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1. Introduction

The human race has always been guided by the quest So that I may perceive whatever holds //

The world together in its inmost folds – or in the original, German version: Dass ich erkenne,

was die Welt // Im Innersten zusammenhält [1]. And it has been a long journey: the first strives

of the human spirit to understand the inner principles governing nature are as old as civilisation

itself. It has been remembered, for example, that more than two and a half millenia ago the

ancient Greek philosopher Leucippus claimed nature to possess inner elements of structure, the

atoms – or the indivisible ones (as coined by Democritus). An alternative theory of everything

foresaw the existence of four basic elements (ranging from water to fire) upon which nature is

built. Although the idea of the atom is an ancient one, a lot of time passed before the idea of

atomic clusters (that is, molecules) was established by Robert Boyle in 1661. Approximately a

decade later, Isaac Newton developed the corpuscular theory of light, for which he claimed that

it consists of minute particles (corpuscles).

Nowadays the prevalent explanation of the features of light is that of corpuscle-wave duality:

the light may behave more as a set of corpuscles or as a wave, depending on the experimental

surrounding. Indeed the light corpuscles – the photons – act as transmitters of one of the

fundamental forces of nature: the electromagnetic interaction. This interaction is known to affect

all particles carrying electric charge (electrons, protons, ...). It is essential for the attraction of

atomic nuclei (consisting of the positive-charge protons and neutrons that carry no charge) and

the electrons, that build a negative-charge cloud around the atomic nuclei and allow for atoms

to bind into more complex structures, the molecules.

It has been known since the age of Charles Coulomb (18th century) that the electromagnetic

(back then: only electric) interaction possesses an infinite range – it is inversely proportional to

the squared distance between two charges:

FC ∼
1

r2
.

There is, however, another interaction with such a feature: the gravity. This interaction occurs

between objects that possess a mass, be it point-like objects such as electrons (mass ∼ 10−31 kg

or, in units more commonly used in physics nowadays, ∼ 511 keV) or very large objects such as

the sun (∼ 1030 kg) or even planetary systems, galaxies and galaxy clusters.

According to Newton’s law of universal gravity, the magnitude of this force is also proportional

to 1/r2. Just as the electromagnetic interaction, gravity is expected to possess its transmitter

particles (gauge bosons), denoted as gravitons. Newton himself did not coin the name but was

reportedly dissatisfied with the action at a distance implied by his gravity law (and he expected

a mediator of gravity to exist). The problem of action at a distance is indeed solved by the

introduction of gravitons; however, these particles – if they exist – have remained elusive to

experimental observation. The basic difference between photons and gravitons is their spin:

photons possess spin one whereas gravitons are expected to possess spin two rendering them

rather difficult to examine theoretically [2]. However, gravity without gravitons would mark a

special case of an elementary force without gauge particles because not only the electromagnetic

interaction but also the other two elementary forces – the strong and the weak interactions –

possess their gauge bosons as well.
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The weak force has actually been unified with the electromagnetic force into the electroweak

one in the groundbreaking work of Glashow, Weinberg, Salam and Ward in the 1960s and 1970s

[3]. The ensuing Standard Model of electroweak interactions describes simultaneously the twelve

building blocks of nature known to the modern physics:

6 quarks: u (up), d (down)

s (strange), c (charm)

b (bottom), t (top)

and

6 leptons: e (electron), νe (electron neutrino)

µ (muon), νµ (muon neutrino)

τ (tau), ντ (tau neutrino)

(plus twelve antiparticles). The masses of these particles vary significantly: for example, as we

will see in the next chapter, the mass of the t quark is approximately 50000 times larger than

the masses of the u and d quarks. Nonetheless, the Standard Model actually starts with the

assumption that the particles possess no mass; this includes the gauge bosons of the electroweak

interaction, labelled asW± and Z0 as well as the gauge boson of the electromagnetic interaction,

the photon [in the language of modern physics: the local SU(2)L×U(1)Y symmetry]. The sym-

metry is broken by the famous Higgs mechanism that gives mass to all leptons except neutrinos

as well as to W± and Z0; the photon remains massless. The predictions of the Standard Model

have been confirmed to a high precision by various experiments [4]. Only the Higgs boson has

remained elusive at Tevatron as well as at the Large Hadron Collider LHC at CERN (but, if it

exists, it should be discovered at the LHC).

There are actually attempts to extend the Standard Model to the physics beyond (again, if such

physics exists – this is also, in principle, verifyable at the LHC). One extension is supersymmetry

[5], where one assumes that to each observed boson and the as-yet unobserved Higgs (integer-

spin particles) there is a supersymmetric fermion counterpart (and analogously for the observed

fermion). This renders the lightest of the supersymmetric particles – the LSP – stable under the

so-called R-parity; the LSP is a candidate for a dark-matter particle.

A further possible extension of the Standard Model is represented by technicolour models [6].

These models are based upon the observation that the Higgs boson – if it exists – would be the

only elementary scalar particle known to modern physics, i.e., it would possess spin zero. All the

other elementary particles are not scalar: the already mentioned quarks and leptons are fermions

as they possess spin 1/2 whereas the gauge bosons possess spin 1 or spin 2, depending on the

interaction considered. Indeed, until now all scalar states first assumed to be elementary were

eventually determined as composite (such as the σ meson of the strong interaction, discussed

below). For this reason, technicolour models assume the Higgs boson to be composite as well,

consisting of so-called techniquarks. Techniquarks are expected to be several times heavier than

the heaviest observed quark (the t quark) but should in principle also be accessible to the LHC.

(Note that there is also a technicolour candidate for the dark matter particle: technicolour-

interacting massive particle or TIMP [7].)
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The work presented in this thesis will consider a different type of interaction: the strong one. This

interaction is responsible for the stability of the nucleons, i.e., protons and neutrons (and thus of

atoms and molecules); it is similar to the electromagnetic interaction as it also possesses massless

gauge bosons – the gluons. Given that the gluons are massless just as the photons, one might

expect the range of the strong interaction to be infinite, just as in the case of the electromagnetic

one. However the strong interaction actually possesses a very short range (∼ 1 fm = 10−15

m, the nucleon radius). Additionally, the gluons, while not charged electrically, nonetheless

carry a different sort of charge: colour. They are transmitters of the strong interaction between

quarks; however, their colour charge allows them to not only interact with quarks but also among

themselves. It is believed that the colour interaction holds quarks and gluons confined within

nucleons (which is in turn presumably related to the nucleon stability) – but confinement is an

experimental observation without (as yet) a commonly accepted theoretical explanation.

Quarks and gluons were not always confined to nucleons. According to the theory of the Big

Bang, an extremely short-lived phase of the primary matter (10−44 s), where no complex matter

structures existed, was followed by a state of the quark-gluon plasma, without confinement of

quarks and gluons into nucleons. The expansion of the early universe implied the cooling of the

matter, allowing for the first complex structures to be formed by quarks. The simplest ones

consisted of one quark (q̄) and one antiquark (q). Thus the exploration of the q̄q states allows us

to gain insight into the early universe – and the work presented in this thesis will have exactly

the q̄q states as the main topic.

Of course, there can be no true insight into the state of matter in the early universe from the

theoretical standpoint alone; there are various experimental undertakings attempting to recreate

the matter as it was shortly after the Big Bang (∼ 13 billion years ago). To this end, heavy ions

(Pb, Au) or protons are collided at velocities comparable to the velocity of light; the collisions

produce very hot (at least 1012 K) and/or very dense (∼ 1015 g/cm3) matter. Let us mention

just three experimental facilities where this is (or will be) accomplished: proton-proton collisions

and heavy-ion collisions are performed at the LHC and at the Relativistic Heavy-Ion Collider

RHIC in Upton, New York/United States; protons and antiprotons will be collided at the Facil-

ity for Antiproton and Ion Research (FAIR), currently being constructed at the Gesellschaft für

Schwerionenforschung (GSI) in Darmstadt/Germany.

As already indicated, the work presented in this thesis will be concerned with the strong inter-

action. Thus in Chapter 2 we describe some basic properties of the theory of strong interactions

– the Quantum Chromodynamics (QCD). We introduce the concepts of hadrons, quarks, gluons

and colour charge. We observe that the basic equation of QCD – the QCD Lagrangian – possesses

certain symmetries, most notably the chiral U(Nf )× U(Nf ) symmetry between Nf left-handed

and right-handed quark flavours. However, as we discuss in Sec. 2.5, this symmetry is also ob-

served to be broken in vacuum by two mechanisms: explicitly, by non-vanishing quark masses,

and spontaneously, by the quark condensate. An additional symmetry-breaking mechanism is

the so-called chiral anomaly (a symmetry that is exact classically but broken at the quantum

level, discussed in Sec. 2.3).

The spontaneous breaking of the chiral symmetry leads to some profound consequences. Gold-

stone bosons (for example, the pions) emerge and the masses are generated for a range of mesons.

(The pions obtain their mass from the explicit breaking of the chiral symmetry.) Most (but not

all) mesons can be described as q̄q states; considering the approximate mass degeneration of the

3



non-strange [up (u) and down (d)] quarks, there is one scalar isosinglet state that can be con-

structed: σN = (ūu+ d̄d)/
√
2. If we consider the strange quark s as well, then we can construct

an additional scalar state: σS = s̄s. However, as we discuss in Chapter 3, experimental data

demonstrate that the actual number of scalars is significantly larger: there are six non-strange

scalar states [f0(600) or σ, f0(980), f0(1370), f0(1500), f0(1710) and f0(1790)]. Obviously, at

most two of them can be q̄q states – but the question is which two.

That is the main topic of the work presented in this thesis. In Chapter 4 we develop a generic

model of mesons for an arbitrary number of flavours, based on the symmetries of QCD. The

model can even be studied for various numbers of colours. Then, in Chapters 5 – 11, we apply

the model to investigate scalar q̄q states in the physical spectrum. It is known as the Linear

Sigma Model and it incorporates not only the global symmetries of QCD (chiral, CP ) but also the

mechanisms of chiral-symmetry breaking (explicit, spontaneous and the one induced by the chiral

anomaly). However, the Linear Sigma Model contains not only scalar states; a realistic model of

low-energy QCD will inevitably have to consider other states experimentally established in the

region of interest (in our case: up to ∼ 1.8 GeV). For this reason, our model will also incorporate

vector (ω, ρ) and axial-vector [f1(1285), a1(1260)] degrees of freedom from the onset. Then, in

Chapter 5, we develop a U(2)L × U(2)R sigma model with scalars (sigma, a0), pseudoscalars

(pion and the non-strange component of the physical η state), vectors and axial-vectors and

describe their phenomenology. The states present in our model are of q̄q structure, as we discuss

in Sec. 4.3. Consequently, all our statements about the physical states depend on the assignment

of our q̄q model states to the physical ones (conversely, of course, assigning any of our q̄q states

to a physical state implies that the given physical state is of q̄q nature).

Given the already mentioned large number of scalar f0 states, we work with two different scenarios

in Chapter 5: in Scenario I, Sec. 5.3, we assume that the scalar q̄q states are to be looked for

in the energy region below 1 GeV. This implies, for example, that the f0(600) resonance is a

q̄q state. However, this assumption does not appear to be favoured when its implications are

compared with experimental data. The f0(600) resonance is too narrow. Therefore, in Sec. 5.4,

we start with a converse assumption (Scenario II): that the scalar q̄q states are actually above 1

GeV [then the f0(1370) resonance is the scalar q̄q state]. In this scenario, the overall description

of the data is decisively better: the scalar q̄q states appear to be above 1 GeV rather than, as

one might expect, below.

The discussion of Chapter 5 is, however, not conclusive. The reasons are at least twofold: the

strange mesons (such as the K⋆
0 states) are missing; additionally, the gauge bosons of QCD, the

gluons, may, just as quarks, form their own bound states – the glueballs. These states could mix

with the scalar q̄q states already present in the model. Thus the question has to be addressed

whether the conclusions of Chapter 5 hold once the mentioned strange and glueball states are

included into the model. [In principle one could also consider the admixture of the tetraquark

(q̄q̄qq) states to the scalar resonances; this can be performed in succession to the results regarding

quarkonium and glueball phenomenology presented in this thesis.]

