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I. INTRODUCTION AND OUTLINE

We shall discuss systems in equilibrium at finite temperatures and chemical potentials. In most parts we will follow
the book by Kapusta [1], see also the book by Le Bellac [2] for additional reference. We will focus on the functional
integral approach, for a different approach using second quantization see the book by Fetter and Walecka [3]. We
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shall learn the tools of functional integration, Matsubara summation, perturbation techniques, and discuss impor-
tant theoretical concepts such as spontaneous symmetry breaking (and restoration thereof at large temperatures).
Applications, to be discussed after learning these techniques, are

• early universe, cosmology

– inflation, T ∼ 1015 GeV

– electroweak phase transition T ∼ 102 GeV

– QCD phase transition, T ∼ 102 MeV (for comparison, this is ∼ 1012 K)

– baryogenesis

• QCD phase transitions

– heavy-ion collisions (“little bang” vs. “big bang”)

– chiral symmetry (spontaneous breaking thereof)

– lattice QCD

• neutron stars, T . 10 MeV, µq ∼ 400 MeV

– dense nuclear matter

– neutrino emissivity

– quark matter, color superconductivity

In this lecture we can only touch a few of these points.

II. REMINDER: BASICS OF STATISTICAL QUANTUM MECHANICS

This chapter serves as a quick reminder of the main ingredients of statistical quantum mechanics and its relation
to thermodynamic quantities. A good textbook about statistical physics is the book by Nolting [4]. The goal of
this reminder is to explain the meaning and form of the partition function which, in later chapters in the functional
integral representation, plays a central role in thermal field theory.

A. Statistical operator

We start by recalling that statistical quantum mechanics involves probabilities on two levels. First, on the funda-
mental level, quantum mechanics itself involves some kind of statistics, i.e., we can only give probabilities to measure
a certain value of an observable. Let Â be an observable with a set of complete orthogonal eigenstates |n〉 and
eigenvalues an,

Â|n〉 = an|n〉 , (1)

with 〈m|n〉 = δmn. We can expand any state |ψ〉 in terms of these eigenstates,

|ψ〉 =
∑

n

cn|n〉 . (2)

The probability to measure the value an in the state |ψ〉 is |cn|2 with cn = 〈n|ψ〉. Then, the expectation value of Â
in the state |ψ〉 is

〈Â〉 =
∑

n

|cn|2an

=
∑

n

|〈n|ψ〉|2an

=
∑

n

〈n|ψ〉〈ψ|Â|n〉

= 〈ψ|Â|ψ〉 . (3)
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Second, and independent of the quantum probability interpretation, there is a level of uncertainty for macroscopic
systems of which we don’t know (and are not interested in) the microscopic details. We now consider many possible
(orthogonal) quantum mechanical states |ψm〉 each of which we find with a probability pm, 0 < pm < 1. Then, the

expectation value for Â is not only given by the quantum mechanical averaging but also by averaging over the possible
states |ψm〉, i.e.,

〈Â〉 =
∑

m

pm〈ψm|Â|ψm〉 . (4)

If we define the statistical operator

ρ̂ ≡
∑

m

pm|ψm〉〈ψm| , (5)

we can write the expectation value as

〈Â〉 = Tr(ρ̂ Â) . (6)

Proof:

〈Â〉 =
∑

m

pm〈ψm|Â|ψm〉 =
∑

i,j,m

pm〈ψm|φi〉〈φi|Â|φj〉〈φj |ψm〉

=
∑

i,j

ρ̂jiÂij = Tr(ρ̂ Â) . (7)

We obviously have ρ̂† = ρ̂ and

Tr ρ̂ = 1 (8)

(which is clear from setting Â = 1 above). The meaning of ρ̂ can also be understood from the analogy to classical
statistical mechanics. In this case, there is a probability distribution ρ(p, q) in the 6N -dimensional phase space (N be
the number of particles which each moves on a trajectory in phase space); then, d3Np d3Nq ρ(p, q) is the probability
to find the system in the small region d3Np d3Nq in phase space. An observable A has a value A(p, q) if the system
sits on the point (p, q) in phase space, and its expectation value is given by

〈A〉 =
1

(2π~)3NN !

∫

d3Np d3Nq ρ(p, q)A(p, q) , (9)

where the factor N ! in the normalization refers to the exchange of particles and the factor (2π~)3N is included to
do the transition to a quantum mechanical system. Comparing Eq. (6) with Eq. (9) shows the formal similarity
between the quantum and classical expectation values (the trace is replaced by the phase space integral). This formal
correspondence goes further, e.g., the Liouville equation for the classical probability distribution

∂ρ

∂t
= −{H, ρ} , (10)

where H is the Hamilton function of the system and {−,−} the Poisson bracket, is very similar to the Heisenberg
equation for the statistical operator

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂] , (11)

with the Hamilton operator Ĥ. Here we shall be mostly concerned with equilibrium situations and thus [Ĥ, ρ̂] = 0.

B. Grand canonical ensemble

Let us now recall the different ensembles in statistical physics (both classical and quantum mechanical). One should
in the following always think of an ensemble as a collection of many different systems with the same fixed macroscopic
properties but different microscopic configurations. Which macroscopic properties are fixed depends on the ensemble:
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• microcanonical ensemble (E,N, V )

• canonical ensemble (T,N, V )

• grand canonical ensemble (T, µ, V )

with the volume V , the energy E, the particle number (charge) N , the temperature T , and the chemical potential
µ (associated with the charge N); in general, there can be more than one conserved charge and chemical potential.
We shall mostly be concerned with the grand canonical ensemble. Therefore, let us give a brief derivation of the
statistical operator in the grand canonical ensemble. Consider a system Σ with fixed energy E, charge N , and volume
V . We are interested in a small subsystem Σ(1) such that Σ = Σ(1) ∪ Σ(2) and such that Σ(1) and Σ(2) are separated
by walls through which charge and energy can be exchanged. Let us denote the energy, charge, and volume of the
subsystems by E(i), N (i), V (i). We then have E = E(1) +E(2), N = N (1) +N (2). We assume that the Hamilton and
charge operators commute, [Ĥ(i), N̂ (i)] = 0, and thus that there is a set of simultaneous eigenstates |Em, n〉 for the
subsystem Σ1,

Ĥ(1)|Em, n〉 = Em|Em, n〉 , (12a)

N̂ (1)|Em, n〉 = n|Em, n〉 . (12b)

We can write the statistical operator as

ρ̂ =
∑

m,n

pm,n|Em, n〉〈Em, n| . (13)

We are interested in the probability pm,n to find the system Σ(1) in the state |Em, n〉 with energy Em and charge

N (1) = n. This probability is proportional to the number of states Γ available in the complementary system Σ(2),

pm,n ∝ Γ(2)(E − Em, N − n, V (2)) . (14)

The system Σ(2) acts as a heat and particle bath for Σ(1) and thus Em ≪ E, n ≪ N . We can then expand the
logarithm of Γ,

ln Γ(2)(E − Em, N − n, V (2)) ≃ 1

kB
S(2)(E,N, V (2)) − Em

kB

∂S(2)

∂E

∣

∣

∣

∣

Em=n=0

− n

kB

∂S(2)

∂N

∣

∣

∣

∣

Em=n=0

, (15)

where we have used the definition for the entropy S = kB ln Γ where kB is the Boltzmann constant. Now we can use
the thermodynamic relations ∂S/∂E = 1/T , ∂S/∂N = −µ/T (or one can even view the derivatives in Eq. (15) as the
definitions of temperature and chemical potential, which might be a bit abstract) to obtain

pm,n ∝ e−β(Em−µn) . (16)

Here we have dropped the contribution S(2)/kB which only depends on the system Σ(2) and thus can be absorbed in
the normalization, to be determined below. Inserting this into the statistical operator (13) yields

ρ̂ ∝
∑

m,n

e−β(Em−µn)|Em, n〉〈Em, n| = e−β(Ĥ(1)−µN̂(1))
∑

m,n

|Em, n〉〈Em, n| = e−β(Ĥ(1)−µN̂(1)) . (17)

To fulfill the normalization (8) we find (dropping the superscript (1), from now on we are only talking about the
subsystem Σ(1))

ρ̂ =
e−β(Ĥ−µN̂)

Z
, (18)

where

Z ≡ Tr e−β(Ĥ−µN̂) (19)

is the partition function of the system.
[End of 1st lecture, Oct 6th, 2008.]
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We can derive all thermodynamical quantities from the partition function, which thus is the central quantity
in statistical physics. For instance we have the grand canonical potential (sometimes called the thermodynamical
potential)

Ω(T, µ, V ) ≡ − 1

β
lnZ . (20)

This function is related to the other thermodynamical quantities via

Ω = −PV = E − µN − TS , (21)

where P is the pressure. From the partition function we immediately get, in accordance with (21),

∂Ω

∂µ
= − 1

β

∂ lnZ

∂µ

= − 1

β Z

∂Z

∂µ

= −TrN̂e−β(Ĥ−µN̂)

Z

= −〈N̂〉 ≡ −N , (22)

and

∂Ω

∂T
= − lnZ − β

Tr
[

(Ĥ − µN̂)e−β(Ĥ−µN̂)
]

Z
= 〈ln ρ̂〉 = −〈S〉 , (23)

since ln ρ̂ = ln e−β(Ĥ−µN̂) − lnZ = −β(Ĥ − µN̂) − lnZ.
Let us compute the partition function for the simplest cases before we turn to the field theoretical description.

Let us first consider a single energy state with energy ω which we can fill with bosons. Remember that this simple
many-particle system resembles the one-particle harmonic oscillator because the Hamiltonian is Ĥ = ω(N̂ + 1/2),
where we drop the zero-point energy ω/2. Since arbitrarily many bosons can populate the state the partition function
is

Z =

∞
∑

n=0

〈n|e−β(ω−µ)N̂ |n〉 =

∞
∑

n=0

e−β(ω−µ)n〈n|n〉 =
1

1 − e−β(ω−µ)
. (24)

The thermodynamical potential is thus

Ω = −T lnZ = T ln
[

1 − e−β(ω−µ)
]

(25)

and the particle number

N = −∂Ω

∂µ
=

1

eβ(ω−µ) − 1
. (26)

One can already see from this simple example that something interesting happens if the chemical potential approaches
the energy ω, since in this case the particle number seems to diverge. This is a first hint of Bose-Einstein condensation
which we shall discuss later. We also see that the chemical potential cannot assume values larger than ω in order to
avoid negative N . This is a restriction for non-interacting systems.

For fermions we have the same expression, only that we can only put one fermion at most into the energy state.
Consequently, the sum only runs over n = 0, 1 and we get

Z =
1
∑

n=0

〈n|e−β(ω−µ)N̂ |n〉 = 1 + e−β(ω−µ) , (27)

where the n = 0 term yields the 1 from the expansion of the exponential (which is obvious from writing e−β(ω−µ)N̂ =

1− β(ω − µ)N̂ + . . .). In this case, the thermodynamical potential is

Ω = −T lnZ = −T ln
[

1 + e−β(ω−µ)
]

(28)
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and the particle number

N = −∂Ω

∂µ
=

1

eβ(ω−µ) + 1
. (29)

In this simple case of just one single energy ω, the particle number at vanishing temperature is N = 0 for µ < ω and
N = 1 for µ > ω. At nonzero temperature, N assumes values in between 0 and 1.

Next we allow for a dispersion of the particles, i.e., the energy may depend on the (modulus of the) momentum,
ωp ≡ ω(p). We start with a box with size L in all three dimensions. The box size must be an integer times half of the
wavelength λ, L = nλ/2. With the de Broglie relation for the wavelength p = 2π/λ (we set ~ = 1) we have p = nπ/L.
The log of the full partition function is the sum over all partition functions of the single modes,

lnZ =
∑

n=(nx,ny,nz)

lnZn = V

∫

d3p

(2π)3
lnZp = ∓V

∑

e=±

∫

d3p

(2π)3
ln[1 ∓ e−β(ωp−eµ)] , (30)

where V = L3, where we have used ”dn”→ L/π dp, and where the doubling of all three momentum ranges in the
integral yields the factor 23 in the denominator. We have inserted the above expressions for the log of the partition
function for a single mode for bosons (upper sign) and fermions (lower sign). Finally, we have added a sum over e = ±
accounting for particles and antiparticles which differ in the sign of their chemical potential. The conserved charge is
thus

N = V
∑

e=±

e

∫

d3p

(2π)3
1

eβ(ωp−eµ) ∓ 1
. (31)

We shall often consider the charge density n ≡ N/V instead. In the case of bosons (upper sign) we see that we have
to require −minωp < µ < minωp in order to have positive occupation numbers.

III. PARTITION FUNCTION AS FUNCTIONAL INTEGRAL

Here we derive the expression for the partition function in quantum field theory as opposed to usual quantum
mechanics. Remember that in usual quantum theory, the projection of an eigenstate 〈x| of the position operator x̂

onto the eigenstate |p〉 of the momentum operator p̂ is given by a plane wave,

〈x|p〉 = eip·x . (32)

In quantum field theory, the discrete sum p · x =
∑

i pixi becomes an integral,

〈φ|π〉 = ei
R

d3xπ(x)φ(x) . (33)

Here, φ(x) and π(x) are eigenvalues (better: eigenfunctions) of the field operator (at t = 0) φ̂(x, 0) and its conjugate
momentum operator π̂(x, 0). For the completeness and orthogonality conditions one needs functional integration,

∫

dφ(x) |φ〉〈φ| = 1 , 〈φa|φb〉 = δ[φa(x) − φb(x)] , (34a)

∫

dπ(x)

2π
|π〉〈π| = 1 , 〈πa|πb〉 = δ[πa(x) − πb(x)] . (34b)

The Hamiltonian Ĥ of the system is given by the Hamilton density H which can be expressed in terms of the field
operators,

Ĥ =

∫

d3xH(π̂(x, t), φ̂(x, t)) . (35)

In the following we shall write the partition function in terms of the fields φ and π and get rid of all operators. To
this end, we first compute a transition amplitude with identical initial and final state φ at times t = 0 and t = tf .

The initial state evolves in time upon applying the unitary operator e−iĤt. We shall divide the time interval [0, tf ]
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into N pieces with length ∆t. Then we can write the transition amplitude as

〈φ|e−iĤt|φ〉 = lim
N→∞

〈φ|e−iĤ∆te−iĤ∆t . . . e−iĤ∆t|φ〉

=

∫ N
∏

i=1

dπi(x)

2π
dφi(x)〈φ|πN 〉〈πN |e−iĤ∆t|φN 〉〈φN |πN−1〉〈πN−1|e−iĤ∆t|φN−1〉

× . . .× 〈φ2|π1〉〈π1|e−iĤ∆t|φ1〉〈φ1|φ〉 , (36)

where we inserted each of the completeness relations in Eqs. (34) N times alternatingly. Now, for the scalar products
of the form 〈φi+1|πi〉 we use Eq. (33). For the factors involving the Hamiltonian we use

〈πi|e−iĤ∆t|φi〉 = e−i∆t
R

d3xH(φi,πi)〈πi|φi〉
= e−i∆t

R

d3xH(φi,πi)ei
R

d3xπiφi (37)

Finally from the last product in the integrand in Eq. (36) we obtain 〈φ1|φ〉 = δ(φ− φ1). Consequently,

〈φ|e−iĤt|φ〉 = lim
N→∞

∫ N
∏

i=1

dπi(x)

2π
dφi(x)δ[φ(x) − φ1(x)]ei

R

d3x [πN (φ−φN )+πN−1(φN−φN−1)+...+π1(φ2−φ1)]

× e−i∆t
R

d3x [H(φN ,πN )+...+H(φ1,π1)]

= lim
N→∞

∫ N
∏

i=1

dπi(x)

2π
dφi(x)δ[φ(x) − φ1(x)] exp







i∆t
N
∑

j=1

∫

d3x

[

πj
φj+1 − φj

∆t
−H(φj , πj)

]







, (38)

where we have denoted φN+1 ≡ φ. We can now take the limit N → ∞ to obtain

〈φ|e−iĤt|φ〉 =

∫

Dπ
∫ φ(x,tf)=φ(x)

φ(x,0)=φ(x)

Dφ exp

{

i

∫ tf

0

dt

∫

d3x [π(x, t)∂tφ(x, t) −H(φ(x, t), π(x, t))]

}

. (39)

We have denoted the continuum limit of the functional integration as

∫ N
∏

i=1

dπi(x)

2π
→ Dπ ,

∫ N
∏

i=1

dφi(x) → Dφ . (40)

From this definition of the continuum limit we also learn, as an aside, how functional integration is defined in general.
Note that in the current derivation we have discretized the time direction since this is the crucial direction in order to
compute the partition function at finite T , see below. The functional integration with respect to the space direction
is defined analogously, i.e., by taking the continuum limit from discretized space.

