion is therefore to
explain how a chemical potential is introduced in quantum field theory. We shall also discuss how finite temperature
enters the formalism, although for most quantities we discuss in these lecture notes we consider the zero-temperature
limit, which is a good approximation for our purposes. For instance in the discussion of the Walecka model, Sec. III A,
we give the finite-temperature expressions, based on appendix A2, before we set T = 0 in the physical discussion. In
other parts, we do keep T "= 0 in our results, for instance when we are interested in the cooling behavior of dense
matter, see chapter V.

We shall start with the Lagrangian for a complex bosonic field and derive the partition function in the path integral
formalism, taking into account Bose-Einstein condensation. This part is particularly useful for our treatment of kaon
condensation in CFL quark matter, see Sec. IVB 1. We shall in particular see how bosonic Matsubara frequencies
are introduced and how the summation over these is performed with the help of contour integration in the complex
frequency plane. In the second part of this appendix we shall then discuss the analogous derivation for fermions.

1. Bosonic field

We start from the Lagrangian

L0 = ∂µϕ∗∂µϕ − m2|ϕ|2 − λ|ϕ|4 , (A1)
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with a complex scalar field ϕ with mass m and coupling constant λ. We shall first show how a chemical potential
µ is introduced. This will lead to a new Lagrangian L, wherefore we have denoted the Lagrangian without chemical
potential by L0. The chemical potential µ must be associated with a conserved charge. We thus need to identify the
conserved current. From Noether’s theorem we know that the conserved current is related to the symmetry of the
Lagrangian. We see that L0 is invariant under U(1) rotations of the field,

ϕ → e−iαϕ . (A2)

This yields the Noether current

jµ =
∂L0

∂(∂µϕ)

δϕ

δα
+

∂L0

∂(∂µϕ∗)

δϕ∗

δα
= i(ϕ∗∂µϕ − ϕ∂µϕ∗) , (A3)

with ∂µjµ = 0, and the conserved charge (density) is

j0 = i(ϕ∗∂0ϕ − ϕ∂0ϕ∗) . (A4)

In the following we want to see how the chemical potential associated to j0 enters the Lagrangian. The partition
function for a scalar field is

Z = Tr e−β(Ĥ−µN̂) =

∫

Dπ

∫

periodic
Dϕ exp

[

−
∫

X
(H− µN − iπ∂τϕ)

]

, (A5)

This equation should remind you that the partition function can be written in the operator formalism in terms of the
Hamiltonian Ĥ and the charge operator N̂ , or, as we shall use here, in terms of a functional integral over ϕ and the
conjugate momentum π, with the Hamiltonian H and the charge density N = j0. We have abbreviated the space-time
integration by

∫

X
≡

∫ β

0
dτ

∫

d3x , (A6)

where the integration over “imaginary time” τ = it goes from 0 to the inverse temperature β = 1/T . In the following,
the four-vector in position space is denoted by

X ≡ (t,x) = (−iτ,x) . (A7)

The term “periodic” for the ϕ integral in Eq. (A5) means that all fields ϕ over which we integrate have to be periodic
in the imaginary time direction, ϕ(0,x) = ϕ(β,x). This is essentially a consequence of the trace operation in the first
line of Eq. (A5): the partition function is formally reminiscent of a sum over transition amplitudes which have the
same initial and final states at “times” 0 and β.

Let us, for convenience, introduce the two real fields ϕ1, ϕ2,

ϕ =
1√
2
(ϕ1 + iϕ2) . (A8)

Then, the Lagrangian becomes

L0 =
1

2

[

∂µϕ1∂
µϕ1 + ∂µϕ2∂

µϕ2 − m2(ϕ2
1 + ϕ2

2) −
λ

2
(ϕ2

1 + ϕ2
2)

2

]

. (A9)

The conjugate momenta are

πi =
∂L0

∂(∂0ϕi)
= ∂0ϕi , i = 1, 2 . (A10)

Consequently, with j0 = ϕ2π1 − ϕ1π2, which follows from Eqs. (A4), (A8), and (A10), we have

H− µN = π1∂0ϕ1 + π2∂0ϕ2 − L0 − µN

=
1

2

[

π2
1 + π2

2 + (∇ϕ1)
2 + (∇ϕ2)

2 + m2(ϕ2
1 + ϕ2

2)
]

− µ(ϕ2π1 − ϕ1π2) . (A11)



76

The integration over the conjugate momenta π1, π2 can be separated from the integration over the fields ϕ1, ϕ2 after
introducing the shifted momenta

π̃1 ≡ π1 − ∂0ϕ1 − µϕ2 , π̃2 ≡ π2 − ∂0ϕ2 + µϕ1 . (A12)

This yields

π1∂0ϕ1 + π2∂0ϕ2 −H + µN = −1

2
(π̃2

1 + π̃2
2) + L , (A13)

where the new Lagrangian L now includes the chemical potential,

L =
1

2

[

∂µϕ1∂
µϕ1 + ∂µϕ2∂

µϕ2 + 2µ(ϕ2∂0ϕ1 − ϕ1∂0ϕ2) + (µ2 − m2)(ϕ2
1 + ϕ2

2) −
λ

2
(ϕ2

1 + ϕ2
2)

2
]

. (A14)

Thus we see that the chemical potential produces, besides the expected term µj0, the additional term µ2(ϕ2
1 + ϕ2

2)/2.
This is due to the momentum-dependence of j0. In terms of the complex field ϕ, the Lagrangian reads

L = |(∂0 − iµ)ϕ|2 − |∇ϕ|2 − m2|ϕ|2 − λ|ϕ|4 , (A15)

which shows that the chemical potential looks like the temporal component of a gauge field. We can now insert Eq.
(A13) into the partition function (A5). The integration over conjugate momenta and over fields factorize, and the
momentum integral yields an irrelevant constant N , such that we can write

Z = N

∫

periodic
Dϕ1Dϕ2 exp

∫

X
L . (A16)

In order to take into account Bose-Einstein condensation, we divide the field into a constant background field and
fluctuations around this background, ϕi → φi + ϕi. A nonzero condensate φ1 + iφ2 picks a direction in the U(1)
degeneracy space and thus breaks the symmetry spontaneously. We can choose φ2 = 0 and thus may denote φ ≡ φ1.
Then, the Lagrangian (A14) becomes

L = −U(φ2) + L(2) + L(3) + L(4), (A17)

with the tree-level potential

U(φ2) =
m2 − µ2

2
φ2 +

λ

4
φ4 , (A18)

and terms of second, third, and fourth order in the fluctuations,

L(2) = −1

2

[

−∂µϕ1∂
µϕ1 − ∂µϕ2∂

µϕ2 − 2µ(ϕ2∂0ϕ1 − ϕ1∂0ϕ2) + (m2 − µ2)(ϕ2
1 + ϕ2

2) + 3λφ2ϕ2
1 + λφ2ϕ2

2

]

,(A19a)

L(3) = −λφϕ1(ϕ
2
1 + ϕ2

2) , (A19b)

L(4) = −λ

4
(ϕ2

1 + ϕ2
2)

2 . (A19c)

We have omitted the linear terms since they do not contribute to the functional integral. Note that the cubic
interactions are induced by the condensate.

In this appendix we are only interested in the tree-level contributions U(φ2) and L(2) in order to explain the basic
calculation of the partition function for the simplest case. We therefore shall ignore the cubic and quartic contributions
L(3) and L(4). We introduce the Fourier transforms of the fluctuation fields via

ϕ(X) =
1√
TV

∑

K

e−iK·Xϕ(K) =
1√
TV

∑

K

ei(ωnτ+k·x)ϕ(K) , (A20)

with the four-momentum

K ≡ (k0,k) = (−iωn,k) , (A21)

and with the Minkowski scalar product K · X = k0x0 − k · x = −(τωn + k · x). (Although for convenience we have
defined the time components with a factor i and thus can use Minkowski notation, the scalar product is essentially
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Euclidean.) The normalization is chosen such that the Fourier-transformed fields ϕ(K) are dimensionless. The 0-
component of the four-momentum is given by the Matsubara frequency ωn. To fulfill the periodicity requirement
ϕ(0,x) = ϕ(β,x) we need eiωnβ = 1, i.e., ωnβ has to be an integer multiple of 2π, or

ωn = 2πnT , n ∈ Z . (A22)

With the Fourier transform (A20), and
∫

X
eiK·X =

V

T
δK,0 , (A23)

we have

∫

X
L(2) = −1

2

∑

K

(ϕ1(−K), ϕ2(−K))
D−1

0 (K)

T 2

(

ϕ1(K)

ϕ2(K)

)

, (A24)

with the free inverse propagator in momentum space

D−1
0 (K) =

(

−K2 + m2 + 3λφ2 − µ2 −2iµk0

2iµk0 −K2 + m2 + λφ2 − µ2

)

. (A25)

With Eqs. (A16), (A24) and using that ϕ(K) = ϕ∗(−K) (because ϕ(X) is real) we can write the tree-level thermo-
dynamic potential as

Ω

V
= −T

V
lnZ

= U(φ2) − T

V
ln

∫

Dϕ1Dϕ2 exp

[

−1

2

∑

K

(ϕ1(−K), ϕ2(−K))
D−1

0 (K)

T 2

(

ϕ1(K)

ϕ2(K)

)]

= U(φ2) +
T

2V
ln det

D−1
0 (K)

T 2
, (A26)

where the determinant is taken over 2× 2 space and momentum space. Here we have used the general formula
∫

dDx e−
1
2
x·Âx = (2π)D/2(det Â)−1/2 , (A27)

for a Hermitian, positive definite matrix Â, which is a generalization of the one-dimensional Gaussian integral

∫ ∞

−∞

dx e−
1
2
αx2

=

√

2π

α
. (A28)

To further evaluate the thermodynamic potential, we first define the tree-level masses

m2
1 ≡ m2 + 3λφ2 , (A29a)

m2
2 ≡ m2 + λφ2 . (A29b)

Then, we obtain

ln det
D−1

0 (K)

T 2
= ln

∏

K

1

T 4
[(−K2 + m2

1 − µ2)(−K2 + m2
2 − µ2) − 4µ2k2

0 ]

= ln
∏

K

1

T 4
[(ε+k )2 − k2

0 ][(ε
−
k )2 − k2

0 ]

=
∑

K

[

ln
(ε+k )2 − k2

0

T 2
+ ln

(ε−k )2 − k2
0

T 2

]

. (A30)

where we defined the quasiparticle energies

ε±k =

√

E2
k + µ2 ∓

√

4µ2E2
k + δM4 , (A31)
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with

Ek ≡
√

k2 + M2 , M2 ≡ m2
1 + m2

2

2
= m2 + 2λφ2 , δM2 ≡ m2

1 − m2
2

2
= λφ2 . (A32)

Even at tree-level, the quasiparticle energies (A31) look complicated, but become simple in the non-interacting limit,

λ = 0 : ε±k =
√

k2 + m2 ∓ µ , (A33)

and for vanishing chemical potential,

µ = 0 : ε±k =
√

k2 + m2
2/1 . (A34)

Further properties of these quasiparticle energies are discussed in the context of kaon condensation in CFL, see Sec.
IVB 1. Next, we perform the sum over Matsubara frequencies in Eq. (A30). We use the result

∑

n

ln
ω2

n + ε2k
T 2

=
εk

T
+ 2 ln

(

1 − e−εk/T
)

+ const , (A35)

for a real number εk, and where “const” is a temperature-independent constant. Before we prove this result via
contour integration in the complex plane, we use it to compute the final result for the tree-level thermodynamic
potential. We insert Eq. (A35) into Eq. (A30), the result into Eq. (A26), and take the thermodynamic limit to obtain

Ω

V
= U(φ2) + T

∫

d3k

(2π)3

[

ε+k + ε−k
2T

+ ln
(

1 − e−ε+k /T
)

+ ln
(

1 − e−ε−k /T
)

]

. (A36)

From this expression we can for instance compute the pressure P = −Ω/V . The first term in the integrand yields
an infinite contribution which however is temperature-independent. We may thus use a renormalization such that
the vacuum pressure vanishes. Then, for sufficiently large temperatures, where in particular φ = 0, particles and
antiparticles yield the same contribution and we obtain

P $ −2
T 4

2π2

∫ ∞

0
dxx2 ln

(

1 − e−x
)

= 2
π2T 4

90
. (A37)

a. Summation over bosonic Matsubara frequencies

Here we prove Eq. (A35) via contour integration in the complex frequency plane. Especially for more complicated
Matsubara sums this is a very useful technique as can be seen by applying the following method to the Matsubara
sums in problems A.1 and A.2.

First, in order to get rid of the logarithm, we write

∑

n

ln
ω2

n + ε2k
T 2

=

∫ (εk/T )2

1
dx2

∑

n

1

(2nπ)2 + x2
+

∑

n

ln[1 + (2nπ)2] . (A38)

We now perform the sum in the integrand which, denoting εk ≡ Tx, we write as a contour integral,

T
∑

n

1

ω2
n + ε2k

= − 1

2πi

∮

C
dω

1

ω2 − ε2k

1

2
coth

ω

2T
. (A39)

The second identity follows from the residue theorem,

1

2πi

∮

C
dz f(z) =

∑

n

Res f(z)|z=zn
, (A40)

where zn are the poles of f(z) in the area enclosed by the contour C. If we can write the function f as f(z) = ϕ(z)/ψ(z),
with analytic functions ϕ(z), ψ(z), the residues are

Res f(z)|z=zn
=

ϕ(zn)

ψ′(zn)
. (A41)
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The contour C in Eq. (A39) is chosen such that it encloses all poles of coth[ω/(2T )] and none of 1/(ω2−ε2k). The poles
of coth[ω/(2T )] are given by eω/2T − e−ω/2T = 0, i.e., they are on the imaginary axis, ω = iωn with the Matsubara
frequencies ωn. In the above notation with the functions ϕ and ψ,

ϕ(ω) =
1

2

eω/(2T ) + e−ω/(2T )

ω2 − ε2k
, ψ(ω) = eω/(2T ) − e−ω/(2T ) ,

⇒ ϕ(iωn)

ψ′(iωn)
= −T

1

ω2
n + ε2k

, (A42)

from which Eq. (A39) follows immediately. Next, we may deform the contour C (which consists of infinitely many
circles surrounding the poles) and obtain

T
∑

n

1

ω2
n + ε2k

= − 1

2πi

∫ i∞+η

−i∞+η
dω

1

ω2 − ε2k

1

2
coth

ω

2T
− 1

2πi

∫ −i∞−η

i∞−η
dω

1

ω2 − ε2k

1

2
coth

ω

2T

= − 1

2πi

∫ i∞+η

−i∞+η
dω

1

ω2 − ε2k
coth

ω

2T
, (A43)

where we have changed the integration variable ω → −ω in the second integral. We now use the residue theorem a
second time: we can close the contour in the positive half-plane at infinity and pick up the pole at ω = εk,

T
∑

n

1

ω2
n + ε2k

=
1

2εk
coth

εk

2T
=

1

2εk
[1 + 2fB(εk)] , (A44)

(note minus sign from clockwise contour integration). Here,

fB(ε) ≡ 1

eε/T − 1
(A45)

is the Bose distribution function. We have thus found

1

T

∑

n

1

(2nπ)2 + x2
=

1

Tx

(

1

2
+

1

ex − 1

)

. (A46)

Now we insert the result into the original expression (A38) and integrate over x2 to obtain (with const denoting
T -independent constants)

∑

n

ln
ω2

n + ε2k
T 2

=

∫ (εk/T )2

1
dx2 1

x

(

1

2
+

1

ex − 1

)

+ const

=
εk

T
+ 2 ln

(

1 − e−εk/T
)

+ const , (A47)

which is the result we wanted to prove.

2. Fermionic field

To describe a system of non-interacting fermions with mass m we start with the Lagrangian

L0 = ψ (iγµ∂µ − m)ψ , (A48)

where ψ = ψ†γ0. As for the bosons we are interested in adding a chemical potential to this Lagrangian. To this end,
we determine the conserved current as above, i.e., we first identify the global symmetry of the Lagrangian which is
given by the transformation ψ → e−iαψ. The conserved current is

jµ =
∂L0

∂(∂µψ)

δψ

δα
= ψγµψ , (A49)

which yields the conserved charge (density)

j0 = ψ†ψ . (A50)
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The conjugate momentum is

π =
∂L0

∂(∂0ψ)
= iψ† . (A51)

This means that in the case of fermions we need to treat ψ and ψ† as independent variables. The partition function
for fermions is

Z = Tr e−β(Ĥ−µN̂) =

∫

antiperiodic
Dψ†Dψ exp

[

−
∫

X
(H− µN − iπ∂τψ)

]

. (A52)

This has to be compared to the analogous expression for bosons, Eq. (A5). Recall that the periodicity of the bosonic
fields is a consequence of taking the trace in the operator formalism. In other words, the partition function in the
path integral formalism can be derived from a transition amplitude with identical initial and final states. In the
case of fermions, the fields in the path integral are Grassmann variables, as a consequence of the anticommutation
relations of creation and annihilation operators. In this case, the trace involves a transition amplitude where initial
and final states differ by a sign. Therefore, in the fermionic partition function the integration is over antiperiodic
fields ψ(0,x) = −ψ(β,x) and ψ†(0,x) = −ψ†(β,x).

With the Hamiltonian

H = π∂0ψ − L0 = ψ(iγ · ∇ + m)ψ , (A53)

(here and in the following we mean by the scalar product γ · ∇ the product where the Dirac matrices appear with a
lower index γi) we thus obtain

Z =

∫

antiperiodic
Dψ†Dψ exp

[
∫

X
ψ

(

−γ0∂τ − iγ · ∇ + γ0µ − m
)

ψ

]

. (A54)

In this case we cannot separate the π ∼ ψ† integration from the ψ integration. Remember that, in the bosonic case,
this led to a new Lagrangian which contained the chemical potential not just in the term j0µ. Here, the Lagrangian
with chemical potential simply is

L = ψ̄(iγµ∂µ + γ0µ − m)ψ . (A55)

Note that again the chemical potential enters just like the temporal component of a gauge field that couples to the
fermions. Analogously to the bosonic case, we introduce the (dimensionless) Fourier-transformed fields

ψ(X) =
1√
V

∑

K

e−iK·Xψ(K) , ψ(X) =
1√
V

∑

K

eiK·Xψ(K) , (A56)

(note the different dimensionality of fields compared to bosons; here the field ψ(X) in position space has mass
dimension 3/2). Again we denote k0 = −iωn such that K ·X = −(ωnτ+k·x). Now antiperiodicity, ψ(0,x) = −ψ(β,x),
implies eiωnβ = −1 and thus the fermionic Matsubara frequencies are

ωn = (2n + 1)πT , n ∈ Z . (A57)

With the Fourier decomposition we find

∫

X
ψ

(

−γ0∂τ − iγ · ∇ + γ0µ − m
)

ψ = −
∑

K

ψ†(K)
G−1

0 (K)

T
ψ(K) , (A58)

where the free inverse fermion propagator in momentum space is

G−1
0 (K) = −γµKµ − γ0µ + m . (A59)

Although not needed for the rest of the calculation in this appendix, let us introduce a useful form of the inverse
propagator in terms of energy projectors. This form is convenient for more involved calculations such as done in
chapters IV and V. Equivalently to Eq. (A59) we can write

G−1
0 (K) = −

∑

e=±

(k0 + µ − eEk)γ0Λe
k , (A60)
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where Ek =
√

k2 + m2, and where the projectors onto positive and negative energy states are given by

Λe
k ≡ 1

2

(

1 + eγ0 γ · k + m

Ek

)

. (A61)

These (Hermitian) projectors are complete and orthogonal,

Λ+
k

+ Λ−
k

= 1 , Λe
kΛ

e′

k = δe,e′Λe
k . (A62)

The first property is trivial to see, the second follows with {γ0, γi} = 0 which follows from the general anticommutation
property {γµ, γν} = 2gµν , and with (γ · k)2 = −k2.

From the form of the inverse propagator (A60) we can immediately read off the propagator itself,

G0(K) = −
∑

e=±

Λe
k
γ0

k0 + µ − eEk
. (A63)

With the properties (A62) one easily checks that G−1
0 G0 = 1. One can also rewrite (A63) as

G0(K) =
−γµKµ − γ0µ − m

(k0 + µ)2 − E2
k

. (A64)

Let us now come back to the calculation of the partition function. For the functional integration we use

∫ N
∏

k

dη†
kdηk exp



−
N

∑

i,j

η†
i Dijηj



 = detD . (A65)

Note the difference of this integration over Grassmann variables η†, η to the corresponding formula for bosons (A27).
We obtain for the partition function

Z = det
G−1

0 (K)

T
= det

1

T

(

−(k0 + µ) + m −σ · k
σ · k (k0 + µ) + m

)

, (A66)

where the determinant is taken over Dirac space and momentum space. We can use the general formula

det

(

A B

C D

)

= det(AD − BD−1CD) , (A67)

for matrices A, B, C, D with D invertible, to get

lnZ =
∑

K

ln

(

E2
k − (k0 + µ)2

T 2

)2

, (A68)

where we have used (σ · k)2 = k2. With k0 = −iωn we can write this as

lnZ =
∑

K

ln

(

E2
k + (ωn + iµ)2

T 2

)2

=
∑

K

(

ln
E2

k + (ωn + iµ)2

T 2
+ ln

E2
k + (−ωn + iµ)2

T 2

)

=
∑

K

(

ln
ω2

n + (Ek − µ)2

T 2
+ ln

ω2
n + (Ek + µ)2

T 2

)

, (A69)

where, in the second term of the second line, we have replaced ωn by −ωn which does not change the result since we
sum over all n ∈ Z. The third line can be easily checked by multiplying out all terms.

Next we need to perform the sum over fermionic Matsubara frequencies. This is similar to the bosonic case and
yields

∑

n

ln
ω2

n + ε2k
T 2

=
εk

T
+ 2 ln

(

1 + e−εk/T
)

+ const . (A70)
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Using this result to evaluate Eq. (A69) and taking the thermodynamic limit yields the thermodynamic potential
Ω = −T lnZ,

Ω

V
= −2

∫

d3k

(2π)3

[

Ek + T ln
(

1 + e−(Ek−µ)/T
)

+ T ln
(

1 + e−(Ek+µ)/T
)]

. (A71)

The overall factor 2 accounts for the two spin states of the spin-1/2 fermion. Together with the particle/antiparticle
degrees of freedom (from µ = ±1) we recover all four degrees of freedom of the Dirac spinor. Again we conclude this
section by computing the pressure for large temperatures,

P " 4
T 4

2π2

∫ ∞

0
dxx2 ln

(

1 + e−x
)

= 4 · 7

8

π2T 2

90
. (A72)

Comparing with the bosonic pressure (A37) we see that for large T a single fermionic degree of freedom contributes
7/8 times as much to the thermal pressure as a single bosonic degree of freedom.

a. Summation over fermionic Matsubara frequencies

It remains to prove Eq. (A70) by summing over fermionic Matsubara frequencies. As for the bosonic case, we write

∑

n

ln
ω2

n + ε2k
T 2

=

∫ (εk/T )2

1
dx2

∑

n

1

(2n + 1)2π2 + x2
+

∑

n

ln[1 + (2n + 1)2π2] . (A73)

This time, we need to use the tanh instead of the coth when we write the sum in terms of a contour integral,

T
∑

n

1

ω2
n + ε2k

= − 1

2πi

∮

C
dω

1

ω2 − ε2k

1

2
tanh

ω

2T
, (A74)

(We have denoted εk ≡ xT .) The poles of tanh[ω/(2T )] are given by the zeros of eω/(2T ) + e−ω/(2T ), i.e., they are
located at i times the fermionic Matsubara frequencies, ω = iωn. The contour C encloses these poles and none of the
poles of 1/(ω2 − ε2k). Then, with the residue theorem and with

(

eω/(2T ) − e−ω/(2T )
)∣

∣

∣

ω=iωn

= 2i(−1)n ,

d

dω

(

eω/(2T ) + e−ω/(2T )
)

∣

∣

∣

∣

ω=iωn

=
i(−1)n

T
, (A75a)

one confirms Eq. (A74). We can now close the contour in the positive half-plane to obtain

T
∑

n

1

ω2
n + ε2k

= − 1

2πi

∫ i∞+η

−i∞+η
dω

1

ω2 − ε2k
tanh

ω

2T

=
1

2εk
tanh

εk

2T
=

1

2εk
[1 − 2fF (εk)] , (A76)

where

fF (ε) ≡ 1

eε/T + 1
(A77)

is the Fermi distribution function. Inserting this result into Eq. (A73) yields

∑

n

ln
ω2

n + ε2k
T 2

=

∫ (εk/T )2

1
dx2 1

x

(

1

2
− 1

ex + 1

)

+ const

=
εk

T
+ 2 ln

(

1 + e−εk/T
)

+ const , (A78)

which proves Eq. (A70).
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Problems

A.1 Matsubara sum for boson loop

Show via contour integration that

T
∑

k0

1

(k2
0 − ε21)[(p0 − k0)2 − ε22]

= −
∑

e1,e2=±

e1e2

4ε1ε2

1 + fB(e1ε1) + fB(e2ε2)

p0 − e1ε1 − e2ε2
, (A79)

with k0 = −iωn, p0 = −iωm bosonic Matsubara frequencies, and ε1, ε2 > 0.

A.2 Matsubara sum for fermion loop

Prove via contour integration the following result for the summation over fermionic Matsubara frequencies,

T
∑

k0

(k0 + ξ1)(k0 + q0 + ξ2)

(k2
0 − ε21)[(k0 + q0)2 − ε22]

= − 1

4ε1ε2

∑

e1,e2=±

(ε1 − e1ξ1)(ε2 − e2ξ2)

q0 − e1ε1 + e2ε2

fF (−e1ε1)fF (e2ε2)

fB(−e1ε1 + e2ε2)
, (A80)

where k0 = −iωn with fermionic Matsubara frequencies ωn, and q0 = −iωm with bosonic Matsubara frequencies
ωm, and where ξ1, ξ2, ε1, ε2 > 0 are real numbers. The result of this problem is used in the calculation of the
neutrino emissivity in chapter V.

Glossary

2SC phase Color superconductor in which strange quarks and quarks of one color remain unpaired. Because of the
asymmetry induced by the strange quark mass, viable candidate for the ground state of quark matter at moderate
chemical potential. In these lectures we discuss the 2SC phase in the context of neutrino emissivity, to illustrate the
effect of both paired and unpaired quarks.

AdS/CFT correspondence Theoretical tool not discussed in these lectures, but an interesting approach to tackle
QCD at strong coupling. The idea is that – relatively simple – calculations in the gravity approximation of a certain
string theory provide results for the – otherwise hard to access – strong coupling limit of a corresponding (“dual”)
field theory. The problem is that currently no gravity dual of QCD is known.

anomalous propagator Technically speaking, off-diagonal components of the propagator in Nambu-Gorkov space;
nonzero in the case of a superconductor or a superfluid. More physically speaking, anomalous propagators describe a
fermion which is, via the Cooper pair condensate, converted into a fermion hole.

asymptotic freedom Important property of QCD which says that the running coupling constant of QCD becomes
small for large exchanged momenta. For our context this means that quarks at large densities, where the distance
between them is small and hence the exchanged momentum large, are weakly interacting; quarks at infinite density
are free. In compact stars, however, the density is large, but by no means asymptotically large.

axial anomaly Non-conservation of the axial current in QCD. In our context of (moderately) dense matter originat-
ing mainly from instantons which are certain semi-classical gauge field configurations. Leads to an explicit breaking
of the axial U(1)A, which is a subgroup of the chiral group, and thus gives a large mass to the η′.

bag model (MIT bag model) Simple model to take into account confinement. Via the bag constant, an energy
penalty is introduced by hand for the deconfined phase. The model amounts to the picture of a hadron as a bag which
confines the quarks; the bag exerts an external pressure on the quarks, given by the bag constant. In our astrophysical
context, the bag model is a simple way to compare free energies of dense quark matter and dense nuclear matter.

BCS theory Original theory for electronic superconductors, developed in 1957 by Bardeen, Cooper, and Schrieffer.
Many concepts and approximations can be adopted for nuclear and quark matter. In color-superconducting quark
matter, an important difference to BCS theory is the parametric dependence of the pairing gap on the coupling
constant due to long-range interactions via magnetic gluons.
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β-decay Process due to the weak interaction of the form n → p + e + ν̄e in nuclear matter and d → u + e + ν̄e

in quark matter. Relevant in these lectures for two reasons: firstly, equilibrium with respect to this process (β-
equilibrium) yields important constraints for the chemical potentials and secondly, this process contributes to the
neutrino emissivity which in turn is responsible for the cooling of a compact star.

Bogoliubov coefficients Momentum-dependent coefficients in the theory of superconductivity and superfluidity
which characterize the mixing of fermions and fermion holes due to Cooper pair condensation. In these lectures, the
Bogoliubov coefficients arise naturally in the calculation of the neutrino emissivity in color-superconducting quark
matter.

Cabibbo-Kobayashi-Maskawa (CKM) matrix Matrix that characterizes the relative strength of the weak
interaction for different quark flavors. In these lectures relevant for the calculation of the neutrino emissivity in quark
matter.

chiral symmetry For massless quarks, QCD possesses a global symmetry for right- and left-handed quarks sepa-
rately, called chiral symmetry. This symmetry can be spontaneously broken, giving rise to Goldstone modes. These
Goldstone modes (or pseudo-Goldstone modes in the case of nonzero quark masses) are for instance pions and kaons.
In these lectures we discuss kaon condensation in nuclear and quark matter (in quark matter, chiral symmetry is
spontaneously broken in the CFL phase).

color superconductivity Cooper pair formation and condensation in cold and dense quark matter, analogous to
electronic superconductivity in metals. If quark matter is present in compact stars, it can be expected to be a color
superconductor.

color-flavor locking (CFL) Ground state of three-flavor quark matter at asymptotically large densities. Particu-
larly symmetric color superconductor where the order parameter is invariant only under simultaneous color and flavor
transformations. May persist down to densities where the hadronic phase takes over or may be replaced before this
transition by a different color superconductor because of the effects of the strange quark mass.

compact star Very dense astrophysical object with a mass close to the sun’s mass and a radius of about ten
kilometers. The term shows our ignorance of the exact composition of these objects. They may be neutron stars,
hybrid stars, or quark stars. In a more general terminology, compact star also is used to include white dwarfs and
black holes, neither of which are the subject of these lectures.

constituent quark mass Quark mass including the quark’s interaction energy in a baryon, such that the sum of the
three constituent quark masses adds up to the baryon mass. More generally, in dense matter the density-dependent
“constituent” quark mass includes any finite-density effects. Can be hundreds of MeV larger than the current quark
mass.

Cooper pairs Microscopic explanation for superfluidity and superconductivity within BCS theory. Arise from an
instability of the Fermi surface in the presence of an arbitrarily small interaction. In compact stars, there are possibly
Cooper pairs of neutrons, protons, hyperons and/or quarks.

crust Outer, km thick, layer of a neutron star or hybrid star. Composed of ordinary nuclei which form a crystalline
structure and which, upon increasing the density and thus going further inside the star, become more and more
neutron rich. In the inner crust a neutron superfluid is immersed in the lattice of nuclei. Quark stars have, if at all,
much thinner crusts.

current quark mass Quark mass without effects from the interactions with other quarks and gluons, see also
constituent quark mass. Since interactions become weak at asymptotically large densities (much larger than densities
in compact stars), current and constituent quark masses become identical in this limit.

dense matter In these lectures, dense matter means matter at densities of a few times nuclear ground state density,
as expected in the interior of compact stars. Governed by the strong interaction, and thus very difficult to describe
theoretically. We discuss several theoretical concepts and sometimes have to escape to lower or even higher densities,
just to make life simpler.
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equation of state Relation between the pressure and the energy density for a given form of dense matter. In our
context, the equation of state determines, together with the TOV equation, the mass-radius relation of a compact
star. In particular, a stiff (soft) equation of state allows for a large (small) maximum mass.

Goldstone boson Massless boson arising from spontaneous symmetry breaking of a global symmetry. The only
exact (i.e., truly massless) Goldstone boson in dense matter is the one associated to superfluidity, i.e., to the breaking
of baryon number conservation. Such a mode exists in a nuclear superfluid as well as in the color-flavor locked phase.

hybrid star Compact star with a quark matter core and a nuclear mantle. Most likely scenario to find quark matter
in a compact star.

hyperon Baryon with nonzero strangeness. Hyperons may occur in hadronic matter at sufficiently large densities.
In these lectures only discussed briefly, in the context of Walecka-like models.

incompressibility Thermodynamic property of nuclear matter at the saturation density, sometimes also called
compression modulus. Can be (at least indirectly and approximately) determined in the experiment and thus yields
a value that can, among other quantities, be used to fit the parameters of theoretical models, in these lectures the
coupling constants of the Walecka model with scalar interactions.

kaon condensation Possible example of Bose-Einstein condensation in a compact star. May appear at sufficiently
large densities. Is possible not only in nuclear matter, but also in quark matter, where kaons exist in the CFL phase.
These kaons carry the same quantum numbers as the usual kaons, however are made of two quarks and two quark
holes.

Kepler frequency Absolute upper limit for the rotation frequency of compact stars beyond which mass shedding
at the equator sets in. Given by the equality of the centrifugal and gravitational forces (more precisely, the general
relativistic version thereof). For typical compact stars in the ms−1 regime, i.e., for some pulsars actually observed
rotation frequencies are not too far from that limit. Below that limit stars can suffer from other rotational instabilities,
for instance the r-mode instability.

Landau mass Effective mass of (nonrelativistic) fermions at the Fermi surface, in the framework of Landau’s Fermi
liquid theory. In these lectures, the Landau mass for nucleons is mentioned in the context of the Walecka model where
its experimental value serves to fit the parameters of the model.

lattice QCD QCD on the computer. Powerful, brute-force method to perform calculations from first principles.
Not discussed in these lectures, mostly because lattice QCD is currently unable to provide results at large chemical
potential and small temperature because of the so-called sign problem.

Low-mass X-ray binary (LMXB) System of two stars, where a pulsar is accreting matter from its companion
which has a mass typically smaller than one solar mass (as opposed to high-mass X-ray binaries where the companion
has a mass larger than about ten solar masses). Measured rotation frequencies of pulsars in LMXBs are mentioned
in our brief discussion of the r-mode instability of rotating compact stars.

magnetar Compact star with unusually large magnetic field, up to 1015 G at the surface and possibly larger in the
interior.

Matsubara frequency In thermal field theory, the time direction in Minkowski space becomes imaginary and
compact, giving rise to Euclidean space with discrete energies, given by the Matsubara frequencies. In these lectures
we mostly consider the zero-temperature limit, but in some instances we have to perform a sum over Matsubara
frequencies.

mixed phase Coexistence of two (or more) phases which occupy certain volume fractions – for instance bubbles of
one phase immersed in the other phase – in a given total volume. In our context, global charge neutrality, as opposed
to local charge neutrality, allows for mixed phases for instance of nuclei and nuclear matter or quark and hadronic
matter. These phases may be disfavored by large surface energy costs.

Nambu-Gorkov space Contains Nambu-Gorkov spinors which arise from a doubling of the fermionic degrees of
freedom in the theoretical description of superconductors and superfluids. Allows to introduce Cooper pairing in the
off-diagonal elements of the Nambu-Gorkov propagators. See also anomalous propagators.
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Nambu-Jona-Lasinio (NJL) model Phenomenological model, not discussed in these lectures, where the QCD
interaction between quarks is replaced by a point-like four-quark interaction. Since it has attraction in the same
channels as QCD, this model is frequently used to describe color-superconducting quark matter at moderate densities.

neutron star Compact star made of neutron-rich nuclear matter. In some literature the term neutron star is also
used to include the possibility of a quark matter core. Mostly, also in these lectures, these stars are called hybrid
stars.

nuclear pasta Mixed phase of ordinary nuclei (ions) and nuclear matter, typically found in the inner cores of neutron
stars. Because different geometries can be realized – spheres, rods, slabs, the latter two reminiscent of spaghetti or
lasagna – these phases have been termed nuclear pasta. In these lectures we discuss the possibility of mixed phases
of quark and hadronic matter.

pion condensation Bose-Einstein condensation of pions in nuclear matter. Although pions are lighter than kaons
in the vacuum, kaon condensation seems to be more likely in dense nuclear matter. Therefore, in these lectures, kaon
condensation, not pion condensation, is discussed.

pseudo-Goldstone boson Less impressive brother of the Goldstone boson, arising from spontaneous breaking of
a global symmetry which is broken explicitly by a small amount (small compared to the scale of the spontaneous
breaking). Light, but not exactly massless. Dense matter is full of pseudo-Goldstone modes, for instance mesons in
nuclear matter or color-flavor-locked quark matter, arising from the spontaneous breaking of chiral symmetry which
is explicitly broken by quark masses.

pulsar Star whose radiation is observed in periodic pulses. Pulsars are rotating compact stars with large magnetic
fields; their apparent pulsation is due to the alignment of the radiation in a beam along the magnetic axis. When the
magnetic axis is different from the rotation axis, the beam may point towards the earth periodically, just as the light
of a lighthouse flashes periodically when you observe it from the beach.

pulsar glitch Sudden spin-up of a rotating compact star. Not discussed in detail in these lectures but very interesting
phenomenon since closely related to the microscopic physics, presumably to crystalline structures and vortices in the
star.