For this reason, in Chapters 6 – 11 we present the main part of this work: a sigma model

containing scalar, pseudoscalar, vector and axial-vector mesons both in non-strange and strange

sectors: an Nf = 3 model. This is the first time that all these states have been considered

within a single QCD-based model. Our formalism thus contains, but is not limited to, η, η′,
π, K (pseudoscalars); ω, ϕ(1020), ρ, K⋆ (vectors) and f1(1285), f1(1420), a1(1260), K1 (axial-

vectors). The model also contains two scalar isosinglet degrees of freedom σN (already present
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in Chapter 5) and additionally σS = s̄s. We also consider the a0 triplet (already present in

Chapter 5) and the scalar-kaon quadruplet KS . (Our scalar state KS is to be distinguished from

the short-lived pseudoscalar K0
S state that will not be discussed in this work.)

The model parameters are calculated using all masses except those of the two σ fields. Then,

as in Chapter 5, we distinguish between two possibilities (labelled as Fits I and II in Chapters

6 – 11): in Fit I (Chapters 8 and 9) we discuss whether a reasonable meson phenomenology

can be obtained assuming that the scalar q̄q states are below 1 GeV. Thus we work with the

assumption that the f0(600) and K⋆
0 (800) resonances are q̄q states (analogously to Scenario I

presented in Sec. 5.3). This allows us to consider not only scalar-meson phenomenology, but the

broader phenomenology as well – in particular the decays of the axial-vector states [e.g., f1(1285),

f1(1420) and a1(1260)]. We again obtain a negative result: if the scalars were below 1 GeV, then

the axial-vectors would have to have a decay width from 1 GeV up to 20 GeV – several orders of

magnitude larger than experimental data. For this reason, we turn to an alternative assignment:

that the scalar q̄q states are above 1 GeV. The ensuing fit yields an extremely improved meson

phenomenology: almost all the results are consistent with experimental data.

As already indicated, our study is motivated by the phenomenology of the scalar mesons. A

realistic description of the scalar states requires the inclusion of vector and axial-vector states

as well. Thus our study will also include the phenomenology of these states: indeed, in the

more general Nf = 3 version of our model in Chapters 8 – 11, we will calculate widths of all

experimentally observed two-body decays of mesons for which there exist vertices in the model.

This will be performed in both (pseudo)scalar as well as (axial-)vector channels. In addition,

three-body and four-body decay widths will also be calculated utilising sequential decays; ππ

scattering lengths will be calculated as well. This will in turn provide us with an extremely

powerful agent of discrimination between the two assignments where, respectively, the scalar

states are below and above 1 GeV.

Before the summary and outlook of the work are presented in Chapter 13, we present another

extension of the Nf = 2 model of Chapter 5 to Nf = 2 + scalar glueball in Chapter 12. Although

Chapter 12 does not present results with strange degrees of freedom, it is still another valuable

test of the assertion obtained in Chapter 5: that the scalar q̄q states are above, rather than

below, 1 GeV.

5



6



2. QCD and Its Symmetries

2.1 Introduction

A large multitude of new particles was discovered in the 1950s and 1960s. They were usually

referred to as elementary, implying that they possessed no inner structure; however, their decay

patterns and large numbers imposed two questions:

• Why do we observe that the newly discovered particles do not decay into all other particles

into which their decays would be kinematically allowed?

• Is there a classification scheme for the new particles, but also for the already known ones,

such as protons and neutrons?

In other words: Is there a force binding more elementary blocks into the observed particles?

A classification scheme was proposed by M. Gell-Mann [8] and G. Zweig [9] in 1964 using the

SU(3) flavour symmetry. Zweig proposed the particle substructure elements to be denoted as aces

whereas, according to Gell-Mann’s classification, if one considers a unitary triplet t consisting of

an isotopic singlet s of electric charge z and an isotopic doublet (u, d) with charges z + 1 and z,

respectively, then

We can dispense entirely with the basic baryon b if we assign to the triplett

the following properties : spin
1

2
, z = − 1

3
and baryon number

1

3
.

We then refer to members u
2
3 , d−

1
3 , and s−

1
3 of the triplet as ”quarks”

and the members of the anti-triplet as anti-quarks.

Therefore the particles originally denoted as elementary (protons, neutrons, hyperons, ...) were

suggested to possess an inner structure. Strictly speaking, they are then no longer elementary

as this role is thereafter played by their substructure partons, the quarks, but nonetheless they

are still sometimes referred to as elementary. All the particles containing quarks are subject to

the so-called strong interaction, described by

Quantum Chromodynamics (QCD).

We will discuss the Lagrangian of QCD later in this chapter. At this point we note that,

due to the electric charge of the quarks, the electromagnetic interaction also plays a certain,

though subdominant, role in quark interactions. The reason is that the fine-structure constant

of the electromagnetic interaction (that encodes the strength of the electromagnetic coupling)

α = 1/137.035999679(94) [10] is two orders of magnitude smaller than the fine-structure constant

of the strong interaction αs ∼ 1 in vacuum. Additionally, the quarks can also interact weakly,

by exchanging weak bosons [4]; this mechanism is responsible for the β decay of nucleons.

The particles containing quarks are known as hadrons (Greek – αδρóς: strong). Hadrons are

classified into two groups according to their spin:
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• Fermionic hadrons are known as baryons (Greek – βαρύς, heavy: the lightest baryon, the

proton, is approximately 1836 heavier than the electron).

• Bosonic hadrons are known as mesons from the Greek word – µέσoς, the middle one: the

first discovered meson was the pion [11], approximately 280 times heavier than the electron

but still lighter than the proton; the name has remained although it is an experimental fact

nowadays that baryons and mesons typically accommodate the same mass region. Note

that the mesons are sometimes defined in terms of their quark structure as antiquark-quark

states. This definition is improper because not all mesons are q̄q states (some of them may

be of q̄q̄qq structure, or even represent bound states of other mesons). Consequently, this

work will utilise the definition of mesons based on their spin.

Current high-energy experimental data suggest that (as already indicated) there are six building

blocks of hadrons – i.e., six quark flavours with the following masses according to the Particle

Data Group (PDG) [10]:

mu = (1.7− 3.1) MeV; md = (4.1 − 5.7) MeV;

ms = (80− 130) MeV;

mc = 1.29+0.05
−0.11 GeV; mb = 4.19+0.18

−0.06 GeV;

mt = (172.9 ± 0.6 ± 0.9) GeV.

These values are the estimates of the so-called current quark masses. The values of mu,d,s are

not a product of direct experimental observations but obtained either in lattice calculations [12]

or in first-principle calculations [13] at the scale µ ≈ 2 GeV. Indeed, to our knowledge, there has

recently been only one article by an experimental collaboration regarding the light-quark masses:

the results of the ALEPH Collaboration suggestms = 176+46
−57 MeV (at µ ≈ 2 GeV) from a τ -decay

analysis [14]. Similarly, the value of mc is also predominantly determined in theoretical calcula-

tions [15] although the BABAR Collaboration has recently claimed mc = (1.196± 0.059± 0.050)

GeV from B decays [16]. The value of mt stems from direct top-event observations published by

the Tevatron Electroweak Working Group (see Ref. [17] for the latest data and references therein

for the older ones). Similar is true for the b quark [10]. Note that the current u, d masses need to

be distinguished from their constituent masses ∼ 300 MeV ≃ mp/3 where mp denotes the mass

of the proton.

Quarks carry electric charges as follows

u, c, t↔ 2

3
e, (2.1)

d, s, b↔ −1

3
e, (2.2)

where e denotes the elementary electric charge. Following the Gell-Mann–Zweig classification, a

proton is a state containing two u quarks and one d quark (with the charge 2 · 2e/3 − e/3 = e).

Given that the total spin of the proton reads 1/2, then the spin-flavour wave function of this

particle can be written as

|p〉 = 1√
3
(|u↑u↑d↓〉+ |u↑u↓d↑〉+ |u↓u↑d↑〉). (2.3)
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An analogous relation holds for the neutron upon substituting u←→ d. These relations comply

with W. Pauli’s Spin-Statistics Theorem [18]. However, in 1965 a baryon with charge q = 2e and

spin 3/2 was discovered [19]; the particle could readily be described in terms of u and d quark

flavours with spin 1/2, but only if the Pauli Principle were violated. The particle was labelled

as ∆++ [or, nowadays, ∆(1232)] and, given the charge, its spin-flavour wave function had to be

composed as

|∆++〉 = |u↑u↑u↑〉. (2.4)

The solution to this paradox was found by introducing an additional degree of freedom for quarks:

colour. If we assume that each quark comes in three colours, red (r), green (g) and blue (b),

then the three quarks contained in ∆++ can be combined in the following antisymmetric way in

the colour space:

|∆++〉colour =
1√
6
|urugub + ugubur + uburug − ugurub − ubugur − urubug〉. (2.5)

Indeed, assuming that any baryon B contains three quarks q1,2,3, then the colour wave function

of such a composite object can be antisymmetrised as

|B〉colour =
1√
6
|q1rq2gq3b + q1gq2bq3r + q1bq2rq3g

− q1gq2rq3b − q1bq2gq3r − q1rq2bq3g〉 (2.6)

or simply

|B〉colour =
1√
6
εαβγ |q1αq2βq3γ〉, (2.7)

where εαβγ denotes the totally antisymmetric tensor and α, β, γ ∈ {r, g, b}.
Then the direct product of the ∆++ flavour-spin wave function (2.4) with the corresponding

colour wave function (2.5) yields a total wave function that is antisymmetric under exchange of

two quarks – in accordance with the Pauli Principle.

This is of course valid under the assumption that there are three quark colours in nature. This

statement cannot be validated in vacuum – it is an experimental fact that quarks do not appear

as free particles in vacuum but that they are confined within hadrons. There is (at least for now)

no analytic proof of confinement from QCD. However, there are indirect methods from hadron

decays allowing us to determine the number of quark colours.

Experiment 1. The neutral pion decays into 2γ via a triangular quark loop; the branching ratio

is ∼ 100% [10]. The Standard Model determines the corresponding decay width as [4]

Γπ0→2γ =
α2m3

π

64π3f2π

(

Nc

3

)2

≡ 7.73 eV ·
(

Nc

3

)2

, (2.8)

where Nc denotes the number of colours and fπ = 92.4 MeV is the pion decay constant. The

experimental result reads Γexp
π0→2γ

= (7.83 ± 0.37) eV [10] and it can only be described by the
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Standard Model if Nc = 3.

Experiment 2. Consider the ratio of the cross-sections for the processes e+e− → γ (or Z) → q̄q

→ hadrons and e+e− → µ+µ−. The ratio reads [4]

σ(e+e− → γ, Z → q̄q → hadrons)

σ(e+e− → µ+µ−)
=











2
3Nc (Nf = 3)
10
9Nc (Nf = 4)
11
9Nc (Nf = 5).

The best correspondence with experimental data is obtained if Nc = 3 [4]. We thus conclude that

the physical world contains three quarks colours. Note, however, that QCD with two colours can

be explored nonetheless, at least from the theoretical standpoint, see, e.g., Ref. [20]. Addition-

ally, the limit of a large number of colours (large-Nc limit) has also been subject of many studies

[21, 22] and represents a valuable tool of model building (see Sec. 4.3 for the application to the

model presented in this work).

Now that we know the number of colours, it is possible to build colour-neutral meson states:

|M〉colour =
1√
3
|q̄r̄qr + q̄ḡqg + q̄b̄qb〉. (2.9)

2.2 The QCD Lagrangian

In the previous section we have seen that the necessity to introduce a colour degree of freedom

for quarks arises from the requirement of an antisymmetric baryon wave function (that adheres

to the Pauli Principle). It has allowed us to construct putative colour wave functions for baryons

(2.7) as well as meson q̄q states (2.9). In this section we construct a Lagrangian containing

quarks and considering their flavour and colour degrees of freedom.