We can now use the result (39) to compute the partition function. To this end we compare Eq. (39) with Eq. (19).
We see that the trace looks like a transition amplitude with identical initial and final states,

Z = Tr e−β(Ĥ−µN̂)

=

∫

dφ 〈φ|e−β(Ĥ−µN̂)|φ〉

=

∫

Dπ
∫

periodic

Dφ exp

[

−
∫ β

0

dτ

∫

d3x (H− µN − iπ∂τφ)

]

. (41)

Here, we have, upon comparing with Eq. (39), identified the inverse temperature with “imaginary time” τ = it, such
that the integration over τ goes from 0 to the inverse temperature β = 1/T . The term “periodic” for the φ integral
means that all functions φ have to be periodic in the imaginary time direction, φ(x, 0) = φ(x, β). The integral over
dφ integrates over all boundary values which are fixed in Eq. (39). We are left with a partition function which is given
entirely in terms of the fields, all operators are gone.

IV. REAL NON-INTERACTING SCALAR FIELD

We now compute the partition function (41) for the simplest case, a real non-interacting scalar field which is
described by the Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 =

1

2

[

(∂0φ)2 − (∇φ)2 −m2φ2
]

. (42)
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In this simple case there is no conserved charge, hence there is no chemical potential. We shall introduce the chemical
potential for a charged complex field in the subsequent section. The conjugate momentum is

π =
∂L

∂(∂0φ)
= ∂0φ . (43)

Remember that L and H are connected via a Legendre transformation which changes the independent variable ∂0φ
(velocity q̇ in classical mechanics) to π (momentum p in classical mechanics). Therefore, the Hamiltonian is

H = π∂0φ− L =
1

2

[

π2 + (∇φ)2 +m2φ2
]

. (44)

For the partition function (41) we need the combination π∂0φ−H. This looks like the Lagrangian, but the variables
over which we integrate are π and φ, i.e., we have to be careful with identifying the Lagrangian in the integrand. In
order to do so, we can shift the momentum field by introducing

π̃ ≡ π − ∂0φ . (45)

Then we have

π∂0φ−H = −1

2
π̃2 +

1

2

[

(∂0φ)2 − (∇φ)2 −m2φ2
]

= −1

2
π̃2 + L . (46)

We can thus separate the integration over φ from the integration over π̃: inserting Eq. (46) as well as µ = 0 into Eq.
(41) yields

Z =

∫

Dπ̃ exp

(

−1

2

∫

X

π̃2(τ,x)

)∫

Dφ exp

∫

X

L

= N

∫

Dφ exp

∫

X

L , (47)

where we have absorbed the result of the Gaussian momentum integral into an irrelevant constant, and where we
have abbreviated

∫

X

≡
∫ β

0

dτ

∫

d3x . (48)

[End of 2nd lecture, Oct 13th, 2008.]
It remains to perform the integral over the Lagrangian which can be done exactly for a non-interacting field. We

denote four-momenta by capital letters,

X ≡ (t,x) = (−iτ,x) , K ≡ (k0,k) = (−iωn,k) , (49)

where ωn are the “Matsubara frequencies” which we explain now. The Fourier transform of the field is

φ(X) =
1√
TV

∑

K

e−iK·Xφ(K) =
1√
TV

∑

K

ei(ωnτ+k·x)φ(K) , (50)

with the Minkowski scalar product K ·X = k0x0−k·x. The normalization is chosen such that the Fourier-transformed
fields φ(K) are dimensionless. We know from the previous section that the field has to be periodic, φ(0,x) = φ(β,x).
To fulfill this periodicity requirement we need eiωnβ = 1, i.e., ωnβ has to be an integer multiple of 2π, or

ωn = 2πnT , n ∈ Z . (51)

With the Fourier transform (50), and the relation
∫

X

eiK·X =
V

T
δK,0 , (52)

we have
∫

X

L = −1

2

∫

X

[

(∂τφ)2 + (∇φ)2 +m2φ2
]

= −1

2

∑

K

φ(−K)
D−1

0 (K)

T 2
φ(K) , (53)
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with the free (hence the subscript “0”) inverse propagator in momentum space

D−1
0 (K) = ω2

n + k2 +m2 . (54)

Explicitly, we have for example for the first term,

∫

X

(∂τφ)2 =
1

TV

∫

X

∑

K,Q

[∂τe
i(ωnτ+k·x)φ(K)][∂τe

i(ωmτ+q·x)φ(Q)]

= − 1

TV

∫

X

∑

K,Q

ωnωme
−i(K+Q)·Xφ(K)φ(Q)

=
1

T 2

∑

K

ω2
nφ(−K)φ(K) . (55)

Since φ(X) is real we have φ(K) = φ∗(−K) and thus

Z = N

∫

Dφ exp

[

−1

2

∑

K

φ∗(K)
D−1

0 (K)

T 2
φ(K)

]

. (56)

We can evaluate this integral by using the general formula

∫

dDxe−
1
2x·Âx = (2π)D/2(detÂ)−1/2 , (57)

for a hermitian, positive definite matrix Â. This identity is a generalization of the one-dimensional gaussian integral

∫ ∞

−∞

e−
1
2 αx2

=

√

2π

α
, (58)

and can easily be shown by writing the bilinear x · Âx in terms of the eigenvalues of Â and then using Eq. (58).
Consequently,

Z = N ′

(

det
D−1

0 (K)

T 2

)−1/2

, (59)

where we have absorbed the constant factor into the new constant N ′, and where the determinant is taken over
momentum space (in which the inverse propagator is diagonal). Hence the log of the partition function is, up to a
constant,

lnZ = −1

2
ln det

D−1
0 (K)

T 2

(

= −1

2
Tr ln

D−1
0 (K)

T 2

)

= −1

2
ln
∏

K

D−1
0 (K)

T 2

= −1

2

∑

K

ln
D−1

0 (K)

T 2
. (60)

Next we perform the summation over Matsubara frequencies (recall that the sum over K is a sum over k0 = −iωn

and over k; the latter will become an integral in the thermodynamic limit).

A. Summation over bosonic Matsubara frequencies

Here we prove the identity

∑

n

ln
ω2

n + ǫ2k
T 2

=
ǫk
T

+ 2 ln
(

1 − e−ǫk/T
)

+ const , (61)
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where, in our case, ǫ2k = k2 +m2 (however, for the following calculation we only need that ǫk is a real number), and
where const is an (infinite) number independent of temperature. First, in order to get rid of the log, we write

∑

n

ln
ω2

n + ǫ2k
T 2

=

∫ (ǫk/T )2

1

dx2
∑

n

1

(2nπ)2 + x2
+
∑

n

ln[1 + (2nπ)2] . (62)

We now perform the sum in the integrand which, denoting ǫk ≡ Tx, we write as a contour integratal,

1

T

∑

n

1

(2nπ)2 + x2
= T

∑

n

1

ω2
n + ǫ2k

= − 1

2πi

∮

C

dω
1

ω2 − ǫ2k

1

2
coth

ω

2T
. (63)

The second identity follows from the residue theorem,

1

2πi

∮

C

dz f(z) =
∑

n

Res f(z)|z=zn
, (64)

where zn are the poles of f(z) in the area enclosed by the contour C. If we can write the function f as f(z) = ϕ(z)/ψ(z),
with analytic functions ϕ(z), ψ(z), the residues are

Res f(z)|z=zn
=

ϕ(zn)

ψ′(zn)
. (65)

The contourC in Eq. (63) encloses all poles of coth[ω/(2T )] (and none of 1/(ω2−ǫ2k)). The denominator of coth[ω/(2T )]

is eω/2T − e−ω/2T which vanishes when ω/2T is an integer multiple of iπ, i.e., when ω = iωn with the Matsubara
frequencies ωn. Hence, in the above notation,

ϕ(ω) =
1

2

eω/(2T ) + e−ω/(2T )

ω2 − ǫ2k
, ψ(ω) = eω/(2T ) − e−ω/(2T ) ,

⇒ ϕ(iωn)

ψ′(iωn)
= −T 1

ω2
n + ǫ2k

, (66)

from which Eq. (63) follows immediately. Next, we deform the contour (which consists of infinitely many circles
surrounding the poles) and obtain

T
∑

n

1

ω2
n + ǫ2k

= − 1

2πi

∫ i∞+η

−i∞+η

dω
1

ω2 − ǫ2k

1

2
coth

ω

2T
− 1

2πi

∫ −i∞−η

i∞−η

dω
1

ω2 − ǫ2k

1

2
coth

ω

2T

= − 1

2πi

∫ i∞+η

−i∞+η

dω
1

ω2 − ǫ2k
coth

ω

2T
, (67)

where we have changed the integration variable ω → −ω in the second integral of the first line. We now use the
residue theorem a second time: we can close the contour in the positive half plane and pick up the poles ω = ±ǫk
(in our simple case ǫk > 0, but we can keep the result general in order to use it later for the case of a nonvanishing
chemical potential),

T
∑

n

1

ω2
n + ǫ2k

= Θ(ǫk)
1

2ǫk
coth

ǫk
2T

− Θ(−ǫk)
1

2ǫk
coth

−ǫk
2T

=
1

2ǫk
coth

ǫk
2T

=
1

2ǫk
[1 + 2fB(ǫk)] , (68)

(note minus sign from clockwise contour integration) with the Bose distribution function

fB(ǫ) ≡ 1

eǫ/T − 1
. (69)

We thus have found

1

T

∑

n

1

(2nπ)2 + x2
=

1

Tx

(

1

2
+

1

ex − 1

)

. (70)
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Now we insert the result into the original expression (62) and integrate over x2 to obtain (with const denoting
T -independent constants)

∑

n

ln
ω2

n + ǫ2k
T 2

=

∫ (ǫk/T )2

1

dx2 1

x

(

1

2
+

1

ex − 1

)

+ const

=
ǫk
T

+ 2 ln
(

1 − e−ǫk/T
)

+ const , (71)

which is the result we wanted to prove.

Exercise 1: Show via contour integration that

T
∑

k0

1

[(p0 − k0)2 − ω2
q ](k2

0 − ω2
k)

= −
∑

e1,e2=±

e1e2
4ωkωq

1

p0 − e1ωk − e2ωq
[1 + fB(e1ωk) + fB(e2ωq)] , (72)

with k0 = −iωn, p0 = −iωm bosonic Matsubara frequencies and ωk, ωq > 0.

B. Bosonic partition function

Inserting the result from the Matsubara sum into Eq. (60) and taking the thermodynamic limit yields the (log of)
the bosonic partition function,

lnZ = −V
∫

d3k

(2π)3

[ ǫk
2T

+ ln
(

1 − e−ǫk/T
)]

. (73)

V. COMPLEX NON-INTERACTING SCALAR FIELD

Next we discuss a complex bosonic field. Although we still neglect interactions, this will already lead to new physics
compared to the real field, namely Bose-Einstein condensation. We start from the Lagrangian

L0 = ∂µφ
∗∂µφ−m2|φ|2 − λ|φ|4 . (74)

We set the coupling to zero, λ = 0. We added the subscript “0” to indicate that the chemical potential is not included
yet. In contrast to the previous case, we now have a conserved charge and thus can introduce a chemical potential.
To this end, we first identify the conserved current. We know from Noether’s theorem that the conserved current is
related to the symmetry of the Lagrangian. We see that L is invariant under U(1) rotations of the field,

φ→ e−iαφ . (75)

To find the current we formally extend this symmetry to a local symmetry α(x) and transform the Lagrangian,

L0 → L0 + |φ|2∂µα∂
µα+ i∂µα(φ∗∂µφ− φ∂µφ∗) . (76)

Now we write down the equation of motion for α. We see that the transformed Lagrangian does not depend on α,
but only on its derivative. Consequently, the quantity

∂L0

∂(∂µα)
= |φ|2∂µα+ i(φ∗∂µφ− φ∂µφ

∗) (77)

is conserved. If we now go back to constant α we see that we have the conserved current

jµ ≡ i(φ∗∂µφ− φ∂µφ
∗) , ∂µjµ = 0 . (78)

The conserved charge (density) is thus

j0 = i(φ∗∂0φ− φ∂0φ
∗) . (79)

This is needed to introduce a chemical potential µ. In the following we want to see how the chemical potential enters
the Lagrangian. We will see that we cannot simply add a term µj0 to L0. We rather have to look at the expression
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π∂0φ −H + µN in the action. To this end, we first introduce the two real fields φ1, φ2 as real and imaginary parts
of φ,

φ =
1√
2
(φ1 + iφ2) . (80)

Then, the Lagrangian becomes

L0 =
1

2

[

∂µφ1∂
µφ1 + ∂µφ2∂

µφ2 −m2(φ2
1 + φ2

2)
]

. (81)

The conjugate momenta are

πi =
∂L0

∂(∂0φi)
= ∂0φi , i = 1, 2 . (82)

Consequently, with j0 = φ2π1 − φ1π2 which follows from Eqs. (79), (80), and (82), we have

H− µN = π1∂0φ1 + π2∂0φ2 − L0 − µN
=

1

2

[

π2
1 + π2

2 + (∇φ1)
2 + (∇φ2)

2 +m2(φ2
1 + φ2

2)
]

− µ(φ2π1 − φ1π2) . (83)

For the partition function, see Eq. (41), we again introduce a shifted momentum field, as we did in the previous
section. This time we have to include the chemical potential in the shift in order to separate the field integration from
the momentum integration,

π̃1 ≡ π1 − ∂0φ1 − µφ2 , π̃2 ≡ π2 − ∂0φ2 + µφ1 . (84)

This yields

π1∂0φ1 + π2∂0φ2 −H + µN = −1

2
(π̃2

1 + π̃2
2) + L , (85)

where the new Lagrangian L now includes the chemical potential,

L =
1

2

[

(∂0φ1)
2 + (∂0φ2)

2 − (∇φ1)
2 − (∇φ2)

2 + (µ2 −m2)(φ2
1 + φ2

2) + 2µ(φ2∂0φ1 − φ1∂0φ2)
]

. (86)

In terms of the complex field φ, the Lagrangian reads

L = |(∂0 − iµ)φ|2 − |∇φ|2 −m2|φ|2 . (87)

Thus we see that the effect of the chemical potential is to add, besides the expected term µj0, the additional term
µ2(φ2

1 + φ2
2)/2.

[End of 3rd lecture, Oct 20th, 2008.]
In order to compute the partition function, we Fourier transform the fields φ1, φ2 as discussed for the scalar field.