QCD phase diagram Collection of equilibrium states of QCD, typically depicted in the plane of quark (or baryon)
chemical potential and temperature. We roughly know where compact stars sit in this diagram, but we do not know
the phase(s) that occupy this region of the diagram. These lectures are about exploring this unknown territory.

quantum chromodynamics (QCD) Theory of the strong interaction. Governs the physics that determines the
ground state of dense matter present in a compact star. In these lectures we perform one explicit calculation in QCD
and discuss several effective approaches to this very elegant, but for most practical purposes very difficult, theory.

quarkyonic matter Form of dense matter covering a large portion of the QCD phase diagram for the case of
asymptotically large number of colors. Not discussed in these lectures because there are only three colors in the
real world. However, it is a viable option that a small region of quarkyonic matter survives and thus becomes also
important for compact stars.

quasiparticle Term originally used in condensed matter physics and carried over to dense QCD matter. Absorbs
interactions of the original particles into effective new particles. For instance, quasiparticles in a superconductor are
gapped due to the attractive interaction between the original particles.

r-modes Non-radial oscillations of a star with the Coriolis force as the restoring force. Interesting for dense matter
physics because they grow unstable in a pulsar unless the matter inside the star is sufficiently viscous.

rotated electromagnetism Effect in some color superconductors which is responsible for them being no electro-
magnetic superconductors. Therefore important for the physics of compact stars since magnetic fields penetrate these
color superconductors. Technically speaking, rotated electromagnetism refers to a gauge boson which is a mixture of
a gluon and the photon.
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saturation density Density at which the binding energy is minimized, here always used in the context of nuclear
matter for which the saturation density is approximately 0.15 baryons per fm3 and the corresponding binding energy
per nucleon is about 16 MeV.

sign problem Problem of QCD lattice calculations at finite values of the baryon chemical potential. For finite
chemical potential, the action, more precisely the quark determinant in the functional integral of the partition function,
loses its positivity and even becomes complex. This makes the probabilistic sampling method (“Monte Carlo method”),
on which lattice QCD is based, unfeasible. In our context this means that currently there is no input from lattice
calculations to the properties of dense matter.

strange quark matter hypothesis Hypothesis that strange quark matter, not nuclear matter, is the ground state
at zero pressure. The hypothesis does not contradict our existence since, even if the hypothesis is true, the transition
from nuclear matter, made of u and d quarks, to strange quark matter is essentially forbidden. We discuss that,
within the bag model, the strange quark matter hypothesis is true if the bag constant is between a lower bound (since
we know that ordinary nuclear matter is stable with respect to two-flavor quark matter) and an upper limit (beyond
which nuclear matter is absolutely stable).

strange star (quark star) Compact star made entirely out of quark matter, thus the most radical scenario for
quark matter in compact stars.

strangelet Small nugget of strange quark matter. Stretching the original meaning a bit – well, from femtometers to
kilometers – a strange star is a huge strangelet. Relevant for us in the context of the strange quark matter hypothesis:
since strangelets would convert neutron stars into strange stars, the unambiguous observation of a single neutron star
would invalidate the strange quark matter hypothesis, provided that there are enough strangelets in the cosmos to
hit neutron stars.

supernova Compact stars are expected to be born in (type II) supernova explosions, where a giant star, after
burning its nuclear fuel, undergoes a gravitational collapse. The energy of the explosion is mostly released in the form
of neutrinos. The theoretical description of supernovae requires very complicated hydrodynamical simulations.

Tolman-Oppenheimer-Volkov (TOV) equation Differential equation from general relativity for the mass,
pressure, and energy density as functions of the distance from the center of the star. In connection with the equation
of state, which relates energy density and pressure, used to compute the mass-radius relation for a compact star.

unpaired quark matter Term used for (dense) quark matter which does not form Cooper pairs and thus is no
color superconductor. Since dense quark matter is expected to be some kind of color superconductor, completely
unpaired dense quark matter is unlikely to exist. Therefore mostly used for reference calculations or when, for the
computed quantity, it is a good approximation to paired quark matter.

Urca process Most efficient process for neutrino emission, and thus for the cooling of the star. In quark matter
the direct Urca process is given by u + e → d + νe and variants thereof. We compute the emission rate of this process
in detail in these lectures. In the modified Urca process, a spectator particle is added which increases the available
phase space.

viscosity (bulk/shear) Transport coefficients of nuclear or quark matter relevant in particular in the context of
rotation and oscillation of the star. Requires microscopic calculation of processes typically governed by the weak
interaction. Not discussed in detail in these lectures. See also r-modes.

Walecka model Phenomenological model for interacting nuclear matter, based on Yukawa couplings of the nucleons
with the σ and ω meson. Used for extrapolation to large densities after fitting the parameters of the model at saturation
density. Discussed in these lectures as a basic example for numerous more complicated nuclear models of similar kind.

white dwarf Dense star with a mass of about the sun’s mass and radius of a few thousand kilometers, which makes
it less dense than a neutron star. Composed of nuclei immersed in a degenerate electron gas.
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Matter at high density and low temperature is expected to be a color superconductor, which is
a degenerate Fermi gas of quarks with a condensate of Cooper pairs near the Fermi surface that
induces color Meissner effects. At the highest densities, where the QCD coupling is weak, rigorous
calculations are possible, and the ground state is a particularly symmetric state, the color-flavor
locked (CFL) phase. The CFL phase is a superfluid, an electromagnetic insulator, and breaks chiral
symmetry. The effective theory of the low-energy excitations in the CFL phase is known and can
be used, even at more moderate densities, to describe its physical properties. At lower densities the
CFL phase may be disfavored by stresses that seek to separate the Fermi surfaces of the different
flavors, and comparison with the competing alternative phases, which may break translation and/or
rotation invariance, is done using phenomenological models. We review the calculations that underlie
these results, and then discuss transport properties of several color-superconducting phases and their
consequences for signatures of color superconductivity in neutron stars.
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I. INTRODUCTION

A. General outline

The study of matter at ultra-high density is the “condensed matter physics of quantum chromodynamics”. It
builds on our understanding of the strong interaction, derived from experimental observation of few-body processes,
to predict the behavior of macroscopic quantities in many-body systems where the fundamental particles of the
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standard model—quarks and leptons—become the relevant degrees of freedom. As in conventional condensed-matter
physics, we seek to map the phase diagram and calculate the properties of the phases. However, we are in the unusual
position of having a sector of the phase diagram where we can calculate many properties of quark matter rigorously
from first principles. This sector is the region of “asymptotically high” densities, where quantum chromodynamics is
weakly coupled. We will review those rigorous results and describe the progress that has been made in building on
this solid foundation to extend our understanding to lower and more phenomenologically relevant densities. Quark
matter occurs in various forms, depending on the temperature T and quark chemical potential µ (see Fig. 1). At
high temperatures (T ! µ) entropy precludes any pattern of order and there is only quark-gluon plasma (QGP), the
phase of strongly interacting matter that has no spontaneous symmetry breaking, and which filled the universe for
the first microseconds after the big bang. Quark-gluon plasma is also being created in small, very short-lived, droplets
in ultrarelativistic heavy ion collisions at the Relativistic Heavy Ion Collider.

In this review we concentrate on the regime of relatively low temperatures, T " µ, where we find a rich variety
of spontaneous symmetry breaking phases. To create such material in nature requires a piston that can compress
matter to super-nuclear densities and hold it while it cools. The only known context where this might happen is in the
interior of neutron stars, where gravity squeezes the star to an ultra-high density state where it remains for millions
of years. This gives time for weak interactions to equilibrate, and for the temperature of the star to drop far below
the quark chemical potential. We do not currently know whether quark matter exists in the cores of neutron stars.
One of the reasons for studying color superconductivity is to improve our understanding of how a quark matter core
would affect the observable behavior of a neutron star, and thereby resolve this uncertainty.

When we speak of matter at the highest densities, we shall always take the high density limit with up, down and
strange quarks only. We do so because neutron star cores are not dense enough (by more than an order of magnitude)
to contain any charm or heavier quarks, and our ultimate goal is to gain insight into quark matter at densities that
may be found in nature. For the same reason we focus on temperatures below about ten MeV, which are appropriate
for neutron stars that are more than a few seconds old.

As we will explain in some detail, at low temperatures and the highest densities we expect to find a degenerate liquid
of quarks, with Cooper pairing near the Fermi surface that spontaneously breaks the color gauge symmetry (“color
superconductivity”). Speculations about the existence of a quark matter phase at high density go back to the earliest
days of the quark model of hadrons [1–5], and the possibility of quark Cooper pairing was noted even before there was
a comprehensive theory of the strong interaction [6, 7]. After the development of quantum chromodynamics (QCD),
with its property of asymptotic freedom [8, 9], it became clear that a quark matter phase would exist at sufficiently
high density [10–16] and the study of quark Cooper pairing was pioneered by Barrois and Frautschi [17–19], who
first used the term “color superconductivity”, and by Bailin and Love [20, 21], who classified many of the possible
pairing patterns. Iwasaki and Iwado [22, 23] performed mean-field calculations of single-flavor pairing in a Nambu-
Jona-Lasinio (NJL) model, but it was not until the prediction of large pairing gaps [24, 25] and the color-flavor locked
(CFL) phase [26] that the phenomenology of color-superconducting quark matter became widely studied. At present
there are many reviews of the subject from various stages in its development [21, 27–39], and the reader may wish
to consult them for alternative presentations with different emphases. As these reviews make clear, the last decade
has seen dramatic progress in our understanding of dense matter. We are now able to obtain, directly from QCD,
rigorous and quantitative answers to the basic question: “What happens to matter if you squeeze it to arbitrarily high
density?”. In Sec. IV we will show how QCD becomes analytically tractable at arbitrarily high density: the coupling
is weak and the physics of confinement never arises, since long-wavelength magnetic interactions are cut off, both
by Landau damping and by the Meissner effect. As a result, matter at the highest densities is known to be in the
CFL phase, whose properties (see Sec. II) are understood rigorously from first principles. There is a well-developed
effective field theory describing the low energy excitations of CFL matter (see Sec. V), so that at any density at which
the CFL phase occurs, even if this density is not high enough for a weak-coupling QCD calculation to be valid, many
phenomena can nevertheless be described quantitatively in terms of a few parameters, via the effective field theory.

It should be emphasized that QCD at arbitrarily high density is more fully understood than in any other context.
High energy scattering, for example, can be treated by perturbative QCD, but making contact with observables
brings in poorly understood nonperturbative physics via structure functions and/or fragmentation functions. Or, in
quark-gluon plasma in the high temperature limit much of the physics is weakly-coupled but the lowest energy modes
remain strongly coupled with nonperturbative physics arising in the nonabelian color-magnetic sector. We shall see
that there are no analogous difficulties in the analysis of CFL matter at asymptotic densities.

If the CFL phase persists all the way down to the transition to nuclear matter then we have an exceptionally good
theoretical understanding of the properties of quark matter in nature. However, less symmetrically paired phases of
quark matter may well intervene in the intermediate density region between nuclear and CFL matter (Sec. I E). We
enumerate some of the possibilities in Sec. III. In principle this region could also be understood from first principles,
using brute-force numerical methods (lattice QCD) to evaluate the QCD path integral, but unfortunately current
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lattice QCD algorithms are defeated by the fermion sign problem in the high-density low-temperature regime [40].1

This means we have to use models, or try to derive information from astrophysical observations. In Sec. VI we sketch an
example of a (Nambu–Jona-Lasinio) model analysis within which one can compare some of the possible intermediate-
density phases suggested in Sec. I E. We finally discuss the observational approach, which involves elucidating the
properties of the suggested phases of quark matter (Secs. VIC and VII), and then finding astrophysical signatures by
which their presence inside neutron stars might be established or ruled out using astronomical observations (Sec. VIII).

B. Inevitability of color superconductivity

At sufficiently high density and low temperature it is a good starting point to imagine that quarks form a degenerate
Fermi liquid. Because QCD is asymptotically free — the interaction becomes weaker as the momentum transferred
grows — the quarks near the Fermi surface are almost free, with weak QCD interactions between them. (Small-
angle quark-quark scattering via a low-momentum gluon is no problem because it is cut off by Landau damping,
which, together with Debye screening, keeps perturbation theory at high density much better controlled than at
high temperature [54, 55].) The quark-quark interaction is certainly attractive in some channels, since we know
that quarks bind together to form baryons. As we will now argue, these conditions are sufficient to guarantee color
superconductivity at sufficiently high density.

At zero temperature, the thermodynamic potential (which we will loosely refer to as the “free energy”) is Ω =
E − µN , where E is the total energy of the system, µ is the chemical potential, and N is the number of fermions.
If there were no interactions then the energy required to add a particle to the system would be the Fermi energy
EF = µ, so adding or subtracting particles or holes near the Fermi surface would cost zero free energy. With a
weak attractive interaction in any channel, if we add a pair of particles (or holes) with the quantum numbers of
the attractive channel, the free energy is lowered by the potential energy of their attraction. Many such pairs will
therefore be created in the modes near the Fermi surface, and these pairs, being bosonic, will form a condensate. The
ground state will be a superposition of states with different numbers of pairs, breaking the fermion number symmetry.
This argument, originally developed by Bardeen, Cooper, and Schrieffer (BCS) [56] is completely general, and can be
applied to electrons in a metal, nucleons in nuclear matter, 3He atoms, cold fermionic atoms in a trap, or quarks in
quark matter.

The application of the BCS mechanism to pairing in dense quark matter is in a sense more direct than in its original
setting. The dominant interaction between electrons in a metal is the repulsive Coulomb interaction, and it is only
because this interaction is screened that the attraction mediated by phonons comes into play. This means that the
effective interactions that govern superconductivity in a metal depend on band structure and other complications and
are very difficult to determine accurately from first principles. In contrast, in QCD the “color Coulomb” interaction
is attractive between quarks whose color wave function is antisymmetric, meaning that superconductivity arises as
a direct consequence of the primary interaction in the theory. This has two important consequences. First, at
asymptotic densities where the QCD interaction is weak we can derive the gap parameter and other properties of
color superconducting quark matter rigorously from the underlying microscopic theory. Second, at accessible densities
where the QCD interaction is stronger the ratio of the gap parameter to the Fermi energy will be much larger than in
conventional BCS superconducting metals. Thus, superconductivity in QCD is more robust, both in the theoretical
sense and in the phenomenological sense, than superconductivity in metals.

It has long been known that, in the absence of pairing, an unscreened static magnetic interaction results in a
“non-Fermi-liquid” [57–70]. However, in QCD the magnetic interaction is screened at nonzero frequency (Landau
damping) and this produces a particularly mild form of non-Fermi-liquid behavior, as we describe in Sec. VA2. In
the absence of pairing but in the presence of interactions, there are still quark quasiparticles and there is still a
“Fermi surface”, and the BCS argument goes through. This argument is rigorous at high densities, where the QCD
coupling g is small. The energy scale below which non-Fermi liquid effects would become strong enough to modify the
quasiparticle picture qualitatively is parametrically of order exp(−const/g2) whereas the BCS gap that results from
pairing is parametrically larger, of order exp(−const/g) as we shall see in Sec. IV. This means that pairing occurs in
a regime where the basic logic of the BCS argument remains valid.

Since pairs of quarks cannot be color singlets, the Cooper pair condensate in quark matter will break the local color
symmetry SU(3)c, hence the term “color superconductivity”. The quark pairs play the same role here as the Higgs
particle does in the standard model: the color-superconducting phases can be thought of as Higgs phases of QCD.

1 Condensation of Cooper pairs of quarks has been studied on the lattice in 2-color QCD [41–49], for high isospin density rather than
baryon density [50–52] and in NJL-type models [53].
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Here, the gauge bosons that acquire a mass through the process of spontaneous symmetry breaking are the gluons,
giving rise to color Meissner effects. It is important to note that quarks, unlike electrons, have color and flavor as
well as spin degrees of freedom, so many different patterns of pairing are possible. This leads us to expect a panoply
of different possible color superconducting phases.

As we shall discuss in Sec. II, at the highest densities we can achieve an ab initio understanding of the properties
of dense matter, and we find that its preferred state is the CFL phase of three-flavor quark matter, which is unique
in that all the quarks pair (all flavors, all colors, all spins, all momenta on the Fermi surfaces) and all the nonabelian
gauge bosons are massive. The suppression of all of the infrared degrees of freedom of the types that typically indicate
either instability toward further condensation or strongly coupled phenomena ensures that, at sufficiently high density,
the CFL ground state, whose only infrared degrees of freedom are Goldstone bosons and an abelian photon, is stable.
In this regime, quantitative calculations of observable properties of CFL matter can be done from first principles;
there are no remaining nonperturbative gaps in our understanding.

As the density decreases, the effect of the strange quark mass becomes more noticeable, imposing stresses that
may modify the Cooper pairing and the CFL phase may be replaced by other forms of color superconducting quark
matter. Furthermore, as the attractive interaction between quarks becomes stronger at lower densities, correlations
beyond the two-body correlation that yields Cooper pairing may become important, and at some point the ground
state will no longer be a Cooper-paired state of quark matter, but something quite different. Indeed, by the time we
decrease the density down to that of nuclear matter, the average separation between quarks has increased to the point
that the interactions are strong enough to bind quarks into nucleons. It is worth noting that quark matter is in this
regard different from Cooper-paired ultracold fermionic atoms (to be discussed in Sec. III I). For fermionic atoms, as
the interaction strength increases there is a crossover from BCS-paired fermions to a Bose-Einstein condensate (BEC)
of tightly-bound, well-separated, weakly-interacting di-atoms (molecules). In QCD, however, the color charge of a
diquark is the same as that of an antiquark, so diquarks will interact with each other as strongly as quarks, and there
will not be a literal analogue of the BCS/BEC crossover seen in fermionic atoms. In QCD, the neutral bound states
at low density that are (by QCD standards) weakly interacting are nucleons, containing three quarks not two.

We shall work with Nc = 3 colors throughout. In the limit Nc →∞ with fixed ΛQCD (i.e fixed g2Nc), Cooper pairing
is not necessarily energetically preferred. A strong competitor for the large-Nc ground state is the chiral density wave
(CDW), a condensate of quark-hole pairs, each with total momentum 2pF [71]. Quark-hole scattering is enhanced
by a factor of Nc over quark-quark scattering, but, unlike Cooper pairing, it only uses a small fraction of the Fermi
surface, and in the case of short range forces the CDW phase is energetically favored in one-dimensional systems,
but not in two or more spatial dimensions [72]. However, in QCD in the large Nc limit the equations governing the
CDW state become effectively one-dimensional because the gluon propagator is not modified by the medium, so the
quark-hole interaction is dominated by almost collinear scattering. Since pairing gaps are exponentially small in the
coupling but medium effects only vanish as a power of Nc, the CDW state requires an exponentially large number of
colors. It is estimated that for µ ∼ 1 GeV, quark-hole pairing becomes favored over Cooper pairing when Nc ! 1000
[73]. Recent work [74] discusses aspects of physics at large Nc at lower densities that may also be quite different from
physics at Nc = 3.

Before turning to a description of CFL pairing in Sec. II and less-symmetrically paired forms of color superconducting
quark matter in Sec. III, we discuss some generic topics that arise in the analysis of color-superconducting phases:
the gap equations, neutrality constraints, the resultant stresses on Cooper pairing, and the expected overall form of
the phase diagram.

C. Quark Cooper pairing

The quark pair condensate can be characterized in a gauge-variant way by the expectation value of the one-particle-
irreducible quark-quark two-point function, also known as the “anomalous self-energy”,

〈ψαiaψ
β
jb〉 = Pαβij ab∆ (1)

Here ψ is the quark field operator, color indices α, β range over red, green, and blue (r, g, b), flavor indices i, j range
over up, down and strange (u, d, s), and a, b are the spinor Dirac indices. The angle brackets denote the one-particle-
irreducible part of the quantum-mechanical ground-state expectation value. In general, both sides of this equation are
functions of momentum. The color-flavor-spin matrix P characterizes a particular pairing channel, and ∆ is the gap
parameter which gives the strength of the pairing in this channel. A standard BCS condensate is position-independent
(so that in momentum space the pairing is between quarks with equal and opposite momentum) and a spin singlet (so
that the gap is isotropic in momentum space). However, as we will see later, there is good reason to expect non-BCS
condensates as well as BCS condensates in high-density quark matter.
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Although (1) defines a gauge-variant quantity, it is still of physical relevance. Just as electroweak symmetry breaking
is most straightforwardly understood in the unitary gauge where the Higgs vacuum expectation value is uniform in
space, so color superconductivity is typically analyzed in the unitary gauge where the quark pair operator has a
uniform color orientation in space. We then relate the gap parameter ∆ to the spectrum of the quark-like excitations
above the ground state (“quasiquarks”), which is gauge-invariant.

In principle, a full analysis of the phase structure of quark matter in the µ-T plane would be performed by writing
down the free energy Ω, which is a function of the temperature, the chemical potentials for all conserved quantities,
and the gap parameters for all possible condensates, including the quark pair condensates but also others such as
chiral condensates of the form 〈q̄q〉. We impose neutrality with respect to gauge charges (see Sect. I D below) and
then within the neutral subspace we minimize the free energy with respect to the strength of the condensate:

∂Ω

∂∆
= 0,

∂2Ω

∂∆2
> 0 . (2)

We have written this gap equation and stability condition somewhat schematically since for many patterns of pairing
there will be gap parameters with different magnitudes in different channels. The free energy must then be minimized
with respect to each of the gap parameters, yielding a coupled set of gap equations. The solution to (2) with the
lowest free energy that respects the neutrality constraints discussed below yields the favored phase.

D. Chemical potentials and neutrality constraints

Why do we describe “matter at high density” by introducing a large chemical potential µ for quark number but no
chemical potentials for other quantities? The answer is that this reflects the physics of neutron stars, which are the
main physical arena that we consider. Firstly, on the long timescales relevant to neutron stars, the only global charges
that are conserved in the standard model are quark number and lepton number, so only these can be coupled to
chemical potentials (we shall discuss gauged charges below). Secondly, a neutron star is permeable to lepton number
because neutrinos are so light and weakly-interacting that they can quickly escape from the star, so the chemical
potential for lepton number is zero. Electrons are present because they carry electric charge, for which there is a
nonzero potential. In the first few seconds of the life of a neutron star the neutrino mean free path may be short
enough to sustain a nonzero lepton number chemical potential, see for instance [75–78], but we will not discuss that
scenario.

Stable bulk matter must be neutral under all gauged charges, whether they are spontaneously broken or not.
Otherwise, the net charge density would create large electric fields, making the energy non-extensive. In the case of
the electromagnetic gauge symmetry, this simply requires zero charge density, Q = 0. The correct formal requirement
concerning the color charge of a large lump of matter is that it should be a color singlet, i.e., its wavefunction should
be invariant under a general color gauge transformation. However, it is sufficient for us to impose color neutrality,
meaning equality in the numbers of red, green, and blue quarks. This is a less stringent constraint (singlet⇒ neutral
but neutral *⇒ singlet) but the projection of a color neutral state onto a color singlet costs no extra free energy in the
thermodynamic limit [79]. (See also [80, 81].) In general there are 8 possible color charges, but because the Cartan
subalgebra of SU(3)c is two-dimensional it is always possible to transform to a gauge where all are zero except Q3 and
Q8, the charges associated with the diagonal generators T3 = 1

2 diag(1,−1, 0) and T8 = 1
2
√

3
diag(1, 1,−2) in (r, g, b)

space [82, 83]. In this review, we only discuss such gauges. So to impose color neutrality we just require Q3 = Q8 = 0.
In nature, electric and color neutrality are enforced by the dynamics of the electromagnetic and QCD gauge fields,

whose zeroth components serve as chemical potentials coupled to the charges Q, Q3, Q8, and which are naturally
driven to values that set these charges to zero [84–88]. In an NJL model with fermions but no gauge fields (see
Sec. VI) one has to introduce the chemical potentials µe, µ3 and µ8 by hand in order to enforce color and electric
neutrality. The neutrality conditions are then

Q =
∂Ω

∂µe
= 0

Q3 = −
∂Ω

∂µ3
= 0

Q8 = −
∂Ω

∂µ8
= 0 .

(3)

(Note that we define an electrostatic potential µe that is coupled to the negative electric charge Q, so that in typical
neutron star conditions, where there is a finite density of electrons rather than positrons, µe is positive.)
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Finally we should note that enforcing local neutrality is appropriate for uniform phases, but there are also non-
uniform charge-separated phases (“mixed phases”), consisting of positively and negatively charged domains which are
neutral on average. These are discussed further in Sec. III H.

E. Stresses on BCS pairing

The free energy argument that we gave in Sec. I B for the inevitability of BCS pairing in the presence of an attractive
interaction relies on the assumption that the quarks that pair with equal and opposite momenta can each be arbitrarily
close to their common Fermi surface. However, as we will see in Sec. II, the neutrality constraint, combined with
the mass of the strange quark and the requirement that matter be in beta equilibrium, tends to pull apart the Fermi
momenta of the different flavors of quarks, imposing an extra energy cost (“stress”) on the formation of Cooper pairs
involving quarks of different flavors. This raises the possibility of non-BCS pairing in some regions of the phase
diagram.

To set the stage here, let us discuss a simplified example: consider two massless species of fermions, labeled 1 and
2, with different chemical potentials µ1 and µ2, and an attractive interaction between them that favors cross-species
BCS pairing with a gap parameter ∆. It will turn out that to a good approximation the color-flavor locked pairing
pattern contains three such sectors, so this example captures the essential physics we will encounter in later sections.
We define the average chemical potential and the stress parameter

µ̄ = 1
2 (µ1 + µ2)

δµ = 1
2 (µ1 − µ2) .

(4)

As long as the stress δµ is small enough relative to ∆, BCS pairing between species 1 and 2 can occur, locking their
Fermi surfaces together and ensuring that they occur in equal numbers. At the Chandrasekhar-Clogston point [89, 90],
where δµ = ∆/

√
2, the two-species model undergoes a first-order transition to the unpaired phase. At this point BCS

pairing still exists as a locally stable state, with a completely gapped spectrum of quasiparticles. When δµ reaches
∆ the spectrum becomes gapless at momentum p = µ̄, indicating that cross-species BCS pairing is no longer favored
at all momenta [91]. If the two species are part of a larger pairing pattern, the Chandrasekhar-Clogston transition
can be shifted, and we shall see that in the two-species subsectors of the CFL pattern it is shifted to δµ > ∆. The
onset of gaplessness is therefore the relevant threshold for our purposes, and it always occurs at δµ = ∆, independent
of the larger context in which the two flavors pair. This follows from the fact that BCS pairing only occurs if the
energy gained from turning a 1 quark into a 2 quark with the same momentum (namely µ1−µ2) is less than the cost
of breaking the Cooper pair formed by these quarks, which is 2∆ [92]. Thus the 1-2 Cooper pairs are energetically
stable (or metastable) as long as δµ < ∆. A more detailed treatment of this illustrative example can be found in [93].

This example uses massless quarks, but it can easily be modified to include the leading effect of a quark mass M . A
difference in the masses of the pairing quarks also stresses the pairing, because it gives them different Fermi momenta
at the same chemical potential, so the quarks in a 1-2 Cooper pair, which have equal and opposite momenta, will not
both be close to their Fermi energies. The leading-order effect is easily calculated, since for a quark near its Fermi
surface it acts like a shift in the quark chemical potential by −M2/(2µ̄) (given that Fermi momentum pF ≈ µ̄ to this
order).

Returning from our toy model to realistic quark matter, the quark flavors that are potentially relevant at neutron-
star densities are the light up (u) and down (d) quarks, with current masses mu and md that are " 5 MeV, and a
medium-weight flavor, the strange (s) quark, with current mass ms ∼ 90 MeV. Their effective “constituent” masses
in the vacuum are hundreds of MeV larger, but are expected to decrease with increasing quark density. We shall refer
to the density-dependent constituent masses as Mu,d,s and shall typically neglect Mu and Md. As our toy model has
illustrated, however, the strange quark mass Ms will contribute to stresses on cross-flavor pairing, and those stresses
will become more severe as the density (and hence µ̄) decreases. This will be a major theme of later sections.

F. Overview of the quark matter phase diagram

Fig. 1 shows a schematic phase diagram for QCD that is consistent with what is currently known. Along the
horizontal axis the temperature is zero, and the density is zero up to the onset transition where it jumps to nuclear
density, and then rises with increasing µ. Neutron stars are in this region of the phase diagram, although it is not
known whether their cores are dense enough to reach the quark matter phase. Along the vertical axis the temperature
rises, taking us through the crossover from a hadronic gas to the quark-gluon plasma. This is the regime explored by
high-energy heavy-ion colliders.
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FIG. 1: (Color online) A schematic outline for the phase diagram of matter at ultra-high density and temperature. The CFL
phase is a superfluid (like cold nuclear matter) and has broken chiral symmetry (like the hadronic phase).

At the highest densities we find the color-flavor locked color-superconducting phase,2 in which the strange quark
participates symmetrically with the up and down quarks in Cooper pairing. This is described in more detail in Secs.
II, IV, and V. It is not yet clear what happens at intermediate density, and in Secs. III and VI we will discuss the
factors that disfavor the CFL phase at intermediate densities, and survey the color superconducting phases that have
been hypothesized to occur there.

Various aspects of color superconductivity at high temperatures have been studied, including the phase structure
(see Sec. VI A), spectral functions, pair-forming and -breaking fluctuations, possible precursors to condensation such as
pseudogaps, and various collective phenomena [95–104]. However, this review centers on quark matter at neutron star
temperatures, and throughout Secs. II and III we restrict ourselves to the phases of quark matter at zero temperature.
This is because most of the phases that we discuss are expected to persist up to critical temperatures that are well
above the core temperature of a typical neutron star, which drops below 1 MeV within seconds of its birth before
cooling down through the keV range over millions of years.

II. MATTER AT THE HIGHEST DENSITIES

A. Color-flavor locked (CFL) quark matter

Given that quarks form Cooper pairs, the next question is who pairs with whom? In quark matter at sufficiently
high densities, where the up, down and strange quarks can be treated on an equal footing and the disruptive effects
of the strange quark mass can be neglected, the most symmetric and most attractive option is the color-flavor locked
phase, where quarks of all three colors and all three flavors form conventional zero-momentum spinless Cooper pairs.
This pattern, anticipated in early studies of alternative condensates for zero-density chiral symmetry breaking [105],
is encoded in the quark-quark self-energy [26]

〈ψαi Cγ5ψ
β
j 〉 ∝ ∆CFL(κ+1)δαi δ

β
j +∆CFL(κ−1)δαj δ

β
i

= ∆CFLεαβAεijA +∆CFLκ(δαi δ
β
j + δαj δ

β
i )

(5)

2 As explained in Sec. IA, we fix Nf = 3 at all densities, to maintain relevance to neutron star interiors. Pairing with arbitrary Nf has
been studied [94]. For Nf a multiple of three one finds multiple copies of the CFL pattern; for Nf = 4, 5 the pattern is more complicated.
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The symmetry breaking pattern is

[SU(3)c]× U(1)B × SU(3)L × SU(3)R
︸ ︷︷ ︸

⊃ [U(1)Q]
→

SU(3)c+L+R
︸ ︷︷ ︸

⊃ [U(1)Q̃]

×Z2
(6)

Color indices α, β and flavor indices i, j run from 1 to 3, Dirac indices are suppressed, and C is the Dirac charge-
conjugation matrix. Gauge symmetries are in square brackets. ∆CFL is the CFL gap parameter. The Dirac structure
Cγ5 is a Lorentz singlet, and corresponds to parity-even spin-singlet pairing, so it is antisymmetric in the Dirac indices.
The two quarks in the Cooper pair are identical fermions, so the remaining color+flavor structure must be symmetric.
The dominant color-flavor component in (5) transforms as (3̄A, 3̄A), antisymmetric in both. The subdominant term,
multiplied by κ, transforms as (6S ,6S). It is almost certainly not energetically favored on its own (all the arguments
in Sec. II A 5 for the color triplet imply repulsion for the sextet), but in the presence of the dominant pairing it breaks
no additional symmetries, so κ is in general small but not zero [26, 94, 106, 107].

1. Color-flavor locking and chiral symmetry breaking

A particularly striking feature of the CFL pairing pattern is that it breaks chiral symmetry. Because of color-flavor
locking, chiral symmetry remains broken up to arbitrarily high densities in three-flavor quark matter. The mechanism
is quite different from the formation of the 〈ψ̄ψ〉 condensate that breaks chiral symmetry in the vacuum by pairing
left-handed (L) quarks with right-handed (R) antiquarks. The CFL condensate pairs L quarks with each other and R
quarks with each other (quarks in a Cooper pair have opposite momentum, and zero net spin, hence the same chirality)
and so it might naively appear chirally symmetric. However, the Kronecker deltas in (5) connect color indices with
flavor indices, so that the condensate is not invariant under color rotations, nor under flavor rotations, but only under
simultaneous, equal and opposite, color and flavor rotations. Color is a vector symmetry, so the compensating flavor
rotation must be the same for L and R quarks, so the axial part of the flavor group, which is the chiral symmetry, is
broken by the locking of color and flavor rotations to each other [26]. Such locking is familiar from other contexts,
including the QCD vacuum, where a condensate of quark-antiquark pairs locks SU(3)L to SU(3)R breaking chiral
symmetry “directly”, and the B phase of superfluid 3He, where the condensate transforms nontrivially under rotations
of spin and orbital angular momentum, but is invariant under simultaneous rotations of both.

The breaking of the chiral symmetry is associated with an expectation value for a gauge-invariant order parameter
with the structure ψ̄ψ̄ψψ (see Sec. V). There is also a subdominant “conventional” chiral condensate 〈ψ̄ψ〉 " 〈ψCγ5ψ〉
[94]. These gauge-invariant observables distinguish the CFL phase from the QGP, and if a lattice QCD algorithm
applicable at high density ever becomes available, they could be used to map the presence of color-flavor locking in
the phase diagram.

We also expect massless Goldstone modes associated with chiral symmetry breaking (see Secs. II A 4 and V). In the
real world there is small explicit breaking of chiral symmetry from the current quark masses, so the order parameters
will not go to zero in the QGP, and the Goldstone bosons will be light but not massless.

2. Superfluidity

The CFL pairing pattern spontaneously breaks the exact global baryon number symmetry U(1)B, leaving only
a discrete Z2 symmetry under which all quark fields are multiplied by −1. There is an associated gauge-invariant
6-quark order parameter with the flavor and color structure of two Lambda baryons, 〈ΛΛ〉 where Λ = εabcεijkψa

i ψ
b
jψ

c
k.

This order parameter distinguishes the CFL phase from the QGP, and there is an associated massless Goldstone boson
that makes the CFL phase a superfluid, see Sec. VC 2. The vortices that result when CFL quark matter is rotated
have been studied in [108–111].

3. Gauge symmetry breaking and electromagnetism

As explained above, the CFL condensate breaks the SU(3)c × SU(3)L × SU(3)R symmetry down to the diagonal
group SU(3)c+L+R of simultaneous color and flavor rotations. Color is a gauge symmetry, and one of the generators
of SU(3)L+R is the electric charge, which generates the U(1)Q gauge symmetry. This means that the unbroken
SU(3)c+L+R contains one gauged generator, corresponding to an unbroken U(1)Q̃ which consists of a simultaneous
electromagnetic and color rotation. The rest of the color group is broken, so by the Higgs mechanism seven gluons and
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one gluon-photon linear combination become massive via the Meissner effect. The orthogonal gluon-photon generator
Q̃ remains unbroken, because every diquark in the condensate has Q̃ = 0. The mixing angle is cos θ ≡ g/

√

g2 + 4e2/3
where e and g are the QED and QCD couplings. Because e" g the angle is close to zero, meaning that the Q̃ photon
is mostly the original photon with a small admixture of gluon.

The Q̃ photon is massless. Given small but nonzero quark masses, there are no gapless Q̃-charged excitations; the
lightest ones are the pseudoscalar pseudo-Goldstone bosons π± and K± (see Secs. II A 4 and V), so for temperatures
well below their masses (and well below the electron mass [112]) the CFL phase is a transparent insulator, in which
Q̃-electric and magnetic fields satisfy Maxwell’s equations with a dielectric constant and index of refraction that can
be calculated directly from QCD [113],

n = 1 +
e2 cos2 θ

9π2

µ2

∆2
CFL

. (7)

(This result is valid as long as n − 1 " 1.) Apart from the fact that n *= 1, the emergence of the Q̃ photon is an
exact QCD-scale analogue of the TeV-scale spontaneous symmetry breaking that gave rise to the photon as a linear
combination of the W3 and hypercharge gauge bosons, with the diquark condensate at the QCD scale playing the role
of the Higgs condensate at the TeV scale.

If one could shine a beam of ordinary light on a lump of CFL matter in vacuum, some would be reflected and some
would enter, refracted, as a beam of Q̃-light. The reflection and refraction coefficients are known [114] (see also [115]).
The static limit of this academic result is relevant: if a volume of CFL matter finds itself in a static magnetic field as
within a neutron star, surface currents are induced such that a fraction of this field is expelled via the Meissner effect
for the non-Q̃ component of Q, while a fraction is admitted as Q̃-magnetic field [116]. The magnetic field within the
CFL volume is not confined to flux tubes, and is not frozen as in a conducting plasma: CFL quark matter is a color
superconductor but it is an electromagnetic insulator.

All Cooper pairs have zero net Q̃-charge, but some have neutral constituents (both quarks Q̃-neutral) and some
have charged constituents (the two quarks have opposite Q̃-charge). The Q̃-component of an external magnetic field
will not affect the first type, but it will affect the pairing of the second type, so external magnetic fields can modify the
CFL phase to the so-called magnetic CFL (“MCFL”) phase. The MCFL phase has a different gap structure [117, 118]
and a different effective theory [119]. The original analyses of the MCFL phase were done for rotated magnetic fields
B̃ large enough that all quarks are in the lowest Landau level; solving the gap equations at lower B̃ shows that the
gap parameters in the MCFL phase exhibit de Haas-van Alphen oscillations, periodic in 1/B̃ [120, 121].