The Lagrangian is constructed utilising the local (gauge) SU(Nc = 3) symmetry [23]. A quark

field qf in the fundamental representation transforms under the local SU(3) symmetry as

qf → q′f = exp







−i
N2

c−1
∑

a=1

αa(x)ta







qf ≡ Uqf , (2.10)

where ta = λa/2 denotes the generators of the SU(3) group, λa are the Gell-Mann matrices and

αa(x) are the parameters of the group. Let us remember that the Dirac Lagrangian for a free

fermion ψ possesses this form:

LDirac = ψ̄(iγµ∂µ −mψ)ψ. (2.11)

Then, in analogy to the Dirac Lagrangian, we can construct the following Lagrangian involving

the quark flavours considering the requirement that the Lagrangian is locally SU(3)c symmetric

(sum over flavour index f is implied):

Lq = q̄f (iγ
µDµ −mf )qf (2.12)
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where mf denotes the mass of the quark flavour qf ,

Dµ = ∂µ − igAµ (2.13)

represents the SU(3) covariant derivative with the eight gauge fields Aaµ

Aµ =

N2
c−1
∑

a=1

Aaµta, (2.14)

referred to as gluons. The (adjoint) gluon fields transform as follows under the local SU(3) group:

Aµ → A′
µ = UAµU † − i

g
(∂µU)U †. (2.15)

The Lagrangian (2.12) is invariant under transformations (2.10) and (2.15). It is possible to

construct an additional gauge invariant term involving only gluons [24]:

Lg = −
1

4
GaµνG

µν
a (2.16)

(sum over gluon-field index a is implied) where the field strength tensor Gaµν is defined as

Gaµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.17)

and fabc denote the antisymmetric structure constants of the SU(3) group.

The sum of the two Lagrangians (2.12) and (2.16) yields the QCD Lagrangian:

LQCD = q̄f (iγ
µDµ −mf )qf −

1

4
GaµνG

µν
a . (2.18)

2.3 The Chiral Symmetry

In addition to the local SU(3)c colour symmetry, the QCD Lagrangian also exhibits a global

symmetry if quarks are massless – the chiral symmetry. To ascertain this symmetry in the

Lagrangian (2.12) in the limit mf = 0, let us first define the following left-handed and right-

handed operators PR, L:
PR, L =

1± γ5
2

, (2.19)

where PR has the plus sign in the denominator and γ5 is a matrix defined in terms of the other

Dirac matrices as

γ5 = iγ0γ
1γ2γ3, (2.20)

with (in the chiral representation)

γ0 =

(

0 12
12 0

)

, γ =

(

0 σ

−σ 0

)

(2.21)

and σ denotes the triplet of the Pauli matrices. Thus we obtain

γ5 =

(

− 12 0

0 12

)

. (2.22)
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Consequently, the two operators PR, L possess the following form, justifing their labels as right-

handed and left-handed

PR =

(

0 0

0 12

)

, PL =

(

12 0

0 0

)

. (2.23)

By definition (2.20), the γ5 matrix has the feature that γ25 = 1 (i.e., unit matrix). This is

demonstrated using the well-known anticommutation formula of the Dirac matrices

{γµ, γν} = 2gµν , (2.24)

where gµν = diag(1,−1,−1,−1) denotes the metric tensor

γ25 = −γ0γ1γ2γ3γ0γ1γ2γ3 = γ20γ
1γ2γ3γ1γ2γ3

= γ1γ2γ3γ1γ2γ3 = (γ1)2γ2γ3γ2γ3 = −γ2γ3γ2γ3

= (γ2)2(γ3)2 = 1. (2.25)

Additionally,

{γµ, γ5} = 0. (2.26)

Consequently,

P2
R, L =

(1± γ5)2
4

=
1± γ5

2
= PR, L (2.27)

and

PRPL = 0. (2.28)

PR, L are therefore projection operators – we refer to them as chirality projection operators.

Utilising these operators allows us to decompose a quark flavour qf into two components, a

left-handed and a right-handed one:

qf = (PR + PL) qf = qf R + qf L. (2.29)

Analogously for the antiquarks:

q̄f = q̄f (PR + PL) = q̄f R + q̄f L. (2.30)

Using Eq. (2.19) we obtain from the Lagrangian (2.12)

Lq = q̄f (iγ
µDµ −mf )qf

PR+PL=1
= q̄f (PR + PL)(iγµDµ −mf )(PR + PL)qf

(PR+PL)
2=1

= q̄f (PRPR + PLPL)(iγµDµ −mf )(PR + PL)qf
Eqs. (2.26), (2.27), (2.28)

= q̄fPRiγµDµPLqf + q̄fPLiγµDµPRqf − q̄fPRmfPRqf − q̄fPLmfPLqf
= q†fγ0PRiγµDµPLqf + q†fγ0PLiγµDµPRqf − q†fγ0PRmfPRqf − q†fγ0PLmfPLqf
Eq. (2.26)

= q†fPLγ0iγµDµPLqf + q†fPRγ0iγµDµPRqf − q†fPLγ0mfPRqf − q†fPRγ0mfPLqf
≡ q̄f LiγµDµqf L + q̄f Riγ

µDµqf R − q̄f Lmfqf R − q̄f Rmfqf L. (2.31)
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Then the Lagrangian (2.31) less the terms ∼ mf is symmetric under the following, global U(Nf )×
U(Nf ) transformations of the quark fields in the flavour space (ti: group generators)

qf L −→ q′f L = ULqf L = exp







−i
N2

f−1
∑

i=0

αaLt
a







qf L, (2.32)

qf R −→ q′f R = URqf R = exp







−i
N2

f
−1
∑

i=0

αaRt
a







qf R. (2.33)

This symmetry is referred to as the chiral symmetry. As evident from Eq. (2.31), the terms

proportional to mf break the chiral symmetry explicitly, i.e., the symmetry is exact only in the

case of vanishing quark masses: mf = 0.

According to the Noether Theorem [25], a conserved current Jµ is implied by a global symmetry

(and vice versa) in a Lagrangian L(ϕ(xµ)) that is invariant under transformations of the form

ϕ(x)→ ϕ′(x) = ϕ(x) + δϕ(x) and x→ x′(x) = x+ δx with

Jµ =
∂L

∂(∂µϕ)
δϕ + δxµL. (2.34)

Thus the mentioned U(Nf )L × U(Nf )R implies the existence of the conserved left-handed and

right-handed currents Lµ and Rµ. It is usual, however, to work instead with currents of definitive

parity P : the vector current V µ = (Lµ +Rµ)/2

P : V 0(t,x) −→ V 0(t,−x), (2.35)

P : V i(t,x) −→ −V i(t,−x) (2.36)

(i denotes the spatial index) and the axial-vector current Aµ = (Lµ −Rµ)/2

P : Ai(t,x) −→ Ai(t,−x), (2.37)

P : A0(t,x) −→ −A0(t,−x). (2.38)

Indeed the chiral group U(Nf )L ×U(Nf )R is isomorphic to the group U(Nf )V ×U(Nf )A of the

unitary vector and axial-vector transformations. From the features of the unitary groups we

know that U(Nf )V ×U(Nf )A ≡ U(1)V ×SU(Nf )V ×U(1)A×SU(Nf )A. Let us now discuss the

currents obtained from the Lagrangian (2.12) without gluon fields (Aµ = 0) under the stated

four transformations.

• U(1)V implies α0
L = α0

R = α0
V /2 in Eqs. (2.32) and (2.33):

U1V = exp(−iα0
V t

0), (2.39)

i.e., U1V = U1L = U1R. We define t0 = 1Nf
/
√

2Nf [we denote the other generators

of the unitary group U(Nf ) as ti with i = 1, ..., Nf ]. It is clear that the Lagrangian

(2.12) is symmetric under the transformation (2.39). The corresponding conserved current
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obtained by inserting the Lagrangian (2.12) into Eq. (2.34) and considering infinitesimal

transformation UV ≈ 1− iα0
V t

0 reads

V µ
0 =

∂L
∂(∂µqf )

δqf = q̄fγ
µα0

V t
0qf . (2.40)

The parameter α0
V can be discarded because the current is conserved:

∂µV
µ
0 = 0. (2.41)

Similarly, the generator t0 is proportional to the unit matrix and the corresponding pro-

portionality constant can be absorbed into α0
V . Thus we obtain

V µ
0 = q̄fγ

µqf . (2.42)

The zero component of the current reads

V 0
0 = q̄fγ

0qf (2.43)

and it corresponds exactly to the one that we could have obtained also from the Dirac

equation (2.11). Then we know, however, that integration over V 0
0 yields a conserved

charge Q

Q =

∫

d3xq̄fγ
0qf (2.44)

corresponding to the baryon-number conservation.

• Group parameters for SU(Nf )V are obtained for αiL = αiR = αiV /2 with i = 1, ..., N2
f − 1

or in other words

UV = exp(−iαiV ti), (2.45)

i.e., UV = UL = UR. Infinitesimally,

UV ≈ 1− iαiV ti. (2.46)

Varying the quark fields qf in the Lagrangian (2.12) under the transformation (2.46) yields

(we consider only terms up to order αiV , not higher-order ones):

Lq = iq†f (1 + iαiV t
i)γ0γµ∂µ(1− iαiV ti)qf

− q†f (1 + iαiV t
i)γ0mf (1− iαiV ti)qf

= iq̄fγ
µ∂µqf − iαiV (q̄f i ti γµ∂µ qf − q̄f i ti γµ ∂µ qf)

− q̄fmfqf − iαiV (q̄f [ti,mf ] qf )

= iq̄fγ
µ∂µqf − q̄fmfqf − iαiV (q̄f [ti,mf ] qf ). (2.47)

The Lagrangian is only invariant under the vector transformations if the quark masses are

degenerate. The conserved vector current from Eq. (2.47) and the Noether Theorem is

V µ i = q̄fγ
µtiqf (2.48)

14



but, as already indicated, the divergence of the current

∂µV i
µ = iq̄f [t

i,mf ] qf (2.49)

is zero only in the case of degenerate quark masses.

• An element of SU(Nf )A is given by

UA = exp(−iαiAγ5ti), (2.50)

where UA = UL = U †
R. [SU(Nf )A is actually not a group because it is not closed with

regard to the product of two elements but this is not a problem here because the SU(Nf )A
symmetry is spontaneously broken, see below.] The infinitesimal transformation reads

UA ≈ 1− iαiAγ5ti. (2.51)

Varying the quark fields qf in the Lagrangian (2.12) under the transformation (2.46) yields

Lq = iq†f (1 + iαiAγ5t
i)γ0γµ∂µ(1− iαiAγ5ti)qf

− q†f (1 + iαiAγ5t
i)γ0mf (1− iαiAγ5ti)qf

= iq̄fγ
µ∂µqf − iαiA(q̄f i ti γµ∂µ γ5 qf − q†f i ti γ5 γ0 γµ ∂µ qf )

− q̄fmfqf + iαiA(q̄f {ti,mf}γ5 qf )
Eq. (2.26)

= iq̄fγ
µ∂µqf − q̄fmfqf + iαiA(q̄f {ti,mf}γ5 qf ). (2.52)

Thus the axial-vector current

Aµ i = q̄fγ
µγ5t

iqf (2.53)

is only conserved if all quark masses are zero:

∂µAiµ = iq̄f {ti,mf} qf . (2.54)

• Let us now turn to the axial-vector singlet transformation U(1)A. It has the following form:

U1A = exp(−iα0
Aγ5t

0) (2.55)

or infinitesimally

U1A ≈ 1− iα0
Aγ5t

0. (2.56)

Then the Lagrangian (2.12) transforms under U(1)A as follows:

Lq = iq†f (1 + iα0
Aγ5t

0)γ0γµ∂µ(1− iα0
Aγ5t

0)qf

− q†f (1 + iα0
Aγ5t

0)γ0mf (1− iα0
Aγ5t

0)qf

= iq̄fγ
µ∂µqf − iα0

A(q̄f i t
0 γµ∂µ γ5 qf − q†f i t0 γ5 γ0 γµ ∂µ qf )

− q̄fmfqf + iα0
A(q̄f {t0,mf}γ5 qf )

Eq. (2.26)
= iq̄fγ

µ∂µqf − q̄fmfqf + iα0
A(q̄f mf γ5 qf ). (2.57)
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Thus the axial-vector singlet current

Aµ0 = q̄f γ
µγ5 qf (2.58)

appears to be conserved in the limit mf = 0:

∂µA0
µ = iq̄f mf γ5qf . (2.59)

It is, however, only conserved classically. Considering quantum fluctuations one sees that

it is actually not conserved [26]:

∂µA0
µ|mf=0 = −

g2Nf

32π2
GaµνG̃

µν
a , (2.60)

where G̃µνa denotes the dual field-strength tensor G̃µνa = εµνρσGaρσ/2. Symmetries valid on

the classical level but broken on the quantum level are referred to as anomalies – Eq. (2.60)

indicates the chiral anomaly, a very important feature of QCD that has to be considered

also when a model is built (see Sec. 6.4 for the discussion of the chiral-anomaly term in

our model). Nonetheless, given that even the u and d quarks possess non-vanishing mass

values, we observe from Eq. (2.59) that, even classically, the axial-vector singlet current is

conserved only partially (PCAC).