However, anticipating Bose-Einstein condensation, we separate the zero-momentum mode ζi = φi(K = 0),

φi(X) = ζi +
1√
TV

∑

K 6=0

e−iK·Xφ(K) . (88)

The condensate ζi plays the role of a vacuum expectation value of the field. It breaks the U(1) symmetry spontaneously.
We can choose any of the degenerate directions in the complex plane, for instance ζ2 = 0 and will denote ζ ≡ ζ1.
With the Lagrangian (86) the action then becomes

∫

X

L =
V

T

µ2 −m2

2
ζ2 − 1

2

∑

K

(φ1(−K), φ2(−K))
D−1

0

T 2

(

φ1(K)
φ2(K)

)

, (89)

with the 2 × 2 inverse propagator

D−1
0 (K) =

(

−K2 +m2 − µ2 −2iµk0

2iµk0 −K2 +m2 − µ2

)

. (90)
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In deriving the action (89) we have used that the integrals over mixed terms, i.e., over a product of the condensate ζ
and the momentum sum (excluding the mode K = 0), vanish. We see that the chemical potential induces off-diagonal
terms in the propagator. Now from the partition function

Z = N

∫

Dφ1Dφ2 exp

∫

X

L , (91)

we obtain, dropping the constant terms,

lnZ =
V

T

µ2 −m2

2
ζ2 − 1

2
ln

(

det
D−1

0 (K)

T 2

)

=
V

T

µ2 −m2

2
ζ2 − 1

2
ln
∏

K

1

T 4
[(−K2 +m2 − µ2)2 − 4µ2k2

0 ]

=
V

T

µ2 −m2

2
ζ2 − 1

2
ln
∏

K

1

T 4
[(ǫk − µ)2 − k2

0 ][(ǫk + µ)2 − k2
0 ]

=
V

T

µ2 −m2

2
ζ2 − 1

2

∑

K

[

ln
(ǫk − µ)2 − k2

0

T 2
+ ln

(ǫk + µ)2 − k2
0

T 2

]

, (92)

where we defined

ǫk ≡
√

k2 +m2 . (93)

We can now use the result of the Matsubara summation from above, Eq. (61), to obtain

lnZ =
V

T

µ2 −m2

2
ζ2 − V

∫

d3k

(2π)3

[ǫk
T

+ ln
(

1 − e−(ǫk−µ)/T
)

+ ln
(

1 − e−(ǫk+µ)/T
)]

. (94)

This gives the thermodynamic potential

Ω

V
=
m2 − µ2

2
ζ2 + T

∫

d3k

(2π)3

[

ln
(

1 − e−(ǫk−µ)/T
)

+ ln
(

1 − e−(ǫk+µ)/T
)]

, (95)

where we have dropped the (infinite) vacuum contribution, i.e., we actually consider Ω − ΩT=0. (Note that
limT=0 T ln(1 − e−E/T ) = −EΘ(−E).) The condensate ζ has to be determined from minimizing the potential,

0 =
∂Ω

∂ζ
= (m2 − µ2)ζ . (96)

We see that ζ = 0 for |µ| < m. In this case, there is no Bose condensation and all particles sit in the thermal
states. For |µ| = m, ζ remains undetermined. This is due to our neglecting the interactions. From usual φ4 theory
at zero temperature we know that the interactions may lead to a nonvanishing vacuum expectation value (“mexican
hat potential”). But for now we have dropped the φ4 term for simplicity. In this case, we can determine ζ by fixing
the density. This may or may not correspond to the physical situation we are interested in. In many nonrelativistic
applications indeed the density is fixed. However, for example in quark matter in neutron stars the chemical potential
typically is fixed, not the charge. In this case we need to include interactions to fix the condensate (of course the
noninteracting limit may be a bad approximation for other reasons too). The charge density is

Q = −∂Ω

∂µ
= µζ2 +

∑

e=±

e

∫

d3k

(2π)3
1

e(ǫk−eµ)/T − 1
. (97)

Before discussing the role of the condensate ζ let us approximate the thermal part for small and large temperatures.
We first introduce the new integration variable x = k/T to obtain

Q =
T 3

2π2

∫ ∞

0

dxx2

(

1

e
√

x2+(m/T )2−µ/T − 1
− 1

e
√

x2+(m/T )2+µ/T − 1

)

. (98)
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Now we expand for small T ,
√

x2 + (m/T )2 ≃ m/T + Tx2/(2m). Then, with the new integration variable y =
√

T/(2m)x, we have

Q ≃ T 3

2π2

∫ ∞

0

dxx2

(

e−(m−µ)/T

eTx2/(2m)
− e−(m+µ)/T

eTx2/(2m)

)

=

(

2m

T

)3/2
T 3

2π2

(

e−(m−µ)/T − e−(m+µ)/T
)

∫ ∞

0

dy y2e−y2

=
m3/2T 3/2

2
√

2π3/2

(

e−(m−µ)/T − e−(m+µ)/T
)

, (99)

where we have used that the remaining y-integral evaluates to
√
π/4. We see that the density is exponentially

suppressed for small temperatures. This exponential suppression for massive particles is also typical for other quantities
such as the specific heat.

For large temperatures we can use Eq. (98) and neglect the terms m/T and µ/T in the integrand to obtain

Q+ = Q− =
T 3

2π2

∫ ∞

0

dx
x2

ex − 1
=
ζ(3)T 3

π2
, (100)

where Q+ and Q− are the particle and antiparticle contributions, respectively. We see that they become identical
for large T and thus the total charge Q = Q+ −Q− vanishes. This is easy to understand: the difference in energies
between particles and antiparticles is 2µ for all momenta. If T is sufficiently large, i.e., T ≫ µ, then this difference is
not “resolved” and particle and antiparticle states become practically equally populated. For T of the order of µ or
smaller, the chemical potential induces an asymmetry between particles and antiparticles, favoring particles for µ > 0
and antiparticles for µ < 0.

Exercise 2: Compute the specific heat (at constant chemical potential) cV = T∂S/∂T , where S = −∂Ω/∂T is the
entropy, and find analytic approximations for the limits of small and large temperatures.

Let us now discuss the condensate. There is a zero-temperature contribution µζ2 coming from the bosons in the
zero-momentum state. For a given density, the system populates as many thermal states as possible until there is no
more “space”. Note that the contribution of the thermal integral is bounded with its maximum at µ2 = m2. This
maximum value defines a critical density for a given temperature T . For densities larger than this critical density,
the condensate gets populated. The population is “macroscopic”, i.e., proportional to the volume. The value of the
condensate is given by

ζ2 =
1

m

(

Q−
∑

e=±

e

∫

d3k

(2π)3
1

e(ǫk−em)/T − 1

)

. (101)

The critical temperature Tc for a given charge density Q is then given by the implicit equation

Q =
∑

e=±

e

∫

d3k

(2π)3
1

e(ǫk−em)/Tc − 1
. (102)

In the nonrelativistic limit we have ǫk = k2/(2m) and condensation occurs for µ = 0. In this case, Tc can be computed
as

Q =

∫

d3k

(2π)3
1

ek2/(2mTc) − 1

=
1

2π2

∫ ∞

0

dk k2 1

ek2/(2mTc) − 1

=
(2mTc)

3/2

2π2

∫ ∞

0

dx
x2

ex2 − 1

=
(2mTc)

3/2

2π2

√
π

4
ζ(3/2) , (103)

which implies

Tc =
2π

m

(

Q

ζ(3/2)

)2/3

. (104)
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In the ultrarelativistic limit it is instructive to compute particle and antiparticle contributions separately. With µ = m
and ǫk ±m ≃ k ±m we have

Q± ≃ T 3
c

2π2

∫ ∞

0

dx
x2

ex∓m/Tc − 1
. (105)

Up to first order in m/Tc we have

1

ex∓m/Tc − 1
=

e±m/Tc

ex − e±m/Tc
≃ 1

ex − 1

(

1 ± m

Tc

)

± m/Tc

(ex − 1)2
. (106)

Consequently,

Q± ≃ T 3
c

2π2

∫ ∞

0

dx
x2

ex − 1
± T 2

cm

2π2

[∫ ∞

0

dx
x2

ex − 1
+

∫ ∞

0

dx
x2

(ex − 1)2

]

=
T 3

c

2π2

[

2ζ(3) ± mπ2

3Tc

]

. (107)

We see that the antiparticles have an interesting effect: did we neglect Q−, the critical temperature would be Tc ∝
Q

1/3
+ . In the sum of both contributions, however, the leading term cancels and we get the very different result

Tc =

√

3Q

m
. (108)

Bose-Einstein condensation is a phenomenon occurring in a huge variety of systems. It was first observed with bosonic
atoms in 1995, awarded with the Nobel prize 2001. It often has spectacular phenomenological consequences, such
as in superfluid He-4. It can also occur for excitons in semiconductors, and for mesons such as pions and kaons in
neutron stars. One can even think of superconductivity in fermionic systems as a Bose-Einstein condensate, since
Cooper pairs of fermions can be viewed as bosons. Very recent experiments have shown that this picture indeed is
valid, i.e., there is a crossover from a superfluid (at weak coupling) to a Bose-Einstein condensate (at strong coupling),
not a phase transition.

VI. NON-INTERACTING FERMIONS

We shall now turn to fermions and compute their partition function. We shall see that there are two important
differences to the bosonic case. Firstly, the fields over which we integrate in the functional integral are anticommuting,
which yields a different result for the functional integration. Secondly, we shall have antiperiodicity instead of
periodicity in the fields, which yields different Matsubara frequencies. Both differences are related to the Pauli
principle.

A. Grassmann Algebra and antiperiodicity in β for fermion fields

We start by defining the so-called Grassmann Algebra: on an r-dimensional vector space with basis vectors η1, . . . , ηr

we define an anticommuting product

ηiηj = −ηjηi , (109)

to obtain the Grassmann Algebra A. The algebra has 2r basis elements 1, ηi, ηiηj , . . . , η1η2 . . . ηr. Note that Eq. (109)
implies η2

i = 0. One needs a sign convention to define the derivatives on this space. For example, for j 6= k,

∂

∂ηj
ηjηk = ηk ,

∂

∂ηk
ηjηk = −ηj . (110)

[End of 4th lecture, Oct 27th, 2008]
This is a convenient convention since one can think of the derivative operator as anticommuting with the variable

itself. Second derivatives of any product of η’s vanish (they vanish if there is at most one factor of the variable with
respect to which the derivative is taken; if there are two factors the product itself vanishes). This already shows
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that integration on the Grassmann space is a bit different than one is used to: since the differential operator squared
vanishes, the integration cannot be the inverse operation to differentiation. We require the integral to be linear and
translationally invariant. In a one-dimensional space this means

∫

dη f(η) =

∫

dη f(η + ζ) ,

∫

dη (aη + b) = a

∫

dη η + b

∫

dη , (111)

with a, b complex numbers and ζ ∈ A. Here, the integration range is always the whole space, i.e., we can only talk
about “definite” integrals; “indefinite” integrals, as one is used to from c-numbers do not exist (since this would
be an operation inverse to differentiation). If we define functions via their Taylor expansion, f must have the form
f(η) = aη + b. Then, from (111) we conclude

∫

dη = 0 ,

∫

dη η = 1 , (112)

where the second is a normalization (not a consequence from (111)). Equipped with these properties we can turn to
fermions.

First we consider a simple system with two states |0〉 and |1〉, and creation and annihilation operators a and a†

which obey the anticommutation relations

{a, a†} = 1 , a2 = (a†)2 = 0 . (113)

Moreover we consider the Grassmann Algebra generated by the two variables η and η∗ (these shall correspond to the
fermion fields later), and the states

|η〉 ≡ e−ηa† |0〉 = (1 − ηa†)|0〉 = |0〉 − η|1〉 , (114a)

〈η| ≡ 〈0|e−aη∗

= 〈0|(1 − aη∗) = 〈0| − 〈1|η∗ . (114b)

We assume that a and η anticommute such that a|η〉 = η|0〉 and thus a|η〉 = η|η〉. We shall need this relation later.
We also need

〈η|0〉 = 〈0|η〉 = 1 , 〈1|η〉 = 〈η|1〉∗ = −η , (115)

which is obvious from Eqs. (114), and

〈η1|η2〉 = eη∗
1η2 , (116)

which follows from inserting 1 = |0〉〈0|+ |1〉〈1| and using Eqs. (115). Also, with Eqs. (114) and the rules for integration
(112) (generalized to two dimensions) we find

∫

dη∗dη e−η∗η|η〉〈η| =

∫

dη∗dη (1 − η∗η) (|0〉〈0| − η|1〉〈0| − |0〉〈1|η∗ + |1〉〈1|ηη∗)

= |0〉〈0| + |1〉〈1| = 1 . (117)

And, finally, upon inserting unity twice and using Eqs. (115)
∫

dη∗dη e−η∗η〈−η|A|η〉 =

∫

dη∗dη (1 − η∗η) (〈0|A|0〉 + η∗〈1|A|0〉 − η〈0|A|1〉 − η∗η〈1|A|1〉)

= 〈0|A|0〉 + 〈1|A|1〉 = TrA . (118)

From this formula we compute the partition function for the Hamiltonian Ĥ = ωa†a,

Z = Tre−βĤ =

∫

dη∗dη e−η∗η〈−η|e−βĤ |η〉 . (119)

The important difference to the bosonic case can already be seen here, namely the −η as the final state of the transition
amplitude. We can now proceed analogously to the bosonic case by dividing the “time” interval into N pieces of
width ∆t and inserting unity from Eq. (117) N − 1 times. We obtain

Z =

∫

η(β)=−η(0)

Dη∗Dη exp

(

−
∫ β

0

dτ [η∗∂τη +H(η∗, η)]

)

. (120)

Before we generalize this to the case of Dirac fields let us discuss the fermionic Lagrangian.
[End of 5th lecture, Nov 3rd, 2008]
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B. Fermionic Lagrangian and conserved charge

We start with the non-interacting Lagrangian

L0 = ψ̄ (iγµ∂µ −m)ψ , (121)

where ψ̄ = ψ†γ0, and where the Dirac matrices are given in the Dirac representation by

γ0 =

(

1 0
0 −1

)

, γi =

(

0 σi

−σi 0

)

, (122)

with the Pauli matrices σi. The general properties of the Dirac matrices are

{γµ, γν} = 2gµν , (γ0)2 = 1 , (γi)2 = −1 , (γ0)† = γ0 , (γi)† = −γi , (123)

where gµν is the Minkowski metric.
As for the bosons we are interested in the theory with a chemical potential. To this end, we determine the

conserved current with the same method as above. The Lagrangian is invariant under the transformation ψ → e−iαψ.
Considering a local transformation α(x), we have

L0 → L0 + ψ̄γµ(∂µα)ψ . (124)

From the equation of motion for α we then conclude that the current

jµ =
∂L

∂(∂µα)
= ψ̄γµψ (125)

is conserved, i.e.,

∂µj
µ = 0 , (126)

and the conserved charge (density) is given by

Q = ψ†ψ . (127)

The conjugate momentum is

π =
∂L

∂(∂0ψ)
= iψ† . (128)

We see that we have to treat ψ and ψ† as independent variables, in accordance to what we have discussed before in
terms of η and η∗. Consequently, the Hamiltonian becomes

H = π∂0ψ − L = ψ̄(iγ · ∇ +m)ψ . (129)

Here and in the following we mean by the scalar product γ · ∇ the product where the Dirac matrices appear with a
lower index γi, i.e., the negative of the γi given in Eq. (122).

C. Partition function for fermions

Now we recall that for the partition function we need iπ∂τψ − H + µN (see for instance Eq. (41)). With the
Hamiltonian (129) and the generalization of the fermionic partition function (120) to fields ψ, ψ† we obtain

Z =

∫

antiperiodic

Dψ†Dψ exp

[
∫

X

ψ̄
(

−γ0∂τ − iγ · ∇ + γ0µ−m
)

ψ

]

. (130)

Analogous to the bosonic case, we introduce the Fourier transform (note different dimensionality of fields compared
to bosons; here the field has mass dimension 3/2)

ψ(X) =
1√
V

∑

K

e−iK·Xψ(K) , ψ̄(X) =
1√
V

∑

K

eiK·X ψ̄(K) ,

∫

X

eiK·X =
V

T
δK,0 , (131)
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again with k0 = −iωn such that K · X = −(ωnτ + k · x). Now antiperiodicity requires ψ(0,x) = −ψ(β,x), which
implies eiωnβ = −1 and thus the fermionic Matsubara frequencies are

ωn = (2n+ 1)πT . (132)

With the Fourier decomposition we find

∫

X

ψ̄
(

−γ0∂τ − iγ · ∇ + γ0µ−m
)

ψ = −
∑

K

ψ†(K)
G−1

0 (K)

T
ψ(K) , (133)

with the free inverse fermion propagator in momentum space

G−1
0 (K) = −γµKµ − γ0µ+m. (134)

Before we continue let us introduce a useful form of the inverse propagator in terms of energy projectors. This form
will not be needed here but is very helpful for more difficult calculations. In particular it allows inversion in a simple
way. We can write

G−1
0 (K) = −

∑

e=±

(k0 + µ− eǫk)γ0Λe
k , (135)

where the projectors onto positive and negative energy states are given by

Λe
k ≡ 1

2

(

1 + eγ0 γ · k +m

ǫk

)

. (136)

These (hermitian) projectors are complete and orthogonal,

Λ+
k + Λ−

k = 1 , Λe
kΛe′

k = δe,e′Λe
k . (137)

The first property is trivial to see, the second follows with the anticommutation property {γ0, γi} = 0 which follows
from the general anticommutation property in Eq. (123) and with (γ · k)2 = −1.