4. Low-energy excitations

The low-energy excitations in the CFL phase are: the 8 light pseudoscalars arising from broken chiral symmetry, the
massless Goldstone boson associated with superfluidity, and the Q̃-photon. The pseudoscalars form an octet under
the unbroken SU(3) color+flavor symmetry, and can naturally be labeled according to their Q̃-charges as pions,
kaons, and an η. The effective Lagrangian that describes their interactions, and the QCD calculation of their masses
and decay constants will be discussed in Sec. V. We shall find, in particular, that even though the quark-antiquark
condensate is small, the pion decay constant is large, fπ ∼ µ.

The symmetry breaking pattern (6) does not include the spontaneous breaking of the U(1)A “symmetry” because
it is explicitly broken by instanton effects. However, at large densities these effects become arbitrarily small, and the
spontaneous breaking of U(1)A will have an associated order parameter and a ninth pseudo-Goldstone boson with
the quantum numbers of the η′. This introduces the possibility of a second type of vortices [111, 122].

Among the gapped excitations, we find the quark-quasiparticles which fall into an 8 ⊕ 1 of the unbroken global
SU(3)c+L+R, so there are two gap parameters ∆1 and ∆8. The singlet has the larger gap ∆1 = (2 + O(κ))∆8. We
also find an octet of massive vector mesons, which are the gluons that have acquired mass via the Higgs mechanism.
The symmetries of the 3-flavor CFL phase are the same as those one would expect for 3-flavor hypernuclear matter,
and even the pattern of gapped excitations is remarkably similar, differing only in the absence of a ninth massive
vector meson. It is therefore possible that there is no phase transition between hypernuclear matter and CFL quark
matter [123]. This hadron-quark continuity can arise in nature only if the strange quark is so light that there is a
hypernuclear phase, and this phase is characterized by proton-Ξ−, neutron-Ξ0 and Σ+-Σ− pairing, which can then
continuously evolve into CFL quark matter upon further increasing the density [124].
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5. Why CFL is favored

The dominant component of the CFL pairing pattern is the color 3̄A, flavor 3̄A, and Dirac Cγ5 (Lorentz scalar).
There are many reasons to expect the color 3̄A to be favored. First, this is the most attractive channel for quarks
interacting via single-gluon exchange which is the dominant interaction at high densities where the QCD coupling
is weak; second, it is also the most attractive channel for quarks interacting via the instanton-induced ’t Hooft
interaction, which is important at lower densities; third, qualitatively, combining two quarks that are each separately
in the color-3 representation to obtain a diquark that is a color-3̄A lowers the color-flux at large distances; and,
fourth, phenomenologically, the idea that baryons can be modeled as bound states of a quark and a color-antisymmetric
diquark, taking advantage of the attraction in this diquark channel, has a long history and has had a recent renaissance
[125–129].

It is also easy to understand why pairing in the Lorentz-scalar channel is favorable: it leaves rotational invari-
ance unbroken, allowing for quarks at all angles on the entire Fermi-sphere to participate coherently in the pairing.
Many calculations have shown that pairing is weaker in channels that break rotational symmetry [22, 24, 130–133].
There is also a rotationally invariant pairing channel with negative parity described by the order parameter 〈ψCψ〉.
Perturbative gluon exchange interactions do not distinguish between positive and negative parity diquarks, but non-
perturbative instanton induced interactions do, favoring the positive parity channel [24, 25, 134].

Once we have antisymmetry in color and in Dirac indices, we are forced to antisymmetrize in flavor indices, and
the most general color-flavor structure that the arguments above imply should be energetically favored is

〈ψαi Cγ5ψ
β
j 〉 ∝ εαβAεijBφ

A
B . (8)

CFL pairing corresponds to φA
B = δA

B, and this is the only pattern that pairs all the quarks and leaves an entire
SU(3) global symmetry unbroken. The 2SC pattern is φA

B = δA
3 δ

3
B, in which only u and d quarks of two colors pair

[18, 21, 24, 25], see Sec. III A. As long as the strange quark mass can be neglected (the parametric criterion turns out
to be ∆CFL !M2

s /µ, see Sec. III B) calculations comparing patterns of the structure (8) always find the CFL phase
to have the highest condensation energy, making it the favored pattern. This has been confirmed in weak-coupling
QCD calculations valid at high density [94, 106, 135], in the Ginzburg-Landau approximation [84], and in many
calculations using Nambu–Jona-Lasinio models [26, 123, 124, 134, 136]. In the high-density limit where ∆! M2

s /µ
and ∆ " µ we can expand in powers of ∆/µ and explicitly compare CFL to 2SC pairing. The CFL condensation
energy is (8∆2

8+∆2
1)µ

2/(4π2) which is 12∆2
CFLµ2/(4π2) when κ" 1 (see Sec. II A 4) whereas the condensation energy

in the 2SC phase is only 4∆2
2SCµ2/(4π2). We shall see later that the 2SC gap parameter turns out to be larger than

the CFL gap parameter by a factor of 21/3, so up to corrections of order κ the CFL condensation energy is larger than
that in the 2SC phase by a factor of 3× 2−2/3. At lower densities the condensation energies become smaller, and we
cannot neglect negative M4

s terms which are energy penalties induced by the neutrality requirement. Their coefficient
is larger for CFL than for 2SC, partly (but usually not completely) cancelling the extra condensation energy—see
Fig. 3 and Sec. III A.

B. Intermediate density: stresses on the CFL phase

As we noted in section I E, BCS pairing between two species is suppressed if their chemical potentials are sufficiently
different. In real-world quark matter such stresses arise from the strange quark mass, which gives the strange quark
a lower Fermi momentum than the down quark at the same chemical potentials µ and µe, and from the neutrality
requirement, which gives the up quark a different chemical potential from the down and strange quarks at the same
µ and µe. Once flavor equilibrium under the weak interactions is reached, we find that all three flavors prefer to
have different Fermi momenta at the same chemical potentials. This is illustrated in Fig. 2, which shows the Fermi
momenta of the different species of quarks.

In the unpaired phase (Fig. 2, left panel), the strange quarks have a lower Fermi momentum because they are heavier,
and to maintain electrical neutrality the number of down quarks is correspondingly increased. To lowest order in the
strange quark mass, the separation between the Fermi momenta is δpF = M2

s /(4µ), so the splitting becomes larger as
the density is reduced, and smaller as the density is increased. The phase space at the Fermi surface is proportional to
µ2, so the resultant difference in quark number densities is nd−nu = nu−ns ∝ µ2δpF ∼ µM2

s . Electrons are also present
in weak equilibrium, with µe = M2

s /(4µ), so their charge density is parametrically of order µ3
e ∼ M6

s /µ3 " µM2
s ,

meaning that they are unimportant in maintaining neutrality.
In the CFL phase all the colors and flavors pair with each other, locking all their Fermi momenta together at a

common value (Fig. 2, right panel). This is possible as long as the energy cost of forcing all species to have the
same Fermi momentum is compensated by the pairing energy that is released by the formation of the Cooper pairs.
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FIG. 2: (Color online) Illustration of the splitting apart of the Fermi momenta of the various colors and flavors of quarks
(exaggerated for easy visibility). In the unpaired phase, requirements of neutrality and weak interaction equilibration cause
separation of the Fermi momenta of the various flavors. The splittings increase with decreasing density, as µ decreases and
Ms(µ) increases. In the 2SC phase, up and down quarks of two colors pair, locking their Fermi momenta together. In the CFL
phase, all colors and flavors pair and have a common Fermi momentum.

Still working to lowest order in M2
s , we can say that parametrically the cost is µ2δp2

F ∼ M4
s , and the pairing energy

is µ2∆2
CFL, so we expect CFL pairing to become disfavored when ∆CFL " M2

s /µ. In fact, the CFL phase remains
favored over the unpaired phase as long as ∆CFL > M2

s /4µ [85], but already becomes unstable against unpairing
when ∆CFL ! M2

s /2µ (see Sec. III B). NJL model calculations [85, 137–141] find that if the attractive interaction
were strong enough to induce a 100 MeV CFL gap when Ms = 0 then the CFL phase would survive all the way down
to the transition to nuclear matter. Otherwise, there must be a transition to some other quark matter phase: this
is the “non-CFL” region shown schematically in Fig. 1. When the stress is small, the CFL pairing can bend rather
than break, developing a condensate of K0 mesons, described in Sec. II C below. When the stress is larger, however,
CFL pairing becomes disfavored. A comprehensive survey of possible BCS pairing patterns shows that all of them
suffer from the stress of Fermi surface splitting [83], so in the intermediate-density “non-CFL” region we expect more
exotic non-BCS pairing patterns. In Sec. III we give a survey of possibilities that have been explored.

C. Kaon condensation: the CFL-K0 phase

Bedaque and Schäfer [142] showed that when the stress is not too large (high density), it may simply modify the
CFL pairing pattern by inducing a flavor rotation of the condensate. This modification can be interpreted as a
condensate of “K0” mesons. The K0 meson carries negative strangeness (it has the same strangeness as a s̄ quark),
so forming a K0 condensate relieves the stress on the CFL phase by reducing its strangeness content. At large density
kaon condensation occurs for Ms ! m1/3∆2/3, where m is mass of the light (u and d) quarks. At moderate density
the critical strange quark mass is increased by instanton contribution to the kaon mass [143]. Kaon condensation
was initially demonstrated using an effective theory of the Goldstone bosons, but with some effort can also be seen
in an NJL calculation [144, 145]. The CFL-K0 phase is a superfluid; it is a neutral insulator; all its quark modes are
gapped (as long as M2

s /(2µ) < ∆); it breaks chiral symmetry. In all these respects it is similar to the CFL phase.
Once we turn on small quark masses, different for all flavors, the SU(3)c+L+R symmetry of the CFL phase is reduced
by explicit symmetry breaking to just U(1)Q̃×U(1)Ỹ , with Ỹ a linear combination of a diagonal color generator and

hypercharge. In the CFL-K0 phase, the kaon condensate breaks U(1)Ỹ spontaneously. This modifies the spectrum
of both quarks and Goldstone modes, and thus can affect transport properties.



13

0 50 100 150 200
M2

S/µ [MeV]
-50

-40

-30

-20

-10

0

En
er

gy
 D

iff
er

en
ce

  [
10

6  M
eV

4 ]

gCFL

CFL

unpaired

2SC

g2SC

2PW

CubeX
2Cube45z

CFL-K0

curCFL-K0

FIG. 3: (Color online) Free energy of various phases of dense 3-flavor quark matter, assuming ∆CFL = 25 MeV. The homo-
geneous phases are CFL and 2SC, their gapless analogs gCFL and g2SC, and the kaon-condensed phase CFL-K0. The true
ground state must have a free energy below that of the gCFL phase, which is known to be unstable. The inhomogeneous
phases are curCFL-K0, which is CFL-K0 with meson supercurrents, and 2PW, CubeX, and 2Cube45z, which are crystalline
color superconducting phases. The transition from CFL-K0 to curCFL-K0 is marked with a dot. In 2PW the condensate is a
sum of only two plane waves. CubeX and 2Cube45z involve more plane waves, their condensation energies are larger but less
reliably determined, so their curves should be assumed to have error bands comparable in size to the difference between them.

III. BELOW CFL DENSITIES

As we discussed in the introduction (end of Sec. I A) and above (Sec. II B), at intermediate densities the CFL
phase suffers from stresses induced by the strange quark mass, combined with beta-equilibration and neutrality
requirements. It can only survive down to the transition to nuclear matter (occurring at quark chemical potential
µ = µnuc) if the pairing is strong enough: roughly ∆CFL > Ms(µnuc)2/2µnuc, ignoring strong interaction corrections,
which are presumably important in this regime. It is therefore quite possible that other pairing patterns occur at
intermediate densities, and in this section we survey some of the possibilities that have been suggested.

Fig. 3 shows a comparison of the free energies of some of these phases. We have chosen ∆CFL = 25 MeV, so there
is a window of non-CFL pairing between nuclear density and the region where the CFL phase becomes stable. (For
stronger pairing, ∆CFL ∼ 100 MeV, there would be no such window.) The curves for the CFL, 2SC, gCFL, g2SC,
and crystalline phases (2PW, CubeX and 2Cube45z) are obtained from an NJL model as described in Sec. VI. The
curves for the CFL-K0 and meson supercurrent (curCFL-K0) phases are calculated using the CFL effective theory
with parameters chosen by matching to weak-coupling QCD, as described in Sec. V, except that the gap was chosen
to match ∆CFL = 25 MeV. The phases displayed in Fig. 3 are discussed in the following sections.

A. Two-flavor pairing: the 2SC phase

After CFL, 2SC is the most straightforward less-symmetrically paired form of quark matter, and was one of the
first patterns to be analyzed [18, 20, 21, 24, 25]. In the 2SC phase, quarks with two out of three colors (red and green,
say) and two out of three flavors, pair in the standard BCS fashion. The flavors with the most phase space near their
Fermi surfaces, namely u and d, are the ones that pair, leaving the strange and blue quarks unpaired (middle panel
of Fig. 2). According to NJL models, if the coupling is weak then there is no 2SC region in the phase diagram [146].
This can be understood by an expansion in powers of Ms, which finds that the CFL→2SC transition occurs at the
same point as the 2SC→unpaired transition, leaving no 2SC window [85] (this is the situation in Fig. 3). However,
NJL models with stronger coupling leave open the possibility of a 2SC window in the “non-CFL” region of the phase
diagram [141, 147]. (These calculations have to date not included the possibility of meson current or crystalline color
superconducting phases, discussed below, that may prove more favorable.)
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The 2SC pairing pattern, corresponding to φA
B = δA

3 δ
3
B in (8), is 〈ψαi Cγ5ψ

β
j 〉 ∝ ∆2SCεij3εαβ3, where the symmetry

breaking pattern, assuming massless up and down quarks, is

[SU(3)c]× SU(2)L × SU(2)R × U(1)B × U(1)S
︸ ︷︷ ︸

⊃ [U(1)Q]

→ [SU(2)rg]× SU(2)L × SU(2)R × U(1)B̃ × U(1)S
︸ ︷︷ ︸

⊃ [U(1)Q̃]

(9)

using the same notation as in Eq. (6). The unpaired massive strange quarks introduce a U(1)S symmetry. The color
SU(3)c gauge symmetry is broken down to an SU(2)rg red-green gauge symmetry, whose confinement distance rises
exponentially with density, as ∆−1 exp(constµ/(g∆)) [148] (see also [149, 150]). An interesting feature of 2SC pairing
is that no global symmetries are broken. The condensate is a singlet of the SU(2)L × SU(2)R flavor symmetry, and
baryon number survives as B̃, a linear combination of the original baryon number and the broken diagonal T8 color
generator. Electromagnetism, originally a linear combination of B, S, and I3 (isospin), survives as an unbroken linear
combination Q̃ of B̃, S, and I3. 2SC quark matter is therefore a color superconductor but is neither a superfluid nor
an electromagnetic superconductor, and there is no order parameter that distinguishes it from the unpaired phase or
the QGP [24]. With respect to the unbroken U(1)Q̃ gauge symmetry, the 2SC phase is a conductor not an insulator

because some of the ungapped blue and strange quarks are Q̃-charged.

B. The unstable gapless phases

As was noted in Sec. II B, and can be seen in Fig. 3, the CFL phase becomes unstable when µ ≈ 1
2M2

s /∆CFL.
At this point the pairing in the gs-bd sector suffers the instability discussed in Sec. I E, and it becomes energetically
favorable to convert gs quarks into bd quarks (both near their common Fermi momentum).3 If we restrict ourselves
to diquark condensates that are spatially homogeneous, the result is a modification of the pairing in which there is
still pairing in all the color-flavor channels that characterize CFL, but gs-bd Cooper pairing ceases to occur in a range
of momenta near the Fermi surface [91, 137, 138]. In this range of momenta there are bd quarks but no gs quarks,
and quark modes at the edges of this range are ungapped, hence this is called a gapless phase (“gCFL”). Such a
phenomenon was first proposed for two flavor quark matter (“g2SC”) [151], see also [152]. It has been confirmed
in NJL analyses such as those in [91, 137–139, 141, 147, 153–155], which predict that at densities too low for CFL
pairing there will be gapless phases.

In Fig. 3, where ∆CFL = 25 MeV, we see the transition from CFL to gCFL at M2
s /µ ≈ 2∆CFL = 50 MeV. (It is

interesting to note that, whereas the CFL phase is a Q̃-insulator, the gCFL phase is a Q̃-conductor, because it has
a small electron density, balanced by unpaired bu quarks from a very thin momentum shell of broken bu-rs pairing;
the CFL→gCFL transition is the analogue of an insulator to metal transition at which a “band” that was unfilled
in the insulating phase drops below the Fermi energy, making the material a metal.) The gCFL phase then remains
favored beyond the value M2

s /µ ≈ 4∆CFL = 100 MeV at which the CFL phase would become unfavored relative to
completely unpaired quark matter [85].

However, it turns out that in QCD the gapless phases, both g2SC [156, 157] and gCFL [158, 159], are unstable at
zero temperature. (Increasing the temperature above a critical value removes the instability; the critical value varies
dramatically between phases, from a fraction of an MeV to of order 10 MeV [159].) The instability manifests itself
in an imaginary Meissner mass mM for some of the gluons. m2

M is the low-momentum current-current two-point
function, and m2

M/(g2∆2) (where the strong interaction coupling is g) is the coefficient of the gradient term in the
effective theory of small fluctuations around the ground-state condensate, so a negative value indicates an instability
towards spontaneous breaking of translational invariance [160–164]. Calculations in a simple two-species model [93]
show that gapless charged fermionic modes generically lead to imaginary mM .

The instability of the gapless phases indicates that there must be other phases of even lower free energy, that occur
in their place in the phase diagram. The nature of those phases is not reliably determined at present; likely candidates
are discussed below.

3 The onset of gaplessness occurs at the µ at which 1
2
(µbd − µgs) = ∆CFL, as explained in Sec. I E. Note that in the CFL phase

(µbd − µgs) = M2
s /µ, twice its value in unpaired quark matter because of the nonzero color chemical potential µ8 ∝ M2

s /µ required by
color neutrality in the presence of CFL pairing [85, 146].
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C. Crystalline color superconductivity

The Meissner instability of the gCFL phase points to a breaking of translational invariance, and crystalline color
superconductivity represents a possible resolution of that instability. The basic idea, first proposed in condensed
matter physics [165, 166] and more recently analyzed in the context of color superconductivity [167–169], is to allow
the different quark flavors to have different Fermi momenta, thus accommodating the stress of the strange quark
mass, and to form Cooper pairs with nonzero momentum, each quark lying close to its respective Fermi surface. The
price one must pay for this arrangement is that only fermions in certain regions on the Fermi surface can pair. Pairs
with nonzero momenta chosen from some set of wave vectors qa yield condensates that vary in position space like
∑

a exp(iqa · x), forming a crystalline pattern whose Bravais lattice is the set of qa.
Analyses to date have focused on u-d and u-s pairing, neglecting pairing of d and s because the separation of their

Fermi momenta is twice as large (Fig. 2). If the 〈ud〉 condensate includes only pairs with a single nonzero momentum
q, this means that in position space the condensate is a single plane-wave and means that in momentum space pairing
is allowed on a single ring on the u Fermi surface and a single ring on the opposite side of the d Fermi surface.
The simplest “crystalline” phase of three-flavor quark matter that has been analyzed [170, 171] includes two such
single-plane wave condensates (“2PW”), one 〈ud〉 and one 〈us〉. The favored orientation of the two q’s is parallel,
keeping the two “pairing rings” on the u Fermi surface (from the 〈us〉 and 〈ud〉 condensates) as far apart as possible
[171]. This simple pattern of pairing leaves much of the Fermi surfaces unpaired, and it is much more favorable to
choose a pattern in which the 〈us〉 and 〈ud〉 condensates each include pairs with more than one q-vector, thus more
than one ring and more than one plane wave. Among such more realistic pairing patterns, the two that appear most
favorable have either four q’s per condensate that together point at the eight corners of a cube in momentum space
(“CubeX”) or eight q’s per condensate that each point at the corners of separate cubes, rotated relative to each other
by 45 degrees (“2Cube45z”) [172]. It has been shown that the chromomagnetic instability is no longer present in
these phases [173]. The free energies of the 2PW, CubeX and 2Cube45z phases as calculated within an NJL model
(see Sec. VI) are shown in Fig. 3. The calculation is an expansion in powers of (∆/δpF )2 which in the CubeX and
2Cube45z phases turns out to be of order a tenth to a quarter. According to results obtained in a calculation done to
third order in this expansion parameter, the CubeX and 2Cube45z condensation energies are large enough that one
or other of them is favored over a wide range of M2

s /µ as illustrated in Fig. 3. The uncertainty in each is of the same
order as the difference between them, so one cannot yet say which is favored, but the overall scale is plausible (one
would expect condensation energies an order of magnitude bigger than that of the 2PW state). We discuss crystalline
color superconductivity in greater detail in Sec. VI.

D. Meson supercurrent (“curCFL-K0”)

Kaon condensation alone does not remove the gapless modes that occur in the CFL phase when Ms becomes
large enough, but it does affect the number of gapless modes and the onset value of Ms. In the CFL-K0 phase,
the electrically charged (bs) mode becomes gapless at M2

s /µ ≈ 8∆/3 (compared to 2∆ in the CFL phase), and the
electrically neutral (bd) mode becomes gapless for M2

s /µ ≈ 4∆ [174, 175]. (In an NJL model analysis [145], the
charged mode in the CFL-K0 phase becomes gapless at M2

s /µ ≈ 2.44∆ for ∆ = 25 MeV as in Fig. 3). The gapless
CFL-K0 phase has an instability which is similar to the instability of the gCFL phase. This instability can be viewed
as a tendency towards spontaneous generation of Goldstone boson (kaon) currents [176, 177]. The currents correspond
to a spatial modulation of the kaon condensate. There is no net transfer of any charge because the Goldstone boson
current is counterbalanced by a backflow of ungapped fermions. The meson supercurrent ground state is lower in
energy than the CFL-K0 state and the magnetic screening masses are real [178]. Because the ungapped fermion
mode is electrically charged, both the magnitude of the Goldstone boson current needed to stabilize the phase and
the magnitude of the resulting energy gain relative to the phase without a current are very small. Goldstone boson
currents can also be generated in the gCFL phase without K0 condensation. In this case gauge invariance implies
that the supercurrent state is equivalent to a single plane-wave LOFF state, but the analyses can be carried out in
the limit that the gap is large compared to the magnitude of the current [179]. This analysis is valid near the onset
of the gCFL phase, but not for larger mismatches, where states with multiple currents are favored.

E. Single-flavor pairing

If the stress due to the strange quark mass is large enough then there may be a range of quark matter densities
where no pairing between different flavors is possible, whether spatially uniform or inhomogeneous. From Fig. 3 we
can estimate that this will occur when M2

s /(µ∆CFL) ! 10, so it requires a large effective strange quark mass and/or
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small CFL pairing gap. The best available option in this case is Cooper pairing of each flavor with itself. Single-flavor
pairing may also arise among the strange quarks in a 2SC phase, since they are not involved in two-flavor pairing.
We will discuss these cases separately below.

To maintain fermionic antisymmetry of the Cooper pair wavefunction, single-flavor pairing phases have to either
be symmetric in color, which greatly weakens or eliminates the attractive interaction, or symmetric in Dirac indices,
which compromises the uniform participation of the whole Fermi sphere. As a result, they have much lower critical
temperatures than multi-flavor phases such as the CFL or 2SC phases, perhaps as large as a few MeV, more typically
in the eV to many keV range [24, 130–133, 180].

Matter in which each flavor only pairs with itself has been studied using NJL models and weakly-coupled QCD. These
calculations agree that the energetically favored state is color-spin-locked (CSL) pairing for each flavor [20, 130, 180].
CSL pairing involves all 3 colors, with the color direction of each Cooper pair correlated with its spin direction,
breaking SU(3)c × SO(3)rot → SO(3)c+rot. The phase is isotropic, with rotational symmetry surviving as a group
of simultaneous spatial and color rotations. Other possible phases exhibiting spin-one, single-flavor, pairing include
the polar, planar, and A phases described in [130, 180] (for an NJL model treatment see [132]). Some of these phases
exhibit point or line nodes in the energy gap at the Fermi surface, and hence do break rotational symmetry.

If 2SC pairing occurs with strange quarks present, one might expect the strange quarks of all three colors to undergo
CSL self-pairing, yielding an isotropic “2SC+CSL” pattern. However, the 2SC pattern breaks the color symmetry,
and in order to maintain color neutrality, a color chemical potential is generated, which splits the Fermi momentum of
the blue strange quarks away from that of the red and green strange quarks. This is a small effect, but so is the CSL
pairing gap, and NJL model calculations indicate that the color chemical potential typically destroys CSL pairing of
the strange quarks [181]. The system falls back on the next best alternative, which is spin-one pairing of the red and
green strange quarks.

Because their gaps and critical temperatures can range as low as the eV scale, single-flavor pairing phases in
compact stars would appear relatively late in the life of the star, and might cause dramatic changes in its behavior.
For example, unlike the CFL and 2SC phases, many single-flavor-paired phases are electrical superconductors [182],
so their appearance could significantly affect the magnetic field dynamics of the star.

F. Gluon condensation

In the 2SC phase (unlike in the CFL phase) the magnetic instability arises at a lower value of the stress on
the BCS pairing than that at which the onset of gapless pairing occurs. In this 2SC regime, analyses done using a
Ginzburg-Landau approach indicate that the instability can be cured by the appearance of a chromoelectric condensate
[183–186]. The 2SC condensate breaks the color group down to the SU(2)rg red-green subgroup, and five of the gluons
become massive vector bosons via the Higgs mechanism. The new condensate involves some of these massive vector
bosons, and because they transform non-trivially under SU(2)rg it now breaks that gauge symmetry. Because they are
electrically charged vector particles, rotational symmetry is also broken, and the phase is an electrical superconductor.
Alternatively, it has been suggested [187] that the gluon condensate may be inhomogeneous with a large spontaneously-
induced Q̃ magnetic field.

G. Secondary pairing

Since the Meissner instability is generically associated with the presence of gapless fermionic modes, and the BCS
mechanism implies that any gapless fermionic mode is unstable to Cooper pairing in the most attractive channel, one
may ask whether the instability could be resolved without introducing spatial inhomogeneity simply by “secondary
pairing” of the gapless quasiparticles, which would then acquire their own gap ∆s [188, 189]. Furthermore, there is
a mode in the gCFL phase whose dispersion relation is well approximated as quadratic, ε ∝ (k − const)2, yielding a
greatly increased density of states at low energy (diverging as ε−1/2), so its secondary pairing is much stronger than
would be predicted by BCS theory: ∆s ∝ G2 for an effective four-fermion coupling strength G, as compared with
the standard BCS result ∆ ∝ exp(−const/G) [188]. This result is confirmed by an NJL study in a two-species model
[190], but the secondary gap ∆s was found to be still much smaller than the primary gap ∆p, so it does not generically
resolve the magnetic instability (in the temperature range ∆s " T " ∆p, for example).



17

H. Mixed phases

Another way for a system to deal with a stress on its pairing pattern is to form a mixed phase, which is a charge-
separated state consisting of positively and negatively charged domains which are neutral on average. The coexisting
phases have a common pressure and a common value of the charge chemical potential which is not equal to the
neutrality value for either phase [191, 192]. The size of the domains is determined by a balance between surface
tension (which favors large domains) and electric field energy (which favors small domains). Separation of color
charge is expected to be suppressed by the very high energy cost of color electric fields, but electric charge separation
is quite possible, and may occur at the interface between color-superconducting quark matter and nuclear matter
[193] and an interface between quark matter and the vacuum [194, 195], just as it occurs at interfaces between nuclear
matter and a nucleon gas [191]. Mixed phases are a generic phenomenon, since, in the approximation where Coulomb
energy costs are neglected, any phase can always lower its free energy density by becoming charged (this follows from
the fact that free energies are concave functions of chemical potentials). In this approximation, if two phases A and
B can coexist at the same pressure with opposite charge densities then such a mixture will always be favored over a
uniform neutral phase of either A or B. For a pedagogical discussion, see [137]. Surface and Coulomb energy costs
can cancel this energy advantage, however, and have to be calculated on a case-by-case basis.

In quark matter it has been found that as long as we require local color neutrality such mixed phases are not the
favored response to the stress imposed by the strange quark mass [91, 153]. Phases involving color charge separation
have been studied [196] but it seems likely that the energy cost of the color-electric fields will disfavor them.

I. Relation to cold atomic gases

An interesting class of systems in which stressed superconductivity can be studied experimentally is trapped atomic
gases in which two different hyperfine states (“species”) of the atom pair with each other [197]. This is a useful
experimental model because the stress and interaction strength are both under experimental control, unlike quark
matter where one physical variable (µ) controls both the coupling strength and the stress. The atomic pairing stress
can be adjusted by changing the relative number of atoms of the two species (“polarization”). The scattering length
of the atoms can be controlled using Feshbach resonances, making it possible to vary the strength of the inter-atomic
attraction from weak (where BCS pairing occurs) through the unitarity limit (where a bound state forms) to strong
(Bose-Einstein condensation of diatomic molecules).

The theoretical expectation is that, in the weak coupling limit, there will be BCS pairing as long as δµ, the chemical
potential difference between the species, is small enough. The BCS phase is unpolarized because the Fermi surfaces
are locked together. A first-order transition from BCS to crystalline (LOFF) pairing is expected at δµ = ∆0/

√
2,

where ∆0 is the BCS gap at δµ = 0; then at δµc a continuous transition to the unpaired phase [89, 90, 165, 166]. For
the single plane wave LOFF state δµc 2 0.754∆0, but for multiple plane wave states δµc may be larger.

Experiments with cold trapped atoms near the unitary limit (strong coupling) have seen phase separation between
an unpolarized superfluid and a polarized normal state [198–200]. If one ignores the crystalline phase (perhaps only
favored at weak coupling [201–203]) this is consistent with the theoretical expectation for the BCS regime: the net
polarization forces the system to phase separate, yielding a mixture of BCS and unpaired phases with δµ fixed at
the first order transition between them [204, 205]. It remains an exciting possibility that crystalline superconducting
(LOFF) phases of cold atoms may be observed: this may require experiments closer to the BCS regime.

In the strong coupling limit the superfluid consists of tightly bound molecules. Adding an extra atom requires
energy ∆. For |δµ| > ∆ the atomic gas is a homogeneous mixture of an unpolarized superfluid and a fully polarized
Fermi gas, so the system is a stable gapless superfluid. This means that in strong coupling polarization can be carried
by a gapless superfluid, whereas in weak coupling even a small amount of polarization leads to the appearance of
a mixed BCS/LOFF phase. It is not known what happens at intermediate coupling, but one possibility is that the
gapless superfluid and the LOFF phase are connected by a phase transition [206]. This transition would correspond
to a magnetic instability of the gapless superfluid.

IV. WEAK-COUPLING QCD CALCULATIONS

We have asserted in Secs. I and II that at sufficiently high densities it is possible to do controlled calculations of
properties of CFL quark matter directly from the QCD Lagrangian. We describe how to do such calculations in this
section. We shall focus on the calculation of the gap parameter, but shall also discuss the critical temperature Tc for
the transition from the CFL phase to the quark-gluon plasma and the Meissner and Debye masses that control color-
magnetic and color-electric effects in the CFL phase. Phenomena that are governed by the massless Goldstone bosons
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and/or the light pseudo-Goldstone bosons are most naturally described by first constructing the appropriate effective
theory and then, if at sufficiently high densities, calculating its parameters directly from the QCD Lagrangian. We
defer these analyses to Sec. V.

Although the weak-coupling calculations that we describe in this section are only directly applicable in the CFL
phase, we shall present them in a sufficiently general formalism that they can be applied to other spatially homogeneous
phases also, including for example the 2SC and CSL phases. These phases can be analyzed at weak-coupling either
just by ansatz, or by introducing such a large strange quark mass that CFL pairing is disfavored even at enormous
densities. Such calculations provide insights into the properties of these phases, even though they do not occur in the
QCD phase diagram at high enough densities for a weak-coupling approach to be applicable. To keep our notation
general, we shall refer to the gap parameter as ∆; in the CFL phase, ∆CFL ≡ ∆.

We shall see that at weak coupling the expansion parameter that controls the calculation of log(∆/µ) is at best g,
certainly not g2. (The leading term is of order 1/g; the log g and g0 terms have also been calculated. The O(g log g)
and O(g) terms are nonzero, and have not yet been calculated. Beyond O(g), it is possible that fractional powers
of g may arise in the series.) We therefore expect the weak-coupling calculations to be quantitatively reliable only
at densities for which g(µ) < 1, which corresponds to densities many orders of magnitude greater than that at the
centers of neutron stars. Indeed, it has been shown [207] that some of the O(g) contributions start to decline in
magnitude relative to the g0 term only for g(µ) " 0.8 which corresponds, via the two-loop QCD beta function, to
µ ! 108 MeV meaning densities 15-16 orders of magnitude greater than those at the centers of compact stars. The
reader may therefore be tempted to see this section as academic. From a theoretical point of view, it is exceptional
to have an instance where the properties of a superconducting phase can be calculated rigorously from a fundamental
short-distance theory, making this exploration a worthy pursuit even if academic. From a practical point of view,
the quantitative understanding that we derive from calculations reviewed in this section provides a completely solid
foundation from which we can extrapolate downwards in µ. The effective field theory described in Sec. V gives us
a well-defined way of doing so as long as we stay within the CFL phase, meaning that we can come down from
µ > 108 MeV all the way down to µ ∼ M2

s /(2∆CFL). Finally, we shall gain qualitative insights into the CFL phase
and other color superconducting phases, insights that guide our thinking at lower densities.

The QCD Lagrangian is given by

L = ψ(iγµDµ + µ̂γ0 − m̂)ψ −
1

4
Gµν

a Ga
µν . (10)

Here, ψ is the quark spinor in Dirac, color, and flavor space, i.e., a 4NcNf -component spinor, and ψ ≡ ψ†γ0. The
covariant derivative acting on the fermion field is Dµ = ∂µ + igTaAa

µ, where g is the strong coupling constant, Aa
µ are

the gauge fields, T a = λa/2 (a = 1, . . . , 8) are the generators of the gauge group SU(3)c, and λa are the Gell-Mann
matrices. The field strength tensor is Gµν

a = ∂µAa
ν − ∂νAa

µ + gfabcAb
µAc

ν with the SU(3)c structure constants fabc.
The chemical potential µ̂ and the quark mass m̂ = diag(mu, md, ms) are diagonal matrices in flavor space. If weak
interactions are taken into account flavor is no longer conserved and there are only two chemical potentials, one for
quark (baryon) number, µ, and one for electric charge, µe. At the very high densities of interest in this section, the
constituent quark masses are essentially the same as the current quark masses mu, md and ms meaning that we need
not distinguish between them. Furthermore, at asymptotic densities we can neglect even the strange quark mass, so
throughout most of this section we shall set mu = md = ms = 0.

If the coupling is small then the natural starting point is a free Fermi gas of quarks. In a degenerate quark gas
all states with momenta p < pF = (µ2 − m2

q)
1/2 are occupied, and all states with p > pF are empty. Because of

Pauli-blocking, interactions mainly modify states in the vicinity of the Fermi surface. Since the Fermi momentum is
large, typical interactions between quarks near the Fermi surface involve large momentum transfer and are governed
by the weak coupling g(µ). Interactions in which quarks scatter by only a small angle involve only a small momentum
transfer and are therefore potentially dangerous. However, small momenta correspond to large distances, and medium
modifications of the exchanged gluons are therefore important. In a dense medium, electric gluons are Debye screened
at momenta q ∼ gµ. The dominant interaction for momenta below the screening scale is due to unscreened, almost
static, magnetic gluons. In a hot quark-gluon gas, interactions between magnetic gluons become nonperturbative for
momenta less than g2T . This phenomenon does not take place in a very dense quark liquid, and gluon exchanges
with arbitrarily small momenta remain perturbative. On a qualitative level this can be attributed to the absence
of Bose enhancement factors in soft gluon propagators. A more detailed explanation will be given in Sec. VA 2.
The unscreened magnetic interactions nevertheless make the fluid a “non-Fermi liquid” at temperatures above the
critical temperature for color superconductivity. We shall discuss this also in Sec. V A2, where we shall see that these
non-Fermi liquid effects do not spoil the basic logic of the BCS argument that diquark condensation must occur in
the presence of an attractive interaction, but are crucial in the calculation of the gap that results.
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A. The gap equation

As discussed in Sec. I B, any attractive interaction in a many-fermion system leads to Cooper pairing. QCD at high
density provides an attractive interaction via one-gluon exchange. In terms of quark representations of SU(3)c, the
attractive channel is the antisymmetric anti-triplet 3̄A, appearing by “pairing” two color triplets: 3 ⊗ 3 = 3̄A ⊕ 6S .
Consequently, only quarks of different colors form Cooper pairs. There is an induced pairing in the symmetric sextet
channel 6S . However, this pairing is much weaker [26, 94, 106, 107, 124], and we shall largely neglect it in the
following. As in an electronic superconductor, Cooper pairing results in an energy gap in the quasiparticle excitation
spectrum. Its magnitude at zero temperature ∆ is crucial for the phenomenology of a superconductor. In addition,
it also sets the scale for the critical temperature Tc of the phase transition which can be expected to be of the same
order as ∆ (in BCS theory, Tc = 0.57∆). Over the course of the next five subsections, we shall discuss the QCD gap
equation, which is used to determine both ∆ and Tc.

Our starting point is the partition function

Z =

∫

DADψDψ eiS , (11)

with the action S =
∫

d4xL and the Lagrangian (10). In the following we shall only sketch the derivation of the gap
equation. Details following the same lines can be found in [36, 63, 133, 180, 208–210].