Let us then summarise the results of this section as follows: we observe a U(Nf )L×U(Nf )R chiral

symmetry in the QCD Lagrangian with Nf flavours (2.18); the symmetry is isomorphic to the

U(Nf )V ×U(Nf )A ≡ U(1)V ×SU(Nf )V ×U(1)A×SU(Nf )A symmetry and, in the limit of vanish-

ing quark masses, it appears to be exact (apart from the chiral anomaly). For non-vanishing but

degenerate quark masses, the symmetry is broken explicitly to U(Nf )V × U(Nf )A → U(1)V ×
SU(Nf )V and for non-degenerate quark masses it is broken to U(Nf )V × U(Nf )A → U(1)V .

Thus, by discussing the properties of the QCD Lagrangian only, we conclude that the magnitude

of the symmetry breaking in nature should not be large if we consider u and d quarks only

because their masses are small. However, we will see later on that there is another mechanism

of chiral symmetry breaking, the spontaneous one, that leads to a variety of new conclusions.

Before we turn to the spontaneous breaking of the chiral symmetry, let us first briefly discuss

other symmetries of the QCD Lagrangian.

2.4 Other QCD Symmetries

2.4.1 CP Symmetry

The parity transformation for fermions (and thus also for quarks) reads

q(t,x)
P→ γ0q(t,−x) (2.61)

and thus

q†(t,x)
P→ q†(t,−x)γ0. (2.62)
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If we transform the quark part of the QCD Lagrangian (2.12), then we obtain for µ = i ∈ {1, 2, 3}

Lq = q̄f (t,x)iγ
iDiqf (t,x)− q̄f (t,x)mfqf (t,x)

P→ q†f (t,−x)γ0γ0iγi(−Di)γ
0qf (t,−x)− q†f (t,−x)γ0γ0mfγ

0qf (t,−x)
Eq. (2.24)

= q†f(t,−x)γ0iγiDiqf (t,−x)− q†f (t,−x)mfqf (t,−x)
= q̄f (t,−x)iγiDiqf (t,−x)− q̄f (t,−x)mfqf (t,−x). (2.63)

The parity conservation is trivially fulfilled in the case µ = 0 due to Eq. (2.24). The gauge part

of the QCD Lagrangian (2.16) is obviously parity-conserving.

The charge conjugation of quarks SC is such that

q
C→ SC q̄

t = SC(γ
0)tq∗ (2.64)

where the superscript t denotes the transposed function and S−1
C γµSC = (−γµ)t. (In the case of

the Dirac notation, SC = −iγ2γ0.) We note that, due to S−1
C = S†

C (unitary transformation),

S†
Cγ

µSC = (−γµ)t ⇒ S†
Cγ

µ = (−γµ)tS−1
C . (2.65)

Additionally,

q†
C→ [SC(γ

0)tq∗]† = qt(γ0)∗S†
C . (2.66)

Let us consider how the quark part of the QCD Lagrangian (2.12) transforms under charge

conjugation. Note that Dµ = ∂µ − igAµ contains gluon fields transforming as odd under C.

Remember that the quarks are fermions and therefore any commutation of the quark fields in

the following lines yields an additional minus sign.

Lq = q̄f iγ
µDµqf − q̄fmfqf

C→ iqtf (γ
0)∗S†

Cγ
0γµ(∂µ + igAµ)SC(γ0)tq∗f − qtf (γ0)∗S†

Cγ
0mfSC(γ

0)tq∗f
Eq. (2.65)

= iqtf (γ
0)∗(−γ0)tS−1

C γµSC(∂µ + igAµ)(γ0)tq∗f − qtf (γ0)∗(−γ0)tS−1
C mfSC(γ

0)tq∗f
S−1
C γµSC=(−γµ)t

= iqtf (γ
0)∗(γ0)t(γµ)t(∂µ + igAµ)(γ0)tq∗f − qtf (γ0)∗(−γ0)tmf (γ

0)tq∗f
γ0(γ0)†=1

= iqtf (γ
µ)t(γ0)t∂µq

∗
f + iqtf (γ

µ)t(ig)Aµ(γ0)tq∗f − qtf (γ0)∗(−γ0)tmf (γ
0)tq∗f

=
[

iqtf (γ
µ)t(γ0)t∂µq

∗
f

]t
+
[

iqtf (γ
µ)t(ig)Aµ(γ0)tq∗f

]t
+
[

qtfmf (γ
0)tq∗f

]t

= −i(∂µq̄f )γµqf − iq̄fγµ(igAµ)qf − q̄fmfqf

≡ iq̄fγµ∂µqf − iq̄fγµ(igAµ)qf − q̄fmfqf

= iq̄fγ
µDµqf − q̄fmfqf , (2.67)

where we have used (γ0)∗(γ0)t = [γ0(γ0)†]t = 1t = 1 and also the well-known feature that the

following equality holds for an (N ×N) matrix M , (1×N) vector v and (N × 1) vector u under

transposition:

vMu = (vMu)t (2.68)

because the result of the multiplication is a number.
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Then the QCD Lagrangian (2.18) is unchanged under P and C transformations (2.61), (2.62),

(2.64) and (2.66) – the strong interaction is CP invariant. [A review of a possible, although

small, CP violation in strong interactions may be found, e.g., in Ref. [27].]

2.4.2 Z Symmetry

This symmetry is a discrete one. The general form of a special unitary Nf×Nf matrix U contains

also the centre elements Zn (sometimes referred to simply as Z):

U = Zn exp(−iαiti), i = 1, ..., N2
f − 1 (2.69)

where

Zn = exp

(

−i2πn
Nc

t0
)

, n = 0, 1, ..., Nc − 1. (2.70)

The determinant of Zn reads

detZn =

[

exp

(

−i2πn
Nc

)]Nc

= 1. (2.71)

For this reason, Zn is (as already indicated) a member of the SU(Nf ) group. The quarks and

gluons transform under the Z group as

qf → q
′
f = Znqf , (2.72)

Aµ → A′
µ = ZnAµZ

†
n (2.73)

and the Yang-Mills Lagrangian (2.16) is invariant under these transformations. The Z symmetry

is not exact in the presence of quarks because it does not fulfill the necessary antisymmetric

boundary conditions. Additionally, note that the symmetry is spontaneously broken in the

gauge (i.e., gluon) sector of QCD at large temperatures. This is an order parameter for the

deconfinement. The order parameter is usually represented (in models such as the NJL model

[28] but also in first-principle calculations) by the so-called Polyakov loop (see Ref. [29] for

Polyakov-loop extended NJL model).

2.4.3 Dilatation Symmetry

This is a symmetry of the gauge (or Yang-Mills – YM) sector of QCD, Eq. (2.16). The dilatation

(or scale) transformation is defined as

xµ → x′µ = λ−1xµ, (2.74)

where λ denotes a scale parameter. Then, for dimensional reasons, the gauge fields in Eq. (2.16)

have to transform as

Aaµ(x)→ Aa′µ (x
′) = λAaµ(x). (2.75)

18



Consequently, the Lagrangian (2.16) obtains a factor λ4 under the transformations (2.74) and

(2.75)

Lg → λ4Lg (2.76)

but the action

Sg =

∫

d4xLg (2.77)

is invariant. This symmetry is known as the dilatation or trace symmetry. (Strictly speaking,

the notion of a symmetry always requires the action S to be invariant under a transformation

rather than the Lagrangian L but in all the other examples discussed in this chapter there is

no transformation of space-time x. For this reason, in all the other cases, the symmetry of the

Lagrangian is simultaneously the symmetry of the action as well.)

Consequently, the obtained conserved current reads

Jµ = xνT
µν , (2.78)

where T µν is the energy-momentum tensor of the gauge-field Lagrangian (2.16):

T µν =
∂Lg

∂(∂µAξ)
∂νAξ − gµνLg. (2.79)

Therefore,

∂µJ
µ = T µµ = 0. (2.80)

Similarly to the singlet axial current (2.59), the dilatation symmetry is broken both classically

and at the quantum level. On the classical level, the dilatation-symmetry breaking is induced

by the inclusion of quark degrees of freedom. We observe from Eq. (2.12) that the quark fields

have to transform in the following way so that the dilatation symmetry is fulfilled in the limit

mf = 0:

qf → q′f = λ3/2qf . (2.81)

If we consider mf 6= 0, then we observe that the dilatation symmetry is broken explicitly by

non-vanishing quark masses:

T µµ =

Nf
∑

f=1

mf q̄q, (2.82)

unlike Eq. (2.80). The degree of the dilatation-symmetry breaking is of course small if one

considers only light quarks and the symmetry is exact if one considers mf = 0.

However, at the quantum level (calculating gluon loops), the symmetry is never exact. The strong

coupling g is known to change with scale µ (e.g., centre-of-mass energy) upon renormalisation of

QCD [30]: g → g(µ). Perturbative QCD then yields

∂µJ
µ = T µµ =

β(g)

4g
GaµνG

µν
a 6= 0, (2.83)
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where β(g) denotes the famous β-function of QCD

β(g) = µ
∂g

∂µ
(2.84)

that demonstrates how the strong coupling changes with the scale. At 1-loop level:

β(g) = −bg3 = −11Nc − 2Nf

48π2
g3. (2.85)

If the strong coupling did not change (g = const. = g0), then the dilatation symmetry would

not be broken and we would retrieve the result of Eq. (2.80). Solving the differential Eq. (2.85)

yields

g2(µ) =
g2∗

1 + 2bg2∗ log
µ
µ∗

. (2.86)

Given that b > 0 for Nf < 11Nc/2 [see Eq. (2.85)], the coupling decreases with the increasing

scale. Thus, at small scales, the coupling is strong: this is a sign of confinement. However, we

also observe that, at a certain scale, one can expect the interaction strength between quarks and

gluons to decrease sufficiently as to allow for the partons to no longer be confined within hadrons

– asymptotic freedom. Note also that Eq. (2.86) implies that the strong coupling g decreases

with the number of colours, a result of major impact also for deliberations in this work (see Sec.

4.3).

Note that Eq. (2.86) possesses a pole (the so-called Landau pole) at

µL ≡ ΛLandau = µ∗ exp

(

− 1

2bg2∗

)

. (2.87)

Then we can transform Eq. (2.86) as

g2(µ) =
1

2b log µ
ΛLandau

. (2.88)

Of course, this result does not imply that the strong coupling g diverges at µ = µL but rather

indicates that QCD is a strongly bound theory in the vicinity of the pole. The value of the

pole itself is, unfortunately, unknown because an initial value of µ [needed to solve Eq. (2.85)] is

unknown as well. However, this nonetheless implies that a scale is generated in a dimensionless

theory via renormalisation – a mechanism known as the dimensional transmutation.