From the form of the inverse propagator (135) we can immediately read off the propagator itself,

G0(K) = −
∑

e=±

Λe
kγ

0

k0 + µ− eǫk
. (138)

With the properties (137) one easily checks that G−1
0 G0 = 1. One can also rewrite (138) as

G0(K) =
−γµKµ − γ0µ−m

(k0 + µ)2 − ǫ2k
. (139)

Now let us come back to the partition function. For the functional integration we use

∫ N
∏

k

dη†kdηk exp



−
N
∑

i,j

η†iDijηj



 = detD . (140)

Exercise 3: Prove this relation by using the above properties of the Grassmann variables.

Note the difference of this Grassmann integration for fermions with the corresponding formula for bosons (57). We
obtain for the partition function

Z =

∫

antiperiodic

Dψ†Dψ exp

[

−
∑

K

ψ†(K)
G−1

0 (K)

T
ψ(K)

]

= det
G−1

0 (K)

T

= det
1

T

(

−(k0 + µ) +m −σ · k
σ · k (k0 + µ) +m

)

, (141)
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where the determinant is taken over Dirac space and momentum space. We can use the general formula

det

(

A B
C D

)

= det(AD −BD−1CD) , (142)

for matrices A, B, C, D with D invertible, to get

detG−1
0 (K) =

∏

K

(

k2 +m2 − (k0 + µ)2

T 2

)2

. (143)

Here we have used (σ · k)2 = k2. Consequently,

lnZ =
∑

K

ln

(

ǫ2k − (k0 + µ)2

T 2

)2

, ǫk ≡
√

k2 +m2 . (144)

With k0 = −iωn we can write this as

lnZ =
∑

K

ln

(

ǫ2k + (ωn + iµ)2

T 2

)2

=
∑

K

(

ln
ǫ2k + (ωn + iµ)2

T 2
+ ln

ǫ2k + (−ωn + iµ)2

T 2

)

=
∑

K

(

ln
ω2

n + (ǫk − µ)2

T 2
+ ln

ω2
n + (ǫk + µ)2

T 2

)

, (145)

where, in the second step, we have replaced ωn by −ωn which does not change the result since we sum over all n ∈ Z.
Then, the third step can be easily checked by multiplying out all terms.

D. Summation over fermionic Matsubara frequencies

We have written the log of the fermionic partition function in a form which is identical to the bosonic one, compare
Eq. (145) with Eq. (92). The only difference is the form of the Matsubara frequencies. We can thus compute the sum
over fermionic Matsubara frequencies analogous to the sum over bosonic ones, explained in Sec. IVA. As above, we
write

∑

n

ln
ω2

n + ǫ2k
T 2

=

∫ (ǫk/T )2

1

dx2
∑

n

1

(2n+ 1)2π2 + x2
+
∑

n

ln[1 + (2n+ 1)2π2] . (146)

And as above, we write the sum as a contour integral, this time with the tanh instead of the coth,

1

T

∑

n

1

(2n+ 1)2π2 + x2
= T

∑

n

1

ω2
n + ǫ2k

= − 1

2πi

∮

C

dω
1

ω2 − ǫ2k

1

2
tanh

ω

2T
. (147)

(We have denoted ǫk ≡ xT .) The contour C encloses all poles of the tanh (and none of 1
ω2−ǫ2

k

) The poles of the tanh

are given by the zeros of eω/(2T ) +e−ω/(2T ), i.e., ω/(2T ) must be an odd integer multiple of iπ/2. Therefore, the poles
are located at i times the fermionic Matsubara frequencies, ω = iωn. Then, with the residue theorem and with

(

eω/(2T ) − e−ω/(2T )
)∣

∣

∣

ω=iωn

= 2i(−1)n ,
d

dω

(

eω/(2T ) + e−ω/(2T )
)

∣

∣

∣

∣

ω=iωn

=
i(−1)n

T
, (148)

one sees Eq. (147). We can then proceed as for bosons, i.e., we close the contour in the positive half-plane to obtain
with the residue theorem

T
∑

n

1

ω2
n + ǫ2k

= − 1

2πi

∫ i∞+η

−i∞+η

dω
1

ω2 − ǫ2k

1

2
tanh

ω

2T

=
1

2ǫk
tanh

ǫk
2T

=
1

2ǫk
[1 − 2fF (ǫk)] , (149)
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where

fF (ǫ) ≡ 1

eǫ/T − 1
. (150)

is the Fermi distribution function. Inserting this result into the original expression (146) yields

∑

n

ln
ω2

n + ǫ2k
T 2

= T

∫ (ǫk/T )2

1

dx2 1

2ǫk
[1 − 2f(ǫk)] + const

=

∫ (ǫk/T )2

1

dx2 1

x

(

1

2
− 1

ex + 1

)

+ const

=
ǫk
T

+ 2 ln
(

1 + e−ǫk/T
)

+ const . (151)

Exercise 4: Prove via contour integration the following result for the summation over fermionic Matsubara fre-
quencies,

T
∑

k0

(k0 + ξ1)(k0 + q0 + ξ2)

(k2
0 − ǫ21)[(k0 + q0)2 − ǫ22]

= − 1

4ǫ1ǫ2

∑

e1,e2=±

(ǫ1 − e1ξ1)(ǫ2 − e2ξ2)

q0 − e1ǫ1 + e2ǫ2

fF (−e1ǫ1)fF (e2ǫ2)

fB(−e1ǫ1 + e2ǫ2)
, (152)

where k0 = −iωn with fermionic Matsubara frequencies ωn, and q0 = −iωm with bosonic (!) Matsubara frequencies
ωm, and where ξ1, ξ2, ǫ1, ǫ2 > 0 are real numbers.

E. Thermodynamic potential for fermions

The result for the Matsubara sum (151) can now be inserted into the partition function (145) to obtain

lnZ = 2V

∫

d3k

(2π)3

[ǫk
T

+ ln
(

1 + e−(ǫk−µ)/T
)

+ ln
(

1 + e−(ǫk+µ)/T
)]

. (153)

Consequently, the thermodynamic potential Ω = −T lnZ becomes

Ω

V
= −2

∫

d3k

(2π)3

[

ǫk + T ln
(

1 + e−(ǫk−µ)/T
)

+ T ln
(

1 + e−(ǫk+µ)/T
)]

. (154)

Note the overall factor 2 which accounts for the two spin states of the spin-1/2 fermion. Together with the parti-
cle/antiparticle degree of freedom (from µ = ±1) we thus see all four degrees of freedom of the Dirac spinor.

[End of 6th lecture, Nov 10th, 2008]

VII. GAUGE FIELDS

A. Lagrangians for QCD and QED

In this section we shall compute the partition function for gauge fields. Many applications of thermal field theory
in modern research can be found in Quantum Chromodynamics (QCD), for instance heavy-ion collisions and neutron
star (quark star) physics. We shall, for the calculation of the partition function, focus on the simpler case of Quantum
Electrodynamics (QED). But first we write down the QCD Lagrangian from which we obtain the QED Lagrangian
as a limit. We have

LQCD = −1

2
GµνG

µν + ψ̄(iγµDµ + γ0µ−m)ψ . (155)

Let us explain the meaning of the various quantities and their structure. The field strengths are

Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] , (156)
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where g is the QCD coupling constant, and where Aµ are matrices in the Lie Algebra of the gauge group SU(Nc)
where Nc = 3 is the number of colors. Here, SU(Nc) is the group of unitary Nc ×Nc matrices with determinant 1.
The dimension of SU(Nc) is N2

c − 1, thus in this case there are eight generators Ta which fulfil

[Ta, Tb] = ifabcTc , T †
a = Ta , Tr[TaTb] =

δab

2
. (157)

The generators (more precisely, twice the generators λa = 2Ta) are called Gell-Mann matrices. The gauge fields,
which are called gluons, and field strengths can thus be written as

Aµ = Aa
µTa , Gµν = Ga

µνTa , Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (158)

The Dirac spinors ψ describe quarks and are spinors in a 4NfNc-dimensional space with the number of flavors Nf ;
the covariant derivative is

Dµ = ∂µ − igAµ . (159)

With fundamental color indices α, β ≤ 3, the adjoint color index a ≤ 8, and flavor indices i, j ≤ Nf we can thus write
the Lagrangian as

LQCD = −1

4
Ga

µνG
µν
a + ψ̄α

i δij [iγ
µ(δαβ∂µ − igAa

µT
αβ
a ) + δαβ(γ0µi −mi)]ψ

β
j . (160)

Here m and µ are matrices in flavor space, with different masses and chemical potentials for different flavors.
The Lagrangian is invariant under gauge transformations U = eigθa(X)T a ∈ SU(Nc). The fermion fields and the

gauge fields transform as

ψ → Uψ , Aµ → UAµU
−1 +

i

g
U∂µU

−1 , (161)

where U = U(x, t) may depend on space-time, i.e., the symmetry is local. We can easily check that the Lagrangian
is invariant under gauge transformations: one uses 0 = ∂µ(UU−1) = (∂µU)U−1 + U(∂µU

−1) to find

Gµν → UGµνU
−1 . (162)

Then, since GµνG
µν is trivial in color space, we see that this term is invariant under gauge transformations. For the

quark part we find

Dµψ → UDµψ , (163)

from which we conclude that ψ̄Dµψ is invariant and thus we see that LQCD is invariant.
For simplicity, we shall consider QED in the following calculation. In this case the gauge group is U(1) which is an

abelian symmetry. For many physical applications and many calculations this makes the theory tremendously simpler
than QCD. For the latter, controled rigorous calculations from first principles are only valid for very few systems
such as systems at very large densities or temperatures. This is due to asymptotic freedom which makes the theory
weakly coupled for large momentum transfers. In many other cases, however, the theory is strongly coupled and the
theoretical treatment becomes very complicated.

In QED there is no commutator term in the field strengths,

Fµν = ∂µAν − ∂νAµ , (164)

and a gauge transformation is simply given by

U(X) = eieα(X) , Aµ → Aµ +
i

e
U∂µU

−1 = Aµ − ∂µα . (165)

Since U(1) is a one-dimensional Lie group, there is only one gauge boson, the photon (compared to eight gluons in
QCD). Due to the missing commutator term, the photon has no self-coupling (whereas gluons interact with each
other). The fermions are leptons instead of quarks, and the coupling is denoted by e instead of g. The Lagrangian,
invariant under U(1), is

LQED = −1

4
FµνF

µν + ψ̄(iγµDµ + γ0µ−m)ψ , (166)

with the covariant derivative

Dµ = ∂µ − ieAµ . (167)
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B. Partition function in QED

We now focus on the gauge part of the QED Lagrangian (166), i.e., we are interested in

L = −1

4
FµνF

µν =
1

2
F0iF0i −

1

4
FijFij . (168)

The electric and magnetic fields are given by

Ei = −F0i = Fi0 , B = ∇× A ⇒ Bi =
1

2
ǫijkFjk . (169)

We thus have

B2 =
1

2
FjkFjk , (170)

and the Lagrangian becomes

L =
1

2
E2 − 1

2
B2 . (171)

In the following we shall work in the so-called axial gauge

A3 = 0 . (172)

This does not completely fix the gauge and we will see how the residual gauge freedom appears. The conjugate
momenta are

πµ =
∂L

∂(∂0Aµ)
= (0, F0i) = F0µ . (173)

We see that there is no momentum conjugate to A0. Consequently, A0 is not a dynamical field. Formally, there is a
conjugate momentum

π3 = −E3 . (174)

However, A3 = 0 in the chosen gauge, i.e., π3 is not an independent variable. It can be determined from Gauss’ law,
which, in the absence of charges, is

∇ · E = 0 . (175)

Consequently, we have ∂3E3 = ∂1π1 + ∂2π2 and thus

E3 =

∫ x3

x30

dx′3(∂1π1 + ∂2π2) + P (x1, x2, t) , (176)

and

A0 =

∫ x3

x30

dx′3E3 +Q(x1, x2, t) . (177)

The integration constants P and Q correspond to the residual gauge freedom. Next we determine the Hamiltonian in
terms of the independent variables π1, π2, A1, A2,

H = π1∂0A1 + π2∂0A2 − L (178)

We use ∂0Ai = πi + ∂iA0 (from Eq. (173)) and Eq. (170) to obtain

H =
1

2
(π2

1 + π2
2) − 1

2
E2

3 +
1

2
B2 + π1∂1A0 + π2∂2A0

=
1

2
(π2

1 + π2
2) +

1

2
E2

3 +
1

2
B2 , (179)
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where we used partial integration and dropped the surface terms (i.e., this identity only holds under the integral d3x).
The Hamiltonian now has the familiar form H = E2/2 + B2/2. The partition function for the bosonic fields A1, A2

and their conjugate momenta is

Z =

∫

Dπ1Dπ2

∫

periodic

DA1DA2 exp

∫

X

(iπ1∂τA1 + iπ2∂τA2 −H) . (180)

We rewrite the partition function in the following way. First we insert

1 =

∫

Dπ3δ(π3 + E3(π1, π2)) . (181)

This can be rewritten upon using

δ(∇ · π) =

(

det
∂(∇ · π)

∂π3

)−1

δ(π3 + E3(π1, π2)) . (182)

Here one should remember the more familiar form of this identity

δ(f(x)) =
1

|f ′(x0)|
δ(x− x0) , (183)

where x0 is the zero of the function f . Moreover we use

det
∂(∇ · π)

∂π3
= det(∂3) , (184)

and we write the δ-function in its integral representation,

δ(∇ · π) =

∫

DA0 exp

(

i

∫

X

A0∇ · π
)

. (185)

Here, in the exponential, we have replaced A0 → iA0 since this yields the replacement i
∫

d4xA0∇ ·π → i
∫

X A0∇ ·π
(note that we also have to replace dx0 by −idτ) 1. Inserting all this into Eq. (181) yields

1 =

∫

Dπ3

∫

DA0 det(∂3) exp

(

i

∫

X

A0∇ · π
)

, (186)

and the partition function becomes (after a partial integration A0∇ · π → −(∇A0) · π)

Z =

∫

Dπ1Dπ2Dπ3

∫

periodic

DA0DA1DA2 det(∂3) exp

∫

X

[

iπ1∂τA1 + iπ2∂τA2 − i(∇A0) · π − 1

2
π2 − 1

2
B2

]

. (187)

[End of 7th lecture, Nov 17th, 2008]
The momentum integral now becomes trivial as we have seen in the case of scalar bosons. To this end, we rewrite

the exponential with the help of

iπ1∂τA1 + iπ2∂τA2 − i(∇A0) · π − 1

2
π2 = −1

2
(π − i∂τA + i∇A0)

2 − 1

2
(∂τA −∇A0)

2 , (188)

where A = (A1, A2, 0) in the axial gauge we use. Now the integration over the shifted momentum π − i∂τA + i∇A0

can be performed and yields an irrelevant constant factor which we omit in the following. Consequently,

Z =

∫

periodic

DA0DA1DA2 det(∂3) exp

∫

X

L . (189)

1 Another way of saying this is that in the field strength Fi0 = ∂iA0 − ∂0Ai for finite temperature we have to replace ∂0 by i∂τ . To get

the same factor i from the first term we need to replace A0 by iA0.
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We have recovered the Lagrangian in the exponential since

−(∂τA −∇A0)
2 = E2 . (190)

(To see this, one simply “undoes” the finite-temperature replacements ∂0 → i∂τ , A0 → iA0.) Hence we get the
Lagrangian in the form (171).