We begin by introducing Nambu-Gorkov spinors. This additional two-dimensional structure proves convenient in
the theoretical description of a superconductor or a superfluid, see for instance [211, 212]. It allows for the introduction
of a source that couples to quark bilinears (as opposed to quark-anti-quark bilinears). Spontaneous symmetry breaking
is realized by taking the limit of a vanishing source. The Nambu-Gorkov basis is given by

Ψ =

(

ψ
ψC

)

, Ψ = (ψ, ψC) , (12)

where ψC = Cψ
T

is the charge-conjugate spinor, obtained by multiplication with the charge conjugation matrix
C ≡ iγ2γ0. In a free fermion system, the new basis is a pure doubling of degrees of freedom with the inverse fermion
propagator consisting of the original free propagators,

S−1
0 =

(

[G+
0 ]−1 0
0 [G−

0 ]−1

)

(13)

where [G±
0 ]−1(X, Y ) ≡ −i (iγµ∂µ ± µγ0) δ(4)(X − Y ). Here and in the following capital letters denote four-vectors,

e.g., X ≡ (x0,x). The effect of a nonzero diquark condensate can now be taken into account through adding a suitable
source term to the action and computing the effective action Γ as a functional of the gluon and fermion propagators
D and S [36, 210, 213–216]:

Γ[D, S] = −
1

2
Tr log D−1 −

1

2
Tr(D−1

0 D − 1) +
1

2
Tr log S−1 +

1

2
Tr(S−1

0 S − 1) + Γ2[D, S] . (14)

This functional is called the “2PI effective action” since the contribution Γ2[D, S] consists of all two-particle irreducible
diagrams [217–219]. This formalism is particularly suitable for studying spontaneous symmetry breaking in a self-
consistent way. The ground state of the system is obtained by finding the stationary point of the effective action.
The stationarity conditions yield Dyson-Schwinger equations for the gauge boson and fermion propagators,

D−1 = D−1
0 +Π , (15a)

S−1 = S−1
0 +Σ , (15b)

where the gluon and fermion self-energies are the functional derivatives of Γ2 at the stationary point,

Π ≡ −2
δΓ2

δD
, Σ ≡ 2

δΓ2

δS
. (16)

Writing the second of these equations as Γ2[S] = (1/4)Tr(ΣS), we can then use the Dyson-Schwinger equation (15b)
to evaluate the fermionic part of the effective action at the stationary point, obtaining the pressure

P =
1

2
Tr log S−1 −

1

4
Tr

(

1− S−1
0 S

)

. (17)
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We shall return to this expression for the pressure in Sec. IVC.
Here, we proceed to analyze the Dyson-Schwinger equation (15b) for the fermion propagator. We denote the entries

of the 2×2 matrix Σ in Nambu-Gorkov space as

Σ ≡
(

Σ+ Φ−

Φ+ Σ−

)

, (18)

where the off-diagonal elements are related via Φ− = γ0(Φ+)†γ0. One can invert the Dyson-Schwinger equation
formally to obtain the full fermion propagator in the form

S =

(

G+ F−

F+ G−

)

, (19)

where the fermion propagators for quasiparticles and charge-conjugate quasiparticles are

G± =
{

[G±
0 ]−1 +Σ± − Φ∓([G∓

0 ]−1 +Σ∓)−1Φ±}−1
, (20)

and the so-called anomalous propagators, typical for a superconducting system, are given by

F± = −([G∓
0 ]−1 +Σ∓)−1Φ±G± . (21)

They can be thought of as describing the propagation of a charge-conjugate particle (i.e., a hole) with propagator
([G−

0 ]−1 + Σ−)−1 that is converted into a particle with propagator G+, via the condensate Φ+. (Or, a particle that
is converted into a hole via the condensate.) The essence of superconductivity or superfluidity is the existence of
a difermion condensate that makes the quasiparticle excitations superpositions of elementary states with fermion-
number . . . ,−5,−3,−1, 1, 3, 5, . . .; we see the formalism accommodating this phenomenon here.

We shall approximate Γ2 by only taking into account two-loop diagrams. Upon taking the functional derivative
with respect to S, this corresponds to a one-loop self-energy Σ. We show Σ diagrammatically in Fig. 4. We shall
argue later that this approximation is sufficient to calculate log(∆/µ) up to terms of order g0. Upon making this
approximation, the gap equation takes the form shown in the lower panel of Fig. 4, namely

Φ+(K) = g2

∫

Q
γµ T T

a F+(Q) γν Tb Dab
µν(K −Q) , (22)

in momentum space, where Dab
µν(K −Q) is the gluon propagator.

Note that in the derivation of the gap equation we have assumed the system to be translationally invariant.
This assumption fails for crystalline color superconductors, see Sec. VI. There has been some work on analyzing
a particularly simple crystalline phase in QCD at asymptotically high densities and weak coupling [220], but the
formalism we are employing does not allow us to incorporate it into our presentation and, anyway, this subject
remains to date largely unexplored.

B. Quasiparticle excitations

Before we proceed with solving the gap equation, it is worthwhile to derive the dispersion relations for the fermionic
quasiparticle excitations in a color superconductor. That is, we suppose that the gap parameter(s) ∆ have been
obtained in the manner that we shall describe below and ask what are the consequences for the quasiparticle dispersion
relations. Based on experience with ordinary superconductors or superfluids, we expect (and shall find) gaps in the
dispersion relations for the fermionic quasiparticles. We may also expect that in some color superconducting phases,
quasiparticles with different colors and flavors, or different linear combinations of color and flavor, differ in their gaps
and dispersion relations. Indeed, some gaps may vanish or may be nonzero only in certain directions in momentum
space.

The quasiparticle dispersion relations are encoded within the anomalous self-energy Φ+, defined in (18), which
satisfies the gap equation (22). We shall assume that Φ+ can be written in the form

Φ+(K) =
∑

e=±
∆(e)(K)MΛ(e)

k , (23)

where M is a matrix in color, flavor and Dirac space, and Λ(e)
k ≡ (1+ eγ0γ · k̂)/2 are projectors onto states of positive

(e = +) or negative (e = −) energy. The corresponding gap functions are denoted as ∆(e)(K) and will be determined



21

Σ =











































=

FIG. 4: Upper panel: Diagrammatic representation of the quark self-energy in Nambu-Gorkov space. Curly lines correspond to
the gluon propagator D. The quasiparticle propagators G+ and G− are denoted by double lines with an arrow pointing to the
left and right, respectively. The anomalous propagators F± in the off-diagonal entries are drawn according to their structure
given in Eq. (21): thin lines correspond to the term ([G∓

0 ]−1 + Σ∓)−1, while the cross-hatched and hatched circles denote the
gap matrices Φ+ and Φ−, respectively. Lower panel: The QCD gap equation (22) is obtained by equating Φ+ with the lower
left entry of the self-energy depicted in the upper panel (the other off-diagonal component yields an equivalent equation for
Φ−).

by the gap equation. Here and in the following the energy superscript is denoted in parentheses to distinguish it
from the superscript that denotes components in Nambu-Gorkov space. In our presentation we shall assume that M
is momentum-independent, corresponding to a condensate of Cooper pairs with angular momentum J = 0, but the
formalism can easily be extended to allow a momentum-dependent Mk as required for example in the analysis of the
CSL phase and we shall quote results for this case also. Note that in Eq. (23) we are assuming that every nonzero
entry in M is associated with the same gap functions ∆(e); the formalism would have to be generalized to analyze
phases in which there is more than one independent gap function, as for example in the gCFL phase.

We shall analyze color superconducting phases whose color, flavor and Dirac structure takes the form

Mαβ
ij = φB

Aε
αβA εijB γ5 , (24)

where the γ5 Dirac structure selects a positive parity condensate, where, as described in Secs. I and II, the antisym-
metric color matrix is favored since QCD is attractive in this channel and the antisymmetric flavor matrix is then
required, and where φ is a 3×3 matrix. We note that because the full flavor symmetry is the chiral SU(3)L×SU(3)R

symmetry, the matrix φ is actually a pair (φL, φR). In this section we shall assume φR = φL. The case φR *= φL,
which corresponds to a meson condensate in the CFL phase, is discussed in Sec. VC.

The excitation spectrum is given by the poles of the propagator S in (19). (We shall see that the diagonal and
the off-diagonal entries in S have the same poles.) It will turn out that the Hermitian matrix MM† determines
which quasiparticles are gapped and determines the ratios among the magnitudes of (possibly) different gaps. It is
convenient to write this matrix via its spectral representation

MM† =
∑

r

λr Pr , (25)

where λr are the eigenvalues and Pr the projectors onto the corresponding eigenstates.
The final preparation that we must discuss prior to computing the propagator is that we approximate the diagonal

elements of the quark self-energy as [63, 221, 222]

Σ± 2 γ0Λ
(±)
k

g2

18π2
k0 log

48e2m2
g

π2k2
0

, (26)

where m2
g = Nfg2µ2/(6π2) is the square of the effective gluon mass at finite density, and e is the Euler constant. The

expression (26) is the low energy approximation to the one-loop self-energy, valid for k0 ∼ ∆" mg, for the positive
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energy (e = +) states. Taking the low energy approximation to Σ± and neglecting the self-energy correction to the
negative energy states will prove sufficient to determine log(∆/µ) up to order g0.

With all the groundwork in place, we now insert G0, Σ from (26), and Φ from (23) into (20) and (21), and hence
(19), and use (25) to simplify the result. We find that the diagonal entries in the fermion propagator S are given by

G± =
(
[

G∓
0

]−1
+Σ∓

)∑

e,r

Pr Λ
(∓e)
k

[

k0/Z(e)(k0)
]2 −

[

ε(e)k,r

]2 , (27)

while the anomalous propagators are

F+(K) = −
∑

e,r

γ0 M γ0 PrΛ
(−e)
k ∆(e)

[

k0/Z(e)(k0)
]2 −

[

ε(e)k,r

]2 , (28a)

F−(K) = −
∑

e,r

M† PrΛ
(e)
k (∆(e))∗

[

k0/Z(e)(k0)
]2 −

[

ε(e)k,r

]2 . (28b)

In writing these expressions, we have defined the wave function renormalization factor

Z(+)(k0) ≡

(

1 +
g2

18π2
log

48e2m2
g

π2k2
0

)−1

, (29)

for the positive energy e = + components, originating from the self-energy (26). (By neglecting the negative energy
contribution to Σ± in (26), we are setting the negative energy wave function renormalization Z(−)(k0) = 1.) We have
furthermore defined

ε(e)k,r ≡
√

(ek − µ)2 + λr |∆(e)|2 . (30)

The r’th quasiparticle and antiquasiparticle energies are then given by solving k0 = Z(e)(k0)ε
(e)
k,r for k0. To leading

order in g, wave function renormalization can be neglected and the quasiparticle and antiquasiparticle energies are

given by the ε(e)k,r themselves. We see from (30) that the antiparticles have ε > µ — in fact, for k near µ they have
ε ∼ 2µ. They therefore never play an important role at high density. This justifies our neglect of the negative
energy Σ± and hence of Z(−). And, it justifies the further simplification that we shall henceforth employ, setting the
antiparticle gap to zero, ∆(−) = 0, and denoting ∆ ≡ ∆(+). We shall also use the notation Z(k0) ≡ Z(+)(k0) and

εk,r ≡ ε(+)
k,r . We then see that the minimum value of εk,r occurs at the Fermi surface, where k = µ, and is given by√

λr∆ which is conventionally referred to as the gap, again neglecting wave function renormalization. We see that
although we must solve the gap equation in order to determine the magnitude of the gap parameter ∆, as we will
do in Secs. IVD and IV E, the ratios among the actual gaps in the quasiparticle spectra that result are determined
entirely by the λr ’s, namely the eigenvalues of MM†.

We close this subsection by evaluating the pattern of quasiparticle gaps explicitly for the CFL and 2SC phases. We
list the order parameters φB

A , eigenvalues λr, and corresponding projectors Pr for these two phases in Table I. In the
CFL phase, one finds the eigenvalues λ1 = 4 with degeneracy Tr[P1] = 1 and λ2 = 1 with degeneracy Tr[P2] = 8.
This means that all nine quasiparticles are gapped. There is an octet with gap ∆, and a singlet with gap 2∆. The
octet Cooper pairs are gu-rd, bd-gs, bu-rs, as well as two linear combinations of the three quarks ru-gd-bs. (Here, gu
refers to a green up quark, etc.) The singlet Cooper pair with twice the gap is the remaining orthogonal combination
of ru-gd-bs. In the 2SC phase, on the other hand, we find four quasiparticles with λ1 = 1 and hence gap ∆ and 5
quasiparticles with λ2 = 0 that are unpaired. The gapped quasiparticles involve the first two colors, red and green,
and the first two flavors, up and down. The Cooper pairs have color-flavor structure ru-gd and gu-rd. (Note that all
these color-flavor combinations depend on the chosen basis of the color and flavor (anti)triplets. This basis is fixed
by Eq. (24); applying color (flavor) rotations to εαβA (εijB) would change the basis and yield different, physically
equivalent, color-flavor combinations for the 2SC and CFL phases.)

The formalism of this section can easily be applied to patterns of pairing in which Mk depends on the direction of
the quark momentum k. Such phases arise if the Cooper pairs carry total angular momentum J = 1. This allows for
pairing between quarks of the same flavor, as discussed in Sec. III E. Depending on the specific structure of Mk, the
eigenvalues λr may become momentum dependent and lead to nodes in the gap function along certain directions in
momentum space.
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phase φB
A λ1 λ2 (P1)

ij
αβ (P2)

ij
αβ

CFL δB
A 4 (1–fold) 1 (8–fold) δi

αδ
j
β/3 δαβδ

ij − δi
αδ

j
β/3

2SC δA3δB3 1 (4–fold) 0 (5–fold) (δαβ − δα3δβ3)(δ
ij − δi3δj3) δα3δβ3δ

i3δj3

TABLE I: Color-flavor structure of CFL and 2SC phases: Order parameters φB
A , eigenvalues λr of the matrix MM†, and

corresponding projectors Pr, derived from Eq. (24). Color (flavor) indices are denoted α, β, (i, j).

C. Pressure and condensation energy

We can now return to our expression (17) for the pressure P (equivalently, the thermodynamic potential since
Ω = −P ) for a color superconductor and use the results of Sec. IVB to evaluate it for a superconducting phase of
the form (24). We first substitute the expressions (27) and (28) for the fermion propagator (19) in the pressure (17).
In order to obtain a result that is valid at both nonzero and zero temperature, it is then convenient to switch to
Euclidean space, and perform the sum over Matsubara frequencies. Upon doing the trace over Nambu-Gorkov, color,
flavor, and Dirac space we find

P =
∑

e,r

∫
d3k

(2π)3
Tr[Pr]

{

ε(e)k,r + 2 T log
(

1 + e−ε
(e)
k,r/T

)

−
λr |∆|2

2 ε(e)k,r

tanh

(

ε(e)k,r

2 T

)}

. (31)

Including the effects of wave function renormalization would modify this expression at order g. In most contexts, we
shall only consider the pressure (31) at zero temperature. In this case, with

∑

r Tr[Pr] = NcNf ,

P = NcNf
µ4

12π2
+ δP . (32)

where we denote the pressure difference of the color-superconducting phase compared to the unpaired phase by δP .
If we make the simplifying assumption (corrected in the next subsection) that the gap function is a constant in
momentum space in the vicinity of the Fermi surface, we find the easily interpretable result

δP =
µ2

4π2

∑

r

Tr[Pr]λr∆
2 . (33)

At T = 0 this quantity is the condensation energy density of the color-superconducting state. The fact that δP > 0
implies that the superconducting state is favored relative to the normal phase. We observe that δP is proportional
to the sum of the energy gap squared of the r-th branch, multiplied by the corresponding degeneracy Tr[Pr].

We can use the result (33) to understand how to compare the favorability of different patterns of color super-
conducting pairing: the phase with lowest free energy (highest δP ) is favored. As an example, in the CFL phase
δP = (µ2/(4π2))(8 · 1 + 1 · 4)∆2

CFL while in the 2SC phase δP = (µ2/(4π2))(4 · 1 + 0 · 5)∆2
2SC suggesting that the CFL

phase is favored. (We shall make this conclusion firm in Sec. IVE, where we shall find that ∆CFL is smaller than
∆2SC but only by a factor of 21/3. This factor will also turn out to be determined entirely by the λr’s and Tr[Pr]’s.)

In principle, in order to generalize the conclusion that the CFL phase is favored one has to compare the condensation
energies of all possible phases described by the order parameter M in Eq. (24). This is difficult because φ is an arbitrary
complex 3× 3 matrix. At asymptotic densities, however, we can neglect the strange quark mass and treat the quarks
as degenerate in mass. The resulting SU(3)c × SU(3)f symmetry simplifies the task. (f is L or R for φL or φR.)
The matrix φ transforms under color-flavor rotations as φ→ UTφV with U ∈ SU(3)c, V ∈ SU(3)f . This means that
two order parameters φ and UTφV describe the same physics. Now note that for any φ there exists a transformation
(U, V ) such that UTφV is diagonal. Therefore, we need consider only diagonal matrices φ. Choosing all diagonal
elements to be nonzero corresponds to the maximum number of gapped quasiparticles. Hence, once we show (below)
that ∆2SC is not much larger than ∆CFL it is easy to understand that the CFL phase with φ = 1, yielding an order
parameter that is invariant under the largest possible subgroup of the original symmetries, is the ground state at
asymptotically large densities.

At lower densities, the flavor symmetry is explicitly broken by the mass of the strange quark (the symmetries are
further broken by different chemical potentials due to neutrality constraints). In this case, the above argument fails
and non-diagonal matrices φ become possible candidates for the ground state [83, 136].
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D. Weak coupling solution of the gap equation

We are now in a position to solve the QCD gap equation (22) for an order parameter with a given matrix structure

M. The matrix structure of the gap equation (22) is handled by multiplying both sides of the equation by M†Λ(+)
k

and taking the trace over color, flavor, and Dirac indices.
The gap equation is sensitive to gluon modes with small momentum (p " mg) and even smaller energy (p0 ∼

p3/m2
g " p), meaning that medium effects in the gluon propagator have to be taken into account. In the low

momentum limit, the gluon propagator takes on the standard hard-dense loop approximation form [223], which we
shall give below in Eqs. (36) and (37) upon simplifying it as appropriate for p0 " p. In order to obtain log(∆/µ) to
order g0, it suffices to keep only the leading terms in the propagator in the p0 " p limit. We shall work in Coulomb
gauge. Gauge independence of the gap in a generalized Coulomb gauge was established in [224], and a more formal
proof of gauge invariance was given in [86, 225]. The gap equation reads

∆k,r =
g2

4

∫
d3q

(2π)3

∑

s

Z(εq,s)
∆q,s

εq,s
tanh

( εq,s

2T

) [

D&(p) T s
00(k,q) + Dt(p, εq,s, εk,r) T s

t (k,q)
]

, (34)

where we have abbreviated P ≡ K − Q and have denoted the gap function on the quasiparticle mass shell by
∆k,r ≡ ∆(εk,r,k). We have denoted the traces over color, flavor, and Dirac space by

T s
µν(k,q) ≡ −

Tr
[

γµT T
a γ0Mqγ0PsΛ

(−)
q γνTaM†

kΛ
(+)
k

]

Tr
[

MkM†
kΛ

(+)
k

] , (35)

and T s
t (k,q) ≡ −(δij − p̂ip̂j) T s

ij(k,q). The two terms inside the square bracket in Eq. (34) correspond to the
contributions from electric and magnetic gluons. The dominant contribution comes from almost static gluons with
p0 " p. The static electric and almost static magnetic gluon propagator give

D&(p) ≡
2

p2 + 3m2
g

(36)

Dt(p, ε, ε′) ≡
p4

p6 + M4
g (ε+ ε′)2

+ (ε′ → −ε′) , (37)

where M2
g ≡ (3π/4)m2

g. With the gap equation now stated fully explicitly, all that remains is to solve it.
We can solve (34) for the zero temperature gap ∆ on the Fermi surface. Or, we can solve for T in the ∆→ 0 limit,

thus obtaining the critical temperature Tc. Solving for ∆, we find that it has a weak coupling expansion of the form

log

(
∆

µ

)

= −
b−1

g
− b̄0 log(g)− b0 − . . . . (38)

In our treatment of the fermion propagator, the gluon propagator, and in our truncation of the self-energy in Fig. 4
to one loop (for example neglecting vertex renormalization) we have been careful to keep all effects that contribute
to b0, but we have neglected many that contribute at order g log g and g. The formalism that we have presented can
be used to evaluate b−1, b̄0 and b0, and we shall describe the results in Sec. IVE.

Before turning to quantitative results, it is worth highlighting the origin and the importance of the leading −1/g
behavior in (38), namely the fact that (∆/µ) ∼ exp(−constant/g). If in the gap equation of Fig. 4 we were to replace
the exchanged gluon by a contact interaction, we would obtain a gap equation of the form

∆ ∝ g2

∫

dξ
∆

√

ξ2 +∆2
(39)

with ξ ≡ k − µ. This always has the solution ∆ = 0; to seek nonzero solutions, we cancel ∆ from both sides of the
equation. Then, if ∆ were 0, the remaining integral would diverge logarithmically at small ξ. Therefore, we find
a nonzero ∆ for any positive nonzero g no matter how small, with ∆ ∝ exp(−constant/g2). This is the original
BCS argument for superconductivity as a consequence of an attractive interaction at a Fermi surface. However, once
we restore the gluon propagator the argument is modified. The crucial point is that magnetic gluon exchange is an
unscreened long-range interaction, meaning that the angular integral will diverge logarithmically at forward scattering
in the absence of any mechanism that screens the magnetic interaction. The gap equation therefore takes the form

∆ ∝ g2

∫

dξ
∆

√

ξ2 +∆2
dθ

µ2

θµ2 + δ2
(40)
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where θ is the angle between the external momentum k and the loop momentum q and where δ is some quantity with
the dimensions of mass that cuts off the logarithmic collinear divergence of the angular integral. In the superconducting
phase this divergence will at the least be cut off by the Meissner effect, which screens gluon modes with p < ∆
(since the Cooper pairs have size 1/∆) giving δ ∼ ∆. This yields ∆ ∼ g2∆(log∆)2 and hence a nonzero gap
∆ ∼ exp(−constant/g). This consequence of the long-range nature of the magnetic gluon exchange was first discovered
by Barrois [18]. However, pursuing the argument as just stated yields the wrong value of the constant b−1; it was Son
who realized that the collinear divergence is cut off by Landau damping at a larger value of the angle θ than that at
which the Meissner effect does so. Loosely speaking, Landau damping leads to δ ∼ (∆m2

g)
1/3 ! ∆. Son was then

able to calculate the coefficients of the 1/g term and of the logarithm in (38) [55]. The calculation of the constant b0

was initiated in [209, 226–229] and completed in [230, 231]. Higher order terms are expected to be of order g log g,
order g, and at higher order still may contain fractional powers and logarithms of g, see Sec. VA2.

The (∆/µ) ∝ exp(−constant/g) behavior means that the color superconducting gap is parametrically larger at
µ → ∞ than it would be for any four-fermion interaction. Furthermore, asymptotic freedom ensures that 1/g(µ)2

increases logarithmically with µ, which means that exp[−constant/g(µ)] decreases more slowly than 1/µ at large µ.
We can therefore conclude that ∆ increases with increasing µ at asymptotically large µ, although of course ∆/µ
decreases.

We conclude this subsection with a derivation of the correct value of the coefficient b−1, namely the constant in
(∆/µ) ∝ exp(−constant/g). This coefficient turns out to be independent of the spin-color-flavor structure M, and it
is therefore simplest to present its derivation in the 2SC phase, in which there is only one gap parameter ∆k ≡ ∆k,r=1,
εk ≡ εk,r=1. The leading behavior of the gap is completely determined by magnetic gluon exchanges. We can also
approximate the trace term by its value in the forward direction Tt(k,q) 2 Tt(k,k) = 2/3 and set the wave function
renormalization Z(q0) = 1 (in the forward limit we also find T00(k,q) 2 Tt(k,q)). Carrying out the angular integrals
in the gap equation gives

∆k =
g2

18π2

∫

dq
∆q

εq

1

2
log

(
µ2

|ε2q − ε2k|

)

. (41)

Son observed that at this order we can replace the logarithm by max{log(µ/εk), log(µ/εq)}. Introducing logarithmic
variables x = log[2µ/(ξk + εk)] with ξk = |k − µ|, the integral equation (41) can be written as a differential equation

∆′′(x) = −
g2

18π2
∆(x), (42)

with the boundary conditions ∆(0) = 0 and ∆′(x0) = 0. Here, x0 = log(2µ/∆) determines the gap on the Fermi
surface. The solution is

∆(x) = ∆ sin

(
gx

3
√

2π

)

, ∆ = 2µ exp

(

−
3π2

√
2g

)

, (43)

and thus b−1 = 3π2/
√

2. We conclude that in the weak-coupling limit the gap function is peaked near the Fermi
surface, with a width that is much smaller than µ but much larger than ∆. Had we not set Z(q0) = 1, the x-dependence
of ∆(x) would be more complicated than the simple sinusoid in (43), but the conclusion remains unchanged [231].

E. Gap and critical temperature at weak coupling

The gap on the Fermi surface of a color superconductor at zero temperature can be written as

∆ = µg−b̄0e−b0 exp

(

−
3π2

√
2g

)

, (44)

to order g0 in the weak-coupling expansion of log(∆/µ). We have derived the coefficient b−1 in the exponent above,
starting from a simplified version of the gap equation (34), with no wave function renormalization and a simplified
gluon propagator. Upon restoring these effects, analysis of the gap equation (34) yields

g−b̄0e−b0 = g−5512π4

(
2

Nf

)5/2

e−b′0 e−d e−ζ . (45)

In the following we shall define and explain the origin of each of the terms in this equation; we shall not present a
complete derivation.
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• The factor g−5 and the numerical factor in Eq. (45) are due to large angle magnetic as well as electric gluon
exchanges and are independent of the pattern of pairing in the color superconducting phase, i.e. independent
of M.

• The factor

e−b′0 = exp

(

−
π2 + 4

8

)

2 0.177 (46)

arises from the wave function renormalization factor Z(q0) in (26) [230, 231] and is also independent of M and
hence the same for all color superconducting phases.

• The factors that we have written as e−de−ζ are different in different color superconducting phases. The factor
e−d is due to the angular structure of the gap. For the J = 0 condensates whose gap equation we have derived,
e−d = 1. Upon redoing the angular integrals for spin-1 condensates, we find that they are strongly suppressed
[130, 133, 180]. For spin-1 pairing patterns in which quarks of the same chirality form Cooper pairs, d = 6. A
smaller suppression occurs when quarks of opposite chirality pair, d = 4.5. Superpositions of these states yield
values of d between these limits. Regardless, perturbative QCD predicts spin-1 gaps to be two to three orders
of magnitude smaller than spin-0 gaps.

• The factor e−ζ depends on M, the color-flavor-spin matrix that describes the pattern of pairing in a particular
color superconducting phase. In a phase in which MM† has two different eigenvalues λ1 and λ2, describing
Tr[P1] and Tr[P2] quasiparticles respectively, we find

ζ =
1

2

〈Tr[P1]λ1 logλ1 + Tr[P2]λ2 logλ2〉
〈Tr[P1]λ1 + Tr[P2]λ2〉

, (47)

where the angular brackets denote an angular average (trivial for J = 0 phases). In the CFL phase, λ1 = 1 and
Tr[P1] = 8 while λ2 = 4 and Tr[P2] = 1, meaning that there are 8 quasiparticles with gap ∆ and 1 with gap
2∆. Evaluating Eq. (47), we find e−ζ = 2−1/3 in the CFL phase [94]. In the 2SC phase, e−ζ = 1. Note that
the ratio ∆CFL/∆2SC is also 2−1/3 in an NJL model analysis [33]; this result depends on the structure of the
condensates not on the nature of the interaction. From ∆CFL/∆2SC = 2−1/3 we can conclude the discussion
begun in Sec. IVC, noting now that the condensation energy in the CFL phase is larger than that in the 2SC
phase by a factor 3 · 2−2/3.

• We can also determine the admixture of a color symmetric condensate in the CFL phase. In this case we have
to use a two-parameter ansatz for the gap and solve two coupled gap equations. The color-symmetric gap
parameter ∆6 is parametrically small compared to the color-antisymmetric gap ∆3̄, and the two gap equations
decouple. We find ∆6/∆3̄ =

√
2 log(2)g/(36π) which is suppressed by both the coupling constant g and a large

numerical factor.

In evaluating (44) and (45), it suffices at present to evaluate g at the scale µ. The effect of choosing g(aµ) with a
either some purely numerical constant or some constant proportional to g or log∆ is order g, meaning that we cannot
and need not determine a within our present calculation of log∆ to order g0. For a numerical estimate of the effects
of a running g on ∆, see [232]. The effects are not as large as envisioned in [233].

We shall discuss a systematic approach to the calculation of corrections beyond O(g0) in log(∆/µ) in Sec. VA 2.
There are a number of effects that have been considered, and were shown not to contribute at O(g0), but for which
the actual size of the O(g) (or higher) correction is not known. These include vertex corrections [64], the imaginary
part of the gap function [234, 235], and the modification of the gluon propagator due to the Meissner effect [236].

It is instructive to extrapolate the perturbative results to lower baryon densities for which the running coupling
constant is not small. Taking µ 2 400 − 500 MeV, and a strong coupling constant g 2 3.5 (note that g = 3.56 at
µ = 400 MeV according to the two-loop QCD beta function, which of course should not be taken seriously at these
low densities) one obtains ∆ 2 20 MeV. This is comparable to (but on the small side of) the range of typical gaps
∆ ∼ (20− 100) MeV [33] obtained using models in which the interaction between quarks is described via a few model
parameters whose values are chosen based upon consideration of zero-density physics, like the NJL models that we
shall discuss in Sec. VI or numerical solutions of the Dyson-Schwinger equations [237, 238]. This qualitative agreement
between two completely different approaches, one based on using a model to extrapolate from µ = 0 to µ = 400− 500
MeV and the other based on applying a rigorous calculation that is valid for µ > 108 MeV where the QCD coupling
is weak at µ = 400− 500 MeV gives us confidence that we understand the magnitude of ∆, the fundamental energy
scale that characterizes color superconductivity. Furthermore, the one nonperturbative interaction in QCD whose
contribution to ∆ has been evaluated reliably at high density, namely that due to the ’t Hooft interaction induced
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by instantons, serves to increase ∆, bringing the high density computation into even better agreement with the
model-based approaches [24, 25, 134, 232, 239, 240].

Finally, we can use the gap equation (34) to extract the critical temperature Tc. The result is [133, 180, 209, 221,
228, 230, 231]

Tc

∆
=

eγ

π
eζ , (48)

where γ 2 0.577 is the Euler-Mascheroni constant. This should be compared to the BCS result Tc/∆ = eγ/π 2 0.57.
We observe that deviations from the BCS ratio occur in the case of two-gap structures and/or anisotropic gaps.
Nevertheless, since eζ is of order one, the critical temperature is always of the same order of magnitude as the zero-
temperature gap. We see that for the 2SC phase Tc/∆ is as in BCS theory, whereas in the CFL phase this ratio is
larger by a factor of 21/3. It therefore turns out that Tc is the same in the CFL and 2SC phases.

These estimates of Tc neglect gauge field fluctuations, making them valid only at asymptotic densities. We shall
see in Sec. VB that including the gauge field fluctuations turns the second order phase transition that we find by
analyzing (34) into a first order phase transition, and increases Tc by a factor 1 + O(g), see Eq. (74).

F. Color and electromagnetic Meissner effect

One of the characteristic properties of a superconductor is the Meissner effect, the fact that an external magnetic
field does not penetrate into the superconductor. The external field is shielded by supercurrents near the interface
between the normal phase and the superconducting phase. The inverse penetration length defines a mass scale which
can be viewed as an effective magnetic gauge boson mass.

This effect can also be described as the Anderson-Higgs phenomenon [241, 242]. The difermion condensate acts as
a composite Higgs field which breaks all or part of the gauge symmetry of the theory. The gauge fields acquire a mass
from the Higgs vacuum expectation value, and the would-be Goldstone bosons become the longitudinal components
of the gauge fields. A well known example in particle physics is provided by the electroweak sector of the standard
model. The SU(2)L × U(1)Y gauge symmetry of the electroweak standard model is broken down to U(1)Q by the
expectation value of an SU(2) Higgs doublet which carries hypercharge. There are three massive gauge bosons, the
W± and the Z boson. The Z is a linear combination of the original I3 and Y gauge bosons. The orthogonal linear
combination is the photon, which remains massless because the Higgs condensate is electrically neutral.

The gauge symmetry in QCD is SU(3)c×U(1)Q. Different color superconducting order parameters realize different
Higgs phases. The color gauge group may be partially or fully broken, and mixing between diagonal gluons and
photons can occur. In the following we shall concentrate on the 2SC and CFL phases and briefly mention other
phases at the end of the section. Our starting point is the one-loop gauge boson polarization tensor [113, 243–246],

Πµν
ab (P ) ≡

1

2

T

V

∑

K

Tr[Γ̂µ
a S(K) Γ̂νb S(K − P )] , (49)

where

Γ̂µ
a ≡









diag(g γµTa,−g γµT T
a ) for a = 1, . . . , 8 ,

diag(e γµQ,−e γµQ) for a = 9 .

(50)

Here, Q is the electric charge matrix Q = diag(2/3,−1/3,−1/3), and e the electromagnetic coupling constant. The
polarization function can be defined as the second derivative of the thermodynamic potential with respect to an
external gauge field. This quantity is equal to the derivative of the induced charge/current with respect to the gauge
field. Electric charge screening is governed by the zero momentum limit of the Π00 component of the polarization
tensor. The Meissner effect is related to a non-vanishing zero momentum limit of the spatial components Πij . We
can define electric (Debye) and magnetic screening masses as

m2
D,ab ≡ − lim

p→0
Π00

ab(0,p) , (51a)

m2
M,ab ≡

1

2
lim
p→0

(δij − p̂ip̂j)Πij
ab(0,p) . (51b)

A calculation of the full momentum dependence of Πµν in the 2SC and CFL phases can be found in [236] and [247],
respectively. One result that we shall need in Sec. VC is the electric screening mass for gluons in the CFL phase,
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which is given by

m2
D,aa =

21− 8 log 2

36

g2µ2

π2
. (52)

The numerical factor 21−8 log 2 can be written as 15+(6−8 log 2), where the first term comes from diagrams in which
the gluon couples to two octet quasiparticles and the second from coupling to one octet and one singlet quasiparticle.
The log 2 factor is the log of the ratio of the singlet and octet gaps.

In the following, we shall discuss the Meissner masses. Results for the CFL phase [243, 246, 248, 249] and the 2SC
phase [149, 244] are summarized in Table II, where we also list the screening masses for the single-flavor CSL phase
[182, 250].

We observe that the chromomagnetic screening masses are of order gµ. This means that the screening length is
much shorter than the coherence length ξ = 1/∆, and color superconductivity is type I, see Sec. VB. The fact that
the screening masses are independent of the gap does not contradict the fact that there is no magnetic screening in
the normal phase. Magnetic screening disappears for energies and momenta larger than the gap. Therefore, if the
∆→ 0 limit is taken before the limit p → 0 then the magnetic screening vanishes, as expected. Of course, magnetic
screening masses also vanish as the temperature approaches Tc.

We also note that m2
M,ab is a 9 × 9 matrix, and the physical masses are determined by the eigenvalues of this

matrix. In the CFL phase, all magnetic gluons acquire the same nonzero mass, reflecting the residual SU(3)c+L+R.
In the 2SC phase, the Meissner masses of the gluons 1 through 3 vanish, reflecting the symmetry breaking pattern
SU(3)c → SU(2)c. The unscreened gluons correspond to the generators of the unbroken SU(2)c, as they only see the
first two colors, red and green. Cooper pairs are red-green singlets and so cannot screen these low momentum gluons.

In both 2SC and CFL phases, the off-diagonal masses vanish except for the eighth gluon and the photon, m2
M,γ8 =

m2
M,8γ *= 0. The two-by-two part of the gauge boson mass matrices that describe the eighth gluon and the photon has

one vanishing eigenvalue and one nonzero eigenvalue. The eigenvectors are characterized by a mixing angle θ, given
in the last column of Table II. This angle defines the new gauge fields,

Ã8
µ = cos θ A8

µ + sin θ Aµ , (53a)

Ãµ = − sin θ A8
µ + cos θ Aµ , (53b)

where A8
µ and Aµ denote the fields for the eighth gluon and the photon, respectively. The Ã8

µ gauge boson feels a

Meissner effect; it is the analogue of the massive Z-boson in the electroweak standard model. The Ãµ gauge boson,
on the other hand, experiences no Meissner effect because the diquark condensate is Q̃-neutral. This is the photon
of the unbroken Abelian U(1)Q̃ gauge symmetry, consisting of simultaneous color and flavor (i.e. electromagnetic)

rotations. The Ãµ field satisfies Maxwell’s equations. Because g ! e, the mixing angle is very small and the Ãµ

photon contains only a small admixture of the original eighth gluon.
In contrast, J = 1 color superconductors show an electromagnetic Meissner effect [182, 250]. For example, in the

CSL phase there is no mixing between the gluons and the photon, as can be seen in the last row of Table II. The
photon acquires a mass since the electromagnetic group is spontaneously broken. Other candidate spin-1 phases, such
as the polar, planar, or A phase involve mixing but also (except for a one-flavor system) exhibit an electromagnetic
Meissner effect. This difference in phenomenology of spin-0 vs. spin-1 color superconductors may have consequences
in compact stars [251].

m2
M,aa m2

M,aγ = m2
M,γa m2

M,γγ m̃2
M,88 m̃2

M,γγ cos2 θ

a 1 2 3 4 5 6 7 8 1-7 8 9

CFL η g2 0 − 2√
3
η eg 4

3
η e2

`

4
3
e2 + g2

´

η 0 3g2/(3g2 + 4e2)

2SC 0 1
2
g2 1

3
g2 0 1

3
√

3
eg 1

9
e2 1

3
g2 + 1

9
e2 0 3g2/(3g2 + e2)

CSL βg2 αg2 βg2 βg2 αg2 βg2 αg2 βg2 0 0 6q2e2 βg2 6q2e2 1

TABLE II: Zero-temperature Meissner masses mM , rotated Meissner masses m̃M , and gluon/photon mixing angle θ. The
number a labels the gluons (a = 1, . . . , 8) and the photon (a = 9). All masses are given in units of Nfµ2/(6π2), where
Nf = 3, 2, 1 in the CFL, 2SC, CSL phases, respectively. We have abbreviated η ≡ (21 − 8 log 2)/54, α ≡ (3 + 4 log 2)/27,
β ≡ (6 − 4 log 2)/9. For the one-flavor CSL phase we denoted the quark electric charge by q. While the rotated photon in the
CFL and 2SC phases is massless, the photon acquires a Meissner mass in the CSL phase.
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G. Chromomagnetic instability

We have just seen in Sec. IVF that color superconductors have nonzero Meissner masses for some gluons and/or
the photon, indicating a color or electromagnetic Meissner effect. However, as we discussed previously, in Sec. III B,
if the CFL phase is stressed by a nonzero strange quark mass to the point that Cooper pairs break, the resulting
gapless CFL (gCFL) phase found in analyses that presume a translationally invariant condensate exhibits imaginary
Meissner masses [158, 159]. This phenomenon was first discovered in the simpler gapless 2SC (g2SC) phase [156, 252]
and can be understood in either the gCFL or g2SC context via a simplified analysis involving two quark species only
[93] that we introduced in Sec. I E and shall pursue here. The negative Meissner mass squared implies that these
phases are unstable toward the spontaneous generation of currents, that break translation invariance. In this section
we shall review the calculation of the Meissner mass in a gapless color superconductor.