The breaking of the dilatation (scale) invariance is labelled as the trace anomaly. It leads to

the generation of a gluon condensate due to the non-vanishing vacuum expectation value of the

gluon fields:

〈

T µµ
〉

= −
〈

11Nc − 2Nf

48

αs
π
GaµνG

µν
a

〉

∼ −11Nc − 2Nf

48
C4, (2.89)

where αs = g2/(4π) is the strong fine-structure constant and the values

C4 ≃ (300 − 600 MeV)4 (2.90)

have been obtained through QCD sum rules (lower range of the interval) [31] and lattice simu-

lations (higher range of the interval) [32].
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This raises the possibility to study glueball fields – bound states of two (or more) gluons. We

will present a calculation involving, among others, a scalar glueball and a q̄q state in Chapter

12.

2.5 Spontaneous Breaking of the Chiral Symmetry

Until now we have only considered quarks and gluons as degrees of freedom. In this section we

turn to structures that are composed of quarks. Concretely, we will be working with q̄q mesons

(flavour index f suppressed). These states are colour-neutral therefore trivially fulfilling the

confinement.

States containing an antiquark and a quark can be classified according to their quantum numbers:

total spin J = L+S (where L denotes the relative orbital angular momentum of the two quarks

and S denotes their relative spin), parity P , Eqs. (2.61) and (2.62), and charge conjugation C,

Eq. (2.64) and (2.66). Let us restrict ourselves to the case of the light quarks u and d only,

i.e., q̄ ≡ (ū, d̄) and q the corresponding column vector; states with heavier quarks are discussed

analogously.

First we can define a state [33]:

q̄q (2.91)

for which we observe that it transforms as follows under parity, Eqs. (2.61) and (2.62):

q̄(t,x)q(t,x)
P→ q†(t,−x)γ0γ0γ0q(t,−x) Eq. (2.24)

= q̄(t,−x)q(t,−x) (2.92)

and under charge conjugation, Eqs. (2.64) and (2.66), as

q̄q
C→ qti(γ0)∗γ2γ0γ0(−i)γ2γ0(γ0)tq∗
Eq. (2.24)

= qt(γ0)∗γ2γ2γ0(γ0)tq∗ = −qt(γ0)∗γ0(γ0)tq∗
!
= [−qt(γ0)∗γ0(γ0)tq∗]t = q†γ0(γ0)t(γ0)†q = q̄q. (2.93)

The q̄q state is therefore unchanged under parity and charge conjugation, and it obviously carries

no (total) spin. It is therefore a scalar. Note, however, that the mere fact of having J = 0 does

not necessarily imply that L and S vanish as well. Indeed one can demonstrate [34] that, for a

system of an antiquark and a quark,

P = (−1)L+1 (2.94)

and

C = (−1)L+S . (2.95)

For this reason, P = 1 = C implies L = 1 = S. In other words: the scalar q̄q state is a P -wave

state. We can denote it as σN , alluding to the famous σ meson (see Sec. 3.1), or in other words

σN ≡ q̄q. (2.96)

If we define a state

iq̄γ5q, (2.97)
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then we observe that it transforms as follows under parity

iq̄(t,x)γ5q(t,x)
P→ iq†(t,−x)γ0γ0γ5γ0q(t,−x)

Eq. (2.24)
= −iq̄(t,−x)γ5q(t,−x) (2.98)

and under charge conjugation (here exemplary for the Dirac notation) as:

iq̄(t,x)γ5q(t,x)
C→ iqtiγ0γ2γ0γ0γ5(−i)γ2q∗
Eq. (2.24)

= iqtiγ0γ2γ5(−i)γ2q∗
Eq. (2.26)

= −iqtγ0γ2γ2γ5q∗

= iqtγ0γ5q
∗ !
= (iqtγ0γ5q

∗)t = −iq†γ5γ0q = iq̄γ5q. (2.99)

The state q̄γ5q is thus P -odd and C-even: it is a pseudoscalar and we label the state as ηN ,

alluding to the physical η field: ηN ≡ q̄γ5q. [Note, however, that the field defined in Eq. (2.97)

cannot be exactly the physical η field because we have restricted ourselves to two flavours, i.e.,

non-strange quarks, see Sec. 7.1.] Similarly, we define a pion-like state

π ≡ iq̄tγ5q (2.100)

considering that the pion is an isospin triplett. The calculation of the behaviour of the state in

Eq. (2.100) under parity and charge conjugation is analogous to the one demonstrated in Eqs.

(2.98) and (2.99).

Let us now define a state

q̄γµq (2.101)

for which we observe that it transforms as follows under parity

q̄(t,x)γµq(t,x)
P→ q†(t,−x)γ0γ0γµγ0q(t,−x)
Eq. (2.24)

=

{

q̄(t,−x)γ0q(t,−x) for µ = 0

−q̄(t,−x)γiq(t,−x) for µ = i ∈ {1, 2, 3} (2.102)

or, in other words, the temporal component is parity-even whereas the spatial components are

parity-odd. Additionally, we observe that the state is odd under the C-transformation [the

calculation is analogous to the one in Eq. (2.99)]. Given that the field combination q̄γµq possesses

spin 1, we label it as a vector state that we denote as ωµN . Consequently, the state

ρµ ≡ q̄tγµq (2.103)

is an isospin-triplett vector state [just as the ρ(770) meson].

Finally, the states

fµ1N ≡ q̄γ5γµq (2.104)

and

a
µ
1 ≡ q̄tγ5γµq (2.105)

are even under both parity and charge conjugation and additionally have spin 1: we label them

as axial-vectors.
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Let us now discuss the behaviour of these states under vector and axial-vector transformations.

We observe, for example, that the vector transformation (2.46) of the pion field π (2.100) yields

π ≡ iq̄tγ5q V→ iq† (1 + iαV · t) γ0 t γ5 (1− iαV · t) q
= iq̄tγ5q + iq† (i ti tj αiV − i tj ti αiV ) γ0 γ5 q
= iq̄tγ5q − iq†αiV εijk tk γ0 γ5 q
= iq̄tγ5q − iεijk αiV q̄ tk γ5 q
≡ π + iεijk αjV q̄ t

k γ5 q ≡ π +αV × π, (2.106)

where we have used the commutator [ti, tj ] = iεijktk.

Analogously to Eq. (2.106), we obtain from Eqs. (2.96), (2.103) and (2.105):

σ
V→ σ, (2.107)

ρµ
V→ ρµ +αV × ρµ, (2.108)

a
µ
1
V→ a

µ
1 +αV × a

µ
1 . (2.109)

Thus the vector transformation corresponds to a rotation in the isospin space; as we have seen

in Sec. 2.3, the QCD Lagrangian is invariant under this transformation (for degenerate quark

masses) – the conserved vector current can thus be identified with an isospin current.

However, the behaviour of our composite fields is quite different under axial transformations

(2.51). Let us again first study the π field:

π = iq̄tγ5q
A→ iq† (1 + i γ5 αA · t) γ0 t γ5 (1− i γ5 αA · t) q
= iq̄tγ5q + iq† (i γ5 γ0 γ5 t

i tj αiA − i γ0 γ25 tj ti αiA) q
Eq. (2.26)

= π + q† γ0 α
i
A (ti tj + tj ti)q

= π + q† γ0 α
i
A {ti, tj} q ≡ π +αAσ, (2.110)

where we have used the anticommutator {ti, tj} = δijt0. Analogously to Eq. (2.110) we obtain

from Eqs. (2.96), (2.103) and (2.105):

σ
A→ σ −αA · π, (2.111)

ρµ
A→ ρµ +αA × a

µ
1 , (2.112)

a
µ
1
A→ a

µ
1 −αA × ρµ. (2.113)

Thus the scalar state σ is connected to the pseudoscalar state π via the axial transformation

(and vice versa); the vector state ρµ is connected to the axial-vector state a
µ
1 (and vice versa) in

the same way. As we have discussed in Sec. 2.3, the axial symmetry SU(Nf )A is exact within the

QCD Lagrangian, up to the explicit breaking due to non-vanishing quark masses. This implies

that, in the limit of small u, d quark masses, the breaking of the axial symmetry is virtually

negligible. Consequently, given that the scalar and the pseudoscalar can be rotated into each

other (just as the vector and the axial-vector), one would expect these states to possess the

same masses. Experimentally, this is not the case. If we assign our vector state ρµ to the lowest

observed vector excitation, the ρ(770) meson with a mass of mρ(770) = (775.49± 0.34) MeV and
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our axial-vector state aµ1 to the lowest observed axial-vector excitation, the a1(1260) meson with

a mass of ∼ 1230 MeV [10], then we observe that the mass difference of these two states is of the

order of the ρ(770) mass itself. Such a large magnitude of symmetry breaking cannot originate

from the (small) quark masses. The symmetry must have been broken by a different mechanism

– spontaneously – because, evidently, the axial symmetry realised in the QCD Lagrangian is not

realised in the vacuum states of QCD.

Let us remind ourselves that the chiral symmetry U(Nf )V × U(Nf )A ≡ U(1)V × SU(Nf )V ×
U(1)A × SU(Nf )A discussed in Sec. 2.3 is broken explicitly to U(1)V × SU(Nf )V in the case of

non-vanishing but degenerate quark masses [note also the existence of the U(1)A anomaly (2.60)

even if all quark masses vanish]. If the quark masses are non-vanishing and non-degenerate then

the residual U(1)V × SU(Nf )V symmetry is broken completely to U(1)V , indicating baryon-

number conservation.

On the other hand, the mechanism of spontaneous chiral-symmetry breaking is based on the

existence of the chiral (quark) condensate [35]

〈q̄q〉 = 〈0|q̄q|0〉 = −iTr lim
y→x+

SF (x, y) (2.114)

where SF (x, y) denotes the full quark propagator. Then utilising Eqs. (2.28), (2.29) and (2.30)

we obtain

〈q̄q〉 = 〈(q̄L + q̄R)(qL + qR)〉 = 〈q̄RqL + q̄LqR〉 6= 0. (2.115)

The existence of the quark condensate is a consequence of vacuum polarisation by means of

the strong interaction. The condensate breaks the chiral symmetry SU(Nf )V × SU(Nf )A to

SU(Nf )V ; the magnitude of the condensate is a measure of the magnitude of the spontaneous

chiral-symmetry breaking – for 〈q̄q〉 → 0, the axial symmetry is exact again.

The spontaneous breaking of the chiral symmetry has at least two important consequences.

According to the Goldstone Theorem [36], one expects N2
f − 1 massless pseudoscalar bosons to

emerge as consequence of the spontaneous breaking of a global symmetry. This is indeed observed:

e.g., for Nf = 2, three pions were discovered a long time ago [11] and their masses of ∼ 140 MeV

are several times smaller than the mass of the first heavier meson. Their non-vanishing mass

arises due to the explicit breaking of the chiral symmetry, rendering them pseudo-Goldstone

bosons. For Nf = 3, experimental observations yield five additional pseudoscalar Goldstone

states: four kaons and the η meson. Note, however, that the latter mixes with a heavier η′ state
that would also represent a Goldstone mode of QCD if the chiral anomaly (2.60) were not present.

Additionally, it is expected that the quark condensate will diminish at non-zero values of tem-

perature and baryon density; the restoration of the chiral symmetry (the so-called chiral phase

transition) thus denotes the point where the chiral-symmetry breaking is no longer present (at

a temperature Tc ∼ 190 MeV [37]). The chiral phase transition may occur simultaneously with

the deconfinement; however, it is as yet not known whether this is actually the case.

2.6 Calculating the Decay Widths

As already indicated, mesons are very unstable particles. The typical lifetime of a meson is

(10−24 − 10−25) s, with some notable exceptions such as the pion with the mean lifetime of
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approximately 10−8 s. This work will analyse various two-body decays of mesons into final

states as well as into states that themselves decay further (sequential decays). For this reason it

is necessary to develop a formalism that allows us to calculate the corresponding decay widths,

denoted as Γ; these are related to the time τ necessary for a particle to decay with the following

relation

τ = Γ−1. (2.116)

(There may be deviations from this law under certain conditions which we do not consider here;

see Ref. [38].)