Before we proceed with Eq. (189) we notice that the general form of the partition function, without specifying a
gauge, is

Z =

∫

periodic

DAµ δ(F )det
∂F

∂α
exp

∫

X

L , (191)

where DAµ ≡ DA0DA1DA2DA3, where F is a function of the gauge fields and the condition F = 0 fixes the gauge.
In our case, F = A′

3 = A3−∂3α. Then, with ∂F/∂α = ∂3 we recover Eq. (189). The more general form shows that we
integrate over the space of gauge fields “modulo gauge transformations”. In other words, for each point in the space
of gauge fields, we choose a fixed gauge given by the function F and fixed by the factor δ(F ). Then det(∂F/∂α) is
the determinant of the Jacobian of the transformation A′

µ = F (Aµ) = Aµ − ∂µα, i.e., it accounts for the change of
integration variables according to the gauge transformation. The partition function in the form (191) is manifestly
gauge invariant.

Let us now come back to our expression (189) in the axial gauge and compute the functional integral. With Eq.
(170) we find

E2 −B2 = −(∂τA −∇A0)
2 −B2

= −(∂τA)2 − (∇A0)
2 + 2∂τA · ∇A0

− (∂1A2)
2 − (∂2A1)

2 − (∂3A1)
2 − (∂3A2)

2 + 2(∂1A2)(∂2A1) . (192)

As above, we introduce the Fourier transform of the gauge fields,

Aµ(X) =
1√
TV

∑

K

e−iK·XAµ(K) . (193)

This yields
∫

X

(∂τA)2 = − 1

T 2

∑

K

k2
0A(−K) ·A(K) , (194a)

∫

X

(∇A0)
2 =

1

T 2

∑

K

k2A0(−K)A0(K) , (194b)

∫

X

∂τA · ∇A0 =
1

T 2

∑

K

ik0k ·A(−K)A0(K) =
1

T 2

∑

K

ik0k ·A(K)A0(−K) , (194c)

∫

X

(∂1A2)
2 =

1

T 2

∑

K

k2
1A2(−K)A2(K) , (194d)

∫

X

(∂1A2)(∂2A1) =
1

T 2

∑

K

k1k2A1(−K)A2(K) =
1

T 2

∑

K

k1k2A1(K)A2(−K) . (194e)

The other terms (∂2A1)
2, (∂3A1)

2, (∂3A2)
2 are obtained analogously to Eq. (194d). We thus find

∫

X

L = − 1

2T 2

∑

K

(A0(−K), A1(−K), A2(−K))







k2 −ik0k1 −ik0k2

−ik0k1 −k2
0 + k2

2 + k2
3 −k1k2

−ik0k2 −k1k2 −k2
0 + k2

1 + k2
3













A0(K)

A1(K)

A2(K)






. (195)

The 3×3 matrix is the inverse gauge field propagator in momentum space which we denote by D−1
0 (K). Here we have

symmetrized the appearing matrix in the exponential. This is important since A(K) and A(−K) are not independent

variables. So suppose we had used some asymmetric “propagator” D̃0. Then we have to write
∑

K

Aa(−K)[D̃−1
0 (K)]abAb(K) =

∑

K>0

Aa(−K)[D̃−1
0 (K)]abAb(K) +

∑

K<0

Aa(−K)[D̃−1
0 (K)]abAb(K)

=
∑

K>0

Aa(−K)
{

D̃−1
0 (K)]ab + D̃−1

0 (K)]ba

}

Ab(K) , (196)
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and arrive at the symmetrized propagator.
We can now use Eq. (57) for the integration to obtain

Z = det(∂3)

(

det
D−1

0

T 2

)−1/2

= det(∂3)

(

∏

K

K4k2
3

T 6

)−1/2

= det(∂3)

(

∏

K

K2

T 2

)−2/2(
∏

K

k2
3

T 2

)−1/2

, (197)

and thus

lnZ = ln det(∂3) − 2
1

2

∑

K

ln
k2
0 − k2

T 2
− 1

2

∑

K

ln
k2
3

T 2
. (198)

It remains to evaluate the so-called Fadeev-Popov determinant det(∂3). With Eq. (140) we can write this determinant
as a functional integral over Grassmann variables C̄, C,

det(∂3) =

∫

DC̄DC exp

(

−
∫

X

C̄∂3C

)

. (199)

Here C is a complex, scalar field, i.e., it seems to describe a spin-0 boson. On the other hand, the integration goes
over Grassmann variables, indicating fermionic properties. This unphysical field is called a Fadeev-Popov ghost field.
It plays a more important role in non-abelian gauge theories but we see that it is needed also here. With the Fourier
transform

C(X) =
1√
V

∑

K

e−iK·XC(K) , (200)

(bosonic Matsubara frequencies!) we have

−
∫

X

C̄∂3C = −
∑

K

C̄(K)
ik3

T
C(K) . (201)

Consequently, the ghost contribution is

det(∂3) = det
ik3

T
=
∏

K

ik3

T
∝
∏

K

k3

T
. (202)

We see that this term exactly cancels the third term on the right-hand side of Eq. (198) and we are left with

lnZ = −2
1

2

∑

K

ln
k2
0 − k2

T 2
. (203)

This result shows the two degrees of freedom of the gauge field. The third degree of freedom, unphysical due to gauge
symmetry, is cancelled by the ghosts.

VIII. INTERACTIONS

A. Perturbative expansion in λφ4 theory

We add an interaction term with coupling constant λ to the Lagrangian for a real scalar field (42) to obtain the
Lagrangian

L = L0 + LI =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λφ4 . (204)
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We use the index 0 for the contribution we have already computed above. The partition function then is

Z =

∫

Dφ eS , (205)

with the action

S = S0 + SI =

∫

X

L0 +

∫

X

LI , SI = −λ
∫

X

φ4 . (206)

Without interaction, SI = 0, we could compute lnZ exactly. In the presence of interactions this is not possible.
Therefore, we need to apply an approximation. The simplest approximation is to truncate the expansion in the
coupling λ under the assumption that the coupling is small. Denoting the noninteracting part by

Z0 ≡
∫

Dφ eS0 (207)

we can write the expansion as

lnZ = ln

∫

Dφ eS0+SI

= ln

∫

Dφ eS0

∞
∑

n=0

Sn
I

n!
. (208)

Now if we add and subtract lnZ0 we can write this as

lnZ = lnZ0 + ln

∫

Dφ eS0
∑∞

n=0
Sn

I

n!
∫

Dφ eS0

= lnZ0 + lnZI , (209)

with

lnZI ≡ ln

(

1 +
∑

n=1

1

n!

∫

Dφ eS0Sn
I

∫

Dφ eS0

)

= ln

(

1 +
∑

n=1

〈Sn
I 〉0
n!

)

. (210)

Here 〈−〉0 denotes the ensemble average over the noninteracting ensemble. From the definition of SI we know that
each factor of SI comes with one power of λ. If we expand lnZI to, say, third order in the coupling, we thus obtain,
using ln(1 + x) =

∑∞
n=1(−1)n+1xn/n,

lnZI ≃ ln

(

1 + 〈SI〉0 +
〈S2

I 〉0
2

+
〈S3

I 〉0
6

)

≃ 〈SI〉0 +
1

2

(

〈S2
I 〉0 − 〈SI〉20

)

+
1

6

(

〈S3
I 〉0 − 3〈SI〉0〈S2

I 〉0 + 2〈SI〉30
)

, (211)

where we have ordered the contributions according to the powers λ, λ2, λ3.
[End of 8th lecture, Nov 24th, 2008]
Let us compute the first correction ∝ λ explicitly. We have

〈SI〉0 = −λ
∫

Dφ eS0
∫

X
φ4(X)

∫

Dφ eS0
. (212)

From Sec. IV we know that

eS0 = exp

[

−1

2

∑

K

φ(−K)
D−1

0 (K)

T 2
φ(K)

]

=
∏

K

exp

[

−1

2
φ(−K)

D−1
0 (K)

T 2
φ(K)

]

, (213)

with the inverse propagator

D−1
0 (K) = ω2

n + k2 +m2 . (214)
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In momentum space, the φ4 term becomes
∫

X

φ4(X) =
1

T 2V 2

∑

K1,...,K4

∫

X

ei(K1+...+K4)·X φ(K1) . . . φ(K4)

=
1

T 3V

∑

K1,...,K4

δ(K1 + . . .+K4)φ(K1) . . . φ(K4) . (215)

Inserting Eqs. (213) and (215) into Eq. (212) yields

〈SI〉0 = − λ

T 3V

∑

K1,...,K4

δ(K1 + . . .+K4)
∏

K

∫

dφ(K) e−
1
2φ(−K)

D
−1
0 (K)

T2 φ(K)φ(K1) . . . φ(K4)

∏

K

∫

dφ(K) e−
1
2 φ(−K)

D
−1
0 (K)

T2 φ(K)

. (216)

The integral in the numerator is only nonvanishing if the four momenta K1, K2, K3, K4 cancel each other pairwise.
Otherwise, if there is a single power of φ(K), the integral over φ(K) is zero by symmetry. (Remember that φ(−K) =
φ∗(K) and thus φ(K)φ(−K) = |φ(K)|2.) Hence we have for instance K1 = −K2 ≡ Q and K3 = −K4 ≡ P , and the
delta-function is automatically fulfilled. There are 3 possibilities for the momenta to be pairwise identical and thus
we obtain

〈SI〉0 = − 3λ

T 3V

∑

Q,P

∏

K

∫

dφ(K) e−
1
2φ(−K)

D
−1
0

(K)

T2 φ(K)φ(−Q)φ(Q)φ(−P )φ(P )

∏

K

∫

dφ(K) e−
1
2φ(−K)

D
−1
0 (K)

T2 φ(K)

. (217)

Now we notice that all integrals over K 6= P,Q appear identically in numerator and denominator and thus cancel.
The φ(P ) and φ(Q) integrals factorize and we obtain

〈SI〉0 = − 3λ

T 3V









∑

Q

∫

dφ(Q) e−
1
2φ(−Q)

D
−1
0

(Q)

T2 φ(Q)φ(Q)φ(−Q)

∫

dφ(Q) e−
1
2φ(−Q)

D
−1
0 (Q)

T2 φ(Q)









2

. (218)

Now we use
∫∞

−∞
dxx2e−ax2/2

∫∞

−∞
dx e−ax2/2

=
1

a
, (219)

to obtain

lnZ
(1)
I = 〈SI〉0 = −3λ

T

V





∑

Q

D0(Q)





2

. (220)

We shall compute this expression in Sec. VIII C. Here we proceed by introducing Feynman diagrams: it is convenient
to translate the complicated algebraic perturbative expansion into a diagrammatic form. One starts be representing
each field by a line with a direction, the direction indicating whether the field is ingoing or outgoing (i.e., inverting
the direction corresponds to φ(K) → φ(−K)). Then the interaction term −λφ4 is represented in momentum space
by

K1

K2

K3

K4

(221)
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By convention, we have chosen the signs of the momenta such that all lines are ingoing. Since the momenta K1, K2,
K3, K4 have to cancel pairwise, we connect the lines pairwise and interpret each resulting line as a propagator. (From
the explicit integration above we know how the propagators come about.) There are three possibilities to connect the
four lines pairwise and thus the algebraic result is translated into a Feynman diagram as follows,

〈SI〉0 = −3λ
T

V





∑

Q

D0(Q)





2

= 3 (222)

In summary, the vertex gives a factor −λ, the factor 3 is a combinatorical factor, the closed line is a propagator
T/V

∑

Q D0(Q), and momentum conservation gives V/T δ(Kin −Kout) which here is automatically fulfilled and thus

simply gives a factor V/T . In general, the rules to find all contributions to the partition function in a given order λn

are

1. Draw all connected diagrams with combinatorical prefactors.

2. Each (closed) line gives a propagator T
V

∑

K D0(K).

3. Each vertex gives a factor −λ and a momentum-conserving Kronecker-delta V
T δ(Kin −Kout).

In the first-order contibution it is clear that there is only a connected diagram. We shall explain now, for the second-
order corrections to lnZ, why the disconnected diagrams cancel. The second-order terms of the partition function
are

lnZ
(2)
I =

1

2

(

〈S2
I 〉0 − 〈SI〉20

)

. (223)

From Eq. (222) we know the diagrammatic representation of 〈SI〉20. For 〈S2
I 〉0 we need to start from (−λφ4)2 which,

in analogy to Eq. (221) is represented as

K1

K2

K3

K4

K5

K6

K8

K7

(224)

Again we have to construct all possible diagrams by connecting the eight lines pairwise. One of the diagrams we obtain
is the product of two disconnected “double-bubbles” (each with a combinatorical factor 3) which exactly cancels the
term 〈SI〉20. We are left with

lnZ
(2)
I = 36 + 12 (225)

The fact that the disconnected diagrams cancel out is general, i.e., Eq. (210) simplifies to

lnZI =

∞
∑

n=1

〈Sn
I 〉0,connected

n!
. (226)

Finally, let us translate the second-order diagrams back into momentum sums:

= (−λ)2
(

T

V

)4 (
V

T

)2
∑

K1,...,K4

δ(K2 +K3)D0(K1) . . . D0(K4)

= λ2 T
2

V 2

[

∑

K

D0(K)

]2
∑

K2,K3

δ(K2 +K3)D0(K2)D0(K3) , (227a)

= (−λ)2
(

T

V

)4 (
V

T

)2
∑

K1,...,K4

δ(K1 + . . .+K4)D0(K1) . . . D0(K4) . (227b)
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B. Propagator, self-energy, and one-particle irreducible (1PI) diagrams

From above, see Eq. (219), we know that the free propagator can be written as an ensemble average over the
noninteracting ensemble,

D0(Q) =
1

T 2

∏

K

∫

dφ(K) e−
1
2φ(−K)

D
−1
0

(K)

T2 φ(K)φ(Q)φ(−Q)

∏

K

∫

dφ(K) e−
1
2φ(−K)

D
−1
0 (K)

T2 φ(K)

=
1

T 2
〈φ(Q)φ(−Q)〉0 , (228)

The full propagator, which includes interactions to all orders, can then also be written as an ensemble average over
the interacting ensemble,

D(Q) =
1

T 2
〈φ(Q)φ(−Q)〉 . (229)

We now show that this is the form of the propagator in momentum space in the case of a translationally invariant
system, given that the general propagator in position space is defined as

D(X1, X2) ≡ 〈φ(X1)φ(X2)〉 . (230)

If the system is translationally invariant, this propagator only depends on the difference X1 −X2. Without loss of
generality we can thus set X2 = 0 and denote X = X1. Then, the Fourier transform is

D(Q) =

∫

X

eiQ·X〈φ(X)φ(0)〉

=
1

TV

∑

K1,K2

∫

X

eiQ·Xe−iK1·X〈φ(K1)φ(K2)〉

=
1

T 2

∑

K2

〈φ(Q)φ(K2)〉

=
1

T 2
〈φ(Q)φ(−Q)〉 . (231)

In the last step we have used that the ensemble average is only nonzero for K2 = −Q. We have thus arrived at the
propagator (229).

Exercise 5: Compute the free propagator D0(X, 0) in position space and show that it behaves as D0(X, 0) ∝ 1/x2

for small x, x≪ 1/T, 1/m, and as D0(X, 0) ∝ Te−mx/x for large x, x≫ 1/T (and m≪ T ). Here, x ≡ |x|. (Hint: In
the Matsubara summation, use the function 1/(eω/T − 1) instead of 1/2 cothω/(2T ) in the analogue of Eq. (63); this
ensures that, when closing the contour, the contribution of the infinite semi-circle in the positive half-plane vanishes.)