We have seen in Sec. II that the introduction of a nonzero strange quark mass, combined with the requirement
that matter be neutral and in beta equilibrium, serve to exert a stress on the CFL pairing that is controlled by the
parameter m2

s/(2µ). This stress seeks to separate the bu and rs Fermi surfaces (and the bd and gs Fermi surfaces)
but in the CFL phase they remain locked together in order to gain pairing energy ∝ ∆ per Cooper pair. In the
gCFL phase, on the other hand, there are unpaired bu and bd quarks in regions of momentum space in which the
corresponding rs and gs states are empty — Cooper pairs have been broken yielding gapless excitations. We can
describe the resulting chromomagnetic instability generically by picking one of these pairs, calling the quarks 1 and
2, and labelling their effective chemical potentials µ1 and µ2. The quasiparticle dispersion relations are

εk ≡
∣
∣
∣

√

(k − µ̄)2 +∆2 ± δµ
∣
∣
∣ , (54)

with the average chemical potential µ̄ and the mismatch in chemical potentials δµ as in Eq. (4). (Note that the
leading effect of the strange mass, ∝ m2

s/(2µ), is included in the effective chemical potential, meaning that we may
use the massless dispersion relation of Eq. (54).) For µ1 = µ2 this yields identical dispersion relations for both degrees
of freedom (and the same with a minus sign for the corresponding hole degrees of freedom which are omitted here).
This is the usual situation of BCS superconductivity. For µ1 *= µ2, however, one obtains two different quasiparticle
excitations. A qualitative change appears at δµ = ∆. For δµ > ∆ the dispersion relations become gapless at the two
momenta

k± = µ̄ ±
√

δµ2 −∆2 , (55)

meaning that there are gapless quasiparticles on two spheres in momentum space. In the region of momentum space
between these two spheres, the states of species 1 are filled while those of species 2 are empty: the 1-2 pairing has
been “breached” [152]. (We have taken δµ > 0.) This seems a natural way for the system to respond to the stress
δµ, by reducing the number of 2 particles relative to the number of 1 particles, albeit at the expense of lost pairing
energy. In the larger gCFL context, such a response serves to alleviate the stress introduced by the requirements of
neutrality and weak equilibrium.

Gapless superconductivity [253] refers to the circumstance in which two species of fermions are paired in some
regions of momentum space but in a shell (breach) in momentum space, bounded by two spherical effective Fermi
surfaces, one finds unpaired fermions of just one of the two species. The term does not refer to situations in which
some fermion species pair throughout momentum space while others do not pair at all, as for example in the 2SC
phase. Nor does it apply to anisotropic superconductors in which the gap parameter vanishes in certain directions
on the Fermi surface, as for example in some single-flavor color superconductors or in the curCFL-K0 and crystalline
color superconducting phases. The g2SC and gCFL phases are gapless superconductors, in which the same quarks
pair, yielding a nonzero order parameter ∆, while simultaneously featuring gapless excitations. Such phases turn out
to suffer from the chromomagnetic instability as we now explain.

The calculation of the Meissner mass can be done starting from Eq. (49). At zero temperature, in this simple
context with two fermion species one finds

m2
M = m2

0

[

1−
δµΘ(δµ−∆)
√

δµ2 −∆2

]

, (56)

where m0 is the Meissner mass obtained upon setting δµ = 0, removing the stress. This expression shows that the
Meissner mass becomes imaginary if and only if the spectrum is gapless.

In essence, this is also what happens in the CFL phase [158, 159]. In this case, of course, there are nine gauge
bosons whose Meissner masses were discussed in Sec. IVF for the case of pairing in the absence of stress. The Meissner
masses for pairing with mismatched Fermi surfaces are complicated and have to be computed numerically in general.
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However, the reason for the negativity of m2
M is the same as in Eq. (56): a negative term ∝ δµ/

√

δµ2 −∆2 appears
for δµ > ∆. At the onset of gapless modes, δµ = ∆, this term diverges and thus it dominates the Meissner masses at
least for δµ close to, but larger than, ∆. This is the story for the gluons A1, A2, but it turns out that the Meissner
masses for the gluons Aa, a = 4, 5, 6, 7, at first remain well-behaved for values of δµ larger than ∆ before eventually
also becoming imaginary for sufficiently large mismatches. The gluons A3, A8 and the photon mix with each other.
Two of the resulting new gauge bosons acquire an imaginary mass, just as the first two gluons. The third combination,
AQ̃, remains massless, as expected from symmetry arguments. (The mixing between these gauge bosons is a function
of the mismatch and cannot be described by the mixing angle given in Table II.) Although the details are clearly
more complicated than in the simple two-species model, the conclusion remains that the chromomagnetic instability
occurs if and only if there are gapless modes.

This statement is not always correct, as the analysis of the gapless 2SC phase demonstrates [156, 252, 254, 255].
In this phase, the gluons 1,2 and 3 are massless for arbitrary mismatches, reflecting the unbroken SU(2)c. One
combination of the eighth gluon with the photon behaves as in Eq. (56) while the other combination is massless. The
Meissner masses for the gluons 4-7, however, are imaginary for δµ > ∆ as before but they are also imaginary in the
parameter region ∆/

√
2 < δµ < ∆. Hence, the 2SC phase is unstable in a region where there are no gapless modes.

Possible consequences of this interesting behavior are discussed in [184] and have been related to gluon condensation
[183].

We also know of an example where gapless pairing need not be accompanied by an instability. This is a two-species
system where the coupling is allowed to grow so large that the gap becomes of the order of µ̄ and even larger. In this
case, a strong coupling regime has been identified where the gapless phase is free of the chromomagnetic instability
[256]. See [257] for a similar analysis in a non-relativistic system. The scenario in these examples cannot arise in
QCD, since before µ̄ drops so low that ∆ ! µ̄, quark matter is replaced by nuclear matter.

The chromomagnetic instability of the gCFL phase only demonstrates that this phase is unstable; it does not
determine the nature of the stable phase. However, the nature of the instability suggests that the stable phase should
feature currents, which must be counterpropagating since in the ground state there can be no net current. Among
the possible resolutions to the instability that we have enumerated in Sec. III, two stand out by this argument. In the
meson supercurrent phase of Sec. III D, that we shall discuss further in Sec. VF, the phase of the CFL kaon condensate
varies in space, yielding a current [179]. Ungapped fermion modes carry a counter-propagating current such that the
total current vanishes. In the crystalline color superconducting phases of Sec. III C, that we shall discuss further in
Sec. VI, the diquark condensate varies in space in some crystalline pattern constructed as the sum of multiple plane
waves. If the total current carried by the condensate is nonzero, it is cancelled by a counter-propagating current
carried by the ungapped fermion modes that are also found in the crystalline phases. It is important to note that in
both these phases, the ungapped modes have different Fermi surface topologies compared to that in the gCFL phase:
they are anisotropic in momentum space, with unpaired fermions accommodated in one or many “caps” rather than in
spherically symmetric shells. It turns out that in both these phases, the Meissner masses are real, meaning that these
phases do not suffer from a chromomagnetic instability. This was shown in the meson supercurrent phase in [178]
and in the crystalline color superconducting phase in [173]. We compare the free energies of these phases in Fig. 3.
These two phases have to date been analyzed “in isolation”. It remains to be seen whether when they are analyzed
in a sufficiently general framework that currents of either or both types are possible they are distinct possibilities or
different limits of the same more general inhomogeneous phase.

V. EFFECTIVE THEORIES OF THE CFL PHASE

At energies below the gap the response of superconducting quark matter is carried by collective excitations of
the superfluid condensate. The lightest of these excitations are Goldstone bosons associated with broken global
symmetries. Effective theories for the Goldstone modes have a number of applications. They can be used to compute
low temperature thermodynamic and transport properties, and to study the response to perturbations like nonzero
quark masses and lepton chemical potentials. Other light degrees of freedom appear near special points in the phase
diagram. Fermion modes become light near the CFL-gCFL transition, and fluctuations of the magnitude of the gap
become light near Tc.

Effective field theories can be constructed “top down”, by integrating out high energy degrees of freedom, or “bottom
up”, by writing down the most general effective Lagrangian consistent with the symmetries of a given phase. In QCD
at moderate or low density the microscopic theory is nonperturbative, and the top down approach is not feasible. In
this case the parameters of the effective Lagrangian can be estimated using dimensional analysis or models of QCD.
If the density is very large then effective theories can be derived using the top down method. However, even in this
case it is often easier to follow the bottom up approach, and determine the coefficients of the effective Lagrangian
using matching arguments. Matching expresses the condition that low energy Green functions in the effective and
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fundamental theory have to agree.
Quark matter at very high density is characterized by several energy scales. In the limit of massless quarks the

most important scales are the chemical potential µ, the screening scale mg, and the pairing gap ∆. In the weak
coupling limit we have µ ! mg ! ∆. This hierarchy of scales can be exploited in order to simplify calculations of
the properties of low energy degrees of freedom in the color superconducting phase. For this purpose we introduce
an intermediate effective theory, the high density effective theory (HDET), which describes quark and gluon degrees
of freedom at energies below mg. This theory will be described in Secs. VA1-VA3. Secs. VB-VE are devoted to
effective theories of the CFL phase that allow us to determine the physics of the its low energy excitations. As we
shall see in Secs. VII and VIII, these theories govern the phenomenology of the CFL phase even at densities not high
enough for the weak coupling calculation of the gap parameter described in Sec. IV to be reliable. In VG we briefly
mention effective field theories for some other color superconducting phases.

A. High density effective theory

The formalism discussed in Sec. IV can be extended to include higher orders in the coupling constants and the
effects of nonzero quark masses. It can also be used to compute more complicated observables, like the dispersion
relations of collective excitations. In practice these calculations are quite difficult, because the number of possible
gap structures quickly proliferate, and it is difficult to estimate the relative importance of corrections due to the
truncation of the Dyson-Schwinger equations, kinematic approximations, etc., a priori.

There are two, related, strategies for addressing these issues: effective field theories and the renormalization group.
Within the effective field theory approach we try to derive an effective Lagrangian for quasi-quarks and gluons near
the Fermi surface, together with a power counting scheme that can be used to determine the magnitude of diagrams
constructed from the propagators and interaction terms of the theory. This is the strategy that we will describe in
Secs. V A1-VA3 below.

In the renormalization group approach we consider a general effective action for quarks and gluons at high baryon
density, and study the evolution of the action as high energy degrees of freedom, energetic gluons and quarks far
away from the Fermi surface, are integrated out [72, 258]. This approach was applied to QCD with short range
interactions in [259–261]. In this case one can show that for typical initial conditions the color antisymmetric, flavor
antisymmetric, J = 0, BCS interaction does indeed grow faster than all other terms, confirming in another way the
arguments of Secs. I and II that these are the channels in which the dominant diquark condensation occurs. In order
to use the renormalization group approach more quantitatively, one has to deal with the unscreened long range gluon
exchanges, which is more difficult. Son studied the evolution of the BCS interaction using the hard dense loop gluon
propagator as an input [55]. The coupled evolution of static and dynamic screening and the BCS interaction has not
been solved yet. A general scheme constructing effective actions by integrating out hard modes was proposed in [262].

1. Effective Lagrangian

Consider the equation of motion of a free quark with a chemical potential µ

(α · p− µ)ψ± = E±ψ± , (57)

where ψ± are eigenvectors of (α · p̂) with eigenvalue ±1 and E± = −µ ± p. If the quark momentum is near the
Fermi momentum, p ∼ pF = µ, then the solution ψ+ describes a low energy excitation E+ ∼ 0, whereas E− ∼ −2µ
corresponds to a high energy excitation. In order to construct an effective field theory based on this observation we
define low and high-energy components of the quark field [263, 264]

ψ± = eipF vµxµ

(
1 ± α · v̂F

2

)

ψ , (58)

where vF is the Fermi velocity and vµ = (1,vF ). The prefactor removes the rapid phase variation common to all
fermions in some patch on the Fermi surface specified by v̂F . We can insert the decomposition Eq. (58) into the QCD
Lagrangian and integrate out the ψ− field as well as hard gluon exchanges. This generates an expansion of the QCD
Lagrangian in powers of 1/pF . At tree level, integrating out the ψ− fields is equivalent to solving their equation of
motion

ψ−,L =
1

2pF

(

iα⊥ ·Dψ+,L + γ0Mψ+,R

)

, (59)
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where γ‖ ≡ v̂F (v̂F ·γ), γ⊥ = γ−γ‖ and M is the quark mass matrix. At O(1/pF ) the effective Lagrangian for ψ+ is

L = ψ†
+,L(ivµDµ)ψ+,L −

1

2pF
ψ†

+,L

[

(D/⊥)2 + MM †]ψ+,L +
(

L↔ R, M ↔M †)+ . . . . (60)

The low energy expansion was studied in more detail in [265]. There are a number of physical effects that have to
be included in order to obtain a well-defined expansion. First, four-fermion operators have to be included. These
operators naturally appear at O(1/p2

F ) but their effects are enhanced by the large density of states N ∼ p2
F on the

Fermi surface. The most important of these operators is the BCS interaction [ψ(v)ψ(−v)][ψ†(v′)ψ†(−v′)]. The
coefficient of the BCS operator was determined in [265].

Because of the large density of states it is also necessary to resum quark loop insertions in gluon n-point functions.
There is a simple generating functional for these effects, known as the hard dense loop (HDL) effective action [223]

LHDL = −
m2

2

∑

v

Ga
µα

vαvβ

(vλDλ)2
Ga

µβ . (61)

This is a gauge invariant, but non-local, effective Lagrangian. Expanding LHDL in powers of the gauge field produces
2, 3, . . . gluon vertices. The quadratic term describes dielectric screening of electric modes and Landau damping of
magnetic modes. Higher order terms contain corrections to the gluon self interaction in a dense medium.

2. Non-Fermi liquid effects and the gap equation

In this section we shall analyze the low energy expansion in the regime ∆ < k0 < mg [266]. This energy range gives
the dominant contribution to the pairing gap and other low energy constants in the superconducting phase. Since
electric fields are screened the interaction is dominated by the exchange of magnetic gluons. The transverse gauge
boson propagator is

Dij(K) = −
i(δij − k̂ik̂j)

k2
0 − k2 + iM2

g
k0
k

, (62)

where M2
g = (3π/4)m2

g and we have assumed that |k0| < k. We observe that the propagator becomes large in the
regime |k0| ∼ k3/m2

g. If the energy is small, |k0| " mg, then the typical energy is much smaller than the typical
momentum,

k ∼ (m2
g|k0|)1/3 ! |k0|. (63)

This implies that the gluon is very far off its energy shell and not a propagating state. We can compute loop diagrams
containing quarks and transverse gluons by picking up the pole in the quark propagator, and then integrate over
the cut in the gluon propagator using the kinematics dictated by Eq. (63). In order for a quark to absorb the large
momentum carried by a gluon and stay close to the Fermi surface the gluon momentum has to be transverse to the
momentum of the quark. This means that the term k2

⊥/(2µ) in the quark propagator is relevant and has to be kept
at leading order. Eq. (63) shows that k2

⊥/(2µ)! k0 as k0 → 0. This means that the pole of the quark propagator is
governed by the condition k|| ∼ k2

⊥/(2µ). We find

k⊥ ∼ g2/3µ2/3k1/3
0 , k|| ∼ g4/3µ1/3k2/3

0 . (64)

In this regime propagators and vertices can be simplified even further. The quark and gluon propagators are

Sαβ(K) =
iδαβ

k0 − k|| −
k2
⊥

2µ + iεsgn(k0)
, (65)

Dij(K) =
iδij

k2
⊥ − iM2

g
k0
k⊥

, (66)

and the quark gluon vertex is gvi(λa/2). Higher order corrections can be found by expanding the quark and gluon
propagators as well as the HDL vertices in powers of the small parameter ε ≡ (k0/m).
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FIG. 5: Mass terms in the high density effective theory. The first diagram shows a O(MM†) term that arises from integrating
out the ψ− field in the QCD Lagrangian. The second diagram shows a O(M2) four-fermion operator which arises from
integrating out ψ− and hard gluon exchanges.

The regime characterized by Eq. (64) is completely perturbative, i.e. graphs with extra loops are always suppressed

by extra powers of ε1/3 [266]. The power of ε can be found by using the fact that loop integrals scale as (k0k||k
2
⊥) ∼ k7/3

0 ,

fermion propagators scale as 1/k|| ∼ 1/k2/3
0 , gluon propagators scale as 1/k2

⊥ ∼ 1/k2/3
0 , and the quark-gluon vertex

scales as a constant. Quark matter in the regime ∆ < k0 < m is a non-Fermi liquid. The excitations are quasi-particles
with the quantum numbers of quarks, but Green functions scale with fractional powers and logarithms of the energy
and the coupling constant [67, 222, 267].

The corrections to Fermi liquid theory do not upset the logic that underlies the argument that leads to the BCS
instability. For quark pairs with back-to-back momenta the basic one gluon exchange interaction has to be summed
to all orders, but all other interactions remain perturbative [266]. The gap equation that sums the leading order
transverse gluon exchange in the color-anti-symmetric channel is

∆(p0) = −i
2g2

3

∫
dk0

2π

∫
dk2

⊥
(2π)2

k⊥
k3
⊥ + iM2

g (k0 − p0)

∫
dk||
2π

∆(k0)

k2
0 + k2

|| +∆(k0)2
. (67)

This equation is exactly equivalent to Eq. (41). In particular, all the kinematic approximations that were used to
derive Eq. (41), like the low energy approximation to the HDL self energies and the forward approximation to the
Dirac traces, are built into the effective field theory vertices and propagators. The effective theory can now be used
to study corrections to the leading order result. Higher order corrections to the propagators and vertices of the
effective theory modify the kernel of the integral equation Eq. (67). The resulting correction to the gap function can
be computed perturbatively, without having to solve the integral equation again, using a method that is similar to
Rayleigh-Schrödinger perturbation theory [64, 265].

The coefficients b0 and b̄0 introduced in Sec. IVD can be determined by matching the four-fermion operators in
the effective theory [265]. The b0 term also receives contributions from the fermion wave function renormalization

Z ∼ log(k0). All other terms give corrections beyond O(g0) in log(∆0/µ). Vertex corrections scale as Γ ∼ p1/3
0

and are suppressed compared to the fermion wave function renormalization. The analogous statement in the case of
phonon-induced electronic superconductors is known as Migdal’s theorem. Gluon self energy insertions beyond the
k0/k⊥ term included in the leading order propagator are also suppressed by fractional powers of the coupling and the
gluon energy.

3. Mass terms

A systematic determination of mass corrections to the high density effective theory is needed for calculations of
the Goldstone boson masses in the CFL phase, and in order to understand the response of the CFL ground state
to nonzero quark masses. Mass terms affect both the quark propagator and the quark-quark interaction. From
Eq. (59) and (60) we see that integrating out the ψ− field gives a correction to the energy of the ψ+ field of the
form MM †/(2pF ). This term can be viewed as an effective flavor dependent chemical potential. We also note that
this term is just the first in a tower of operators that arise from expanding out the energy of a free massive quark,
E = (p2 + m2)1/2, for momenta near the Fermi surface. Higher order terms correspond to additional corrections to
the chemical potential, the Fermi velocity, and to non-linear terms in the dispersion relation.



34

There are no mass corrections to the quark-gluon vertex at O(1/p2
F ). There are, however, mass corrections to the

quark-quark interaction. In connection with color superconductivity we are mainly interested in the BCS interaction.
The diagram shown in Fig. 5 gives [268]

L =
g2

32p4
F

(

ψa †
i,LCψb †

j,L

)
(

ψc
k,RCψd

l,R

) [

(λ)ac(λ)bd(M)ik(M)jl

]

+
(

L↔ R, M ↔M †) . (68)

This is the leading interaction that couples the gap equations for left and right handed fermions. We shall also see
that the mass correction to the BCS interaction gives the leading contribution to the mass shift in the condensation
energy, and the masses of the Goldstone bosons.

B. Ginzburg-Landau theory

At zero temperature fluctuations of the superconducting state are dominated by fluctuations of the phase of the
order parameter. Near the critical temperature the gap becomes small and fluctuations of the magnitude of the gap
are important, too. This regime can be described using the Ginzburg-Landau theory. Ginzburg and Landau argued
that in the vicinity of a second order phase transition the thermodynamic potential of the system can be expanded in
powers of the order parameter and its derivatives. This method was used very successfully in the study of superfluid
phases of 3He.

The Ginzburg-Landau approach was first applied to color superconductivity in [20]. The problem was revisited
by [84], who included the effects of unscreened gluon exchanges and charge neutrality. Consider the s-wave color
anti-triplet condensate in QCD with three massless flavors. The order parameter can be written as

〈ψαi Cγ5ψ
β
j 〉 = εαβAεijBφ

B
A (69)

where φB
A is a matrix in color-flavor space. Note that here we have included the energy gap into φB

A , in contrast to Eq.
(24), where φB

A is dimensionless. We have fixed the orientations of left and right-handed condensates. Fluctuations in
the relative color-flavor orientation of the left- and right-handed fermions correspond to the Goldstone modes related
to chiral symmetry breaking, and will be considered in Sec. VC. Therefore, the ansatz (69) implies the assumption
that chiral fluctuations near Tc are small compared to non-chiral gap fluctuations and fluctuations of the gauge field.
The thermodynamic potential can be expanded as

Ω = Ω0 + αTr
(

φ†φ
)

+ β1

[

Tr
(

φ†φ
)]2

+ β2 Tr
(
[

φ†φ
]2
)

+ κTr
(

∇φ∇φ†
)

+ . . . (70)

The coefficients α, βi, κ can be treated as unknown parameters, or determined in QCD at weak coupling. The weak
coupling QCD result is [84]

α = 4N
T − Tc

T
, β1 = β2 =

7ζ(3)

8(πTc)2
N, (71)

κ =
7ζ(3)

8π2T 2
c

N (72)

where N = µ2/(2π2) is the density of states on the Fermi surface. This result agrees with the BCS result. Using
Eq. (71) we can verify that the ground state is in the CFL phase φB

A ∼ δB
A . We can also study many other issues,

like the gluon screening lengths, the structure of vortices, the effects of electric and color neutrality, and the effects of
nonzero quark masses [110, 269, 270].

From the study of electronic superconductors, it is known that the nature of the finite temperature phase transition
depends on the ratio κ = λ/ξ of the screening length λ and the correlation length ξ. If κ > 1/

√
2 the superconductor is

type II, fluctuations of the order parameter are more important than fluctuations of the gauge field, and the transition
is second order. In a type I superconductor the situation is reversed, and fluctuations of the gauge field drive the
transition first order [271].

In the weak coupling limit, ξ ∼ 1/∆! λ ∼ 1/(gµ) and color superconductivity is strongly type I. The role of gauge
field fluctuations was studied in [21, 272–275]. The contribution to the thermodynamic potential is

Ωfl = 8T

∫
d3k

(2π)3

{

log

(

1 +
m2

A(k)

k2

)

−
m2

A(k)

k2

}

, (73)
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where mA(k) is the gauge field screening mass. In QCD the momentum dependence of mA cannot be neglected.
The contribution of the fluctuations Ωfl induces a cubic term ∝ φ3 in the thermodynamic potential which drives the
transition first order. The first order transition occurs at a critical temperature T ∗

c [275]

T ∗
c − Tc

Tc
=

π2

12
√

2
g, (74)

where Tc is the critical temperature of the second order transition obtained upon neglecting the cubic term. Although
the result (74) cannot be trusted quantitatively at accessible densities, say µ ∼ 400 MeV where g ∼ 3.6, it does
make it clear that the phase transition between the CFL (or 2SC) phase and the quark-gluon plasma will be strongly
first order. Noronha et al. [274] argue that Eq. (74) gives the complete O(g) correction to the critical temperature
(see, however, [273]). This implies that the transition to the color superconducting phase will occur at a critical
temperature that is significantly elevated relative to the BCS estimate Tc = 0.57∆ that we obtained in Sec. IVE. The
effects of gluon fluctuations are much more important here than those of photon fluctuations in a conventional type
I superconductor.

C. Goldstone bosons in the CFL phase

1. Effective Lagrangian

In the CFL phase the pattern of chiral symmetry breaking is identical to the one at T = µ = 0. This implies that
the effective Lagrangian has the same structure as chiral perturbation theory. The main difference is that Lorentz-
invariance is broken and only rotational invariance is a good symmetry. The effective Lagrangian for the Goldstone
modes is given by [276]

Leff =
f2
π

4
Tr

[

∂0Σ∂0Σ
† − v2

π∂iΣ∂iΣ
†]+

[

BTr(MΣ†) + h.c.
]

+
[

A1Tr(MΣ†)Tr(MΣ†) + A2Tr(MΣ†MΣ†) + A3Tr(MΣ†)Tr(M †Σ) + h.c.
]

+ . . . . (75)

Here Σ = exp(iφaλa/fπ) is the chiral field, fπ is the pion decay constant and M is a complex mass matrix. The
fields φa describe the octet of Goldstone bosons (π±, π0, K±, K0, K̄0, η). These Goldstone bosons are an octet under
the unbroken SU(3)c+L+R symmetry of the CFL phase and their Q̃-charges under the unbroken gauge symmetry of
the CFL phase are ±1 and 0 as indicated by the superscripts, meaning that they have the same Q̃-charges as the
Q-charges of the vacuum pseudoscalar mesons. The chiral field and the mass matrix transform as Σ → LΣR† and
M → LMR† under chiral transformations (L, R) ∈ SU(3)L×SU(3)R. For the present, we have suppressed the singlet
fields associated with the breaking of the exact U(1)B and approximate U(1)A symmetries. We will give the effective
Lagrangian for the massless Goldstone boson associated with superfluidity (i.e. from U(1)B breaking) below.

The form of the effective Lagrangian follows from the symmetries of the CFL phase. It is nevertheless useful to
understand how this Lagrangian arises upon integrating out high energy degrees of freedom. We start from the high
density effective Lagrangian in the presence of a CFL gap term

L = Tr
[

ψ†
L(ivµDµ)ψL

]

+
∆

2

{

Tr
(

X†ψLX†ψL

)

−
[

Tr
(

X†ψL

)]2
+ h.c.

}

+ (L↔ R, X ↔ Y ) . (76)

Here, ψL,R are left and right-handed quark fields which transform as ψL → LψLUT and ψR → RψRUT under chiral
transformations (L, R) ∈ SU(3)L × SU(3)R and color transformations U ∈ SU(3)c. We have suppressed the spinor
indices and defined ψψ = ψαCαβψβ , where C is the charge conjugation matrix. The traces run over color or flavor
indices and X, Y are fields that transform as X → LXUT and Y → RY UT . We will assume that the vacuum
expectation value is 〈X〉 = 〈Y 〉 = 1. This corresponds to the CFL gap term ∆ψαi ψ

β
j εαβAεijA. X, Y parametrize

fluctuations around the CFL ground state. Note that fluctuations of the type X = Y correspond to the field φ
introduced in the previous section.

For simplicity we have assumed that the gap term is completely anti-symmetric in flavor. We will derive the effective
Lagrangian in the chiral limit M = M † = 0 and study mass terms later. We can redefine the fermion fields according
to

χL ≡ ψLX†, χR ≡ ψRY †. (77)
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In terms of the new fields the Lagrangian takes the form

L = Tr
[

χ†
L(ivµ∂µ)χL

]

− i Tr
[

χ†
LχLXvµ

(

∂µ − iAT
µ

)

X†
]

+
∆

2

{

Tr (χLχL)− [Tr (χL)]2
}

+ (L↔ R, X ↔ Y ) . (78)

At energies below the gap we can integrate out the fermions. The fermion determinant generates a kinetic term for
the chiral fields X and Y [276]

L = −
f2
π

2
Tr

[

(X†D0X)2 − v2
π(X

†DiX)2
]

+ (X ↔ Y ) (79)

For simplicity we have ignored the flavor singlet components of X and Y .
The low energy constants fπ and vπ were calculated by matching the effective theory to weak coupling QCD

calculations in [246, 277], see also [142, 249, 278, 279]. The results are

f2
π =

21− 8 log 2

18

µ2

2π2
, v2

π =
1

3
. (80)

The simplest way to derive these results, given the results that we have already reviewed in Sec. IVF, is to recall that
the gluon field acquires a magnetic mass due to the Higgs mechanism and an electric mass due to Debye screening,
and then to notice that Eq. (79) shows that the electric mass is m2

D = g2f2
π , while the magnetic mass is m2

M = v2
πm

2
D.

This means that fπ and vπ are determined by the Debye and Meissner masses for the gluons in the CFL phase that
we have presented in Sec. IVF, see Eq. (52) and Table II.

Since the gluon is heavy, it can also be integrated out. Using Eq. (79) we get

AT
µ =

i

2

(

X†∂µX + Y †∂µY
)

+ . . . (81)

This result can be substituted back into the effective Lagrangian. The result is

Leff =
f2
π

4
Tr

[

∂0Σ∂0Σ
† − v2

π∂iΣ∂iΣ
†] , (82)

where the Goldstone boson field is given by Σ = XY †. This shows that the light degrees of freedom correspond to
fluctuations of the color-flavor orientation of the left-handed CFL condensate relative to the right-handed one, as
expected since these are the fluctuations associated with the spontaneously broken global symmetry.

2. U(1)B modes and superfluid hydrodynamics

Finally, we quickly summarize the effective theory for the U(1)B Goldstone mode. At order O((∂ϕ)2) we get
[246, 277]

L =
f2

2

[

(∂0ϕ)2 − v2(∇ϕ)2
]

+ . . . , (83)

where the low energy constants f and v are given by

f2 =
6µ2

π2
, v2 =

1

3
. (84)

The field ϕ transforms as ϕ → ϕ + α under U(1)B transformation of the quark fields ψ → exp(iα)ψ. Because
U(1)B is an Abelian symmetry, the two-derivative terms do not contain any Goldstone boson self interactions. These
terms are needed in order to compute transport properties of the CFL phase. Son noticed that self-interactions are
constrained by Lorentz invariance (of the microscopic theory) and U(1)B invariance [280]. The analogous argument
for non-relativistic superfluids is described in [281]. To leading order in g the effective theory of the U(1)B Goldstone
boson can be written as

L =
3

4π2

[

(∂0ϕ− µ)2 − (∇ϕ)2
]2

+ . . . , (85)
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FIG. 6: Contribution of the O(M2) BCS four-fermion operator to the condensation energy in the CFL phase. The open squares
correspond to insertions of the anomalous self energy ∆.

where the omitted terms are of the form ∂iϕk with i > k. Expanding Eq. (85) to second order in derivatives reproduces
Eq. (83). In addition to that, Eq. (85) contains the leading three and four boson interactions. Using microscopic
models one can obtain more detailed information on the properties of collective modes. A calculation of the spectral
properties of the ϕ mode in an NJL model at T = 0 and T *= 0 can be found in [99].

The spontaneous breaking of U(1)B is related to superfluidity, and the U(1)B effective theory can be interpreted
as superfluid hydrodynamics [280]. We can define the fluid velocity as

uα = −
1

µ0
Dαϕ, (86)

where Dαϕ ≡ ∂αϕ + (µ,0) and µ0 ≡ (DαϕDαϕ)1/2. Note that this definition ensures that the flow is irrotational,
∇× u = 0. The identification (86) is motivated by the fact that the equation of motion for the U(1) field ϕ can be
written as a continuity equation

∂α(n0uα) = 0, (87)

where n0 = 3µ3
0/π

2 is the superfluid number density. At T = 0 the superfluid density is equal to the total density of
the system, n = dP/dµ|µ=µ0 . The energy-momentum tensor has the ideal fluid form

Tαβ = (ε+ P )uαuβ − Pgαβ, (88)

and the conservation law ∂αTαβ = 0 corresponds to the relativistic Euler equation of ideal fluid dynamics. We conclude
that the effective theory for the U(1)B Goldstone mode accounts for the defining characteristics of a superfluid:
irrotational, non-dissipative hydrodynamic flow.

3. Mass terms

The structure of the mass terms in Eq. (75) is completely determined by chiral symmetry. The coefficients B, Ai

can be determined by repeating the steps discussed in the previous section, but keeping the mass terms in the high
density effective theory. In practice it is somewhat easier to compute the coefficients of the chiral Lagrangian using
matching arguments. For example, we noticed that the easiest way to determine fπ is to compute the gluon screening
mass in the microscopic theory.

In Sec. VA 3 we showed that XL ≡ MM †/(2pF ) and XR ≡ M †M/(2pF ) act as effective chemical potentials for
left and right-handed fermions, respectively. Formally, the effective Lagrangian has an SU(3)L × SU(3)R gauge
symmetry under which XL,R transform as the temporal components of non-Abelian gauge fields. We can implement
this approximate gauge symmetry in the CFL chiral theory by promoting time derivatives to covariant derivatives
[142],

∂0Σ→ ∇0Σ ≡ ∂0Σ + i

(
MM †

2pF

)

Σ− iΣ

(
M †M

2pF

)

. (89)

The mass dependent terms in the quark-quark interaction contribute to the gap and to the condensation energy. In
the chiral theory the shift in the condensation energy due to the quark masses is

E = −BTr(M)−A1 [Tr(M)]2 −A2Tr
(

M2
)

−A3Tr(M)Tr(M †) + h.c. + . . . . (90)
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The contribution to the condensation energy from the mass correction to the BCS interaction is shown in Fig. 6. The
diagram is proportional to the square of the condensate

〈ψαi,LCψβj,L〉 = εαβAεijA∆
3
√

2π

g

(
µ2

2π2

)

, (91)

with the dependence on the mass matrix M arising from the contraction of the BCS interaction with the CFL
condensate. We get

εαβAεijA (T a)αγ (T a)βδ (M)ik(M)jlε
γδBεklB = −

4

3

{
(

Tr[M ]
)2
− Tr

[

M2
]
}

, (92)

where T a = λa/2. We note that the four-fermion operator is proportional to g2 and the explicit dependence of the
diagram on g cancels. We find [246, 268, 277]

E = −
3∆2

4π2

{
(

Tr[M ]
)2
− Tr

[

M2
]
}

+
(

M ↔M †
)

. (93)

This result can be matched against Eq. (90). We find B = 0 and

A1 = −A2 =
3∆2

4π2
≡ A, A3 = 0. (94)

The result A1 = −A2 reflects the fact that the CFL order parameter is anti-symmetric in flavor (pure 3̄) to leading
order in g. Using Eqs. (89) and (94) we can compute the energies of the flavored Goldstone bosons

Eπ± = µπ± +

[

v2
πp

2 +
4A

f2
π

(mu + md)ms

]1/2

,

EK± = µK± +

[

v2
πp

2 +
4A

f2
π

md(mu + ms)

]1/2

, (95)

EK0,K̄0 = µK0,K̄0 +

[

v2
πp

2 +
4A

f2
π

mu(md + ms)

]1/2

,

where

µπ± = ∓
m2

d −m2
u

2µ
, µK± = ∓

m2
s −m2

u

2µ
,

µK0,K̄0 = ∓
m2

s −m2
d

2µ
. (96)

The mass matrix for the remaining neutral Goldstone bosons, which mix, can be found in [246, 277, 278]. We observe
that the O(m) terms lead to an inverted mass spectrum with the kaons being lighter than the pions. This can be
understood from the microscopic derivation of the chiral Lagrangian. The Goldstone boson field is Σ = XY †, and
a mode with the quantum number of the pion is given by π+ ∼ εabcεade(d̄b

Rs̄c
R)(ud

Lse
L). The structure of the field

operators suggests that the mass is controlled by (mu+md)ms. By the same argument the mass of the K+ is governed
by (mu +ms)md, and mK < mπ. We also note that the O(m2) terms split the energies of different charge states. This
can be understood from the fact that these terms act as an effective chemical potential for flavor. Explicit calculations
in an NJL model reproduce fπ in (80) and the results (95), albeit with a different value of A [282, 283]. This serves
as a reminder that in the CFL phase at moderate densities, the effective theory is valid but the values of coefficients
in it may not take on the values obtained by matching to high density calculations.