Let us in the following derive a formula for the decay width Γχ→ϕ1ϕ2 of a particle χ decaying

into particles ϕ1and ϕ2.

Lχϕ1ϕ2 =
1

2
(∂µχ)

2 − 1

2
m2
χχ

2 +
1

2
(∂µϕ1)

2 − 1

2
m2
ϕ1
ϕ2
1

+
1

2
(∂µϕ2)

2 − 1

2
m2
ϕ2
ϕ2
2 + gχϕ1ϕ2 (2.117)

where the last term, gχϕ1ϕ2, denotes the interaction of the field χ(X) with the fields ϕ1(X)

and ϕ2(X); x denotes the Minkowski space-time vector. Let us, for simplicity, assume that

ϕ1 = ϕ2 ≡ ϕ. Let us also assume that mχ > 2mϕ rendering the tree-level decay χ → 2ϕ

possible.

The decay amplitude obtained from the Lagrangian in Eq. (2.117) then reads:

−iMχ→2ϕ = i2g (2.118)

where the symmetry factor of two appears due to the new form of the interaction part of the

Lagrangian (2.117): gχϕ1ϕ2
ϕ1=ϕ2→ gχϕ2.

Let us consider the scalar fields χ and ϕ as confined in a cube of length L and volume V = L3.

Let us furthermore denote the 4-momenta of χ and ϕ as P and K, respectively; then it is known

from Quantum Mechanics that their 3-momenta are quantised: p = 2πnP /L, k = 2πnK/L.

We denote the corresponding energies as Ep =
√

m2
χ + p2 and Ek =

√

m2
ϕ + k2. It is also

known from Quantum Field Theory that a free scalar bosonic field can be decomposed in terms

of creation and annihilation operators (respectively â†, b̂† and â, b̂) utilising the following Fourier

transformation:

χ̂(X) =

∫

d3p
√

(2π)3
1

√

2Ep

[

b̂ (p) e−iP ·X + b̂†(p)eiP ·X
]

(2.119)

and

ϕ̂(X) =

∫

d3k
√

(2π)3
1

√

2Ek

[

â(k)e−iK·X + â†(k)eiK·X
]

. (2.120)

The operators obey the following commutation relations:

[â(k1), â(k2)] = [â†(k1), â
†(k2)] = 0, (2.121)

[â(k1), â
†(k2)] = δ(3)(k1 − k2), (2.122)

[b̂(p1), b̂(p2)] = [b̂†(p1), b̂
†(p2)] = 0, (2.123)

[b̂(p1), b̂
†(p2)] = δ(3)(p1 − p2). (2.124)
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The χ resonance represents our initial state |i〉:

|i〉 =
√

(2π)3

V
b̂†(p) |0〉 (2.125)

whereas the two ϕ resonances are our final states:

|f〉 = (2π)3

V
â†(k1)â

†(k2) |0〉 . (2.126)

The volume appears in the definition of the initial and final states to ensure their correct nor-

malisation:

〈i |i〉 = (2π)3

V
〈0|b̂(p)b̂†(p)|0〉 Eq. (2.124)=

(2π)3

V
〈0|δ(3)(0)− b̂†(p)b̂(p)|0〉

=
(2π)3

V
〈0|δ(3)(0)|0〉 = (2π)3

V
δ(3)(0) = 1, (2.127)

under the following normalisation condition for the δ distribution:

δ(3)(0) = lim
V→∞

V

(2π)3
, (2.128)

obtained from the well-known Fourier transformation

δ(3)(p) =

∫

d3x

(2π)3
eip·x (2.129)

for p = 0. [As an equivalence but not equality, we can state simply δ(3)(0) ≡ V
(2π)3

.] The

calculation of Eq. (2.127) can likewise be repeated for the final state |f〉 (2.126).
The corresponding element of the scattering matrix then reads

〈f | S |i〉 , (2.130)

with the scattering-matrix operator

S = T̂ e−i
∫
d4XH(X), (2.131)

where T̂ denotes the time-ordering operator and H(X) is the interaction Hamiltonian that de-

pends on the interaction part of the Lagrangian (2.117):

H = −gχ(X)ϕ2(X). (2.132)

For a small coupling, we can consider the scattering matrix up to the first order only:

S(1) = −i
∫

d4XT̂ [H(X)]. (2.133)

Let us now calculate the expectation value of S(1) in terms of the initial and final states:

〈f | S(1) |i〉 = 〈f | ig
∫

d4XT̂ [ϕ2(X)χ(X)] |i〉

= i

[

(2π)3

V

]3/2

g 〈0| â(k1)â(k2)

∫

d4XT̂ [ϕ2(X)χ(X)]b̂†(p) |0〉 . (2.134)
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Inserting Eqs. (2.119) and (2.120) into Eq. (2.134) and performing time-ordered product of

creation and annihilation operators we obtain

〈f | S(1) |i〉 = i

[

(2π)3

V

]3/2

g
1

√

2Ep

1
√

2Ek1

1
√

2Ek2

∫

d4X
d3p

√

(2π)3
d3k1
√

(2π)3
d3k2
√

(2π)3

× 〈0| â(k1)â(k2)
[

b̂ (p) e−iP ·X + b̂†(p)eiP ·X
]

×
[

â(k1)e
−iK1·X + â†(k1)e

iK1·X
] [

â(k2)e
−iK2·X + â†(k2)e

iK2·X
]

b̂†(p) |0〉

= i

[

(2π)3

V

]3/2

g
1

√

2Ep

1
√

2Ek1

1
√

2Ek2

∫

d4X
d3p

√

(2π)3
d3k1
√

(2π)3
d3k2
√

(2π)3

× 〈0| â(k2)â(k1)â(k1)â(k2)b̂ (p) b̂
† (p) e−i(K1+K2+P )·X

+ â(k2)â(k1)â
†(k1)â(k2)b̂ (p) b̂

† (p) ei(K1+K2−P )·X

+ â(k2)â(k1)â(k1)â
†(k2)b̂ (p) b̂

† (p) e−i(K1−K2+P )·X

+ â(k2)â(k1)â(k1)â(k2)b̂
† (p) b̂† (p) e−i(K1+K2−P )·X

+ â(k2)â(k1)â
†(k1)â(k2)b̂

† (p) b̂† (p) ei(K1+K2+P )·X

+ â(k2)â(k1)â(k1)â
†(k2)b̂

† (p) b̂† (p) e−i(K1−K2−P )·X

+ â(k2)â(k1)â
†(k1)â

†(k2)b̂
† (p) b̂† (p) ei(K1+K2+P )·X

+ â(k2)â(k1)â
†(k1)â

†(k2)b̂ (p) b̂
† (p) ei(K1+K2−P )·X |0〉 . (2.135)

Only the term in the last line remains as all the other terms are proportional to â(k1,2) |0〉 = 0,

to 〈0| b̂† (p) = 0 or to

â(k2)â(k1)â(k1)â
†(k2)b̂ (p) b̂

† (p) |0〉
Eq. (2.124)

= â(k2)â(k1)â(k1)â
†(k2)[δ

(3)(0) + b̂† (p) b̂ (p)] |0〉
Eq. (2.122)

= â(k2)â(k1)[δ
(3)(k1 − k2) + â†(k1)â(k2)]δ

(3)(0) |0〉 = 0. (2.136)

We therefore obtain

〈f | S(1) |i〉 = i

[

(2π)3

V

]3/2

g
1

√

2Ep

1
√

2Ek1

1
√

2Ek2

∫

d4X
d3p

√

(2π)3
d3k1
√

(2π)3
d3k2
√

(2π)3

× 〈0| â(k2)â(k1)â
†(k1)â

†(k2)b̂ (p) b̂
† (p) ei(K1+K2−P )·X |0〉 . (2.137)

Eq. (2.127) implies that our creation and annihilation operators are normalised as

〈0|b̂(p)b̂†(p)|0〉 = V

(2π)3
(2.138)

and consequently Eq. (2.137) gains the following form:
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〈f | S(1) |i〉 = i

[

(2π)3

V

]3/2

g
1

√

2Ep

1
√

2Ek1

1
√

2Ek2

V 3

(2π)9

×
∫

d4X
d3p

√

(2π)3
d3k1
√

(2π)3
d3k2
√

(2π)3
ei(K1+K2−P )·X . (2.139)

If we consider the quantised version of the 3-momenta of the particles involved, then the usual

box normalisation yields p = 2πnP /L and k = 2πnK/L, i.e.,

∆p = 2π∆nP /L and ∆k = 2π∆nK/L. Substituting ∆p → dp and ∆k → dk yields
∫

d3p =

(2π)3/V =
∫

d3k and thus

〈f | S(1) |i〉 = i

(

1

V

)3/2

g
1

√

2Ep

1
√

2Ek1

1
√

2Ek2

V 3

(2π)9

∫

d4X
(2π)9

V 3
ei(K1+K2−P )·X

= i

(

1

V

)3/2

g
1

√

2Ep

1
√

2Ek1

1
√

2Ek2

∫

d4Xei(K1+K2−P )·X

≡ 1

V 3/2

ig
√

2Ek1
2Ek2

2Ep

∫

d4Xei(P−K1−K2)X

=

√
sf

V 3/2

−iMχ→2ϕ
√

2Ek1
2Ek2

2Ep
(2π)4δ(4)(P −K1 −K2) (2.140)

where in the last line we have substituted the coupling g by the decay amplitude −iMχ→2ϕ

(2.118) multiplied by a symmetry factor
√
sf (in our case sf = 2 because the decay χ → 2ϕ

contains two identical particles). The delta distribution δ(4)(P−K1−K2) corresponds to energy-

momentum conservation at each vertex.

The probability for the decay χ → 2ϕ corresponds to the squared modulus of the scattering

matrix:

∣

∣

∣
〈f | S(1) |i〉

∣

∣

∣

2
=
sf
V 3

1

2Ek1
2Ek2

2Ep
(2π)8[δ(4)(P −K1 −K2)]

2 |−iMχ→2ϕ|2 . (2.141)

The square of the delta distribution can be calculated as follows:

(2π)8[(δ(4)(P −K1 −K2)]
2

= (2π)4δ(4)(P −K1 −K2)

∫

d4XeiX(P−K1−K2)

= (2π)4δ(4)(P −K1 −K2)

∫

d4X

= (2π)4δ(4)(P −K1 −K2)

∫

d3x

t
∫

0

dt

= (2π)4δ(4)(P −K1 −K2)V t. (2.142)

Integrating over k1,2 we obtain

28



∫ ∫

∣

∣

∣
〈f | S(1) |i〉

∣

∣

∣

2 V

(2π)3
d3k1

V

(2π)3
d3k2

= (2π)4
sf
V 2

∫ ∫ |−iMχ→2ϕ|2
2Ek1

2Ek2
2Ep

δ(4)(P −K1 −K2)
V

(2π)3
d3k1

V

(2π)3
d3k2t

= Γt (2.143)

where we have defined the decay width for the process χ→ 2ϕ as

Γχ→2ϕ =
sf

(2π)2

∫ ∫ |−iMχ→2ϕ|2
2Ek1

2Ek2
2Ep

δ(4)(P −K1 −K2)d
3k1d

3k2. (2.144)

Consequently, the probability to find two particles at the time t is P2ϕ(t) = Γχ→2ϕt. Then the

probability to find the particle χ at the same time point is

Pχ(t) = 1− Γχ→2ϕt (2.145)

or, if Γχ→2ϕ ≪ t

Pχ(t) = e−Γχ→2ϕt. (2.146)

Consequently, we define the median life-time of the particle χ as

τ = Γ−1
χ→2ϕ. (2.147)

The latter expression is valid in the rest frame of the decaying particle; the life-time of the

particle in the laboratory frame reads

τ ′ = γτ , (2.148)

where γ = (1 − v2)−1/2. We also know that the 4-vectors of all the particles involved have this

form: P = (mχ,0), K1 = (Ek1
,k1) and K2 = (Ek2

,k2). Given that |k2| = |k1|, we obtain Ek1

= Ek2
. Let us then rewrite δ(4)(P −K1 −K2) as follows:

δ(4)(P −K1 −K2) = δ(3)(k1 + k2)δ(mχ − Ek1
−Ek2

)

= δ(3)(k1 + k2)δ(mχ − 2Ek1
). (2.149)

Then integrating over d3k2 in Eq. (2.144) we obtain

Γ =
1

2(2π)2

∫ |−iM|2
(2Ek1

)22mχ
δ(mχ − 2Ek1

)d3k1. (2.150)

Energy-momentum conservation implies

|k1| =

√

m2
χ

4
−m2

ϕ ≡ kf (2.151)

and therefore the δ distribution in Eq. (2.150) can be expressed in the following way using the

generic identity δ(g(x)) =
∑

i δ(x − xi)/|g′(xi)| where g(xi) = 0:

δ(mχ − 2Ek1
) =

4mχ

kf
δ (|k1| − kf ) . (2.152)
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Let us then perform the integral in Eq. (2.150) using the spherical coordinates: d3k1 ≡ k2
1d|k1|dΩ.