For a systematic calculation of the perturbation series it is convenient to divide the full (inverse) propagator into
a free part and an interaction part, called self-energy Π. We write

D−1(K) = D−1
0 (K) + Π(K) . (232)

Let us discuss the self-energy up to second order in the coupling. We first observe that the propagator can be written
as a functional derivative of lnZ. Remember from Eq. (208) that

lnZ = ln

∫

Dφ eS0eSI . (233)
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Therefore,

δ

δD−1
0

lnZ =
1

∫

Dφ eS0+SI

δ

δD−1
0

∫

Dφ eS0eSI

=
1

∫

Dφ eS0+SI

δ

δD−1
0

∏

K

∫

dφ(K) e−
1
2φ(−K)

D
−1
0

T2 φ(K) eSI

= − 1

2T 2

∫

Dφ eS0eSIφ(−Q)φ(Q)
∫

Dφ eS0+SI

= −1

2
D(Q) , (234)

and thus

D(Q) = −2
δ lnZ

δD−1
0

= 2D2
0

δ lnZ

δD0
. (235)

Then, from Eq. (232) we have

D = (D−1
0 + Π)−1 = (1 +D0Π)−1D0 . (236)

Using Eq. (235) we have

(1 + ΠD0)
−1 = DD−1

0 = 2D0
δ lnZ

δD0
. (237)

We now expand the self-energy in powers of λ,

Π =
∞
∑

n=1

Πn , (238)

such that Πn is proportional to λn. Then, up to second order in λ, we have

(1 + ΠD0)
−1 = 1 −D0Π1 −D0Π2 +D0Π1D0Π1 + O(λ3) . (239)

This is the left-hand side of Eq. (237). For the right-hand side we use, see Eq. (60),

Z0 =
1

2

∑

K

ln(D−1
0 T 2) ⇒ δ lnZ0

δD0
=

1

2
D−1

0 , (240)

and thus

2D0
δ lnZ

δD0
= 2D0

(

δ lnZ0

δD0
+
δ lnZI

δD0

)

= 1 + 2D0
δ lnZI

δD0

= 1 + 2D0

[

δ〈SI〉0
δD0

+
1

2

δ(〈S2
I 〉0 − 〈SI〉20)
δD0

+ O(λ3)

]

. (241)

Thus, upon comparing Eqs. (239) and (241) we have

Π1 + Π2 − Π1D0Π1 + . . . = −2
δ lnZI

δD0
. (242)

The first- and second- order contributions are

Π1 = −2
δ〈SI〉0
δD0

, (243a)

Π2 − Π1D0Π1 = −δ(〈S
2
I 〉0 − 〈SI〉20)
δD0

. (243b)
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The first-order contribution becomes

Π1 = 6λ
T

V

δ

δD0

[

∑

K

D0(K)

]2

= 12λ
T

V

∑

K

D0(K) . (244)

We see that taking the functional derivative with respect to the propagator is equivalent to cutting a line in the
Feynman diagram,

Π1 = −2
δ〈SI〉0
δD0

= −2
δ

δD0
3

= −12 (245)

The additional factor of 2 appears since each of the two lines can be cut to obtain the same diagram. With this
“cutting rule”, we can easily determine the second-order contributions with the help of the diagrams. By cutting a
line in the respective diagrams we obtain

Π2 − Π1D0Π1 = −δ(〈S
2
I 〉0 − 〈SI〉20)
δD0

= − δ

δD0

[

72 + 24
]

= −144 − 144 − 96 (246)

From Eq. (245) we conclude

Π1D0Π1 = 144 (247)

such that we obtain

Π2 = −144 − 96 (248)

We see that the diagram which can be divided into two disconnected diagrams by cutting one line cancels. This is a
general fact and the self-energy is given by all diagrams that cannot be divided into two by cutting one line. These
diagrams are called “one-particle irreducible (1PI)”, and thus Eq. (242) simplifies to

Π = −2

(

δ lnZI

δD0

)

1PI

. (249)

[End of 9th lecture, Dec 1st, 2008]
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C. Evaluation of the first-order corrections

We can now compute the first-order contribution to the self-energy (244) and to the pressure from Eq. (220).
Making use of Eq. (68) we obtain

Π1 = 12λ
T

V

∑

K

1

ω2
n + ǫ2k

= Πvac
1 + ΠT

1 , (250)

with the temperature-independent vacuum part

Πvac
1 = Π1(T = 0) = 6λ

∫

d3k

(2π)3
1

ǫk
, (251)

and the temperature-dependent part

ΠT
1 = 12λ

∫

d3k

(2π)3
fB(ǫk)

ǫk
. (252)

While ΠT
1 is finite, the vacuum part is divergent. This divergence comes from large momenta, k → ∞, and is thus

called ultraviolet divergence. We can use the usual zero-temperature renormalization to remove this divergence since
the finite-temperature part is finite2. This is done by adding a counterterm which is chosen such that the renormalized
self-energy is obtained by subtracting the vacuum part,

Πren
1 = Π1 − Π1(T = 0) . (253)

From Eq. (232) we know that the inverse propagator to first order in λ is

D−1(K) = ω2
n + k2 +m2 + Π1 . (254)

This shows that the self-energy plays the role of a mass squared. The counterterm we thus add to the Lagrangian is
written as a mass term

L → L− 1

2
δm2φ2 . (255)

However, this term is treated as an interaction, i.e., δm2 has to be thought of as being of order λ. From Eq. (210)
we have concluded that the φ4 term produces a “double-bubble” diagram for the first-order correction. Analogously,
there is a “single-bubble” contribution (δm2 replacing a factor φ2, i.e., one closed loop) from δm2φ2, denoted as

δm2〈φ2〉0 = (256)

Its contribution to the self-energy is then obtained from cutting one line,

δm2 = (257)

This contribution is now chosen such that the condition (253) is fulfilled, i.e.,

δm2 = −Πvac
1 . (258)

After this renormalization we can evaluate the first-order self-energy. For the massless case m = 0 (or, equivalently,
for large temperatures T ≫ m) we can do so analytically,

Πren
1 = 12λ

∫

d3k

(2π)3
fB(ǫk)

ǫk
≃ λT 2 , (259)

2 In the next section we will encounter an infrared divergence, more intimately related to finite temperature effects.



33

where we used
∫ ∞

0

dx
x

ex − 1
=
π2

6
. (260)

We see that a massless boson acquires a thermal mass λT 2. The pressure to first order in the coupling is given by

P =
T

V
lnZ0 +

T

V
lnZ

(1)
I . (261)

With the noninteracting partition function from Eq. (73) we have

T

V
lnZ0 = −T

∫

d3k

(2π)3
ln
(

1 − e−ǫk/T
)

≃ π2T 4

90
, (262)

where we have dropped the T -independent contribution which is only an irrelevant shift in the pressure, where we
have approximated the expression for T ≫ m, and where we have used

∫ ∞

0

dxx2 ln(1 − e−x) = −π
4

45
. (263)

With lnZ
(1)
I from Eq. (220) plus the contribution from the mass counterterm we have

lnZ
(1)
I = 3 − 1

2

= −3λ
V

T





T

V

∑

Q

D0(Q)





2

− 1

2
δm2

∑

Q

D0(Q) . (264)

Using the form of the self-energy (244) and the mass counterterm (258) and dividing both terms into vacuum and
temperature-dependent parts according to Eqs. (251) and (252) we have

lnZ
(1)
I = −V

T

1

48λ

(

Πvac
1 + ΠT

1

)2
+
V

T

1

24λ
Πvac

1

(

Πvac
1 + ΠT

1

)

=
V

T

1

48λ

[

(Πvac
1 )

2 −
(

ΠT
1

)2
]

. (265)

Again, we drop the temperature-independent part to get

T

V
lnZ

(1)
I = −3λ

[∫

d3k

(2π)3
fB(ǫk)

ǫk

]2

≃ −λT
4

48
, (266)

again approximating for T ≫ m and using Eq. (259). Putting Eqs. (262) and (266) together yields the pressure

P = T 4

(

π2

90
− λ

48
+ . . .

)

. (267)

D. Infrared divergence and resummation of ring diagrams

We have seen above that the first-order self-energy Π1 gives rise to a thermal mass λT 2. In particular, if m = 0,
the scalar field acquires a finite mass only through a temperature effect. We shall in the following focus on the case
m = 0. For small energies and momenta, at most of the order of the thermal mass, ω2

n, k
2 . λT 2, the free inverse

propagator D−1
0 = ω2

n +k2 is (at most) of order λT 2, and, as we have seen, also the correction through the self energy
is of the order λT 2. This indicates that the naive perturbation series might not be the correct procedure. Indeed, we
shall see in the following that one needs to “resum” a certain class of infinitely many diagrams because of an infrared
divergence, i.e., a divergence coming from small momenta (and energies), as the above simple argument suggests.
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Before we discuss this resummation more systematically, let us show a very direct form of a resummation, namely to
use the full instead of the free propagator in the one-loop expression of the self-energy,

Π = 12λ
T

V

∑

K

D(K)

= 12λ
T

V

∑

K

1

D−1
0 (K) + Π

. (268)

This is a self-consistent equation for Π. Note that in our simple example of real φ4 theory Π does not depend on K. In
other more complicated theories where Π depends on four-momentum, Eq. (268) is a complicated integral equation.
But also here the general solution of (268) has to be done numerically. Writing

1

D−1
0 (K) + Π

= D0

∞
∑

n=1

(−ΠD0)
n , (269)

we see that the self energy now is a loop which itself has any arbitrary number of self-energy insertions, which in
turn have self-energy insertions and so on. Such a sum, which formally includes all powers of the coupling constant,
is usually termed “resummation”. If we replace Π in the denominator of Eq. (268) by the first-order approximation
Π1, the corresponding diagrams consist of a loop with n loops attached to it, sometimes called “daisy”. Using the full
Π, each of the n loops itself gets additional loops, hence here we sum over “superdaisy” diagrams. (But note that,
even if the full self-energy is used, Eq. (268) still has the form of a one-loop self-energy, i.e., even in the “superdaisy”
resummation we only sum over a subset of all possible diagrams.)

We evaluate Eq. (268) as follows,

Π = 12λ

∫

d3k

(2π)3
T
∑

n

1

ω2
n + k2 + Π

= 12λ

∫

d3k

(2π)3
fB(

√
k2 + Π)√
k2 + Π

, (270)

where we used the Matsubara sum (68) and where we dropped the zero-temperature contribution. With the new

integration variable x =
√

k2/Π + 1 we can write this as

1 =
6λ

π2

∫ ∞

1

dx
√

x2 − 1 fB(Π1/2x) . (271)

If one wants to keep all superdaisy diagrams, one has to proceed numerically now.

Exercise 6: Solve Eq. (268) numerically and plot Π1/2/T as a function of λ. Compare this curve with the result
(259) for Π1.

We can extract an analytical result by using the expansion

∫ ∞

1

dx
√

x2 − 1 fB(ux) =
2π2

u2

[

1

12
− u

4π
+ O(u2 lnu)

]

. (272)

Inserting this expansion into Eq. (271), solving the resulting equation for Π and expanding in powers of λ yields

Π = λT 2 − 3T 2λ3/2

π
+ . . . (273)

Interestingly, besides the first-order term, we have found a term proportional to λ3/2. We shall see now that this
power also appears in the thermodynamical potential, and we shall see that it is related to the infrared divergence of
certain diagrams.

Let us start from Eq. (249) and separate the first-order contribution which we already have computed,

lnZI = 〈SI〉0 +

∞
∑

N=2

〈SN
I 〉0,connected

N !
. (274)
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The second-order diagrams are given in Eqs. (227). We see that the first of these diagrams, Eq. (227a) can be written
as

=
Π2

1

122
V
∑

n

∫

d3k

(2π)3
1

(ω2
n + k2)2

. (275)

For n = 0 the integrand goes like 1/k2 which is infrared divergent. One can check that the second diagram, given
in Eq. (227b) does not have this property. The solution to this apparent problem is to resum all diagrams of this
“dangerous” kind as we did above for the self energy. More precisely, these are the “daisy” diagrams, where N loops
are attached to an interior loop (sometimes also called “ring” diagrams). We have

∞
∑

N=2

〈SN
I 〉0,connected,daisy

N !
=

∞
∑

N=2

1

N !
6N2N−1N !

N

(N loops)

=

∞
∑

N=2

1

N !
6N2N−1N !

N
V
∑

n

∫

d3k

(2π)3
(−Π1)

N

12N
D0(K)N

=
V

2

∑

n

∫

d3k

(2π)3

∞
∑

N=2

1

N
[−Π1D0(K)]N

= −V
2

∑

n

∫

d3k

(2π)3
{ln [1 + Π1D0(K)] − Π1D0(K)}

= −V
2

∑

n

∫

d3k

(2π)3

[

ln

(

1 +
λT 2

ω2
n + k2

)

− λT 2

ω2
n + k2

]

(276)

The origin of the combinatorical factors is: 6N for choosing one pair of lines from each of the N crosses; 2N−1 for the
number of ways to connect the chosen pairs of lines to obtain a ring diagram; N !/N for the number of ways to order
the N loops around the ring. Let us again look at the zero Matsubara mode, n = 0. All other Matsubara modes give
contributions of higher order in λ (remember that naively, i.e., ignoring any infrared divergence, one would expect
every single diagram of the sum to be of order λ2 or higher). With the noninteracting and first-order results (262)
and (266) we thus find the pressure

P ≃ π2T 4

90
− λT 4

48
− T

2

∫

d3k

(2π)3

[

ln

(

1 +
λT 2

k2

)

− λT 2

k2

]

. (277)

With
∫

dk k2

[

ln

(

1 +
a2

k2

)

− a2

k2

]

= −2a3

3
arctan

k

a
− a2k

3
+
k3

3
ln

(

1 +
a2

k2

)

(278)

we have
∫

d3k

(2π)3

[

ln

(

1 +
λT 2

k2

)

− λT 2

k2

]

= −λ
3/2T 3

6π
, (279)

and thus

P =
π2T 4

90

[

1 − 15

8

λ

π2
+

15

2

(

λ

π2

)3/2

+ . . .

]

. (280)

Consequently, we have found that the next term in the perturbation series of the pressure is not of order λ2, but of
order λ3/2, as we have seen above for the self-energy.

Exercise 7: Derive the lowest-order correction 〈S2
I 〉0 to lnZ for a Yukawa interaction LI = gψ̄ψφ, with a bosonic

scalar field φ and a fermionic field ψ. Give 〈S2
I 〉0 in terms of diagrams as well as in terms of momentum sums. (Note

that odd powers in the interaction term such as 〈SI〉0 vanish. Therefore 〈S2
I 〉0 is the lowest-order correction.)

[End of 10th lecture, Dec 15th, 2008]
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IX. BOSE-EINSTEIN CONDENSATION OF AN INTERACTING BOSE GAS

A. Spontaneous symmetry breaking and the Goldstone theorem

In Sec. V we have discussed Bose-Einstein condensation of a non-interacting field. Now, having discussed the basics
of an interacting theory, we revisit this effect. The inclusion of interactions is not only more realistic for possible
applications, but also will give us a better conceptual understanding of Bose-Einstein condensation. In particular,
we shall see that Bose-Einstein condensation is an example of spontaneous symmetry breaking and the Goldstone
theorem which are extremely important concepts in various fields of theoretical physics. Another consequence of
including interactions is that we can compute the condensate for fixed chemical potential, and not only for fixed
charge density, as we have done in Sec. V.

We use the same Lagrangian as in Sec. V, see for instance Eq. (87), i.e., we include a chemical potential, but now
also include an interaction term as in the previous section,

L = |(∂0 − iµ)ϕ|2 − |∇ϕ|2 −m2|ϕ|2 − λ|ϕ|4 . (281)

This Lagrangian is invariant under U(1) rotations ϕ→ e−iαϕ. As in Sec. V we introduce real fields via

ϕ =
1√
2
(ϕ1 + iϕ2) , (282)

which leads to the Lagrangian

L =
1

2

[

(∂0ϕ1)
2 + (∂0ϕ2)

2 − (∇ϕ1)
2 − (∇ϕ2)

2 + 2µ(ϕ2∂0ϕ1 − ϕ1∂0ϕ2) + (µ2 −m2)(ϕ2
1 + ϕ2

2) −
λ

2
(ϕ2

1 + ϕ2
2)

2

]

.