In perturbation theory the coefficient B of the Tr(MΣ) term is zero. B receives non-perturbative contributions
from instantons. Instantons are semi-classical gauge configurations in the Euclidean time functional integral that
induce a fermion vertex of the form [284]

L ∼ Gdet
f

(ψ̄LψR) + h.c., (97)

where detf denotes a determinant in flavor space. The ’t Hooft vertex (97) can be written as the product of the
CFL condensate and its conjugate times 〈ψ̄ψ〉, meaning that in the CFL phase Eq. (97) induces a nonzero quark
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condensate 〈ψ̄ψ〉, as well as Goldstone boson masses m2
GB ∼ m〈ψ̄ψ〉/f2

π . The instanton has gauge field Aµ ∼ 1/g,
so its action is S = 8π2/g2. The effective coupling G is proportional to exp(−S) ∼ exp(−8π2/g2), where g is the
running coupling constant at a scale set by the instanton size ρ.

In dense quark matter perturbative gauge field screening suppresses instantons of size ρ > 1/µ, and the effective
coupling G can be computed reliably [143]. Combined with the weak coupling result for 〈ψψ〉, see Eq. (91), we get

B = c

[

3
√

2π

g
∆

(
µ2

2π2

)
]2 (

8π2

g2

)6 Λ9
QCD

µ12
, (98)

where c = 0.155 and ΛQCD is the QCD scale factor. In terms of B, 〈ψ̄ψ〉 = −2B and the instanton contribution to
the K0 mass is δm2

K0 = B(md + ms)/(2f2
π) [285]. In the weak coupling limit, µ! ΛQCD, the instanton contribution

is very small. However, because of the strong dependence on ΛQCD the numerical value of B is quite uncertain. Using
phenomenological constraints on the instanton size distribution [143] concluded that the instanton contribution to the
kaon mass at µ = 500 MeV is of order 10 MeV.

Finally, we summarize the structure of the chiral expansion in the CFL phase. Ignoring non-perturbative effects
the effective Lagrangian has the form

L ∼ f2
π∆

2

(
∂0Σ

∆

)k
(

3∂Σ

∆

)l (
MM †

µ∆

)m (
MM

µ2

)n

. (99)

Higher order vertices are suppressed by ∂Σ/∆ whereas Goldstone boson loops are suppressed by powers of ∂Σ/(4πfπ).
Since the pion decay constant scales as fπ ∼ µ the effects of Goldstone boson loops can be neglected relative to higher
order contact interactions. This is different from chiral perturbation theory at zero baryon density. We also note that
the quark mass expansion contains two parameters, m2/µ2 and m2/(µ∆). Since ∆" µ the chiral expansion breaks
down if m2 ∼ µ∆. This is the same scale at which BCS calculations find a transition from the CFL phase to a less
symmetric state. We also note that the result for the Goldstone boson energies given in Eq. (95) contains terms of
O(m2/µ2) and O([m2/(µ∆)]2), but neglects corrections of O([m2/µ2]2).

The effective Lagrangians (75) and (83) describe the physics of the low momentum pseudo-Goldstone and Goldstone
bosons of the CFL phase at any density. We have described the weak coupling computation of the coefficients fπ, vπ,
A1, A2, A3, B, f and v as well as the µeff ’s in (96). With the exception of B, all these results are expressed simply in
terms of ∆, µ and the quark masses, with g not appearing anywhere. This suggests that the range of validity of these
results, when viewed as a function of ∆, is bigger than the range of validity of the weak coupling calculations on which
they are based. As we decrease the density down from the very large densities at which the weak coupling calculation
of ∆ is under control, there is no indication that the relations between the effective theory coefficients and ∆ and µ
that we have derived in this section break down. The only sense in which we lose control of our understanding of the
CFL phase is that we must treat ∆ as a parameter, in terms of which all the other effective theory coefficients are
known. Since B introduces U(1)A-breaking physics that is not present at weak coupling and that does not enter the
effective theory through any other coupling, it is not well constrained.

D. Kaon condensation

If the effective chemical potential in Eq. (96) becomes larger than the corresponding mass term in Eq. (95), then
the energy of a Goldstone boson can become negative. In the physically relevant case ms ! mu ∼ md this applies
in particular to the K0 and the K+. When the Goldstone boson energy becomes negative the CFL ground state is
reorganized and a Goldstone boson condensate is formed. The physical reason is that a nonzero ms disfavors strange
quarks relative to non-strange quarks. In normal quark matter the system responds to this stress by turning s quarks
into (mostly) d quarks. In CFL matter this is difficult, since all quarks are gapped. Instead, the system can respond
by populating mesons that contain d quarks and s holes.

The ground state can be determined from the effective potential

Veff =
f2
π

4
Tr

[

2XLΣXRΣ
† −X2

L −X2
R

]

−A1

{
[

Tr(MΣ†)
]2 − Tr

[

(MΣ†)2
]
}

, (100)

where XL = MM †/(2pF ), XR = M †M/(2pF ) and M = diag(mu, md, ms) = diag(m, m, ms). Here we only discuss
the T = 0 case. For nonzero temperature effects, in particular the calculation of the critical temperature of kaon
condensation, see [287]. The first term on the right-hand side of Eq. (100) contains the effective chemical potential

µs ≡ −µK0 2
m2

s

2pF
(101)
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FIG. 7: (Color online) Phase structure of CFL matter as a function of the light quark mass m and the strange quark mass ms,
from [286]. CFL denotes pure CFL matter, while K0 and η denote CFL phases with K0 and/or η condensation. Solid lines
are first order transitions, dashed lines are second order. Instanton effects have been neglected.

and favors states with a deficit of strange quarks. The second term favors the neutral ground state Σ = 1. The
lightest excitation with positive strangeness is the K0 meson. We consider the ansatz Σ = exp(iαλ4) which allows
the order parameter to rotate in the K0 direction. The vacuum energy is

V (α) = f2
π

[

−
1

2

(m2
s −m2

2pF

)2
sin2 α+ m2

K0(1− cosα)

]

, (102)

where m2
K0 = (4A1/f2

π)mu(md + ms) + B(md + ms)/(2f2
π). Minimizing the vacuum energy we obtain

cos(α) =

{

1 µs < mK0

m2
K0

µ2
s

µs > mK0

(103)

We conclude that there is a second order phase transition to a kaon condensed state at µs = mK0 . The strange
quark mass breaks the SU(3) flavor symmetry to SU(2)I × U(1)Y . In the kaon condensed phase this symmetry is
spontaneously broken to U(1)Q̃. If mu = md, isospin is an exact symmetry and there are two exact Goldstone modes

[288, 289] with zero energy gap, the K0 and the K+. Isospin breaking leads to a small energy gap for the K+.
Using the perturbative result for A1, and neglecting instanton effects by setting B = 0, we can get an estimate of the

critical strange quark mass. The critical strange quark mass scales as m1/3
u ∆2/3. Taking µ = 500 MeV, ∆ = 50 MeV,

mu = 4 MeV and md = 7 MeV, we find mcrit
s 2 68 MeV, a result that corresponds to mcrit

K0 = 5 MeV. If instanton
contributions increase mK0 by 10 MeV, this would increase mcrit

s to 103 MeV, corresponding to the onset of kaon
condensation depicted in Fig. 3.

The difference in condensation energy between the CFL phase and the kaon condensed state is not necessarily small.
In the limit µs → ∆ we have sinα ∼ 1 and V (α) ∼ f2

π∆
2/2. Since f2

π is of order µ2/(2π2) this is an O(1) correction
to the pairing energy in the CFL phase. Microscopic NJL model calculations of the condensation energy in the kaon
condensed phase can be found in [144, 145, 282, 283, 290], see also [291, 292].

The CFL phase also contains a very light flavor neutral mode which can potentially become unstable. This mode
is a linear combination of the η and η′ and its mass is proportional to mumd. Because this mode has zero strangeness
it is not affected by the µs term in the effective potential. However, since mu, md " ms this state is sensitive to
perturbative αsm2

s corrections [286]. The resulting phase diagram is shown in Fig. 7. The precise value of the tetra-
critical point (m∗, m∗

s) depends sensitively on the value of the coupling constant. At very high density m∗ is extremely
small, but at moderate density m∗ can become as large as 5 MeV, comparable to the physical values of the up and
down quark mass.

E. Fermions in the CFL phase

A single quark excitation with energy close to ∆ is long-lived and interacts only weakly with the Goldstone modes
in the CFL phase. This means that it is possible to include quarks in the chiral Lagrangian. This Lagrangian not
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FIG. 8: (Color online) This figure shows the fermion spectrum in the CFL phase. For ms = 0 there are eight fermions with
gap ∆ (set to 25 MeV as in Fig. 3) and one fermion with gap 2∆ (not shown). As discussed in Sec. III, the octet quasiparticles
have the SU(3) and U(1)Q̃ quantum numbers of the octet baryons. Without kaon condensation gapless fermion modes appear
at µs = ∆ (dashed lines). With kaon condensation gapless modes appear at µs = 4∆/3. (Note that the scale on the horizontal
axis is 2µs.)

only controls the interaction of quarks with pions and kaons, but it also constrains the dependence of the gap in
the fermionic quasiparticle spectrum on the quark masses. This is of interest in connection with the existence and
stability of the gapless CFL phase [91], as we have discussed in Secs. I E, II B, and III B.

The effective Lagrangian for fermions in the CFL phase is [174, 175]

L = Tr
(

N †ivµDµN
)

−DTr
(

N †vµγ5 {Aµ, N}
)

− FTr
(

N †vµγ5 [Aµ, N ]
)

+
∆

2

[(

Tr (NLNL)− [Tr (NL)]2
)

− (L↔ R) + h.c.
]

. (104)

NL,R are left and right handed baryon fields in the adjoint representation of flavor SU(3). The baryon fields originate
from quark-hadron complementarity [124, 293]. We can think of N as describing a quark which is surrounded by a
diquark cloud, NL ∼ qL〈qLqL〉. The covariant derivative of the nucleon field is given by DµN = ∂µN + i[Vµ, N ]. The
vector and axial-vector currents are

Vµ = −
i

2

(

ξ∂µξ
† + ξ†∂µξ

)

, Aµ = −
i

2
ξ
(

∇µΣ
†) ξ, (105)

where ξ is defined by ξ2 = Σ. It follows that ξ transforms as ξ → LξU † = UξR† with U ∈ SU(3)V . The fermion field
transforms as N → UNU †. For pure SU(3) flavor transformations L = R = V we have U = V . F and D are low
energy constants that determine the baryon axial coupling. In QCD at weak coupling, we find D = F = 1/2 [174].

The effective theory given in Eq. (104) can be derived from QCD in the weak coupling limit. However, the
structure of the theory is completely determined by chiral symmetry, even if the coupling is not weak. In particular,
there are no free parameters in the baryon coupling to the vector current. Mass terms are also strongly constrained
by chiral symmetry. The effective chemical potentials (XL, XR) appear as left and right-handed gauge potentials in
the covariant derivative of the nucleon field. We have

D0N = ∂0N + i[Γ0, N ], (106)

Γ0 = −
i

2

[

ξ (∂0 + iXR) ξ† + ξ† (∂0 + iXL) ξ
]

,

where XL = MM †/(2pF ) and XR = M †M/(2pF ) as before. (XL, XR) covariant derivatives also appears in the axial
vector current given in Eq. (105).
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We can now study how the fermion spectrum depends on the quark mass. In the CFL state we have ξ = 1. For
µs = 0 the baryon octet has an energy gap ∆ and the singlet has gap 2∆. The leading correction to this result comes
from the commutator term in Eq. (106). We find that the gap of the proton and neutron is lowered, ∆p,n = ∆− µs,
while the gap of the cascade particles Ξ−,Ξ0 is increased, ∆Ξ = ∆ + µs. As a consequence we find gapless (p, n)
excitations at µs = ∆. This result agrees with the spectrum discussed in Sec. III B if the identification p ≡ (bu) and
n ≡ (bd) is made.

The situation is more complicated when kaon condensation is taken into account. In the kaon condensed phase
there is mixing in the (p,Σ+,Σ−,Ξ−) and (n,Σ0,Ξ0,Λ8,Λ0) sector. For mK0 " µs " ∆ the spectrum is given by

ωpΣ±Ξ− =

{

∆± 3
4µs,

∆± 1
4µs,

ωnΣ0Ξ0Λ =








∆± 1
2µs,

∆,

2∆.

(107)

Numerical results for the eigenvalues are shown in Fig. 8. We observe that mixing within the charged and neutral
baryon sectors leads to level repulsion. There are two modes that become light in the CFL window µs ≤ 2∆. One mode
is a charged mode which is a linear combination of the proton and the Σ+, while the other mode is a linear combination
of the neutral baryons (n,Σ0,Ξ0,Λ8,Λ0). The charged mode becomes gapless first, at µs = 4∆/3. Corrections to this
result were studied in the NJL model calculation of [145], which includes various subleading condensates and obtains
µs = 1.22∆ at µ = 500 MeV. The neutral mode becomes gapless only at µs = 2∆. The most important difference as
compared to the spectrum in the gapless CFL phase without kaon condensation is that for µs < 2∆ only the charged
mode is gapless.

F. Goldstone boson currents

In Sec. IVG we showed that gapless fermion modes lead to instabilities of the superfluid phase. Here we will
discuss how these instabilities arise, and how they can be resolved, in the context of low energy theories of the CFL
state, by the formation of the meson supercurrent state introduced in Sec. III D. The chromomagnetic instability is
an instability towards the spontaneous generation of currents, that is to say the spontaneous generation of spatial
variation in the phase of the diquark condensate. Consider a spatially varying U(1)Y rotation of the neutral kaon
condensate

ξ(x) = U(x)ξKU †(x), (108)

where ξK = exp(iπλ4) and U(x) = exp(iφK(x)λ8). This state is characterized by nonzero vector and axial-vector
currents, see Eq. (105). We shall study the dependence of the vacuum energy on the kaon current K = ∇φK . The
gradient term in the meson part of the effective Lagrangian gives a positive contribution

Em =
1

2
v2
πf

2
π

2
K . (109)

A negative contribution can arise from gapless fermions. In order to determine this contribution we have to calculate
the fermion spectrum in the presence of a nonzero current. The relevant couplings are obtained from the covariant
derivative of the fermion field in Eq. (106) and the D and F-terms in Eq. (104). The fermion spectrum is quite
complicated. The dispersion relation of the lowest mode is approximately given by

ωl = ∆+
(l − l0)2

2∆
−

3

4
µs −

1

4
v · K , (110)

where l = v · p− pF and we have expanded ωl near its minimum l0 = (µs + v · K)/4. Eq. (110) shows that there is
a gapless mode if µs > 4∆/3− K/3. The contribution of the gapless mode to the vacuum energy is

Eq =
µ2

π2

∫

dl

∫
dΩ

4π
ωlθ(−ωl), (111)

where dΩ is an integral over the Fermi surface. The energy functional Em + Eq was analyzed in [176, 177]. There is
an instability near the point µs = 4∆/3. The instability is resolved by the formation of a Goldstone boson current.
If electric charge neutrality is enforced the magnitude of the current is very small, and there is no tendency towards
the generation of multiple currents. It was also shown that all gluonic screening masses are real [178]. The situation
is more complicated if the neutral fermion mode becomes gapless, too. In this case the magnitude of the current is
not small, and multiple currents may appear. This regime corresponds to the portion of the curCFL-K0 curve in Fig.
3 that is only slightly (invisibly) below the gCFL curve.
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G. Other effective theories

Effective Lagrangians have also been been constructed for color superconducting phases other than the CFL phase.
The effective theory for the light singlet axial mode in the 2SC phase can be found in [278]. The phonon effective
theory in the crystalline color superconducting phase is discussed in Sec. VI C.

It is also interesting to study effective theories in QCD-like theories at large density. Some of these theories do not
have a sign problem and can be studied on the lattice with algorithms that are available today. Of particular interest
are QCD with Nc = 2 colors [41–49] and QCD at finite isospin density [50–52].

VI. NJL MODEL COMPARISONS AMONG CANDIDATE PHASES BELOW CFL DENSITIES

As we have explained in Sec. II, at sufficiently high densities, where the up, down and strange quarks can be treated
on an equal footing and the disruptive effects of the strange quark mass can be neglected, quark matter is in the
CFL phase. At asymptotic densities, the CFL gap parameter ∆CFL and indeed any property of CFL quark matter
can be calculated in full QCD, as described in Sec. IV. At any density at which the CFL phase arises, its low energy
excitations, and hence its properties and phenomenology, can be described by the effective field theory of Sec. V,
whose form is known and whose parameters can be systematically related to the CFL gap ∆CFL. If we knew that
the only form of color superconducting quark matter that arises in the QCD phase diagram were CFL, there would
therefore be no need to resort to model analyses. However, as we have discussed in Sec. III, M2

s /(µ∆CFL) may not
be small enough (at µ = µnuc where the nuclear → quark matter transition occurs) for the QCD phase diagram to
be this simple.

Even at the very center of a neutron star, µ cannot be larger than about 500 MeV, meaning that the (density
dependent) strange quark mass Ms cannot be neglected. In concert with the requirement that bulk matter must be
neutral and must be in weak equilibrium, a nonzero Ms favors separation of the Fermi momenta of the three different
flavors of quarks, and thus disfavors the cross-species BCS pairing that characterizes the CFL phase. If CFL pairing is
disrupted by the heaviness of the strange quark at a higher µ than that at which color superconducting quark matter
is superseded by baryonic matter, the CFL phase must be replaced by some phase of quark matter in which there is
less, and less symmetric, pairing.

Within a spatially homogeneous ansatz, the next phase down in density is the gapless CFL (gCFL) phase described
in Sec. III B. However, as we have described in Sec. IVG, such gapless paired states suffer from a chromomagnetic
instability: they can lower their energy by the formation of counter-propagating currents. It seems likely, therefore,
that a ground state with counter-propagating currents is required. This could take the form of a crystalline color
superconductor, that we have introduced in Sec. III C. Or, given that the CFL phase itself is likely augmented by
kaon condensation as described in Secs. II C and VD, it could take the form of the phase we have described in Sec. VF
in which a CFL kaon condensate carries a current in one direction balanced by a counter-propagating current in the
opposite direction carried by gapless quark quasiparticles.

Determining which phase or phases of quark matter occupy the regime of density between hadronic matter and CFL
quark matter in the QCD phase diagram, if there is such a regime, remains an outstanding challenge. Barring a major
breakthrough that would allow lattice QCD calculations to be brought to bear despite the fermion sign problem, a
from-first-principles determination seems out of reach. This leaves two possible paths forward. First, as we describe
in this section, we can analyze and compare many of the possible phases within a simplified few parameter model, in
so doing seeking qualitative insight into what phase(s) are favorable. Second, as we shall describe in Sec. VIII, we can
determine the observable consequences of the presence of various possible color superconducting phases in neutron
stars, and then seek to use observational data to rule possibilities out or in.

A. Model, pairing ansatz, and homogeneous phases

We shall employ a Nambu–Jona-Lasinio (NJL) model in which the QCD interaction between quarks is replaced by a
point-like four-quark interaction, with the quantum numbers of single-gluon exchange, analyzed in mean field theory.
This is not a controlled approximation. However, it suffices for our purposes: because this model has attraction in
the same channels as in QCD, its high density phase is the CFL phase; and, the Fermi surface splitting effects whose
qualitative consequences we wish to study can be built into the model. Note that we shall assume throughout that
∆CFL " µ. This weak coupling assumption means that the pairing is dominated by modes near the Fermi surfaces.
Quantitatively, this means that results for the gaps and condensation energies of candidate phases are independent
of the cutoff in the NJL model when expressed in terms of the CFL gap ∆CFL: if the cutoff is changed with the NJL
coupling constant adjusted so that ∆CFL stays fixed, the gaps and condensation energies for the candidate crystalline
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phases also stay fixed. This makes the NJL model valuable for making the comparisons that are our goal. The NJL
model has two parameters: the CFL gap ∆CFL which parametrizes the strength of the interaction and M2

s /(4µ),
the splitting between Fermi surfaces in neutral quark matter in the absence of pairing. The free energy of candidate
patterns of pairing can be evaluated and compared as a function of these two parameters.

As a rather general pairing ansatz, we shall consider

〈ud〉 ∼ ∆3

∑

a

exp (2iqa
3 · r)

〈us〉 ∼ ∆2

∑

a

exp (2iqa
2 · r)

〈ds〉 ∼ ∆1

∑

a

exp (2iqa
1 · r) . (112)

If we set all the wave vectors qa
I to zero, we can use this ansatz to compare spatially homogeneous phases including

the CFL phase (∆1 = ∆2 = ∆3 ≡ ∆CFL), the gCFL phase (∆3 > ∆2 > ∆1 > 0) and the 2SC phase (∆3 ≡ ∆2SC;
∆1 = ∆2 = 0). Choosing different sets of wave vectors will allow us to analyze and compare different crystalline color
superconducting phases of quark matter.

NJL models of varying degrees of complexity have been used for a variety of purposes beyond the scope of this
review. For example, whereas we treat ∆CFL and quark masses as parameters and use the NJL model to compare
different patterns of pairing at fixed values of these parameters and µ, it is possible instead to fix the NJL coupling
or couplings and then self-consistently solve for the gap parameters and the 〈s̄s〉 condensate as functions of µ [139–
141, 146, 147, 290, 294–297]. Doing so reintroduces sensitivity to the cutoff in the NJL model and so does not actually
reduce the number of parameters. Also, these models tend to find rather larger values of Ms than in analyses that go
beyond NJL models, for example the analysis using Dyson-Schwinger equations in [298]. There have also been many
investigations of the phase diagram in the µ-T plane in NJL models (either with ∆CFL and Ms as parameters or
solved for self-consistently) [138, 141, 147, 154, 239, 270, 299–305]. Although many of their features are sensitive to
the cutoff as well as the chosen couplings, these NJL phase diagrams indicate how rich the QCD phase diagram may
turn out to be, as different condensates vanish at different temperatures. One result that has been obtained using
the Ginzburg-Landau approximation as well as in NJL models and so is of more general validity is that upon heating
the CFL phase at nonzero but small M2

s /µ, as T increases ∆2 vanishes first, then ∆1, and then ∆3 [138, 154, 269].
However, it remains to be seen how this conclusion is modified by the effects of gauge-field fluctuations, which for
Ms = 0 turn the mean-field Ginzburg-Landau second order transition into a strong first order phase transition at a
significantly elevated temperature, see Sec. V B and Eq. (74).

We shall analyze quark matter containing massless u and d quarks and s quarks with an effective mass Ms. The
Lagrangian density describing this system in the absence of interactions is given by

L0 = ψ̄iα

(

i ∂/δαβδij −Mαβ
ij + µαβij γ0

)

ψβj , (113)

where i, j = 1, 2, 3 are flavor indices and α, β = 1, 2, 3 are color indices and we have suppressed the Dirac indices,
where Mαβ

ij = δαβ diag(0, 0, Ms)ij is the mass matrix, and where the quark chemical potential matrix is given by

µαβij = (µδij − µeQij)δ
αβ + δij

(

µ3T
αβ
3 +

2√
3
µ8T

αβ
8

)

, (114)

with Qij = diag(2/3,−1/3,−1/3)ij the quark electric-charge matrix and T3 and T8 the diagonal color generators.
In QCD, µe, µ3 and µ8 are the zeroth components of electromagnetic and color gauge fields, and the gauge field
dynamics ensure that they take on values such that the matter is neutral [85–88], satisfying the neutrality conditions
(3). In the NJL model, quarks interact via four-fermion interactions and there are no gauge fields, so we introduce µe,
µ3 and µ8 by hand, and choose them to satisfy the neutrality constraints (3). The assumption of weak equilibrium
is built into the calculation via the fact that the only flavor-dependent chemical potential is µe, ensuring for example
that the chemical potentials of d and s quarks with the same color must be equal. Because the strange quarks have
greater mass, the equality of their chemical potentials implies that the s quarks have smaller Fermi momenta than the
d quarks in the absence of BCS pairing. In the absence of pairing, then, because weak equilibrium drives the massive
strange quarks to be less numerous than the down quarks, electrical neutrality requires a µe > 0, which makes the up
quarks less numerous than the down quarks and introduces some electrons into the system. In the absence of pairing,
color neutrality is obtained with µ3 = µ8 = 0.

The Fermi momenta of the quarks and electrons in quark matter that is electrically and color neutral and in weak
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equilibrium are given in the absence of pairing by

pd
F = µ +

µe

3

pu
F = µ−

2µe

3

ps
F =

√
(

µ +
µe

3

)2
−M2

s ≈ µ +
µe

3
−

M2
s

2µ

pe
F = µe , (115)

where we have simplified ps
F by working to linear order in µe and M2

s . To this order, electric neutrality requires
µe = M2

s /(4µ), yielding

pd
F = µ +

M2
s

12µ
= pu

F +
M2

s

4µ

pu
F = µ−

M2
s

6µ

ps
F = µ−

5M2
s

12µ
= pu

F −
M2

s

4µ

pe
F =

M2
s

4µ
, (116)

as illustrated in Fig. 2. We see from (115) that to leading order in M2
s and µe, the effect of the strange quark mass on

unpaired quark matter is as if instead one reduced the strange quark chemical potential by M2
s /(2µ). We shall make

this approximation throughout. Upon making this assumption, we need no longer be careful about the distinction
between pF ’s and µ’s, as we can simply think of the three flavors of quarks as if they have chemical potentials

µd = µu + 2δµ3

µu = pu
F

µs = µu − 2δµ2 (117)

with

δµ3 = δµ2 =
M2

s

8µ
≡ δµ , (118)

where the choice of subscripts indicates that 2δµ2 is the splitting between the Fermi surfaces for quarks 1 and 3 and
2δµ3 is that between the Fermi surfaces for quarks 1 and 2, identifying u, d, s with 1, 2, 3.

As described in [85, 91, 92, 146], BCS pairing introduces qualitative changes into the analysis of neutrality. For
example, in the CFL phase µe = 0 and µ8 is nonzero and of order M2

s /µ. This arises because wherever BCS pairing
occurs between fermions whose Fermi surface would be split in the absence of pairing, the Fermi momenta of these
fermions are locked together. This maximizes the pairing energy gain while at the same time exacting a kinetic energy
price and changing the relation between the chemical potentials and the particle numbers. This means that the µ’s
required for neutrality can change qualitatively as happens in the CFL example.

The NJL interaction term with the quantum numbers of single-gluon exchange that we add to the Lagrangian (113)
is

Linteraction = −
3

8
λ(ψ̄ΓAνψ)(ψ̄ΓAνψ) , (119)

where we have suppressed the color and flavor indices that we showed explicitly in (113), and have continued to
suppress the Dirac indices. The full expression for ΓAν is (ΓAν)αi,βj = γν(T A)αβδij . The NJL coupling constant λ
has dimension -2, meaning that an ultraviolet cutoff Λ must be introduced as a second parameter in order to fully
specify the interaction. We shall define Λ as restricting the momentum integrals to a shell around the Fermi surface,
µ− Λ < |p| < µ + Λ.

In the mean-field approximation, the interaction Lagrangian (119) takes on the form

Linteraction =
1

2
ψ̄∆(x)ψ̄T +

1

2
ψT ∆̄(x)ψ, (120)
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where ∆(x) is related to the diquark condensate by the relations

∆(x) =
3

4
λΓAν〈ψψT 〉(ΓAν)

T

∆̄(x) =
3

4
λ(ΓAν)T 〈ψ̄T ψ̄〉ΓAν = γ0∆†(x)γ0 .

(121)

The ansatz (112) can now be made precise: we take

∆(x) = ∆CF (x) ⊗ Cγ5 , (122)

with the color-flavor part

∆CF (x)αi,βj =
3
∑

I=1

∑

qa
I

∆(qa
I )e2iqa

I ·rεIαβεIij . (123)

We have introduced notation that allows for the possibility of gap parameters ∆(qa
I ) with different magnitudes for

different I and for different a. In fact, we shall only consider circumstances in which ∆(qa
I ) = ∆I , as in (112).

The full Lagrangian, given by the sum of (113) and (120), is then quadratic and can be written very simply upon
introducing the two component Nambu-Gorkov spinors (12) in terms of which

L =
1

2
Ψ̄

(

i∂/ + µ/ ∆(x)

∆̄(x) (i∂/− µ/)T

)

Ψ . (124)

Here, µ/ ≡ µγ0 and µ is the matrix (114).
The propagator corresponding to the Lagrangian (124) is given by

〈Ψ(x)Ψ̄(x′)〉 =
( 〈ψ(x)ψ̄(x′)〉 〈ψ(x)ψT (x′)〉
〈ψ̄T (x)ψ̄(x′)〉 〈ψ̄T (x)ψT (x′)〉

)

=
( iG(x, x′) iF (x, x′)

iF̄ (x, x′) iḠ(x, x′)

)

, (125)

where G and Ḡ are the “normal” components of the propagator and F and F̄ are the “anomalous” components. They
satisfy the coupled differential equations

( i∂/ + µ/ ∆(x)

∆̄(x) (i∂/− µ/)T

)( G(x, x′) F (x, x′)

F̄ (x, x′) Ḡ(x, x′)

)

=
( 1 0

0 1

)

δ(4)(x − x′) . (126)

We can now rewrite (121) as

∆(x) =
3i

4
λΓAνF (x, x)(ΓAν)

T

∆̄(x) =
3i

4
λ(ΓAν)T F̄ (x, x)ΓAν ,

(127)

either one of which is the self-consistency equation, or gap equation, that we must solve.
Without further approximation, (127) is not tractable. It yields an infinite set of coupled gap equations, one for

each ∆(qa
I ), because without further approximation it is not consistent to choose finite sets {qI}. When several plane

waves are present in the condensate, they induce an infinite tower of higher momentum condensates [168]. In the next
subsection, we shall make a Ginzburg-Landau (i.e. small-∆) approximation which eliminates these higher harmonics.

Of course, an even more dramatic simplification is obtained if we set all the wave vectors qa
I to zero. Still, even in

this case obtaining the general solution with Ms *= 0 and ∆1 *= ∆2 *= ∆3 is somewhat involved [91, 137, 138]. We
shall not present the resulting analysis of the CFL→gCFL transition and the gCFL phase here. The free energies of
these phases are depicted in Fig. 3, and their gap parameters are depicted below in Fig. 10.

If we simplify even further, by setting Ms = 0 and ∆1 = ∆2 = ∆3 ≡ ∆CFL, the gap equation determining the CFL
gap parameter ∆CFL can then be evaluated analytically, yielding [168]

∆CFL = 2
2
3Λ exp

[

−
π2

2µ2λ

]

. (128)

We shall see below that in the limit in which ∆ " ∆CFL, δµ " µ, all results for the myriad possible crystalline
phases can be expressed in terms of ∆CFL; neither λ nor Λ shall appear. This reflects the fact that in this limit
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the physics of interest is dominated by quarks near the Fermi surfaces, not near Λ, and so once ∆CFL is used as the
parameter describing the strength of the attraction between quarks, Λ is no longer visible; the cutoff Λ only appears
in the relation between ∆CFL and λ, not in any comparison among different possible paired phases. We are using
the NJL model in a specific, limited, fashion in which it serves as a two parameter model allowing the comparison
among different possible paired phases at a given ∆CFL and Ms. NJL models have also been employed to estimate
the value of ∆CFL at a given µ [24–26, 33, 239, 240]; doing so requires normalizing the four-fermion interaction by
calculating some zero density quantity like the vacuum chiral condensate, and in so doing introduces a dependence on
the cutoff Λ. Such mean-field NJL analyses are important complements to extrapolation down from an analysis that
is rigorous at high density and hence weak coupling, described in Sec. IV, and give us confidence that we understand
the magnitude of ∆CFL ∼ 10 − 100 MeV. This estimate receives further support from the lattice-NJL calculation of
[53] which finds diquark condensation and a ∼ 60 MeV gap in an NJL model whose parameters are normalized via
calculation of fπ, mπ and a constituent quark mass in vacuum. With these as inputs, ∆ is then calculated on the
lattice, i.e. without making a mean-field approximation. With an understanding of its magnitude in hand, we shall
treat ∆CFL as a parameter, thus making our results insensitive to Λ.

We shall focus below on the use of the NJL model that we have introduced to analyze and compare different possible
crystalline phases, comparing their free energies to that of the CFL phase as a benchmark. The free energy of the
2SC phase is easily calculable in the same model, and the free energies of the unstable gapless CFL and gapless 2SC
phases can also be obtained [137]. These free energies are all shown in Fig. 3. The free energies of phases with various
patterns of single-flavor pairing have also been calculated in the same model [132]. The NJL model is not a natural
starting point for an analysis of the kaon condensate in the CFL-K0 phase, but with considerable effort this has been
accomplished in [144, 145, 283, 290]. The curCFL-K0 phase of Secs. III D and VF, in which the K0-condensate
carries a current, has not been analyzed in an NJL model. But, because both the CFL-K0 and curCFL-K0 phases
are continuously connected to the CFL phase, they can both be analyzed in a model-independent fashion using the
effective field theory described in Sec. V. The CFL-K0 and curCFL-K0 curves in Fig. 3 were obtained as described
in Sec. V. It remains a challenge for future work to do a calculation in which both curCFL-K0 and crystalline phases
are possible, allowing a direct comparison of their free energies within a single calculation and a study of whether
they are distinct as current results seem to suggest or are instead different limits of some more general inhomogeneous
color superconducting phase.

B. Crystalline phases

Crystalline color superconductivity [167–171, 173, 220, 306–314] naturally permits pairing between quarks living at
split Fermi surfaces by allowing Cooper pairs with nonzero net momentum. In three-flavor quark matter, this allows
pairing to occur even with the Fermi surfaces split in the free-energetically optimal way as in the absence of pairing,
meaning that neutral crystalline phases are obtained in three-flavor quark matter with the chemical potential matrix
(114) simplified to µ = δαβ ⊗ diag (µu, µd, µs) with the flavor chemical potentials given simply by (117) [170–172], up
to higher order corrections that have been investigated in [313]. This is the origin of the advantage that crystalline
color superconducting phases have over the CFL and gCFL phases at large values of the splitting δµ. For example,
by allowing u quarks with momentum p + q3 to pair with d quarks with momentum −p + q3, for any p, we can pair
u and d quarks along rings on their respective Fermi surfaces. In coordinate space, this corresponds to a condensate
of the form 〈ud〉 ∼ ∆3 exp

(

2iq3 · r
)

. The net free energy gained due to pairing is then a balance between increasing
|q3| yielding pairing on larger rings while exacting a greater kinetic energy cost. The optimum choice turns out to
be |q3| = ηδµ3 with η = 1.1997, corresponding to pairing rings on the Fermi surfaces with opening angle 67.1◦ [167].
Pairing with only a single q3 is disadvantaged because the only quarks on each Fermi surface that can then pair are
those lying on a single ring. This disadvantage can be overcome in two ways. First, increasing ∆ widens the pairing
rings on the Fermi surfaces into pairing bands which fill in, forming pairing caps, at large enough ∆ [171]. Second,
it is possible to cover larger areas of the Fermi surfaces by allowing Cooper pairs with the same |q3| but various q̂3,
yielding 〈ud〉 ∼ ∆3

∑

qa
3
exp

(

2 iqa
3 · r

)

with the qa
3 chosen from some specified set {q1

3,q
2
3,q

3
3, . . .} ≡ {q3}. This is a

condensate modulated in position space in some crystalline pattern, with the crystal structure defined by {q3}. In
this two-flavor context, a Ginzburg-Landau analysis reveals that the best {q3} contains eight vectors pointing at the
corners of a cube, say in the (±1,±1,±1) directions in momentum space, yielding a face-centered cubic structure in
position space [168].

This subsection describes the analysis of three-flavor crystalline phases in [315]. We use the ansatz given by (122)
and (123) for the three-flavor crystalline color superconducting condensate. This is antisymmetric in color (α, β),
spin, and flavor (i, j) indices and is a generalization of the CFL condensate to crystalline color superconductivity.
We set ∆1 = 0, neglecting 〈ds〉 pairing because the d and s Fermi surfaces are twice as far apart from each other as
each is from the intervening u Fermi surface. Hence, I can be taken to run over 2 and 3 only. {q2} and {q3} define
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the crystal structures of the 〈us〉 and 〈ud〉 condensates respectively. We only consider crystal structures in which
all the vectors in {q2} are equivalent to each other in the sense that any one can be transformed into any other by
a symmetry operation of {q2} and same for {q3}. This justifies our simplifying assumption that the 〈us〉 and 〈ud〉
condensates are each specified by a single gap parameter (∆2 and ∆3 respectively), avoiding having to introduce one
gap parameter per q. We furthermore only consider crystal structures which are exchange symmetric, meaning that
{q2} and {q3} can be exchanged by some combination of rigid rotations and reflections applied simultaneously to
all the vectors in both sets. This simplification, together with δµ2 = δµ3 (an approximation corrected only at order
M4

s /µ3), guarantees that we find solutions with ∆2 = ∆3.
We analyze and compare candidate crystal structures by evaluating the free energy Ω(∆2,∆3) for each crystal

structure in a Ginzburg-Landau expansion in powers of the ∆’s. This approximation is controlled if ∆2,∆3 "
∆CFL, δµ, with ∆CFL the gap parameter in the CFL phase at M2

s /µ = 0. The terms in the Ginzburg-Landau
expansion must respect the global U(1) symmetry for each flavor, meaning that each ∆I can only appear in the
combination |∆I |2. (The U(1) symmetries are spontaneously broken by the condensate, but not explicitly broken.)
Therefore, Ω(∆2,∆3) is given to sextic order by

Ω(∆2,∆3) =
2µ2

π2

[

P2α2|∆2|2 + P3α3|∆3|2 +
1

2

(

β2|∆2|4 + β3|∆3|4 + β32|∆2|2|∆3|2
)

+
1

3

(

γ2|∆2|6 + γ3|∆3|6 + γ322|∆3|2|∆2|4 + γ233|∆3|4|∆2|2
)
]

, (129)

where we have chosen notation consistent with that used in the two flavor study of [168], which arises as a special case
of (129) if we take ∆2 or ∆3 to be zero. PI is the number of vectors in the set {qI}. The form of the Ginzburg-Landau
expansion (129) is model-independent, whereas the expressions for the coefficients αI , βI , βIJ , γI , and γIJJ for a
specific crystal structure are model-dependent. We calculate them in the NJL model described in Sec. VI A. For
exchange symmetric crystal structures, α2 = α3 ≡ α, β2 = β3 ≡ β, γ2 = γ3 ≡ γ and γ233 = γ322.