Integrating over d|k1| yields

Γ =
kf

32π2m2
χ

∫

dΩ |−iM|2 (2.153)

and, if the decay amplitude does not depend on Ω

Γ =
kf

8πm2
χ

|−iM|2 . (2.154)

We have to ensure that there is no double counting in case of a decay into identical particles.

This is performed by introducing a symmetry factor sf into the formula for the decay width:

Γ = sf
kf

8πm2
χ

|−iM|2 . (2.155)

In the decay discussed in this section, the assumption was made that the particle χ decays into

two identical particles ϕ. Consequently sf = 1/2 and from Eq. (2.155) we obtain:

Γχ→2ϕ =
kf

4πm2
χ

g2. (2.156)

2.6.1 Parametrising the Scattering Amplitude

Two scattering particles will in general form an intermediate state before the scattering products

subsequently arise (see, e.g., Sec. 5.2.8 where ππ scattering entails contributions of the form ππ →
σN → ππ and ππ → ρ→ ππ, i.e., with intermediate scalar and vector particles, respectively). A

scattering amplitudeM of the incoming two particles (or, equivalently, the decay amplitude of

the intermediate particle into the incoming two particles) is in general a complex-valued quantity;

we expect it to depend on the centre-of-mass momentum p. Let us then decomposeM in terms

of p and a quantity of dimension [E−1] that we will refer to as scattering length a as follows [39]:

M =M(p) =
N

−a−1 − ip , (2.157)

with N a constant of dimension [E2] that assures [M] = [E]; N could in principle also be a

function (see for instance Ref. [40] and references therein for explicit ways how to parametrise

a scattering amplitude) but the exact nature of N is not important for the statements in this

section. It is obvious that the limit where p = 0 leads toM(p) ∼ −a. If we restrict ourselves to

the behaviour ofM close to threshold, then we observe in Eq. (2.157) that the function is analytic

in this energy region (i.e., p ∼ 0) except for a pole at p = ia−1 ≡ ip0 (i.e., p0 ≡ a−1). The value

of the scattering length can be determined from the scattering amplitude, with the latter being

a measurable quantity (for examples regarding the ππ scattering see also Refs. [41, 42, 43]). The

scattering length can have both positive or negative signs. If a < 0, then the pole is found in the

lower half of the complex p plane (Im p < 0); the pole corresponds to a ”virtual state” [39] or,

in the language of the hadronic physics, to a resonance. The lower half-plane is usually denoted

as the second (unphysical) sheet. Conversely, a > 0 implies the existence of a pole in the upper

half-plane (denoted as the first, or physical, sheet); it corresponds to a bound state. It is known,

for example, that the proton-neutron scattering produces such a bound state (deuteron) in the
3S channel. Conversely, a < 0 is also possible in the pn scattering, leading to a 1S virtual state.
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The p plane can also be mapped onto the complex s plane, where s denotes the Mandelstam

variable s = 4(m2 + p2) with m being the mass of the incoming particles (taken for simplicity

to be identical). Thus the condition s ≥ 4m2 holds in any given experimental environment,

notwithstanding whether it explores a virtual or a bound state. However, the mentioned two

types of states do not behave in the same way below threshold. Although not accessible to

experiments, the region below threshold nonetheless can be explored mathematically by means

of analytic continuation p→ ip̃ (with p̃ a positive, real number) yielding from Eq. (2.157)

M∼ 1

p̃− p0
. (2.158)

Then there are two possibilities (see Fig. 2.1): (i) if p0 > 0, i.e., a > 0 (bound state), then |M|2
exhibits a pole at p̃ = p0, i.e., s0 = 4(m2−p20); (ii) if p0 < 0, i.e., a < 0 (virtual state), then |M|2
exhibits a cusp at the point p̃ = 0, i.e., s = 4m2. Thus the behaviour of the two types of states

is fundamentally different below threshold; the dependence of |M|2 on s is a strong indicator

whether particle scattering has yielded a bound state or a virtual-type state.

4 Im 2 - p 0
2M 4 m 2 s

M
2

Figure 2.1: Behaviour of |M|2 for a bound state (dashed line) and a virtual state (full line).

Let us explore the behaviour of the decay amplitude on a concrete example. As demonstrated in

Eq. (2.155), the square of the decay amplitude is necessary for the decay width of an unstable

state to be calculated. Similarly to the Lagrangian (2.117), let us consider a decay of a resonance

S → 2ϕ [44]:

LSϕϕ =
1

2
(∂µS)

2 − 1

2
m2
SS

2 +
1

2
(∂µϕ)

2 − 1

2
m2
ϕϕ

2 + gSϕ2. (2.159)

Let us also introduce the tree-level decay width for the process S → 2ϕ as

ΓS,0(xS ,mϕ, g) =

√

x2S
4 −m2

ϕ

8πx2S
(
√
2g)2θ(xS − 2mϕ), (2.160)

where xS denotes the running mass of the state S and the θ-function implements the tree-level

condition that S is above the 2ϕ threshold. The decay width of Eq. (2.160) can in principle be

calculated by setting xS = mS; however, quantum fluctuations are known to modify the value

of mS (see below) and consequently we evaluate ΓS,0(xS ,mϕ, g) at the physical value of the S
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mass (let us denote it as m) rather than at the value of the Lagrangian parameter mS . The total

decay width of the state S is then

ΓS(m) ≡ ΓS,0(m,mϕ, g). (2.161)

Note that the quantity τBW ≡ 1/ΓS(m) represents the so-called Breit-Wigner mean life-time of

the particle S.

In general, a calculation of the decay width may be performed at tree level (see Sections 2.6.2

– 2.6.4). However, the optical theorem allows us to relate the tree-level decay width and the

self-energy of the decaying particle, the diagram for which is presented in Fig. 2.2. We first have

to evaluate the propagator GS(p
2) of the state S (with p the centre-of-mass momentum)

GS(p
2) =

1

p2 −m2
S + (

√
2g)2Σ(p2,m2

ϕ) + iǫ
(2.162)

by integrating over the loop diagram present in Fig. 2.2:

Σ(p2,m2
ϕ) = −i

∫

d4q

(2π)4
1

[

(p
2 + q

)2 −m2
ϕ + iε

] [

(p
2 − q

)2 −m2
ϕ + iε

] . (2.163)

g1 , 2g1 , 2

j1 , 2

j1 , 2

SS
Φ
�
H q L Φ

�
H q L

q+p/2

−q+p/2

Figure 2.2: Self-energy diagram for the decay process S → φ1,2φ1,2; φ̃ is the vertex function, required

for regularisation of the self-energy diagram.

The integral stated in Eq. (2.163) has to be regularised because its real part is divergent (the

imaginary part is convergent). The regularisation is performed by introducing a function φ̃(q)

at every vertex in the loop diagram of Eq. (2.162), see Fig. 2.2. Then we regularise Σ(p2,m2
ϕ) in

the following way:

Σ(p2,m2
ϕ) = −i

∫

d4q

(2π)4

[

φ̃(q)
]2

[

(p
2 + q

)2 −m2
ϕ + iε

] [

(p
2 − q

)2 −m2
ϕ + iε

] . (2.164)

The function φ̃(q) is also referred to as the vertex function. It does not have a unique form;

it can be defined for example as φ̃(q) = θ(Λ2 − q2) with the cutoff Λ [q represents the off-shell

momentum of the state ϕ], φ̃(xS) = θ(
√

Λ2 +m2
ϕ − xS/2) [38], φ̃(q) = 1/[1 + (q/Λ)2] as in Ref.

32



[45] or φ̃(q) = 1/(1 + q2/Λ2) [46]. Different choices of φ̃(q) do not change qualitative statements

of the given model [44].

We can simplify Eq. (2.162) by introducing the loop function

Π(p2) = (
√
2g)2Σ(p2,m2

ϕ) (2.165)

obtaining

GS(p
2) =

1

p2 −m2
S +Π(p2) + iǫ

. (2.166)

The optical theorem relates the tree-level decay width in Eq. (2.161), evaluated at any value of

the running mass xS , with the imaginary part of the loop function Π(p2 = x2S):

ImΠ(x2S) = xSΓS(xS)
[

φ̃(q = (0, q))
]2

(2.167)

with the energy-momentum conservation at vertex yielding q2 = x2S/4 − m2
ϕ. Spatial isotropy

implies that φ̃(q = (0, q)) has to be a function of q2. As a consequence,

ΓS(m)→ ΓS(m)
[

φ̃(q = (0, q))
]2

, (2.168)

i.e., for the decay widths in Eq. (2.160)

ΓS,0(xS ,mϕ, g)→ ΓS,0(xS ,mϕ, g)
[

φ̃(q = (0, q))
]2

. (2.169)

We define the spectral function dS(xS) of the resonance S as the imaginary part of the propagator

(2.166)

dS(xS) =
2xS
π

∣

∣

∣lim
ε→0

ImGS(x
2
S)
∣

∣

∣ , (2.170)

i.e.,

dS(xS) =
2xS
π

∣

∣

∣

∣

∣

lim
ε→0

ImΠ(x2S) + ε
[

x2S −m2
S +ReΠ(x2S)

]2
+
[

ImΠ(x2S) + ε
]2

∣

∣

∣

∣

∣

. (2.171)

The differential value dS(xS)dxS is interpreted as the probability that the resonance S will

have a mass between xS and xS+ dxS. For this reason, the spectral function dS(xS) has to be

normalised properly:

∞
∫

0

dxSdS(xS)
!
= 1. (2.172)

The renormalised (physical) mass m of the resonance S is usually defined as the zero of the real

part of the resonance propagator, i.e., from the implicit equation

m2 −m2
S +ReΠ(m2) = 0. (2.173)

It is common that ReΠ(m2) > 0 – in other words, quantum fluctuations usually decrease the

value of the model mass mS to the physical mass value m. Note, however, that Eq. (2.173) is

not the only way to define the regularised mass: the mass can also be defined as the position of
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the minimum of ImGS(x
2
S) but this definition leads to qualitatively the same results (see Ref.

[47] for an explicit example of the a1 mass calculation).