(283)
As discussed above for the meson case, we separate the zero-mode φi, allowing for Bose condensation, ϕi → ϕi + φi

(remember Eq. (88)). Then the Lagrangian becomes

L = −U(|φ|2) + L(2) + L(3) + L(4), (284)

with

U(|φ|2) =
m2 − µ2

2
(φ2

1 + φ2
2) +

λ

4
(φ2

1 + φ2
2)

2 , (285a)

L(2) = −1

2

[

−(∂0ϕ1)
2 − (∂0ϕ2)

2 + (∇ϕ1)
2 + (∇ϕ2)

2 − 2µ(ϕ2∂0ϕ1 − ϕ1∂0ϕ2)

+ (m2 − µ2)(ϕ2
1 + ϕ2

2) + λ(3φ2
1 + φ2

2)ϕ
2
1 + λ(φ2

1 + 3φ2
2)ϕ

2
2 + 4λφ1φ2ϕ1ϕ2

]

, (285b)

L(3) = −λ(φ1ϕ1 + φ2ϕ2)(ϕ
2
1 + ϕ2

2) , (285c)

L(4) = −λ
4
(ϕ2

1 + ϕ2
2)

2 . (285d)

As explained in Sec. V, the linear terms in the fields ϕi vanish after space-time integration; hence we have already
omitted them here. Remarkably, besides the obvious quartic interaction term L(4), there is an interaction term cubic
in the fields, induced by the condensate φi. (Note that here we use the term “condensate” for what is, in the particle
physics context, also called “vacuum expectation value” for the field, or shortly “vev”.) Both interaction terms will
lead to loop corrections as discussed in the previous section. However, let us first discuss the “tree-level” contributions.

Again, for symmetry reasons, we can choose φ2 = 0 and denote φ ≡ φ1. Then, the potential becomes

U(φ2) =
m2 − µ2

2
φ2 +

λ

4
φ4 , (286)

and, following the same steps as in Sec. V, the tree-level propagator is

D−1
0 (K) =

(

−K2 +m2 + 3λφ2 − µ2 −2ik0µ

2ik0µ −K2 +m2 + λφ2 − µ2

)

. (287)

Note that D0 knows about the interaction, although we have only considered the terms quadratic in the fields. This
is because of the condensate which appears together with the coupling constant λ. Again following the steps in Sec.
V we obtain the tree-level thermodynamic potential,

Ω

V
= U(φ2) +

1

2V
Tr ln

D−1
0 (K)

T 2
. (288)
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The poles of the tree-level propagatorD0 (i.e., the zeros of the determinant of the inverse propagatorD−1
0 ) correspond

to the quasiparticle energies, which we denote by ǫ±k . They can be used to compute the Tr ln (which is the same as
ln det). Defining

m2
1 ≡ m2 + 3λφ2 , (289a)

m2
2 ≡ m2 + λφ2 , (289b)

we obtain (cf. Eq. (92))

ln det
D−1

0 (K)

T 2
= ln

∏

K

1

T 4
[(−K2 +m2

1 − µ2)(−K2 +m2
2 − µ2) − 4µ2k2

0 ]

= ln
∏

K

1

T 4
[(ǫ+k )2 − k2

0 ][(ǫ
−
k )2 − k2

0 ]

=
∑

K

[

ln
(ǫ+k )2 − k2

0

T 2
+ ln

(ǫ−k )2 − k2
0

T 2

]

. (290)

The quasiparticle energies are

ǫ±k =

√

E2
k + µ2 ∓

√

4µ2E2
k + δM4 , (291)

where we abbreviated

Ek ≡
√

k2 +M2 , (292)

and

M2 ≡ m2
1 +m2

2

2
= m2 + 2λφ2 , (293a)

δM2 ≡ m2
1 −m2

2

2
= λφ2 . (293b)

Performing the Matsubara sum in Eq. (290) as usual, inserting the result into the thermodynamic potential (288) and
dropping the vacuum contribution yields

Ω

V
=
m2 − µ2

2
φ2 +

λ

4
φ4 + T

∑

e=±

∫

d3k

(2π)3
ln
(

1 − e−ǫe
k/T
)

. (294)

The quasiparticle energies (291) look complicated and are best understood through their limit cases. Without inter-
actions, λ = 0, we have M = m and δM = 0. Consequently, we recover the usual particle and antiparticle dispersions.
Also for vanishing chemical potential, the dispersions become very simple,

ǫ±k =







√
k2 +m2 ∓ µ for λ = 0

√

k2 +m2
2/1 for µ = 0

, (295)

with m2
1, m

2
2 defined in Eqs. (289).

Firstly, let us discuss the zero-temperature case, T = 0. In this case, the thermodynamic potential is simply the
potential U ,

Ω(T = 0)

V
=
m2 − µ2

2
φ2 +

λ

4
φ4 . (296)

Minimization of Ω with respect to φ yields the ground state (corresponding to the state with maximal pressure). For
chemical potentials |µ| < m, the minimum is at φ = 0. In accordance with our observation in the noninteracting
theory, this means that there is no condensation in this case. One rather needs a negative coefficient in front of the
φ2 term for condensation, i.e, |µ| > m (negative “mass parameter squared” in field-theoretical treatments without
chemical potential). In this case, the potential has a “mexican hat” or “bottom of a wine bottle” shape (we consider
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a repulsive interaction for which λ > 0). Remember that we started from a complex field ϕ, hence the rotationally
symmetric wine bottle potential. The minimum now is at φ 6= 0. Such a minimum cannot be invariant under U(1).
However, all possible minima are degenerate, i.e., we are free to choose an arbitrary direction (and have already done
this by choosing φ = φ1). This mechanism, where the Lagrangian has a symmetry which is not respected by the
ground state, is called spontaneous symmetry breaking, as already briefly mentioned in Sec. V. The object that breaks
the symmetry and which is zero in the symmetric phase (here the condensate φ) is called the order parameter. Other
examples of spontaneous symmetry breaking are: (i) ferromagnetism; in this case, the rotational symmetry SO(3) is,
by alignment of all microscopic spins and hence a nonzero magnetization, broken down to U(1). (ii) superconductivity;
in this case, the order parameter is a condensate of Cooper pairs, breaking the electromagnetic gauge group.

For µ2 > m2 we can easily solve the minimization condition

∂Ω(T = 0)

∂φ
= 0 ⇒ φ2 =

µ2 −m2

λ
. (297)

This leads to M2 = 2µ2 −m2, δM2 = µ2 −m2 and thus

ǫ±k =

√

k2 + (3µ2 −m2) ∓
√

4µ2k2 + (3µ2 −m2)2 . (298)

We see that ǫ+k becomes gapless, i.e., ǫ+k=0 = 0. We can expand this mode for small momenta to obtain

ǫ+k ≃
√

µ2 −m2

3µ2 −m2
k =

√

M2 − µ2

M2 − µ2
k . (299)

For µ = 0, the slope of this linear dispersion is 1; the chemical potential changes the slope. This gapless mode is
called the Goldstone mode. Its presence is of great importance since one is very often interested in the low-energy
limit of a theory. The Goldstone mode can be excited with arbitrarily small energy, i.e., it will be present no matter
how small the considered energy is. Moreover, its presence is a very general fact, due to the Goldstone theorem which
says that in any system with a spontaneously broken global symmetry there is a gapless mode.3

The energy gap of the second mode is given by

ǫ−k=0 =
√

2(3µ2 −m2) =
√

2(M2 + µ2) . (300)

B. Symmetry restoration at finite temperature

At a certain temperature, called critical temperature Tc, the symmetry will be restored, i.e., the ground state will
be symmetric under the original symmetry group. In our case this means that that for T > Tc we have φ = 0 (in
the case of a ferromagnet the magnatization vanishes above the critical temperature, there called Curie temperature;
in a superconductor, the condensate of Cooper pairs vanishes above Tc etc.). The general treatment of symmetry
restoration and the determination of the critical temperature is complicated. Here we shall first discuss the qualitative
picture which gives a good physical understanding for the symmetry restoration process. We shall do so with the help
of a very simple approximation. We shall also see that this approximation has obvious problems.

For the sake of simplicity let us set µ = 0. This means, in order to have condensation at small temperatures, we
need a negative mass parameter squared. Therefore, we introduce the positive square c2 via

m2 = −c2 . (301)

The excitations energies are now much simpler and given in Eq. (295). We shall use the high-temperature approxi-
mation T 2 ≫ c2 for the potential in Eq. (294). Then, with

∫ ∞

0

dxx2 ln
(

1 − e−
√

x2+y2
)

= −π
4

45
+
π2

12
y2 + O(y3) , (302)

3 Notice the specification global symmetry. For a local symmetry, for instance in the case of superconductivity, the Goldstone mode is

“eaten up” by the gauge fields, giving rise to a magnetic screening mass, the Meissner mass.
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we can approximate the potential as follows,

Ω

V
= −c

2

2
φ2 +

λ

4
φ4 + T

∑

e=±

∫

d3k

(2π)3
ln
(

1 − e−ǫe
k/T
)

= −c
2

2
φ2 +

λ

4
φ4 +

T 4

2π2

∑

i=1,2

∫ ∞

0

dxx2 ln
(

1 − e−
√

x2+(mi/T )2
)

≃ −c
2

2
φ2 +

λ

4
φ4 − T 4π2

45
+
T 2(m2

1 +m2
2)

24
. (303)

Now, with Eqs. (289) and (301) this becomes, ordered in powers of φ,

Ω

V
=

(

−c
2

2
+
λT 2

6

)

φ2 +
λ

4
φ4 − T 4π2

45
− c2T 2

12
. (304)

This result shows that the coefficient of the quadratic term becomes larger with increasing temperature until it
becomes positive for temperatures larger than the critical temperature

T 2
c =

3c2

λ
. (305)

This indicates a second-order phase transition to the restored phase. (A first-order phase transition can only occur if
there was also a cubic term φ3.) More precisely, the minimum as a function of temperature is

φ2(T ) =
c2

λ
− T 2

3
, (306)

for T < Tc and φ2 = 0 for T > Tc. This is of course a very crude approximation. In particular, we see the following
severe problem. With Eqs. (289) and (306) we observe that the excitation energies are given by the following masses
(for T < Tc),

m2
1 = 2c2 − λT 2 , (307a)

m2
2 = −λT

2

3
. (307b)

For T = 0 we recover the gapless Goldstone mode and the gapped mode. However, for nonzero temperature, the
Goldstone mode acquires an imaginary energy for small momenta which is obviously unphysical. It is no surprise
that the applied approximation is incomplete at best, since we know from the previous section that loops can give
corrections to the potential of the order of λT 2. This is exactly the order which was responsible for the symmetry
restoration above. Therefore, in the next subsection we improve our result by including loop corrections.

[End of 11th lecture, Jan 12th, 2009]

C. Including loop corrections

So far we have ignored the contributions from the interaction terms (285c) and (285d) in the Lagrangian. From
Sec. VIII A we know that the quartic term gives rise to the “double-bubble” diagram in the thermodynamic potential.
The cubic term gives an additional contribution, such that up to two loops we find the contributions (omitting the
arrows in the loop diagrams)

lnZtwo loops
I = 3 + 3 (308)

Note that now each line denotes a 2 × 2 propagator, given in Eq. (287). We shall in the following neglect the second
diagram which is justified in the low-momentum, large-temperature approximation that we shall employ below (note
that the self-energy from the second diagram depends on momentum, in contrast to the self-energy from the first
diagram). For an estimate of the self-energy from the second diagram, solve the following

Exercise 8: Show that the momentum-dependent self-energy

Σ(P ) ≡ φ2λ2 T

V

∑

K

D0(P −K)D0(K) (309)
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with the propagator D0(K) = 1/(k2
0 − ǫ2k), ǫ2k = k2 +m2, is given in the zero-frequency, low-momentum, and large-

temperature limits as

lim
p→0

Σ(0,p) ≃ φ2λ2T

2mπ

(

1

8
+

1

3π

)

. (310)

Hint: Use the result from Exercise 1 for the Matsubara sum.

To find the result for the first diagram we write the interaction Lagrangian (285d) as

L(4) = −Λabcd ϕaϕbϕcϕd , a, b, c, d = 1, 2 , (311)

with a symmetrized tensor,

Λabcd =
λ

12
(δabδcd + δacδbd + δadδbc) . (312)

The tensor structure comes from the two components of the complex field ϕ and replaces the scalar λ for the case of
a single scalar field. Consequently,

lnZ
(1)
I = −3Λabcd

T

V

∑

K

Dab
0 (K)

∑

Q

Dcd
0 (Q) , (313)

where Dab
0 are the components of the 2 × 2 propagator

D0(K) =
1

[(ǫ+k )2 − k2
0 ][(ǫ

−
k )2 − k2

0 ]

(

−K2 +m2
2 − µ2 2ik0µ

−2ik0µ −K2 +m2
1 − µ2

)

. (314)

Inserting the tensor (312) into Eq. (313) and performing the sum over a, b, c, d yields

lnZ
(1)
I = −λ

4

T

V











3





∑

Q

D11
0 (Q)





2

+ 3





∑

Q

D22
0 (Q)





2

+ 2
∑

Q

D11
0 (Q)

∑

K

D22
0 (K)











, (315)

where we have used that the Matsubara sum over the off-diagonal components D12
0 = −D21

0 vanishes. Therefore we
are left with the diagonal components. The self-energy (which, due to the definition (232) now is also a 2× 2 matrix)
can now be determined from the relation (249). With Eq. (313) we find

Πab = −2
δ lnZ

(1)
I

δDab
0

= 12Λabcd
T

V

∑

Q

Dcd
0 (Q)

= λ(δabδcd + δacδbd + δadδbc)
T

V

∑

Q

Dcd
0 (Q) . (316)

Written as a matrix, this is

Π = λ
T

V

∑

Q

(

3D11
0 (Q) +D22

0 (Q) 0
0 D11

0 (Q) + 3D22
0 (Q)

)

. (317)

Using two different line styles for the two modes 1 and 2 we can bring Eqs. (315) and (317) into a diagrammatic form,

4 lnZ
(1)
I = 3 + 3 + 2 , (318)
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and

Π11 = −3 − , (319a)

Π22 = −3 − . (319b)

As a check, we see that these self-energy diagrams arise from cutting the respective lines in Eq. (318). To evaluate
the self-energy from Eq. (317) we again set µ = 0 for simplicity. The result will give us the loop corrections to the
masses given in Eq. (307). In the high-temperature approximation, T ≫ m1,m2, the propagators of the two modes
become identical, D11

0 ≃ D22
0 ≃ −1/K2. Then we can use the results of Sec. VIII C to obtain, after subtracting the

vacuum contribution,

λ
T

V

∑

Q

D11
0 (Q) = λ

T

V

∑

Q

D22
0 (Q) =

λT 2

12
, (320)

i.e., Π11 ≃ Π22 ≃ λT 2/3. Consequently, the corrected masses of the two modes are, for T < Tc,

m2
1 + Π11 = 2

(

c2 − λT 2

3

)

=
2λT 2

c

3

(

1 − T 2

T 2
c

)

, (321a)

m2
2 + Π22 = 0 , (321b)

where we have used Eqs. (305) and (307). We see that the Goldstone mode now remains gapless up to T = Tc as
it should be. Moreover, the other mode becomes ungapped at the phase transition. Then, for T > Tc, both masses
become identical, m2

1 = m2
2 = −c2 + λT 2/3 ≥ 0.

The case of a nonvanishing chemical potential is similar. However, in this case, the gapped mode has an energy gap
even at T = Tc, where the energy is µ (as opposed to 0 in the case without chemical potential). For a self-consistent
treatment of this case see for instance Sec. III in Ref. [5].