Because setting one of the ∆I to zero reduces the problem to one with two-flavor pairing only, we can obtain α, β
and γ via applying the two-flavor analysis described in [168] to either {q2} or {q3} separately. Using α as an example,
we learn that

αI = α(qI , δµI) = −1 +
δµI

2qI
log

(
qI + δµI

qI − δµI

)

−
1

2
log

(
∆2

2SC

4(q2
I − δµ2

I)

)

. (130)

Here, qI ≡ |qI | and ∆2SC is the gap parameter for the 2SC (2-flavor, 2-color) BCS pairing obtained with δµI = 0
and ∆I nonzero with the other two gap parameters set to zero. Assuming that ∆CFL " µ, the 2SC gap parameter
is given by ∆2SC = 2

1
3∆CFL [94], see Sec. IV. In the Ginzburg-Landau approximation, in which the ∆I are assumed

small, we must first minimize the quadratic contribution to the free energy, and only then investigate the quartic and
sextic contributions. Minimizing αI fixes the length of all the vectors in the set {qI}, and eliminates the possibility
of waves at higher harmonics, yielding qI = η δµI with η = 1.1997 the solution to 1

2η log [(η + 1)/(η − 1)] = 1 [167].

Upon setting qI = η δµI , (130) becomes

αI(δµI) = −
1

2
log

(
∆2

2SC

4δµ2
I(η

2 − 1)

)

. (131)

Once the qI have been fixed, the only dimensionful quantities on which the quartic and sextic coefficients can depend
are the δµI [168, 172], meaning that for exchange symmetric crystal structures and with δµ2 = δµ3 = δµ we have
β = β̄/δµ2, β32 = β̄32/δµ2, γ = γ̄/δµ4 and γ322 = γ̄322/δµ4 where the barred quantities are dimensionless numbers
which depend only on {q̂2} and {q̂3} that must be evaluated for each crystal structure. Doing so requires evaluating
one-loop Feynman diagrams with 4 or 6 insertions of ∆I ’s. Each insertion of ∆I (∆∗

I) adds (subtracts) momentum 2qa
I

for some a. The vector sum of all these external momenta inserted into a given one-loop diagram must vanish, meaning
that the calculation consists of a bookkeeping task (determining which combinations of 4 or 6 qa

I ’s selected from the
sets {qI} satisfy this momentum-conservation constraint) that grows rapidly in complexity with the complexity of
the crystal structure, and a loop integration that is nontrivial because the momentum in the propagator changes
after each insertion. In [172], this calculation is carried out explicitly for 11 crystal structures in the mean-field NJL
model of Sec. VI A upon making the weak coupling (∆CFL and δµ both much less than µ) approximation. Note
that in this approximation neither the NJL cutoff nor the NJL coupling constant appear in any quartic or higher
Ginzburg-Landau coefficient, and as we have seen above they appear in α only within ∆CFL. Hence, the details of
the model do not matter as long as one thinks of ∆CFL as a parameter, kept " µ.
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It is easy to show that for exchange symmetric crystal structures any extrema of Ω(∆2,∆3) in (∆2,∆3)-space must
either have ∆2 = ∆3 = ∆, or have one of ∆2 and ∆3 vanishing [172]. It is also possible to show that the three-flavor
crystalline phases with ∆2 = ∆3 = ∆ are electrically neutral whereas two-flavor solutions in which only one of the ∆’s
is nonzero are not [172]. We therefore analyze only solutions with ∆2 = ∆3 = ∆. We find that Ω(∆,∆) is positive for
large ∆ for all the crystal structures that have been investigated to date [172].4 This allows us to minimize Ω(∆,∆)
with respect to ∆, thus evaluating ∆ and Ω.

We begin with the simplest three-flavor “crystal” structure in which {q2} and {q3} each contain only a single vector,
making the 〈us〉 and 〈ud〉 condensates each a single plane wave [170]. We call this the 2PW phase. Unlike in the
more realistic crystalline phases we describe below, in this “crystal” the magnitude of the 〈ud〉 and 〈us〉 condensates
are unmodulated. This simple condensate nevertheless yields a qualitative lesson which proves helpful in winnowing
the space of multiple plane wave crystal structures [172]. For this simple “crystal” structure, all the coefficients in the
Ginzburg-Landau free energy can be evaluated analytically [170–172]. The terms that occur in the three-flavor case
but not in the two-flavor case, namely β̄32 and γ̄322, describe the interaction between the two condensates, and depend
on the angle φ between q2 and q3. For any angle φ, both β̄32 and γ̄322 are positive. And, both increase monotonically
with φ and diverge as φ→ π This divergence tells us that choosing q2 and q3 precisely antiparallel exacts an infinite
free energy price in the combined Ginzburg-Landau and weak-coupling limit in which ∆" δµ,∆CFL " µ, meaning
that in this limit if we chose φ = π we find ∆ = 0. Away from the Ginzburg-Landau limit, when the pairing rings
on the Fermi surfaces widen into bands, choosing φ = π exacts a finite price meaning that ∆ is nonzero but smaller
than that for any other choice of φ. The high cost of choosing q2 and q3 precisely antiparallel can be understood
qualitatively as arising from the fact that in this case the ring of states on the u-quark Fermi surface that “want to”
pair with d-quarks coincides precisely with the ring that “wants to” pair with s-quarks [171]. This simple two plane
wave ansatz has been analyzed upon making the weak-coupling approximation but without making the Ginzburg-
Landau approximation [171]. All the qualitative lessons learned from the Ginzburg-Landau approximation remain
valid and we learn further that the Ginzburg-Landau approximation always underestimates ∆ [171].

The analysis of the simple two plane wave “crystal” structure, together with the observation that in more com-
plicated crystal structures with more than one vector in {q2} and {q3} the Ginzburg-Landau coefficient β32 (γ322)
is given in whole (in part) by a sum of many two plane wave contributions, yields one of two rules for constructing
favorable crystal structures for three-flavor crystalline color superconductivity [172]: {q2} and {q3} should be rotated
with respect to each other in a way that best keeps vectors in one set away from the antipodes of vectors in the other
set. The second rule is that the sets {q2} and {q3} should each be chosen to yield crystal structures which, seen as
separate two-flavor crystalline phases, are as favorable as possible. The 11 crystal structures analyzed in [172] allow
one to make several pairwise comparisons that test these two rules. There are instances of two structures which differ
only in the relative orientation of {q2} and {q3} and in these cases the structure in which vectors in {q2} get closer
to the antipodes of vectors in {q3} are disfavored. And, there are instances where the smallest angle between a vector
in {q2} and the antipodes of a vector in {q3} are the same for two different crystal structures, and in these cases
the one with the more favorable two-flavor structure is more favorable. These considerations, together with explicit
calculations, indicate that two structures, which we denote “2Cube45z” and “CubeX”, are particularly favorable.

In the 2Cube45z crystal, {q2} and {q3} each contain eight vectors pointing at the corners of a cube. If we orient
{q2} so that its vectors point in the (±1,±1,±1) directions in momentum space, then {q3} is rotated relative to {q2}
by 45◦ about the z-axis. In this crystal structure, the 〈ud〉 and 〈us〉 condensates are each given by the most favored
two-flavor crystal structure [168]. The relative rotation maximizes the separation between any vector in {q2} and the
nearest antipodes of a vector in {q3}.

We arrive at the CubeX structure by reducing the number of vectors in {q2} and {q3}. This worsens the two-flavor
free energy of each condensate separately, but allows vectors in {q2} to be kept farther away from the antipodes of
vectors in {q3}. We have not analyzed all structures obtainable in this way, but we have found one and only one
which has a condensation energy comparable to that of the 2Cube45z structure. In the CubeX structure, {q2} and
{q3} each contain four vectors forming a rectangle. The eight vectors together point toward the corners of a cube.
The 2 rectangles intersect to look like an “X” if viewed end-on. The color, flavor and position space dependence of
the CubeX condensate is given by

ε2αβε2ij

[

cos
2π

a
(x + y + z) + cos

2π

a
(−x− y + z)

]

+ ε3αβε3ij

[

cos
2π

a
(−x + y + z) + cos

2π

a
(x− y + z)

]

, (132)

4 This is in marked contrast with what happens with only two flavors (and upon ignoring the requirement of neutrality.) in that context,
many crystal structures have negative γ and hence sextic order free energies that are unbounded from below [168].



50

FIG. 9: The CubeX crystal structure of Eq. (132). The figure extends from 0 to a/2 in the x, y and z directions. Both
∆2(r) and ∆3(r) vanish at the horizontal plane. ∆2(r) vanishes on the darker vertical planes, and ∆3(r) vanishes on the lighter
vertical planes. On the upper (lower) dark cylinders and the lower (upper) two small corners of dark cylinders, ∆2(r) = +3.3∆
(∆2(r) = −3.3∆). On the upper (lower) lighter cylinders and the lower (upper) two small corners of lighter cylinders, ∆3(r) =
−3.3∆ (∆3(r) = +3.3∆). The largest value of |∆I(r)| is 4∆, occurring along lines at the centers of the cylinders. The lattice
spacing is a when one takes into account the signs of the condensates; if one looks only at |∆I(r)|, the lattice spacing is a/2.

where a =
√

3π/q = 4.536/δµ = 36.29µ/M2
s is the lattice spacing. For example, with M2

s /µ = 100, 150, 200 MeV the
lattice spacing is a = 72, 48, 36 fm. We depict this condensate in Fig. 9.

In Figs. 10 and 3, we plot ∆ and Ω versus M2
s /µ for the most favorable crystal structures that we have found,

namely the CubeX and 2Cube45z structures described above. We have taken the CFL gap parameter ∆CFL = 25 MeV
in these figures, but they can easily be rescaled to any value of ∆CFL " µ [172]: if the ∆ and M2

s /µ axes are rescaled
by ∆CFL and the energy axis is rescaled by ∆2

CFL. Fig. 10 shows that the gap parameters are large enough that the
Ginzburg-Landau approximation is at the edge of its domain of reliability. However, results obtained for the simpler
2PW crystal structures suggest that the Ginzburg-Landau calculation underestimates ∆ and the condensation energy
and that, even when it breaks down, it is a good qualitative guide to the favorable structure [171]. We therefore
trust the result, evident in Fig. 3, that these crystalline phases are both impressively robust, with one or other of
them favored over a wide swath of M2

s /µ and hence density. We do not trust the Ginzburg-Landau calculation to
discriminate between these two structures, particularly given that although we have a qualitative understanding of
why these two are favorable we have no qualitative argument for why one should be favored over the other. We are
confident that 2Cube45z is the most favorable structure obtained by rotating one cube relative to another. We are
not as confident that CubeX is the best possible structure with fewer than 8+8 vectors. Regardless, the 2Cube45z
and CubeX crystalline phases together make the case that three-flavor crystalline color superconducting phases are
the ground state of cold quark matter over a wide range of densities. If even better crystal structures can be found,
this will only further strengthen this case.

Fig. 3 shows that over most of the range of M2
s /µ where it was once considered a possibility, the gCFL phase can
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FIG. 10: Gap parameter ∆ versus M2
s /µ for: the CFL gap parameter (set to 25 MeV at M2

s /µ = 0), the three gap parameters
∆1 < ∆2 < ∆3 describing 〈ds〉, 〈us〉 and 〈ud〉 pairing in the gCFL phase, and the gap parameters in the crystalline color
superconducting phases with CubeX and 2Cube45z crystal structures. Increasing M2

s /µ corresponds to decreasing density.

be replaced by a much more favorable three-flavor crystalline color superconducting phase. We find that the two
most favorable crystal structures have large condensation energies, easily 1/3 to 1/2 of that in the CFL phase with
Ms = 0, which is 3∆2

CFLµ2/π2. This is at first surprising, given that the only quarks that pair are those lying on
rings on the Fermi surfaces, whereas in the CFL phase with Ms = 0 pairing occurs over the entire u, d and s Fermi
surfaces. It can to a degree be understood qualitatively once we recall that there are in fact many rings, and note
that as ∆ increases, the pairing rings spread into bands on the Fermi surfaces, and for ∆ as large as that we find
to be favored these bands have expanded and filled in, becoming many “polar caps” on the Fermi surfaces [171]. In
addition to being free-energetically favorable, these crystalline phases are, as far as we know, stable: they do not suffer
from the chromomagnetic instability [173, 316–318] and they are also stable with respect to kaon condensation [319].
In simplified analogue contexts, it has even been possible to trace the path in configuration space from the unstable
gapless phase (analogue of gCFL) downward in free energy to the stable crystalline phase [44, 164].

Fig. 3 also shows that it is hard to find a crystalline phase with lower free energy than the gCFL phase at the
lower values of M2

s /µ (highest densities) within the “gCFL window”. At these densities, however, the calculations
described in Sec. V demonstrate that the gCFL phase is superseded by the stable CFL-K0 and curCFL-K0 phases,
as shown in Fig. 3.

The three-flavor crystalline color superconducting phases with CubeX and 2Cube45z crystal structures are the
lowest free energy phases that we know of, and hence candidates for the ground state of QCD, over a wide range
of densities. Within the Ginzburg-Landau approximation to the NJL model that we have employed, one or other
is favored over the CFL, gCFL and unpaired phases for 2.9∆CFL < M2

s /µ < 10.4∆CFL, as shown in Fig. 3. For
∆CFL = 25 MeV and Ms = 250 MeV, this translates to 240MeV < µ < 847MeV. With these choices of parameters,
the lower part of this range of µ (higher part of the range of M2

s /µ) is certainly superseded by nuclear matter. And,
the high end of this range extends beyond the µ ∼ 500 MeV characteristic of the quark matter at the densities
expected at the center of neutron stars. This qualitative feature persists in the analysis of [294] in which Ms is solved
for rather than taken as a parameter. If neutron stars do have quark matter cores, then, it is reasonable to include
the possibility that the entire quark matter core could be in a crystalline color superconducting phase on the menu
of options that must ultimately be winnowed by confrontation with astrophysical observations. (Recall, that if ∆CFL

is larger, say ∼ 100 MeV, the entire quark matter core could be in the CFL phase.) As we shall see in the next
subsection, crystalline color superconducting quark matter is rigid, with a very large shear modulus, while at the
same time being superfluid. This provides a possible origin for pulsar glitches, as we shall discuss in Sec. VIII F

C. Rigidity of crystalline color superconducting quark matter

The crystalline phases of color superconducting quark matter that we have described in the previous subsection are
unique among all forms of dense matter that may arise within neutron star cores in one respect: they are rigid [320].
They are not solids in the usual sense: the quarks are not fixed in place at the vertices of some crystal structure.
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Instead, in fact, these phases are superfluid since the condensates all spontaneously break the U(1)B symmetry
corresponding to quark number. We shall always write the condensates as real. This choice of overall phase breaks
U(1)B, and spatial gradients in this phase correspond to supercurrents. And yet, we shall see that crystalline color
superconductors are rigid solids with large shear moduli. The diquark condensate, although spatially inhomogeneous,
can carry supercurrents [167, 320]. It is the spatial modulation of the gap parameter that breaks translation invariance,
as depicted for the CubeX phase in Fig. 9, and it is this pattern of modulation that is rigid.5 This novel form of
rigidity may sound tenuous upon first hearing, but we shall present the effective Lagrangian that describes the phonons
in the CubeX and 2Cube45z crystalline phases, whose lowest order coefficients have been calculated in the NJL model
that we are employing [320]. We shall then extract the shear moduli from the phonon effective action, quantifying the
rigidity and indicating the presence of transverse phonons. The fact that the crystalline phases are simultaneously
rigid and superfluid means that their presence within neutron star cores has potentially observable consequences, as
we shall describe in Sec. VIII F.

The shear moduli of a crystal may be extracted from the effective Lagrangian that describes phonons in the crystal,
namely space- and time-varying displacements of the crystalline pattern. Phonons in two-flavor crystalline phases
were first investigated in [311, 312]. In the present context, we introduce displacement fields for the 〈ud〉, 〈us〉 and
〈ds〉 condensates by making the replacement

∆I

∑

qa
I

e2iqa
I ·r → ∆I

∑

qa
I

e2iqa
I ·(r−uI(r)) (133)

in (123). One way to obtain the effective action describing the dynamics of the displacement fields uI(r), including
both its form and the values of its coefficients within the NJL model that we are employing, is to begin with the NJL
model of Sec. VI A but with (133) and integrate out the fermion fields. After a lengthy calculation [320], this yields

S[u] =
1

2

∫

d4x
∑

I

κI

[



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qa
I

(q̂a
I )m(q̂a

I )n



 (∂0u
m
I )(∂0u

n
I )−





∑

qa
I

(q̂a
I )m(q̂a

I )v(q̂a
I )n(q̂a

I )w



 (∂vum
I )(∂wun

I )

]

(134)

where m, n, v and w are spatial indices running over x, y and z and where we have defined

κI ≡
2µ2|∆I |2η2

π2(η2 − 1)
. (135)

Upon setting ∆1 = 0 and ∆2 = ∆3 = ∆,

κ2 = κ3 ≡ κ =
2µ2|∆|2η2

π2(η2 − 1)
2 0.664 µ2|∆2| . (136)

S[u] is the low energy effective action for phonons in any crystalline color superconducting phase, valid to second order
in derivatives, to second order in the gap parameters ∆I and to second order in the phonon fields uI . Because we are
interested in long wavelength, small amplitude, phonon excitations, expanding to second order in derivatives and in
the phonon fields is satisfactory. More complicated terms will arise at higher order, for example terms that couple the
different uI ’s, but it is legitimate to neglect these complications [320]. Extending this calculation to higher order in
the Ginzburg-Landau approximation would be worthwhile, however, since as we saw in Sec. VI B this approximation
is at the edge of its domain of reliability.

In order to extract the shear moduli, we need to compare the phonon effective action to the general theory of elastic
media [327], which requires introducing the strain tensor

smv
I ≡

1

2

(∂um
I

∂xv
+

∂uv
I

∂xm

)

. (137)

We then wish to compare the action (134) to

S[u] =
1

2

∫

d4x

(

∑

I

∑

m

ρm
I (∂0u

m
I )(∂0u

m
I )−

∑

I

∑

mn
vw

λmvnw
I smv

I snw
I

)

, (138)

5 Supersolids [321–326] are another example of rigid superfluids, but they differ from crystalline color superconductors in that they are
rigid by virtue of the presence of an underlying lattice of atoms.
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which is the general form of the action in the case in which the effective action is quadratic in displacements and
which defines the elastic modulus tensor λmvnw

I for this case. In this case, the stress tensor (in general the derivative
of the potential energy with respect to smv

I ) is given by

σmv
I = λmvnw

I snw
I . (139)

The diagonal components of σ are proportional to the compression exerted on the system and are therefore related to
the bulk modulus of the crystalline color superconducting quark matter. Since unpaired quark matter has a pressure
∼ µ4, it gives a contribution to the bulk modulus that completely overwhelms the contribution from the condensation
into a crystalline phase, which is of order µ2∆2. We shall therefore not calculate the bulk modulus. On the other
hand, the response to shear stress arises only because of the presence of the crystalline condensate. The shear modulus
is defined as follows. Imagine exerting a static external stress σI having only an off-diagonal component, meaning
σmv

I *= 0 for a pair of space directions m *= v, and all the other components of σ are zero. The system will respond
with a strain snw

I . The shear modulus in the mv plane is then

νmv
I ≡

σmv
I

2smv
I

=
1

2
λmvmv

I , (140)

where the indices m and v are not summed. For a general quadratic potential with σmv
I given by (139), νmv

I simplifies
partially but the full simplification given by the last equality in (140) only arises for special cases in which the only
nonzero entries in λmvnw with m *= v are the λmvmv entries, as is the case for all the crystal structures that we
consider.

For a given crystal structure, upon evaluating the sums in (134) and then using the definition (137) to compare
(134) to (138), we can extract expressions for the λ tensor and thence for the shear moduli. This analysis, described
in detail in [320], shows that in the CubeX phase

ν2 =
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9
κ


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


 , (141)

while in the 2Cube45z phase
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 . (142)

We shall see in Sec. VIII F that it is relevant to check that both these crystals have enough nonzero entries in their
shear moduli νI that if there are rotational vortices are pinned within them, a force seeking to move such a vortex
is opposed by the rigidity of the crystal structure described by one or more of the nonzero entries in the νI . This is
demonstrated in [320].

We see that all the nonzero shear moduli of both the CubeX and 2Cube45z crystalline color superconducting phases
turn out to take on the same value,

νCQM =
16

9
κ (143)

with κ defined by (136). Evaluating κ yields

νCQM = 1.18 µ2∆2

= 2.47
MeV

fm3

(
∆

10 MeV

)2 ( µ

400 MeV

)2
. (144)

From (144) we first of all see that the shear modulus is in no way suppressed relative to the scale µ2∆2 that could
have been guessed on dimensional grounds. And, second, we discover that a quark matter core in a crystalline color
superconducting phase is 20 to 1000 times more rigid than the crust of a conventional neutron star [320, 328]. Finally,
see [320] for the extraction of the phonon dispersion relations from the effective action (134). The transverse phonons,
whose restoring force is provided by the shear modulus and which correspond to propagating ripples in a condensation
pattern like that in Fig. 9, turn out to have direction-dependent velocities that are typically a substantial fraction of
the speed of light, in the specific instances evaluated in [320] being given by

√

1/3 and
√

2/3. This is yet a third way
of seeing that this superfluid phase of matter is rigid indeed.
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VII. TRANSPORT PROPERTIES AND NEUTRINO PROCESSES

In Sec. VIII we shall discuss how the observation of neutron star properties constrains the phase structure of dense
quark matter. A crucial ingredient in these analyses are the transport properties as well as neutrino emissivities and
opacities of different phases of quark matter.

Using the methods introduced in Sec. V it is possible to perform rigorous calculations of transport properties of
the CFL phase. The results are parameter free predictions of QCD at asymptotically large density, and rigorous
consequences of QCD expressed in terms of a few phenomenological parameters (fπ, mπ, . . .) at lower density.

In the case of other color superconducting phases we perform calculations using perturbative QCD or models of
QCD. For many quantities the results depend mainly on the spectrum of quark modes, and not on details of the
quark-quark interaction.

A. Viscosity and thermal conductivity

Viscosity and thermal conductivity determine the dissipated energy Ė in a fluid with nonzero gradients of the
velocity v and the temperature T ,

Ė = −
η

2

∫

d3x

(

∂ivj + ∂jvi −
2

3
δij∂kvk

)2

− ζ

∫

d3x
(

∂ivi

)2 −
κ

T

∫

d3x
(

∂iT
)2

. (145)

The transport coefficients η, ζ and κ are the shear and bulk viscosity and the thermal conductivity, respectively. Eq.
(145) is strictly valid only for non-relativistic fluids. In the case of relativistic fluids there is an extra contribution to
the dissipated energy which is proportional to κ and the gradient of µ [329]. In terms of its hydrodynamic properties a
superfluid can be viewed as a mixture of a normal and a superfluid component characterized by separate flow velocities.
The shear viscosity is entirely due to the normal component, but there are contributions to the bulk viscosity which
are related to stresses in the superfluid flow relative to the normal one [330–332]. In the following we shall neglect
these effects and interpret vi in Eq. (145) as the normal fluid velocity.

In neutron stars an important contribution to the bulk viscosity arises from electroweak effects. In a bulk com-
pression mode the density changes periodically and electroweak interactions may not be sufficiently fast to reestablish
weak equilibrium. Weak effects occur on the same time scale as the oscillation period of the neutron star and the
frequency dependence of the bulk viscosity is important. We define

ζ(ω) = 2
〈

Ė
〉
(

V0

δV0

)2 1

ω2
, (146)

where ω is the oscillation frequency, 〈. . .〉 is a time average, and δV0/V0 is the fractional change in the volume. The
coefficient ζ in Eq. (145) is the ω → 0 limit of ζ(ω). If a single weak process is responsible for reestablishing chemical
equilibrium, the frequency dependent bulk viscosity can be written in the form

ζ(ω) = C
γ

γ2 + ω2
. (147)

The prefactor C accounts for the dependence of the equilibrium densities (e.g., the net difference between the density
of strange and non-strange quarks if the weak process changes strangeness) on the respective chemical potentials, and
γ is the characteristic inverse time scale of the flavor changing process. Eq. (147) shows that, for a given ω, ζ has a
maximum at γ = ω. At this point the time scale of the microscopic process matches the one of the external oscillation.
If more than one weak process contributes to reequilibration, Eq. (147) becomes more complicated [333–335]

1. CFL phase

The normal fluid is composed of quasi-particle excitations. In the CFL phase all quark modes are gapped and
the relevant excitations are Goldstone bosons. At very low temperature, transport properties are dominated by the
massless Goldstone boson ϕ associated with the breaking of the U(1)B symmetry. Using the results in Sec. VC 2, we
can compute the mean free path lϕ of the ϕ due to ϕ↔ ϕ+ ϕ and ϕ+ ϕ↔ ϕ+ ϕ scattering. Small angle scattering
contributions give rise to lϕ ∝ µ4/T 5 [336] and lϕ 2 1 km at T = 0.1 MeV, while large angle scattering contributions
yield an even longer lϕ ∝ µ8/T 9 [337]. The thermal conductivity κ due to the ϕ is given by [337]

κ =
2π2T 3

45v2
lϕ , (148)
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FIG. 11: (Color online) Bulk viscosities as functions of temperature for an oscillation period τ = 2π/ω = 1 ms. CFL phase:
contribution from the process K0 ↔ ϕ+ ϕ for different values of δm ≡ mK0 − µK0 and contribution from ϕ ↔ ϕ + ϕ, see Eq.
(150). 2SC phase and unpaired quark matter: contribution from the process u + d ↔ u + s.

where 8ϕ is the ϕ mean-free path between large angle scatterings and v is the ϕ velocity from Eqs. (83) and (84).
For temperatures below ∼ 1 MeV the thermal conductivity is very large and macroscopic amounts of CFL matter are
expected to be isothermal. The electric conductivity in CFL matter is dominated by thermal electrons and positrons
and was estimated in [112].

At low temperatures, the shear viscosity of the CFL phase is dominated by the ϕ contribution, which was computed
in [336] and is given by

η = 1.3× 10−4 µ8

T 5
. (149)

The bulk viscosity ζ vanishes in an exactly scale invariant system. For realistic quark masses the dominant source
of scale breaking is the strange quark mass. The contribution from the process ϕ↔ ϕ+ ϕ is [338]

ζ = 0.011
M4

s

T
. (150)

We show this contribution in Fig. 11. The other contribution to the CFL bulk viscosity presented in the figure comes
from the process K0 ↔ ϕ+ϕ and was studied for arbitrary ω in [339]. We observe that at T 2 (1−10) MeV the bulk
viscosity of CFL matter is comparable to that of unpaired quark matter. For T < 1 MeV, ζ is strongly suppressed.
Depending on the poorly known value for δm ≡ mK0−µK0 (here assumed to be positive, a negative value corresponds
to kaon condensation), the pure ϕ contribution given in Eq. (150) may dominate over the K0 ↔ ϕ + ϕ reaction at
low enough temperatures. However, for T < 0.1 MeV the ϕ mean free path is on the order of the size of the star, i.e.,
the system is in the collisionless rather than in the hydrodynamic regime, and the result ceases to be meaningful.

Thermal conductivity and viscosities for the CFL-K0 phase have not yet been computed. The existence of a gapless
K0 Goldstone mode in this phase will introduce new contributions. However, since the CFL results for κ and η are
already dominated by a gapless mode, namely the ϕ, the modifications to these quantities are not expected to be
significant. The modification to ζ will be more significant, since the kaon contribution to this quantity is already
important in the CFL phase.
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FIG. 12: Contributions to the process u + d → u + s in the 2SC phase. A gapped fermion is marked with the gap ∆ at the
respective line. (We have omitted (small) contributions from anomalous propagators.)

2. Other phases

For unpaired, ultrarelativistic three-flavor quark matter, thermal and electric conductivity as well as shear viscosity
have been computed in [340]. In the low-temperature limit (in particular T " mD with the electric screening mass
m2

D = Nfg2µ2/(2π2)) they are

κ 2 0.5
m2

D

α2
s

, σel 2 0.01
e2µ2m2/3

D

α2
sT

5/3
, (151)

and

η 2 4.4× 10−3 µ4m2/3
D

α2
sT 5/3

. (152)

These quantities have not yet been computed for partially gapped color superconductors such as the 2SC phase. The
presence of ungapped modes, however, suggests that the results only differ by a numerical factor from the unpaired
phase results.

The dominant flavor changing process that contributes to the bulk viscosity in unpaired quark matter is the reaction
[341, 342]

u + d↔ u + s . (153)

Other relevant processes are the semi-leptonic processes u + e↔ d + νe and u + e↔ s + νe [335, 343].
In a partially gapped phase the bulk viscosity is also dominated by the process (153). In the 2SC phase of three

flavor quark matter, the number of d-quarks produced per unit time and volume, Γ, due to (153) can be computed from
the diagrams shown in Fig. 12. The combinatorical factors in front of the diagrams are obtained upon counting color
degrees of freedom: one can attach one of three colors to each of the two weak vertices, giving rise to 9 possibilities.
In the 2SC phase all blue quarks and all strange quarks are unpaired while all other modes are paired, see Table
I. Consequently, 4 of the 9 possibilities contain three gapped modes (red or green for both vertices), 2 contain two
gapped modes (red or green for one, blue for the other vertex), 2 contain one gapped mode (blue for one, red or
green for the other vertex), and one contains only unpaired modes (blue for both vertices). Therefore, at very low
temperature, T " ∆, where the contributions of gapped quarks are exponentially suppressed, Γ is to a very good
approximation given by [344]

Γ2SC =
1

9
Γunp for T " ∆ , (154)

since only the one reaction containing only unpaired modes contributes. The rate Γunp was computed in [345].
For larger temperatures, the contribution from gapped modes cannot be neglected. Each diagram yields a contri-

bution which (for one direction of the process) schematically reads

Γ ∝
∑

{ei}

∫

{pi}
F δ(e1ε1 + e2ε2 − e3ε3 − e4ε4 + δµ)f(e1ε1)f(e2ε2)f(−e3ε3)f(−e4ε4) . (155)
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Here, εi are the quasiparticle energies, δµ = µs − µd, and f is the Fermi distribution function. F is a function of
the momenta pi and the signs ei = ±1. The sum over the signs ei is very important in a paired system: the process
u+d→ u+s not only receives contributions from 2→ 2 processes, but also from 3→ 1 and 1→ 3 reactions involving
pairs created or absorbed by the condensate.

From the net production rate of d quarks Γ one obtains the characteristic inverse time scale γ needed for the bulk
viscosity in Eq. (147). For small external volume oscillations δV0/V0, Γ is linear in the resulting oscillation in chemical
potentials, Γ = λ δµ. Then, γ ≡ Bλ, where B depends only on the equilibrium flavor densities. The resulting bulk
viscosity as a function of temperature for a typical oscillation frequency ω/(2π) = 1ms−1 is shown in Fig. 11. A
critical temperature of Tc = 30 MeV is assumed. For low temperatures, the time scale of the nonleptonic process
is much smaller than the oscillation frequency γ " ω, implying ζ ∝ γ. Consequently, from Eq. (154) we conclude
ζ2SC = ζunp/9. For large temperatures, however, we have γ ! ω and thus ζ ∝ 1/γ. Consequently, the superconducting
phase, which has the slower rate, has the larger bulk viscosity.

The bulk viscosity has also been computed for two-flavor quark matter with single-flavor pairing [346]. In this
case there are also ungapped modes and thus the result is similar to the one of the 2SC phase. The main difference
is the lower critical temperature for single-flavor pairing. As a consequence, these phases are unlikely to exist for
temperatures larger than that at which the bulk viscosity of the unpaired phase is maximal. Therefore, the bulk
viscosity cannot be larger than that of the unpaired phase.

B. Neutrino emissivity and specific heat

Neutrino emissivity determines the rate at which quark matter can loose heat via neutrino emission. For the purpose
of studying how neutron stars with ages ranging from tens of seconds to millions of years cool, as we shall discuss in
Sec. VIII C, it is appropriate to treat the matter as completely transparent to the neutrinos that it emits.

1. CFL phase

In CFL quark matter, all quasifermion modes are gapped and neutrino emissivity is dominated by reactions involving
(pseudo)-Goldstone modes such as

π±, K± → e± + ν̄e , (156a)

π0 → νe + ν̄e , (156b)

ϕ+ ϕ → ϕ+ νe + ν̄e . (156c)

These processes were studied in [347, 348]. The decay rates of the massive mesons π±, K±, and π0 are proportional to
their number densities and are suppressed by Boltzmann factors exp(−E/T ), where E is the energy gap of the meson.
Since the pseudo-Goldstone boson energy gaps are on the order of a few MeV, the emissivities are strongly suppressed
as compared to unpaired quark matter for temperatures below this scale. Neutrino emission from processes involving
the ϕ is not exponentially suppressed, but it involves a very large power of T ,

εν ∼
G2

F T 15

f2µ4
, (157)

and is numerically very small. Reddy et al. also studied the neutrino mean free path lν . For T ∼ 30 MeV the mean
free path is on the order of 1 m, but for T < 1 MeV, lν > 10 km [348]. In the CFL-K0 phase, lν is almost the same
as in the CFL phase, while the neutrino emissivity is larger [349].

The specific heat of CFL matter is also dominated by the ϕ, yielding

cV =
2π2

15v3
T 3 . (158)

This is much smaller than the specific heat of any phase containing unpaired quarks, as we shall see below.

2. Other phases

The density of thermally excited ungapped fermions is proportional to µ2T while that of ungapped bosons is T 3.
This means that in any degenerate system (T " µ) ungapped fermion modes, if they exist, will dominate the neutrino
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phase gap structure G(φ) ∝ K(φ) ∝

CSL isotropic (no nodes) φ exp(−
√

2φ) φ5/2 exp(−
√

2φ)

planar anisotropic (no nodes) φ1/2 exp(−φ) φ2 exp(−φ)

polar point nodes (linear) φ−2 φ−2

A point nodes (quadratic) φ−1 φ−1

TABLE III: Suppression function G(φ) for neutrino emissivity in direct Urca processes and suppression function K(φ) for specific
heat for four spin-one color-superconducting phases (abbreviating φ ≡ ∆/T , and everything in the limit φ → ∞). While fully
gapped modes yield exponential suppression, nodes in the gap yield power law suppressions. The gap functions in the polar
and A phases differ in the angular direction in the vicinity of the point nodes. A linear behavior leads to a stronger suppression
than a quadratic behavior.

rates. In unpaired quark matter neutrino emissivity is dominated by the direct Urca processes

u + e → d + νe (electron capture) , (159a)

d → u + e + ν̄e (β-decay) . (159b)

The radiated energy per unit of time and volume is [350]

εν 2
457

630
αsG

2
F T 6µeµuµd . (160)

Note that this result is proportional to the strong coupling constant αs. The tree-level processes for massless quarks
are approximately collinear and the weak matrix element vanishes in the forward direction. A nonzero emissivity
arises from strong interaction corrections, which depress quark Fermi momenta relative to their chemical potentials.
Because they do not at the same time depress the electron Fermi momentum, this opens up phase space for the
reactions (159). A nonzero emissivity can also arise from quark mass effects, or higher order corrections in T/µ.
Since strange quark decays are Cabbibo suppressed and T/µ is small the dominant contribution is likely to be that
proportional to αs, namely (160). Note that we have not included non-Fermi liquid corrections of O(αs log(T )) [351].

In order to determine the rate at which neutron stars cool we also need to know the specific heat. In unpaired
quark matter

cV =
NcNf

3
µ2T , (161)

where we have again neglected terms of O(αs log(T )) [67] and assumed the flavor chemical potentials to be equal.
We see that the specific heat (158) in the CFL phase, whose excitations are bosonic, is much smaller than that in
unpaired quark matter.

In the case of 2SC matter, the neutrino emissivity at low temperature is 1/3 of that of unpaired quark matter. The
2SC emissivity for arbitrary temperatures can be found in [352]. In addition to the direct Urca process neutrino pair
production

q + q → q + q + ν& + ν̄& (162)

(q is any quark flavor and 8 denotes neutrino flavor) has also been studied [353]. The rate of this process is paramet-
rically smaller than the direct Urca process for very small temperatures (exp(−2∆/T ) vs. exp(−∆/T )), but it may
play a significant role for temperatures close to the superconducting phase transition temperature Tc.

For the LOFF phase similar arguments apply. The presence of ungapped modes renders its specific heat [309]
and its neutrino emissivity due to direct Urca processes virtually indistinguishable from the unpaired phase [354].
However, interesting effects of crystalline structures may be expected for other cooling mechanisms. This is not unlike
effects in the crust of a conventional neutron star, where for instance electron-phonon scattering as well as Bragg
diffraction of electrons lead to neutrino emission via bremsstrahlung processes, see [355] and references therein.

The direct Urca processes have also been considered for the gapless CFL phase. A distinctive feature of this phase
is the fact that the energy of one of the quark modes is approximately quadratic in momentum. This implies a strong
enhancement in the specific heat, which leads to very slow cooling at very small temperatures when photon emission
from the surface dominates the energy loss [155]. However, the instability of this phase at small temperatures suggests
that this result is most probably of no relevance for astrophysics.

Finally, it is interesting to consider neutrino emission from single flavor paired matter. Single flavor spin-one pairing
involves small gaps, as well as nodes in the gap parameter, and the emissivity is expected to be larger than that of
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matter with spin zero pairing. The emissivity of two-flavor quark matter with 〈uu〉 and 〈dd〉 pairing was studied for
different spin-one order parameters in [356, 357]. The result can be written as

εν =
457

630
αsG

2
F T 6µeµuµd

[
1

3
+

2

3
G(∆/T )

]

, (163)

where the u-quark and d-quark gaps are assumed to be identical. All spin-one phases analyzed in [356, 357] and
described by Eq. (163) contain ungapped modes similar to the 2SC phase. Therefore, the emissivity at low tem-
peratures is simply one third of that of unpaired quark matter. (In the case of color-spin locking, all excitations
become gapped if one takes into account nonzero quark masses [356, 358] and/or more complicated structures of the
order parameter [238].) The contribution to (163) that arises from the paired quarks, is described by the nontrivial
function G(∆/T ); see [356] for the explicit form and numerical evaluation of this function for arbitrary temperatures.
In Table III, we present the behavior of this function for temperatures much smaller than the gap, T " ∆, for various
single-flavor spin-one color superconducting phases. Although this contribution is small compared to the contribution
of the ungapped modes, we can use it to show the effect of different (anisotropic) gap structures on the parametric
behavior of the neutrino emissivity. We see that, while fully gapped modes lead to an exponential suppression of the
emissivity, nodes in the gap weaken this suppression to a power law. The power law depends on the behavior of the
gap in the vicinity of the nodes.

The specific heat can be written as

cV = T (µ2
u + µ2

d)

[
1

3
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2

3
K(∆/T )

]

. (164)

We show the suppression function K(∆/T ) for the specific heat in Table III. We see that an exponential suppression
of the emissivity goes along with an exponential suppression of the specific heat.

VIII. COLOR SUPERCONDUCTIVITY IN NEUTRON STARS

Neutron stars are the densest material objects in the universe, with masses of order that of the sun (M*) and
radii of order ten km. Depending on their mass and on the stiffness of the equation of state of the material of which
they are composed, their central density lies between ∼ 3 and ∼ 12 times nuclear saturation density (n0 = 0.16
nucleons/fm3) [359, 360]. Neutron stars consist of an outer crust made of a rigid lattice of positive ions embedded
within a fluid of electrons and (in the inner layer of the crust) superfluid neutrons [361]. Inside this crust, one finds a
fluid “mantle” consisting of neutrons and protons, both likely superfluid, and electrons. Determining the composition
of neutron star cores, namely of the densest matter in the universe, remains an outstanding challenge.6 If the nuclear
equation of state is stiff enough, neutron stars are made of neutrons, protons and electrons all the way down to their
centers. If higher densities are reached, other phases of baryonic matter (including either a pion condensate [368–372],
a kaon condensate [373, 374], or a nonzero density of one or several hyperons [375]) may result. Or, neutron star cores
may be made of color superconducting quark matter.

The density at which the transition from baryonic matter to quark matter occurs is not known; this depends on
a comparison between the equations of state for both, which is not well-determined for either. Very roughly, we
expect this transition to occur when the density exceeds one nucleon per nucleon volume, a criterion which suggests
a transition to quark matter at densities ! 3n0. The question we shall pose in this section is how astrophysical
observation of neutron stars could determine whether they do or do not contain quark matter within their cores. We
have seen throughout the earlier sections of this review that quark matter at potentially accessible densities may be
in the CFL phase, with all quarks paired, or may be in one of a number of possible phases in which there are some
unpaired quarks, some of which are spatially inhomogeneous. If quark matter does exist within neutron stars, with
their temperatures far below the critical temperatures for these paired phases, it will be in some color superconducting
phase. We shall see in this section that these different phases have different observational consequences, making it
possible for a combination of different types of observational data to cast light upon the question of which phase of
color superconducting quark matter is favored in the QCD phase diagram, if in fact neutron stars do feature quark
matter cores.

Before turning to the signatures of quark matter in neutron star cores, we mention here the more radical possibility
that nuclear matter in bulk is metastable at zero pressure, with the true ground state of strongly interacting matter

6 For review articles on neutron stars as laboratories for understanding dense matter, see for instance [360, 362–367].
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in the infinite volume limit being color superconducting three-flavor quark matter. According to this “strange quark
matter hypothesis” [376–378], ordinary nuclei are either stabilized by virtue of their small size or are metastable with
lifetimes vastly exceeding the age of the universe. If this hypothesis is correct, some of the stars that we think are
neutron stars may be strange stars, made entirely of quark matter [378–381]. Strange stars may have a thin crust
(of order 100 meters thick) of positive ions suspended above the quark matter surface by an electric field [379], or
they may have a comparably thin crust of positive ions embedded within the (negatively charged) outer layer of the
quark matter itself [194, 195]. They cannot, however, have a conventional, km thick, crust. And, there are many
indications that neutron stars in fact do have conventional crusts. For example, the rich phenomenology of X-ray
bursts is well-understood only within this setting. More recent evidence comes from the analysis of the quasi-periodic
oscillations with frequencies in the tens of Hz detected in the aftermath of magnetar superbursts [382–386], which
can be understood as seismic oscillations of a conventional neutron star crust [383, 385, 386] whereas the thin crusts
of a strange star would oscillate at much higher frequencies [387]. Even if most compact stars are neutron stars not
strange stars, it remains a logical possibility that some strange stars exist, meaning that all ordinary neutron stars
are metastable. Although possible this scenario is unlikely, given that merger events in which strange stars in an
inspiralling binary are tidally disrupted would litter the universe with small chunks of quark matter (“strangelets”)
and one must then understand why these have not catalyzed the conversion of all neutron stars to strange stars [388].
We shall devote the remainder of this section to the more challenging task of using observational data to constrain
the more conservative scenario that quark matter exists only above some nonzero transition pressure, namely within
the cores of conventional neutron stars.

A. Mass-radius relation

It has long been a central goal of neutron star astrophysics to measure the masses M and radii R of many neutron
stars to a reasonable accuracy. Mapping out the curve in the mass-radius plane along which neutron stars are found
would yield a strong constraint on the equation of state of dense matter. As this program represents such a large
fraction of the effort to use observations of neutron stars to constrain dense matter physics, we begin by considering
its implications for the presence of quark matter within neutron star cores.

The larger the maximum mass that can be attained by a neutron star, the stiffer the equation of state of dense
matter, and if stars with masses close to 2 M* are found then the existence of phases with a soft equation of state, such
as baryonic matter with kaon or pion condensation, can be ruled out. However, although the quark matter equation
of state is not known from first principles, it may easily be as stiff as the stiffer equations of state posited for ordinary
nuclear matter, and neutron stars with quark matter cores can in fact reach masses of order 2 M* [214, 389–392].

The equation of state for CFL quark matter can be parametrized to a good approximation as [391]

Ω = −P = −
3

4π2
(1− c)µ4 +

3

4π2
(M2

s − 4∆2)µ2 + Beff . (165)

If c were zero, the µ4 term would be that for noninteracting quarks; c parametrizes the leading effect of interactions,
modifying the relation between pF and µ. At high densities, c = 2αs/π to leading order in the strong coupling
constant [12, 14]. Analysis of higher order corrections suggests that c ! 0.3 at accessible densities [390]. Beff can be
thought of as parametrizing our ignorance of the µ at which the nuclear matter to quark matter transition occurs.
The M2

s µ2 term is the leading effect of the strange quark mass, and is common to all quark matter phases. The
pressure of a color superconducting phase with less pairing than in the CFL phase would have a smaller coefficient
of the ∆2µ2 term, and would also differ at order M4

s , here lumped into a change in Beff . Because pairing is a Fermi
surface phenomenon, it only modifies the µ2 term, leaving the larger µ4 term untouched. However, it can nevertheless
be important because at accessible densities the µ4 term is largely cancelled by Beff , enhancing the importance of the
µ2 term [393, 394]. Remarkably, and perhaps coincidentally, if we make the (reasonable) parameter choices c = 0.3,
Ms = 275 MeV and ∆ = 100 MeV and choose Beff such that nuclear matter gives way to CFL quark matter at the
relatively low density 1.5 n0, then over the entire range of higher densities relevant to neutron stars the quark matter
equation of state (165) is almost indistinguishable from the nuclear equation of state due to Akmal, Pandharipande
and Ravenhall (APR) [395] that is one of the stiffest nuclear equations of state in the compendium found in [360, 366].
Neutron stars made entirely of nuclear matter with the APR equation of state and neutron stars with a quark matter
core with the equation of state (165) with the parameters just described fall along almost indistinguishable curves on
a mass vs. radius plot, with the most significant difference being that the APR equation of state admits neutron stars
with maximum mass 2.3M*, whereas the introduction of a quark matter core reduces the maximum mass slightly, to
2.0M* [391].

The similarity between a representative quark matter equation of state and a representative nuclear equation of
state makes clear that it will be very hard to use a future determination of the equation of state to discern the
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presence of quark matter. However, although the numbers in the above paragraph should be taken as indicative
rather than definitive, they do suggest that the existence of a neutron star whose mass was reliably determined to
be > 2M* would make it hard to envision such a star (and hence any lighter stars) having a quark matter core of
any appreciable size. Now that the mass of PSR J0751+1807 has been revised downward from (2.1 ± 0.2)M* [396]
to (1.26+.14

−.12)M* [397], the heaviest known neutron star orbited by a white dwarf is PSR J0621+1002, whose mass is
(1.69+0.11

−0.16)M* [397, 398]. Also, one of the two pulsars Ter5I and Ter5J (in a globular cluster) must have a mass that
is > 1.68M* at the 95% confidence level [399], and the mass of the X-ray pulsar Vela X-1 is above 1.6 M* [400].

Given our lack of knowledge of the equations of state for nuclear and quark matter, measuring neutron star masses
and radii alone do not allow us to reach our goals.

B. Signatures of the compactness of neutron stars

If we could detect gravity waves from neutron stars spiraling into black holes in binary systems, the gravitational
wave form during the last few orbits, when the neutron star is being tidally disrupted, will encode information about
the density profile of the neutron star. For example, upon assuming a conventional density profile, the gravity wave
form encodes information about the ratio M/R [401], essentially via encoding the value of the orbital frequency at
which tidal deformation becomes significant. This suggests a scenario in which the presence of an interface separating
a denser quark core from a less-dense nuclear mantle could manifest itself via the existence of two orbital frequency
scales in the wave form, the first being that at which the outer layers are deformed while the denser quark core
remains spherical and the second being the time at which even the quark core is disrupted [193]. This idea must
be tested in numerical relativity calculations, and it may turn out to be better formulated in some other way. For
example, perhaps the gravity wave form can be used to constrain the first few moments of the density profile, and this
information can then be used to contrast neutron stars with standard density profiles characterized by a single length
scale R with those which are anomalously compact because they have a “step” in their density profile. Whatever the
best formulation turns out to be, it seems clear that if LIGO sees events in which the tidal disruption of a neutron
star occurs within the LIGO band-width, the gravity wave data will constrain the “compactness” of the neutron star,
providing information about the density profile that is complementary to that obtained from a mass-radius relation.

If there is a “step” in the density profile at an interface, LIGO gravity waves may provide evidence for its presence.
But, should a density step be expected if color superconducting quark matter is found in the core of a neutron star?
There are two qualitatively distinct possibilities for the density profile, depending on the surface tension of the quark
matter/nuclear matter interface σ. If σ is large enough, there will be a stable, sharp, interface between two phases
having different densities (but the same chemical potential). If σ is small enough, it becomes favorable instead to form
a macroscopic volume filled with a net-neutral mixture of droplets of negatively charged quark matter and positively
charged nuclear matter, see Sec. III H, which allows a continuous density profile. The distinction between these two
scenarios has been analyzed quantitatively for the case of a first order phase transition from nuclear matter to CFL
quark matter [193]. This is the simplest possible phase diagram of QCD, with a single transition between the phases
known to exist at nuclear density and at asymptotically high density. We have seen earlier in this review that this
simple QCD phase diagram is obtained if ∆CFL is large enough, allowing CFL pairing to fend off stresses that seek
to split Fermi surfaces, all the way down in density until the nuclear matter takes over from quark matter. A sharp
interface between the (electrically insulating) CFL phase and (electrically conducting) nuclear matter features charged
boundary layers on either side of the interface, which play an important role in determining the σ above which this
step in the density profile is stable [193]. The critical σ is about 40 MeV/fm3, lower than dimensional analysis would
indicate should be expected, meaning that the sharp interface with a density step is more likely than a mixture of
charged components. The increase in the density at the interface can easily be by a factor of two. The critical σ
above which a sharp interface is favored has not been evaluated for the case of a first order phase transition between
nuclear matter and color superconducting phases other than the CFL phase.

It is also possible that the long term analysis of the binary double pulsar PSR J0737-3039A [402, 403] may yield
a measurement of the moment of inertia of this 1.34 solar mass neutron star [404–407]. This could be another route
to constraining the compactness of a neutron star, and perhaps gaining evidence for or against a step in the density
profile of this star.

C. Cooling

The avenues of investigation that we have described so far may constrain the possible existence of quark matter
within neutron star cores, but they are not sensitive to the differences among different color superconducting phases
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of quark matter. We turn now to the first of three observational signatures that have the potential to differentiate
between CFL quark matter and other color superconducting phases.

Within less than a minute of its birth in a supernova, a neutron star cools below about 1 MeV and becomes
transparent to neutrinos. For the next million years or so it cools mainly via neutrino emission from its interior.
Photon emission from the surface becomes dominant only later than that. This means that information about
properties of the interior, in particular its neutrino emissivity and heat capacity, can be inferred from measurements
of the temperature and age of neutron stars. Because all forms of dense matter are good heat conductors [337],
neutron star interiors are isothermal and the rate at which they cool is determined by the volume integrals over the
entire interior of the local emissivity and the local specific heat. This means that the cooling tends to be dominated
by the properties of whichever phase has the highest neutrino emissivity and whichever phase has the highest specific
heat.

Different forms of dense matter fall into three categories, ordered by decreasing neutrino emissivity. The first
category includes any phase of matter that can emit neutrinos via direct Urca processes, yielding an emissivity
εν ∝ T 6. Examples include unpaired quark matter, phases of quark matter with some unpaired quarks including
the crystalline phases and the phases with single flavor pairing in Table III, baryonic matter containing hyperons,
nucleonic matter augmented by either a pion or a kaon condensate, and even ordinary nuclear matter at sufficiently
high densities that the proton fraction exceeds about 0.1. For the specific case of unpaired quark matter, the emissivity
is given by (160) [350, 408], which can be written as
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where we have taken µe = M2
s /(4µ), appropriate for neutral unpaired quark matter. (Note that αs ∼ 0.5 is comparable

to the value c ∼ 0.3 that we used in Sec. VIII A, according to the lowest order relation c = 2αs/π. The αs/0.5 factor
in (166) could be replaced by c/0.3.) The emissivity of other phases of quark matter in which only some quarks are
unpaired, including the crystalline phases, is reduced relative to (166), but only by factors of order unity.

Ordinary nuclear matter at densities not too far above n0, where the proton fraction is less than 0.1, falls into
a second category in which there is no phase space for direct Urca processes and neutrino emission occurs only via
modified Urca processes like n+X → p+X + e+ ν̄ with X some spectator nucleon, giving the much lower emissivity
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Neutron stars whose interiors emit neutrinos at this rate, perhaps modified by effects of nucleon superfluidity, cool
following a family of standard cooling curves (see [355, 409, 410] and references therein), taking 105 to 106 years to
cool below 108 K.

CFL quark matter constitutes a third category. As we have seen in Sec. VII, it is unique among all phases of dense
matter in having an emissivity ∝ T 15 that is many orders of magnitude smaller than (167). Furthermore, whereas
all other phases of dense matter have a specific heat ∝ T , in the CFL phase the specific heat is controlled by bosonic
excitations making it ∝ T 3. This means that if a neutron star has a CFL core, the total neutrino emissivity and the
total heat capacity of the star are both utterly dominated by the contributions of the outer layers, whether these are
made of nuclear matter or of some phase that admits direct Urca reactions. The CFL core holds little heat, and emits
few neutrinos, but is a good conductor and so stays at the same temperature as the rest of the star. The rest of the
star controls how the star cools.

Finally, the single-flavor color superconducting phases are interesting because they represent a potential transition
from the first to the third categories [358, 411]: their critical temperatures are so low that if some quarks can only
pair in spin-one channels, they will not pair until after the star has cooled through an initial epoch of direct Urca
emission; and, in certain cases [238, 356, 358] all quarks can be gapped below the critical temperature for color-spin
locked pairing, meaning that these phases ultimately become like CFL quark matter, playing no role in the cooling
of the star which at late times will be controlled by the modified Urca processes in the nuclear matter mantle.

We can now describe a possible future path to the discovery of CFL quark matter cores within neutron stars.
Suppose that LIGO detects the gravitational waves from the tidal disruption of a neutron star with some known mass
spiralling into a black hole and, as we discussed in Sec. VIIIB, suppose that evidence is found that the density profile
of the neutron star has a denser core within a less dense mantle, consistent with the existence of a step in the density
profile. Suppose furthermore that it was understood by then that neutron stars with that mass cool following one of
the family of standard cooling curves, meaning that there can be no component of their interior within which direct
Urca processes are allowed at any time. This combination of observations would rule out the possibility that the dense
core, inside the density step, contained any of the color superconducting phases that we have discussed except CFL.
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The scenario above may be unlikely, because there are a growing number of lines of evidence that although the
cooling of many neutron stars is broadly consistent with the standard cooling curves, some fraction of neutron stars cool
much more quickly. Examples of neutron stars that are too cold for their age include those in the supernova remnants
3C58 and CTA1 [363, 409]. A second, less direct, piece of evidence is provided by an unsuccessful search for the X-ray
emission from a cooling neutron star in 15 other supernova remnants [412–414]. Although some of these supernovae
may have been Type IA supernovae which do not produce neutron stars, and although some may have produced black
holes, it is likely that many of these supernovae remnants do contain neutron stars. Their nonobservation results in
an upper limit on their temperatures, and in all cases this upper limit falls below the standard cooling curves. A
third line of evidence comes from neutron stars that undergo transient bouts of accretion [415]. X-ray observations
of one of these, SAX J1808.4-3658, during its quiescent phase yield an upper limit on the thermal luminosity of the
neutron star [416]. The mean accretion rate averaged over many transient accretion episodes is known, meaning that
the average accretion heating of the star is known. The fact that the thermal luminosity is as low as it is means
that the accretion heating of the star must be balanced by cooling by neutrino emission at a rate that far exceeds
(167). The emissivity for unpaired quark matter (160) is consistent with the data, as are the direct Urca rates for
sufficiently dense nuclear matter and for hyperon matter. Pion condensation or kaon condensation yield emissivities
that are proportional to T 6 but with prefactors that are about two orders of magnitude smaller than that in (160),
and are ruled out as explanations for the ability of SAX J1808.4-3658 to keep cool [416]. Similar conclusions can also
be inferred from the (even lower) limit on the quiescent luminosity of the soft X-ray transient 1H 1905+000 [417–419],
although in this instance the time-averaged accretion rate is not as well known.

By now it certainly seems clear that some neutron stars cool much faster than others. It is then reasonable to
speculate that lighter neutron stars cool following the standard cooling curve and are composed of nuclear matter
throughout whereas, based on the three lines of evidence above, heavier neutron stars cool faster because they contain
some form of dense matter that can radiate neutrinos via the direct Urca process. This could be quark matter in
one of the non-CFL color superconducting phases, but there are other, baryonic, possibilities. If this speculation is
correct, then if neutron stars contain CFL cores they must be “inner cores”, within an outer core made of whatever
is responsible for the rapid neutrino emission.

D. r-modes limiting pulsar spins

A rapidly spinning neutron star will quickly slow down if it is unstable with respect to bulk flows known as Rossby
modes, or r-modes, whose restoring force is due to the Coriolis effect and which transfer the star’s angular momentum
into gravitational radiation [420–424]. For any given interior composition and temperature, above some critical spin
frequency there is an instability which leads to an exponentially growing r-mode. This means that as a neutron star is
spun up by accretion, its spin will be limited by a value very slightly above this critical frequency, at which the accretion
torque is balanced by gravitational radiation from the r-mode flows [422, 423, 425–427]. From a microphysical point
of view, the r-mode instability is limited by viscous damping: the greater the damping, the higher the critical spin
above which r-modes become unstable. The critical frequency is controlled by the shear viscosity in some regimes of
temperature (typically lower) and by the bulk viscosity in others (typically higher). This means that the existence of
pulsars with a given spin, as well as any observational evidence for an upper limit on pulsar spins, can yield constraints
on the viscosities of neutron star interiors.

There is observational evidence for a physical limit on pulsar spins. The fastest known pulsar is a recently discovered
radio pulsar spinning at 716 Hz [428]. However, it is not easy to draw inferences from the distribution of spins of the
many known radio pulsars as to whether 716 Hz is close to some physical limit on the spin frequency because there are
significant observational biases that make it harder to find faster radio pulsars. The most rapid pulsars are “recycled”,
meaning that they were spun-up during an episode of accretion from a binary companion. During such accretion, a
neutron star may be visible as an X-ray pulsar. The spin frequencies of the 13 known millisecond X-ray pulsars lie
between 270 and 619 Hz. What makes this significant is first of all that the episodes of accretion have long enough
durations that they could easily spin a neutron star up beyond 1000 Hz, and second of all that there are no selection
biases that preclude the discovery of X-ray pulsars with frequencies as large as 2000 Hz [429, 430]. Analysis of the
observed distribution of X-ray pulsar spin frequencies leads to two conclusions: first, the distribution is consistent
with being uniform;7 and, second, there is some physical effect that sets a limit on the allowed spin of a pulsar which

7 These data thus rule out a proposal for how small quark matter cores could have been detected [431]. If slowly-rotating neutron stars
just barely reach quark-matter densities in their center, then rapidly spinning oblate neutron stars, which have slightly lower central
density, will not contain quark matter. This “spinning out” of a quark matter core could be detected either by anomalies in braking
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(with 95% confidence) is at 730 Hz or lower [429, 430]. It is unlikely that a spin-limit in this vicinity can be attributed
to centrifugal break-up of the spinning neutron star: unless neutron star radii are larger than anticipated, this “mass
shedding limit” is significantly higher, above 1 kHz. On the other hand, if the observed limit on pulsar spin frequencies
is attributed to the onset of the r-mode instability, the resulting constraint on the viscosities of neutron star interiors
is broadly consistent with the viscosities of nuclear matter, although this consistency is somewhat loose given the
uncertainties in neutron star densities and in their temperatures while being spun up [422, 433].

The physics of the r-mode instability definitively rules out the possibility that accreting X-ray binary pulsars are
strange stars that are composed of CFL quark matter throughout [344]. From the results of Sec. VII, we can conclude
that CFL quark matter has negligible shear damping, and significantly smaller bulk viscosity than nuclear matter.
(See [333, 434, 435], for calculations of bulk viscosity in nuclear matter, [436, 437] for baryonic matter containing
hyperons, and [438] for baryonic matter containing a kaon condensate.) A CFL strange star would therefore have a
critical frequency at which the r-mode instability sets in measured in Hz or fractions of Hz, in gross disagreement
with the data on spin frequencies of both X-ray and radio pulsars.8

It is a very interesting question, at present unresolved, whether the presence of a CFL quark matter core within
an ordinary neutron star introduces unstable r-modes at low spin frequencies. If there is a density step at the
nuclear/CFL interface, there may be oscillation modes localized near that interface. The question is whether there
are r-modes that are sufficiently well localized on the CFL side of the interface that they are undamped, or whether
the tails of the mode wave functions that extend into the nuclear matter side of the interface result in enough damping
to prevent the modes from becoming unstable. Nobody has solved for the r-mode wave functions for a rotating star
whose density profile has a step at an interface, with viscous dissipation occurring on one side of the interface only.9

If it were to turn out that a star with a CFL core is even close to as unstable with respect to r-modes as a star that
is made entirely of CFL matter, the existence of pulsars spinning with hundreds of Hz frequencies would immediately
rule out the possibility that these neutron stars have CFL cores.

E. Supernova neutrinos

The only time when a neutron star emits enough neutrinos to be detectable on earth as a neutrino source is during
the first few seconds after the supernova explosion. The time-of-arrival distribution of supernova neutrinos could
teach us about possible phase transitions to CFL quark matter [347–349, 440, 441]. All phases of quark matter and
nuclear matter except CFL have short enough mean free paths that the neutrinos detected from a supernova are
emitted from a surface of last scattering called the neutrinosphere, inside of which they were diffusing. This surface
of last scattering moves inward to higher densities during the first seconds after the supernova, as the protoneutron
star cools. Suppose that a volume in the core of the protoneutron star has made a transition into the CFL phase, in
which neutrinos scatter only off Goldstone bosons which are less numerous (number density ∝ T 3 rather than ∝ µ2T
for ungapped quark excitations). As this core cools, the neutrino mean free path within a CFL core becomes longer
than in any phase of matter in which there are unpaired quarks (or nucleons) off which the neutrinos can scatter. The
last supernova neutrinos to arrive could carry information about conditions when the neutrinosphere reaches the CFL
core. Perhaps there may even be enhanced neutrino luminosity at the end of an otherwise dropping time-of-arrival
distribution, as all those neutrinos that were previously trapped within the transparent core fly out unimpeded [440].
Determining whether this proposed signature can arise requires implementing the transition to a CFL core, with its
long neutrino mean free paths, within a full-fledged simulation of neutrino transport during a supernova.

F. Rigid quark matter and pulsar glitches

The existence of a rigid crystalline color superconducting core within neutron stars may have a variety of observable
consequences. For example, if some agency (like magnetic fields not aligned with the rotation axis) could maintain

indices of radio pulsars that are slowing down [432] or by anomalous population statistics of X-ray pulsars that are being spun up by
accretion [431]. The data on X-ray pulsars show no sign of such an effect [429, 430] indicating that, if quark matter is present, spinning
the star and making it oblate does not get rid of it. If neutron stars do have quark matter cores, therefore, the quark matter must
occupy a reasonable fraction of the star.

8 Strange stars made of unpaired quark matter or of 2SC quark matter can be consistent with the data [344].
9 Certain other oscillation modes (“f-modes” and “g-modes”) of a nonrotating neutron star whose density profile includes a density step

have been computed [439].
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the rigid core in a shape that has a nonzero quadrupole moment, gravity waves would be emitted. The LIGO non-
detection of such gravity waves from nearby neutron stars [442] already limits the possibility that they have rigid cores
that are deformed to the maximum extent allowed by the shear modulus (168), upon assuming a range of possible
breaking strains, and this constraint will tighten as LIGO continues to run [443, 444]. (The analogous constraint
on strange stars that are rigid throughout was obtained in [445].) Perhaps the most exciting implication of a rigid
core, however, is the possibility that (some) pulsar “glitches” could originate deep within a neutron star, in its quark
matter core.

A spinning neutron star observed as a pulsar gradually spins down as it loses rotational energy to electromagnetic
radiation. But, every once in a while the angular velocity at the crust of the star is observed to increase suddenly in
a dramatic event called a glitch. The standard explanation [446–455] requires the presence of a superfluid in some
region of the star which also features a rigid array of spatial inhomogeneities which can pin the vortices in the rotating
superfluid. In the standard explanation of pulsar glitches, these conditions are met in the inner crust of a neutron
star which features a neutron superfluid coexisting with a rigid array of positively charged nuclei that may serve as
vortex pinning sites. We shall see below that a rigid core made of crystalline color superconducting quark matter also
meets the basic requirements.

The viability of the standard scenario for the origin of pulsar glitches in neutron star crusts has recently been
questioned [456]. Explaining the issue requires understanding how the basic requirements come into play in the
generation of a glitch. As a spinning pulsar slowly loses angular momentum over years, since the angular momentum
of any superfluid component of the star is proportional to the density of vortices the vortices “want” to move apart.
However, if within the inner crust the vortices are pinned to a rigid structure, these vortices do not move and after
a time this superfluid component of the star is spinning faster than the rest of the star. When the “tension” built
up in the array of pinned vortices reaches a critical value, there is a sudden “avalanche” in which vortices unpin,
move outwards reducing the angular momentum of the superfluid, and then re-pin. As this superfluid suddenly loses
angular momentum, the rest of the star, including in particular the surface whose angular velocity is observed, speeds
up — a glitch. We see that this scenario requires superfluidity coexisting with a rigid structure to which vortices can
pin that does not easily deform when vortices pinned to it are under tension. In very recent work, Link has questioned
whether this scenario is viable because once neutron vortices are moving through the inner crust, as must happen
during a glitch, they are so resistant to bending that they may never re-pin [456]. Link concludes that we do not have
an understanding of any dynamics that could lead to the re-pinning of moving vortices, and hence that we do not
currently understand glitches as a crustal phenomenon.

We have seen in Sec. VI B that if neutron star cores are made of quark matter but ∆CFL is not large enough for
this quark matter to be in the CFL phase, then all of the quark matter core — and hence a significant fraction of the
moment of inertia of the star — may be in one of the crystalline phases described in Sec. VI B. By virtue of being
simultaneously superfluids and rigid solids, the crystalline phases of quark matter provide all the necessary conditions
to be the locus in which (some) pulsar glitches originate. Their shear moduli (144), namely

ν = 3.96× 1033erg/cm3

(
∆

10 MeV

)2 ( µ

400 MeV

)2
(168)

with ∆ the gap parameter in the crystalline phase as in Fig. 10, make this form of quark matter 20 to 1000 times more
rigid than the crust of a neutron star [320, 328], and hence more than rigid enough for glitches to originate within
them. The crystalline phases are at the same time superfluid, and it is reasonable to expect that the superfluid vortices
that will result when a neutron star with such a core rotates will have lower free energy if they are centered along
the intersections of the nodal planes of the underlying crystal structure, i.e. along lines along which the condensate
already vanishes even in the absence of a rotational vortex. A crude estimate of the pinning force on vortices within
crystalline color superconducting quark matter indicates that it is sufficient [320]. So, the basic requirements for
superfluid vortices pinning to a rigid structure are all present. The central questions that remain to be addressed are
the explicit construction of vortices in the crystalline phase and the calculation of their pinning force, as well as the
calculation of the timescale over which sudden changes in the angular momentum of the core are communicated to
the (observed) surface, presumably either via the common electron fluid or via magnetic stresses.

Much theoretical work remains before the hypothesis that pulsar glitches originate within a crystalline color su-
perconducting neutron star core is developed fully enough to allow it to confront data on the magnitudes, relaxation
timescales, and repeat rates that characterize glitches. Nevertheless, this hypothesis offers one immediate advantage
over the conventional scenario that relied on vortex pinning in the neutron star crust. It is impossible for a neutron
star anywhere within which rotational vortices are pinned to precess on ∼ year time scales [457–459], and yet there
is now evidence that several pulsars are precessing [460–462]. Since all neutron stars have crusts, the precession of
any pulsar is inconsistent with the pinning of vortices within the crust, a requirement in the standard explanation
of glitches. On the other hand, perhaps not all neutron stars have crystalline quark matter cores — for example,
perhaps the lightest neutron stars have nuclear matter cores. Then, if vortices are never pinned in the crust but are
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pinned within a crystalline quark matter core, those neutron stars that do have a crystalline quark matter core can
glitch but cannot precess while those that don’t can precess but cannot glitch.

Acknowledgments

We acknowledge helpful conversations with N. Andersson, M. Braby, D. Chakrabarty, T. Hatsuda, S. Hughes, D.L.
Kaplan, B. Link, M. Mannarelli, C. Manuel, D. Nice, D. Page, A. Rebhan, S. Reddy, R. Sharma, I. Stairs, Q. Wang,
and F. Wilczek. This research was supported in part by the Offices of Nuclear Physics and High Energy Physics of the
Office of Science of the U.S. Department of Energy under contracts #DE-FG02-91ER40628, #DE-FG02-05ER41375
(OJI), #DE-FG02-94ER40818, #DE-FG02-03ER41260.

[1] P. Carruthers, Coll. Phen. 1, 147 (1973).
[2] D. D. Ivanenko and D. F. Kurdgelaidze, Astrophysics 1, 479 (1965).
[3] F. Pacini, Nature 209, 389 (1966).
[4] D. Boccaletti, V. de Sabbata, and C. Gualdi, Nuovo Cim. 45, 513 (1966).
[5] N. Itoh, Prog. Theor. Phys. 44, 291 (1970).
[6] D. D. Ivanenko and D. F. Kurdgelaidze, Lett. Nuovo Cim. IIS1, 13 (1969).
[7] D. D. Ivanenko and D. F. Kurdgelaidze, Sov. Phys. J. 13, 1015 (1970).
[8] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
[9] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[10] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).
[11] M. B. Kislinger and P. D. Morley, Phys. Rev. D 13, 2765 (1976).
[12] B. A. Freedman and L. D. McLerran, Phys. Rev. D16, 1169 (1977).
[13] B. Freedman and L. D. McLerran, Phys. Rev. D17, 1109 (1978).
[14] G. Baym and S. A. Chin, Phys. Lett. B62, 241 (1976).
[15] G. Chapline and M. Nauenberg, Nature 264, 235 (1976).
[16] G. Chapline and M. Nauenberg, Phys. Rev. D16, 450 (1977).
[17] B. C. Barrois, Nucl. Phys. B129, 390 (1977).
[18] B. C. Barrois, Ph.D. thesis, California Institute of Technology, Pasadena, California (1979), UMI 79-04847.
[19] S. C. Frautschi (1978), presented at Workshop on Hadronic Matter at Extreme Energy Density, Erice, Italy, Oct 13-21,

1978.
[20] D. Bailin and A. Love, J. Phys. A12, L283 (1979).
[21] D. Bailin and A. Love, Phys. Rept. 107, 325 (1984).
[22] M. Iwasaki and T. Iwado, Phys. Lett. B350, 163 (1995).
[23] M. Iwasaki, Prog. Theor. Phys. Suppl. 120, 187 (1995).
[24] M. G. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B422, 247 (1998), hep-ph/9711395.
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[232] T. Schäfer (2004), hep-ph/0402032.
[233] S. R. Beane, P. F. Bedaque, and M. J. Savage, Nucl. Phys. A688, 931 (2001), nucl-th/0004013.
[234] B. Feng, D.-f. Hou, J.-r. Li, and H.-c. Ren, Nucl. Phys. B754, 351 (2006), nucl-th/0606015.



70

[235] P. T. Reuter, Phys. Rev. D74, 105008 (2006), nucl-th/0608020.
[236] D. H. Rischke, Phys. Rev. D64, 094003 (2001), nucl-th/0103050.
[237] D. Nickel, J. Wambach, and R. Alkofer, Phys. Rev. D73, 114028 (2006), hep-ph/0603163.
[238] F. Marhauser, D. Nickel, M. Buballa, and J. Wambach, Phys. Rev. D75, 054022 (2007), hep-ph/0612027.
[239] J. Berges and K. Rajagopal, Nucl. Phys. B538, 215 (1999), hep-ph/9804233.
[240] G. W. Carter and D. Diakonov, Phys. Rev. D60, 016004 (1999), hep-ph/9812445.
[241] P. W. Anderson, Phys. Rev. 130, 439 (1963).
[242] P. W. Higgs, Phys. Lett. 12, 132 (1964).
[243] D. H. Rischke, Phys. Rev. D62, 054017 (2000), nucl-th/0003063.
[244] D. H. Rischke, Phys. Rev. D62, 034007 (2000), nucl-th/0001040.
[245] D. H. Rischke and I. A. Shovkovy, Phys. Rev. D66, 054019 (2002), nucl-th/0205080.
[246] D. T. Son and M. A. Stephanov, Phys. Rev. D61, 074012 (2000), hep-ph/9910491.
[247] H. Malekzadeh and D. H. Rischke, Phys. Rev. D73, 114006 (2006), hep-ph/0602082.
[248] R. Casalbuoni, R. Gatto, and G. Nardulli, Phys. Lett. B498, 179 (2001), hep-ph/0010321.
[249] K. Zarembo, Phys. Rev. D62, 054003 (2000), hep-ph/0002123.
[250] A. Schmitt, Q. Wang, and D. H. Rischke, Phys. Rev. D69, 094017 (2004), nucl-th/0311006.
[251] D. N. Aguilera, Astrophys. Space Sci. 308, 443 (2007), hep-ph/0608041.
[252] M. Huang and I. A. Shovkovy, Phys. Rev. D70, 051501 (2004), hep-ph/0407049.
[253] M. G. Alford, J. Berges, and K. Rajagopal, Phys. Rev. Lett. 84, 598 (2000), hep-ph/9908235.
[254] O. Kiriyama, Phys. Rev. D74, 114011 (2006), hep-ph/0609185.
[255] O. Kiriyama, Phys. Rev. D74, 074019 (2006), hep-ph/0608109.
[256] M. Kitazawa, D. H. Rischke, and I. A. Shovkovy, Phys. Lett. B637, 367 (2006), hep-ph/0602065.
[257] E. Gubankova, A. Schmitt, and F. Wilczek, Phys. Rev. B74, 064505 (2006), cond-mat/0603603.
[258] J. Polchinski (1992), hep-th/9210046.
[259] N. J. Evans, S. D. H. Hsu, and M. Schwetz, Phys. Lett. B449, 281 (1999), hep-ph/9810514.
[260] N. J. Evans, S. D. H. Hsu, and M. Schwetz, Nucl. Phys. B551, 275 (1999), hep-ph/9808444.
[261] T. Schäfer and F. Wilczek, Phys. Lett. B450, 325 (1999), hep-ph/9810509.
[262] P. T. Reuter, Q. Wang, and D. H. Rischke, Phys. Rev. D70, 114029 (2004), nucl-th/0405079.
[263] D. K. Hong, Phys. Lett. B473, 118 (2000), hep-ph/9812510.
[264] D. K. Hong, Nucl. Phys. B582, 451 (2000), hep-ph/9905523.
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