X. THE PHOTON PROPAGATOR IN A QED PLASMA

A. Photon polarization tensor

From Exercise 8 we know the structure of the self-energy diagrams for fermions interacting via a bosonic field
through the Yukawa interaction. In QED, discussed in Sec. VII, electrons interact in a similar way with photons,
namely through an interaction term

LI = eψ̄γµAµψ , (322)

cf. Eq. (166). From this expression we can construct the one-loop photon self-energy

Πµν(Q) =

Q
K

K −Q

= e2
T

V

∑

K

Tr[γµG0(K)γνG0(P )] , (323)

where the trace is taken over Dirac space, where we have abbreviated

P ≡ K −Q , (324)

and where the electron propagator is given by Eq. (139). A gauge interaction is of course different from a simple
Yukawa interaction. We shall come to the subtleties related to gauge invariance in the next subsection. First we
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compute the photon self-energy, also called polarization tensor. For simplicity, we shall consider the ultrarelativistic
limit m = 0 and set the chemical potential to zero, µ = 0. Then, the fermion propagator simply becomes

G0(K) = −γ
µKµ

K2
. (325)

With the trace

Tr[γµγσγνγρ] = 4(gµσgνρ + gµρgσν − gµνgσρ) , (326)

where gµν = diag(1,−1,−1,−1) is the metric tensor, we obtain

Tr[γµγ
σKσγνγ

ρPρ] = 4(KµPν +KνPµ − gµνK · P ) . (327)

In the following we need to treat the following three cases separately,

Π00(Q) = 4e2
T

V

∑

K

k0p0 + k · p
(k2

0 − k2)(p2
0 − p2)

, (328a)

Π0i(Q) = Πi0(Q) = 4e2
T

V

∑

K

k0pi + kip0

(k2
0 − k2)(p2

0 − p2)
, (328b)

Πij(Q) = 4e2
T

V

∑

K

kipj + kjpi + δij(k0p0 − k · p)

(k2
0 − k2)(p2

0 − p2)
. (328c)

The Matsubara sum over k0 is taken over fermionic Matsubara frequencies since the loop is an electron loop. Since
the external momentum Q belongs to the photon, the Matsubara frequencies in q0 are bosonic. Therefore we can use
the result from Exercise 4. With the relations

1 − fF (ǫ1) − fF (ǫ2) =
fF (ǫ1)fF (ǫ2)

fB(ǫ1 + ǫ2)
= −fF (−ǫ1)fF (−ǫ2)

fB(−ǫ1 − ǫ2)
, (329a)

fF (ǫ1) − fF (ǫ2) =
fF (−ǫ1)fF (ǫ2)

fB(−ǫ1 + ǫ2)
= −fF (ǫ1)fF (−ǫ2)

fB(ǫ1 − ǫ2)
, (329b)

we can write Eq. (152) as (changing q0 to −q0)

T
∑

k0

(k0 + ξ1)(k0 − q0 + ξ2)

(k2
0 − ǫ21)[(k0 − q0)2 − ǫ22]

=
1

4ǫ1ǫ2

{[

(ǫ1 − ξ1)(ǫ2 − ξ2)

q0 + ǫ1 − ǫ2
− (ǫ1 + ξ1)(ǫ2 + ξ2)

q0 − ǫ1 + ǫ2

]

[f(ǫ1) − f(ǫ2)]

+

[

(ǫ1 + ξ1)(ǫ2 − ξ2)

q0 − ǫ1 − ǫ2
− (ǫ1 − ξ1)(ǫ2 + ξ2)

q0 + ǫ1 + ǫ2

]

[1 − f(ǫ1) − f(ǫ2)]

}

. (330)

Since eventually only fermionic distribution functions occur we have abbreviated f ≡ fF . Consequently, Eqs. (328)
become

Π00 = e2
∫

d3k

(2π)3

[(

1

q0 + k − p
− 1

q0 − k + p

)

(1 + k̂ · p̂)(fk − fp)

+

(

1

q0 − k − p
− 1

q0 + k + p

)

(1 − k̂ · p̂)(1 − fk − fp)

]

, (331a)

Π0i = −e2
∫

d3k

(2π)3

[(

1

q0 + k − p
+

1

q0 − k + p

)

(p̂i + k̂i)(fk − fp)

+

(

1

q0 − k − p
+

1

q0 + k + p

)

(p̂i − k̂i)(1 − fk − fp)

]

, (331b)

Πij = e2
∫

d3k

(2π)3

[(

1

q0 + k − p
− 1

q0 − k + p

)

[δij(1 − k̂ · p̂) + k̂ip̂j + k̂j p̂i](fk − fp)

+

(

1

q0 − k − p
− 1

q0 + k + p

)

[δij(1 + k̂ · p̂) − k̂ip̂j − k̂j p̂i](1 − fk − fp)

]

. (331c)

where we have abbreviated fk ≡ f(k) and the unit vector k̂ ≡ k/k. We now apply the so-called “Hard Thermal Loop
(HTL)” approximation [6], where the dominant contribution comes from fermion momenta k ∼ T (called “hard”), and
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the photon momentum is of the order of q0, q ∼ eT (called “soft”). In this spirit, we approximate the denominators
in Eqs. (331) as (remember p = |k − q|)

q0 ± k ∓ p ≃ q0 ± q · k̂ , q0 ± k ± p ≃ ±2k , (332)

and the distribution functions as

fk − fp ≃ q · k̂ ∂fk

∂k
, 1 − fk − fp ≃ 1 − 2fk . (333)

Now, to compute Π00 first note that k̂ · p̂ = 1 + O(q2/k2), hence we can neglect the second term. Thus,

Π00 ≃ 2e2
∫

d3k

(2π)3

(

1

q0 + q · k̂
− 1

q0 − q · k̂

)

q · k̂ ∂fk

∂k

= 4e2
∫

d3k

(2π)3
q · k̂

q0 + q · k̂
∂fk

∂k

= 4e2
∫

d3k

(2π)3

(

1 − q0

q0 + q · k̂

)

∂fk

∂k
. (334)

In the second step we have used that the angular integral gives the same result for both terms. In the third step we
have separated the q0 = 0 part.4

To compute Πi0 in the HTL approximation, we can again neglect the second term since p̂i − k̂i is of the order of
q/k, the remaining term, being of order one, is

Πi0 ≃ −2e2
∫

d3k

(2π)3

(

1

q0 + q · k̂
+

1

q0 − q · k̂

)

q · k̂ k̂i
∂fk

∂k

= 4e2
∫

d3k

(2π)3
q0

q0 + q · k̂
k̂i
∂fk

∂k
. (335)

In Πij , the second term cannot be neglected. The first term is analogous to the first term in Π00 and we obtain

Πij = 2e2
∫

d3k

(2π)3

[

2

(

1 − q0

q0 + q · k̂

)

k̂ik̂j
∂fk

∂k
− 1

k
(δij − k̂ik̂j)(1 − 2fk)

]

. (336)

The 1 in the factor 1 − 2fk is the vacuum contribution which has to be subtracted as discussed for the case of the
self-energy in φ4 theory. Then, with

∫

dΩ

4π
k̂ik̂j =

δij
3
, (337)

we see via partial integration that only one term in Eq. (336) survives,

∫

d3k

(2π)3

[

k̂ik̂j
∂fk

∂k
+

1

k
(δij − k̂ik̂j)fk

]

=
δij
6π2

∫ ∞

0

dk

(

k2 ∂fk

∂k
+ 2kfk

)

= 0 . (338)

Consequently, we are left with

Πij = −4e2
∫

d3k

(2π)3
q0

q0 + q · k̂
k̂ik̂j

∂fk

∂k
. (339)

In all three results (334), (335), and (339) we have the same k integral which we can perform exactly,

∫ ∞

0

dk k2 ∂fk

∂k
= −T

2

2

∫ ∞

0

dx
x2

1 + coshx
= −T

2π2

6
. (340)

4 Note that the limits q0 → 0, q → 0 do not commute. We shall see in the subsequent sections that different limits correspond to different

physics.
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Consequently, we have

Π00 = −2m2

(

1 −
∫

dΩ

4π

q0

q0 + q · k̂

)

, (341a)

Π0i = −2m2

∫

dΩ

4π

q0k̂i

q0 + q · k̂
, (341b)

Πij = 2m2

∫

dΩ

4π

q0k̂ik̂j

q0 + q · k̂
, (341c)

where we defined

m2 ≡ e2T 2

6
. (342)

B. Photon propagator

After having computed the polarization tensor, we want to use the result to determine the photon modes in the
plasma. To this end, we need the photon propagator D(Q). In a covariant gauge with gauge-fixing parameter ρ the
free inverse propagator is

D−1
0,µν(Q) = Q2gµν −QµQν +

QµQν

ρ
. (343)

(Cf. the inverse propagator in axial gauge in Eq. (195).) Physical quantities must of course be independent of ρ.
Inversion gives

D0,µν(Q) =
Q2gµν −QµQν

Q4
+ ρ

QµQν

Q4
. (344)

(One can easily check that Dµν
0 D−1

0,νσ = δµν .) Let us now introduce projection operators PL, PT via

P 00
T = P 0i

T = P i0
T = 0 , (345a)

P ij
T = δij − q̂iq̂j , (345b)

and

Pµν
L =

QµQν

Q2
− gµν − Pµν

T . (346)

Both PT and PL are 4-transverse to Q, i.e., QµP
µν
L = QµP

µν
T = 0. The projector PT is 3-transverse, while PL is

3-longitudinal. We have P 2
L = PL, P 2

R = PR, PLPR = PRPL = 0. In terms of these projectors, the photon self-energy
can be written as

Πµν(Q) = F (Q)PL,µν +G(Q)PT,µν , (347)

with scalar functions F and G. This follows from rotational invariance and the tranversality property of the self-energy
QµΠµν (in non-abelian gauge theories, the structure of the self-energy is more complicated). With D−1 = D−1

0 + Π
we then find

Dµν(Q) =
1

F (Q) −Q2
PL,µν +

1

G(Q) −Q2
PT,µν + ρ

QµQν

Q4
. (348)

From our above results, we can now compute F and G. To this end, we choose a frame in which q points into the
z-direction. Then we have

F (Q) =
Q2

q0q
Π0z(Q) , G(Q) = Πxx(Q) . (349)
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Then, with Eq. (341b) we find

F (Q) = −m2Q
2

q

∫ 1

−1

dx
x

q0 + qx

= −2m2Q
2

q2

(

1 − q0
2q

ln
q0 + q

q0 − q

)

, (350)

and

G(Q) =
m2

2π

∫ 2π

0

dϕ

∫ π

0

dθ sin θ
q0 sin2 θ cos2 ϕ

q0 + q cos θ

=
m2q0

2

∫ 1

−1

dx
1 − x2

q0 + qx

=
m2q0
q

(

q0
q

− Q2

2q2
ln
q0 + q

q0 − q

)

= m2 − 1

2
F (Q) . (351)

In both functions F and G the Legendre function of the second kind

Q0(x) =
1

2
ln
x+ 1

x− 1
(352)

appears. This function is defined in the complex plane cut from -1 to 1. Consequently, F (Q) and G(Q) are defined
in the complex q0 plane cut from −q to q. For timelike Q2 > 0 (q0 real), F and G are real, while for spacelike Q2 < 0
they become complex.

C. Debye screening

In order to discuss the physical meaning of the photon propagator with the functions F and G, we first consider
a static point charge Q in the plasma. The resulting potential in position space then is given by the function F (see
chapter 6.3 in Ref. [2] for more details)

V (r) = Q
∫

d3q

(2π)3
eiq·r

q2 + F (q0 = 0,q)
. (353)

For F = 0 we recover the usual Coulomb potential V (r) = Q/r. The effect of F is to screen this potential,

V (r) =
Q
r
e−rmD , (354)

with the so-called Debye screening mass

m2
D ≡ F (q0 = 0, q → 0) = −Π00(q0 = 0, q → 0) =

e2T 2

3
. (355)

This screening is easy to understand: since we are at finite temperature, there are electrons end positrons in the
system. Say Q is a negative charge, then positrons will be attracted and screen the charge. They do so on a length
scale given by the inverse Debye mass. In other words, looking from far away (from distances much larger than m−1

D )

one cannot see the charge. One has to come closer (up to distances ∼ m−1
D or closer) to resolve the charge.

There is no magnetic screening mass, G(q0 = 0, q → 0) = 0. The magnetic screening mass becomes non-vanishing
in a superconductor (→ Meissner mass), where magnetic fields are screened.

D. Plasma oscillations and Landau damping

Next we discuss the collective excitations in the plasma. (See, besides the textbooks by LeBellac and Kapusta, Ref.
[7] for details.) To this end, we consider the spectral density, given by

ρL,T (Q) ≡ 1

π
ImDL,T (Q) , (356)
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FIG. 1: Longitudinal (plasmon) and transverse modes in a QED plasma. ωP ≡ eT/3, m2
≡ e2T 2/6.

where the longitudinal and transverse parts of the photon propagator are defined as

DL(Q) =
Q2

q2
1

F (Q) −Q2
=

1

Π00(Q) − q2
, (357a)

DT (Q) =
1

G(Q) −Q2
, (357b)

where we used Π00 = Fq2/Q2 which follows from Eq. (347). The imaginary part in Eq. (356) has to be understood
as the imaginary part of the retarded propagator, limη→0 ImDL,T (q0 + iη,q), η > 0. We then have

ρL(Q) =
Q2

q2
1

π

ImF

(ReF −Q2)2 + (ImF )2
, (358a)

ρT (Q) =
1

π

ImG

(ReG−Q2)2 + (ImG)2
. (358b)

As discussed above, the imaginary parts of F and G vanish if and only if the four-momentum Q is spacelike. In this
case, the spectral densities vanish except for the case where the whole denominator vanishes. In other words, we use
the representation of the delta-function

lim
η→0

1

π

η

x2 + η2
= δ(x) , (359)

to obtain

ρL(Q) = δ(Re Π00 − q2) + Θ(q2 − q20)
1

π

ImΠ00

(Re Π00 − q2)2 + (Im Π00)2
, (360a)

ρT (Q) = δ(ReG−Q2) + Θ(q2 − q20)
1

π

ImG

(ReG−Q2)2 + (ImG)2
. (360b)

Since Π00 and G are both even in q0 we can denote the zeros of the arguments of the delta-functions as ±ωL and
±ωT . They correspond to quasiparticles with dispersion ωL,T (q). In general, they have to be determined numerically,
see Fig. 1. We see that besides the transverse photon, in a medium there is another, longitudinal, degree of freedom.
This quasiparticle is called plasmon. Next, we use the general formula

δ[f(x)] =
∑

x0

δ(x− x0)

|f ′(x0)|
, (361)

where x0 are the zeros of the function f(x). Moreover, we notice that

∂Π00

∂q0
=

1

q0

(

Π00 −
3ω2

P q
2

Q2

)

, (362)
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where we have defined the plasma frequency

ω2
P =

e2T 2

9
. (363)

Thus

∂Π00

∂q0

∣

∣

∣

∣

q0=±ωL

= ±q
2(ω2

L − q2 − 3ω2
P )

ωL(ω2
L − q2)

. (364)

And, analogously, for the transverse component,

∂(G− q20)

∂q0
=

1

q0

[

(G−m2)(3q20 − q2)

Q2
− 2q20 +m2

]

, (365)

and thus

∂(G− q20)

∂q0

∣

∣

∣

∣

q0=±ωT

= ± (ω2
T − q2)2 − 3ω2

Tω
2
P

ωT (ω2
T − q2)

. (366)

Consequently, the spectral densities from Eqs. (360) become

ρL(Q) =
ωL(ω2

L − q2)

q2(3ω2
P + q2 − ω2

L)
[δ(q0 − ωL) + δ(q0 + ωL)] +

1

π

Θ(q2 − q20) Im Π00

(Re Π00 − q2)2 + (Im Π00)2
, (367a)

ρT (Q) =
ωT (ω2

T − q2)

3ω2
Pω

2
T − (ω2

T − q2)2
[δ(q0 − ωT ) + δ(q0 + ωT )] +

1

π

Θ(q2 − q20) ImG

(ReG−Q2)2 + (ImG)2
. (367b)

We finally remark that the spacelike part of the spectral functions describes Landau damping. This is related to
scattering processes of the photon off electrons and positrons in the plasma. Through these processes energy is
dissipated, i.e., the photon is “damped”.
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