There is an important approximation of Eq. (2.171). The approximation is obtained by neglecting

the real part of the loop function (justified for resonances that are not too broad): ReΠ(m2) = 0,

using Eq. (2.167) without the vertex function φ̃ [that is no longer necessary because the divergent,

real part of Π(m2) is set to zero and ImΠ(m2) is convergent] and setting ε→ 0:

dS(xS) = N̄S
x2SΓS(xS)

(x2S −m2)2 + [xSΓS(xS)]
2 θ(xS − 2mϕ1,2), (2.174)

where the constant 2/π from Eq. (2.171) has been absorbed into N̄S , the normalisation constant

obtained from the condition (2.172). Note that, conversely, the θ function in Eq. (2.174) is no

longer absorbed into ΓS(xS) as was the case in Eq. (2.160). Eq. (2.174) can be simplified further

by approximating ΓS(xS) with the experimental value Γexp
S , i.e., by neglecting the functional

dependence of ΓS(xS) on xS :

dS(xS) = NS
x2SΓ

exp
S

(x2S −m2)2 +
(

xSΓ
exp
S

)2 θ(xS − 2mϕ). (2.175)

Equation (2.175) is known as the relativistic Breit-Wigner limit of the spectral function (or

simply the relativistic Breit-Wigner spectral function). The relativistic Breit-Wigner spectral

function will be used throughout this work to calculate decays via off-shell particles (see, e.g.,

Sections 2.6.2 and 2.6.4).

Let us finally note that, in the case of our resonance S, the scattering amplitude discussed in

Eq. (2.157) can also be parametrised in terms of the Mandelstam variable s = p2 with a pole at

s0 = (m− iΓS/2)2. The parametrisation can be motivated in the following way: let our starting

point be the propagator (2.166) where the loop function Π is evaluated at the physical mass

value m:

1

p2 −m2
S +Π(m2)

=
1

p2 −m2
S +ReΠ(m2) + i ImΠ(m2)

Eq. (2.167)
=

1

p2 −m2
S +ReΠ(m2) + imΓS(m)

Eq. (2.173)
=

1

p2 −m2 + imΓS(m)
.

(2.176)

Let us assume that our resonance S fulfills the condition Γ2
S(m) ≪ m2, i.e., Γ2

S(m)/m2 ≪ 1.

Then we can add the term Γ2
S(m)/4 to the denominator:

1

p2 −m2 + imΓS(m)
≃ 1

p2 −m2 + imΓS(m) +
Γ2
S(m)
4

(2.177)

=
1

p2 −
[

m− i
2ΓS(m)

]2 . (2.178)
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Substituting p2 = s and s0 = (m− iΓS/2)2, we obtain the following expression

1

p2 −
[

m− i
2ΓS(m)

]2 =
1

s− s0
. (2.179)

Consequently, if an experimentally determined scattering amplitude can be parametrised as

M∼ 1

s− s0
, (2.180)

then it evidently contains a pole at s = s0 describing a resonance with mass m and decay width

ΓS(m). This is a well-known criterion that allows one to ascertain whether scattering data entail

a resonance signal.

Applications of the discussion in this section are presented in the following, where some exemplary

tree-level decay widths are calculated.

2.6.2 Example: Decaying Axial-Vector State I

Let us consider a decay process of the form A → V P̃ where A, V and P̃ denote an axial-

vector, a vector and a pseudoscalar state, respectively, with the following interaction Lagrangian

describing the decay of the axial-vector state into neutral modes:

LAV P̃ = AAV P̃A
µ0V 0

µ P̃
0

+BAV P̃

[

Aµ0
(

∂νV
0
µ − ∂µV 0

ν

)

∂νP̃ 0 + ∂νAµ0
(

V 0
ν ∂µP̃

0 − V 0
µ ∂ν P̃

0
)]

. (2.181)

ε
(α)
µ (P )

ε
(β)
ν (P1)

P̃ (P2)

A

V

Figure 2.3: Decay process A→ V P̃ .

We will consider the possible decay of the axial-vector state into charged modes at the end of

this section. For now, let us consider a generic decay process of the form A→ V 0P 0.

Let us then denote the momenta of A, V and P̃ as P , P1 and P2, respectively. The stated decay

process involves two vector states: A and V . We therefore have to consider the corresponding

polarisation vectors; let us denote them as ε
(α)
µ (P ) for A and ε

(β)
ν (P1) for V . Then, upon

substitutions ∂µ → −iPµ for the decaying particle and ∂µ → iPµ1,2 for the decay products,

we obtain the following Lorentz-invariant AV P̃ scattering amplitude −iM(α,β)

A→V 0P̃ 0
:

−iM(α,β)

A→V 0P̃ 0
= ε(α)µ (P )ε(β)ν (P1)h

µν

AV P̃
= iε(α)µ (P )ε(β)ν (P1)

× {AAV P̃ gµν +BAV P̃ [Pµ1 P
ν
2 + Pµ2 P

ν − (P1 · P2)g
µν − (P · P2)g

µν ]} (2.182)
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with

hµν
AV P̃

= i
{

AAV P̃ g
µν +BAV P̃ [P

µ
1 P

ν
2 + Pµ2 P

ν − (P1 · P2)g
µν − (P · P2)g

µν ]
}

, (2.183)

where hµν
AV P̃

denotes the AV P̃ vertex.

It will be necessary to determine the square of the scattering amplitude in order to calculate the

decay width. We note that the scattering amplitude in Eq. (2.182) depends on the polarisation

vectors ε
(α)
µ (P ) and ε

(β)
ν (P1); therefore, it is necessary to calculate the average of the squared

amplitude for all polarisation values. Let us denote the masses of the vectors states A and V

as mA and mV , respectively. Then the averaged squared amplitude | − iM̄|2 is determined as

follows:

−iM(α,β)

A→V 0P̃ 0
= ε(α)µ (P )ε(β)ν (P1)h

µν

AV P̃
⇒
∣

∣−iM̄A→V 0P̃ 0

∣

∣

2
=

1

3

3
∑

α,β=1

∣

∣

∣−iM(α,β)

A→V 0P̃ 0

∣

∣

∣

2

=
1

3

3
∑

α,β=1

ε(α)µ (P )ε(β)ν (P1)h
µν
AV P ε

(α)
κ (P )ε

(β)
λ (P1)h

∗κλ
AV P̃

. (2.184)

Given that

3
∑

α=1

ε(α)µ (P )ε(α)κ (P ) =

(

−gµκ +
PµPκ
m2
A

)

(2.185)

[an analogous equation holds for ε(β)], we then obtain from Eq. (2.184):

| − iM̄A→V 0P̃ 0 |2 =
1

3

(

−gµκ +
PµPκ
m2
A

)(

−gνλ +
P1νP1λ

m2
V

)

hµν
AV P̃

h∗κλ
AV P̃

=
1

3



hµνAV P̃h
∗µν
AV P̃

−

(

hµν
AV P̃

Pµ

)(

h∗κ
νAV P̃

Pκ

)

m2
A

−

(

hµν
AV P̃

P1ν

)(

h∗λ
µAV P̃

Pλ

)

m2
V

+

(

hµν
AV P̃

PµP1ν

)(

h∗µν
AV P̃

PµP1ν

)

m2
Vm

2
A





=
1

3







∣

∣

∣
hµν
AV P̃

∣

∣

∣

2
−

∣

∣

∣h
µν

AV P̃
Pµ

∣

∣

∣

2

m2
A

−

∣

∣

∣h
µν

AV P̃
P1ν

∣

∣

∣

2

m2
V

+

∣

∣

∣h
µν

AV P̃
PµP1ν

∣

∣

∣

2

m2
Vm

2
A






. (2.186)

Equation (2.186) contains the metric tensor gµν = diag(1,−1− 1,−1). The decay width for the

process A→ V 0P̃ 0 then reads

ΓA→V 0P̃ 0 =
k(mA,mV ,mP̃ )

8πm2
A

| − iM̄A→V 0P̃ 0 |2. (2.187)

A non-singlet axial-vector field will in general also posses charged decay channels. Therefore, in

addition to the decay process considered in Eq. (2.187), we have to consider the contribution of
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the charged modes from the process A → V ±P̃∓ to the full decay width as well. To this end,

we multiply the neutral-mode decay width of Eq. (2.187) with an isospin factor I, i.e., we set

ΓA→V P̃ = ΓA→V 0P̃ 0 + ΓA→V ±P̃∓ ≡ IΓA→V 0P̃ 0 , and obtain the following equation for the full

decay width:

ΓA→V P̃ = I
k(mA,mV ,mP̃ )

8πm2
A

| − iM̄A→V 0P̃ 0 |2. (2.188)

The exact value of I can be determined from isospin deliberations, or simply from the interaction

Lagrangian of a given decay process (as we will see in later in this work).

Note that an off-shell vector state can also be considered within our formalism upon introducing

the corresponding spectral function as in Eq. (2.175)

dV (xV ) = NV
x2V Γ

exp
V

(x2V −m2
V )

2 +
(

xV Γ
exp
V

)2 θ(mA −mV −mP̃ ) (2.189)

with xV and Γexp
V denoting the off-shell mass and the tree-level width of the vector state V ,

respectively, and NV determined such that
∫∞
0 dxV dV (xV ) = 1. This allows us to calculate the

decay width for a sequential decay of the form A → V P̃ → P̃1P̃2P̃ , i.e., to consider an off-shell

decay of the vector particle that possesses this assumed form: V → P̃1P̃2. Then Eq. (2.188) is

modified as

ΓA→V P̃→P̃1P̃2P̃
=

mA−m
P̃

∫

m
P̃1

+m
P̃2

dxV I
k(mA, xV ,mP̃ )

8πm2
A

dV (xV )| − iM̄A→V 0P̃ 0 |2. (2.190)

For future use we have introduced the momentum function

k(ma,mb,mc) =
1

2ma

√

m4
a − 2m2

a (m
2
b +m2

c) + (m2
b −m2

c)
2θ(ma −mb −mc). (2.191)

In the decay process a→ b+c, with masses ma, mb, mc, respectively, the quantity k(ma,mb,mc)

represents the modulus of the three-momentum of the outgoing particles b and c in the rest frame

of the decaying particle a. The theta function ensures that the decay width vanishes below

threshold.

Note that Eqs. (2.188) and (2.190) will be very useful, e.g., in Sections 9.4.1, 9.4.4, 9.4.6 and

9.4.7.

2.6.3 Example: Decaying Axial-Vector State II

Let us now consider a slightly different example (that will nonetheless also prove to be useful

in the subsequent chapters of this work): a generic decay of the form A → SP̃ where A, S

and P̃ denote an axial-vector, a scalar and a pseudoscalar state, respectively, with the following

interaction Lagrangian describing the decay of the neutral axial-vector component into neutral

states:

LASP̃ ≡ AASP̃Aµ0S0∂µP̃
0 +BASP̃A

µ0P̃ 0∂µS
0. (2.192)

As in the previous section, we denote the momenta of A, P̃ and S as P , P1 and P2, respectively.

Unlike the previous section, the decay process now involves only one vector state: A. Let us

denote the corresponding polarisation vector as ε
(α)
µ (P ). Then, upon substitution ∂µ → iPµ1,2
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ε
(α)
µ (P )

P̃ (P1)

S(P2)

A

Figure 2.4: Decay process A→ SP̃ .

for the decay products, we obtain the following Lorentz-invariant ASP̃ scattering amplitude

−iM(α)

A→SP̃
:

−iM(α)

A→SP̃
= ε(α)µ (P )hµ

ASP̃
= −ε(α)µ (P )

(

AASP̃P
µ
1 +BASP̃P

µ
2

)

(2.193)

with

hµ
ASP̃

= −
(

AASP̃P
µ
1 +BASP̃P

µ
2

)

, (2.194)

where hµ
ASP̃

denotes the ASP̃ vertex.

As in the previous section, calculation of the decay width will require us to calculate the square of

the average decay amplitude. As apparent from Eq. (2.193), the scattering amplitude −iM(α)

A→SP̃

depends on the polarisation vector ε
(α)
µ (P ). Then the averaged squared amplitude | − iM̄|2 is

determined as follows:

−iM(α)

A→SP̃
= ε(α)µ (P )hµ

ASP̃
⇒
∣

∣−iM̄A→SP̃

∣

∣

2
=

1

3

3
∑

α=1

∣

∣

∣−iM(α)

A→SP̃

∣

∣

∣

2

=
1

3

3
∑

α,β=1

ε(α)µ (P )hµ
ASP̃

ε(α)ν (P )h∗ν
ASP̃

. (2.195)

Let us denote the mass of the state A as mA. Then utilising Eq. (2.185) we obtain

| − iM̄A→SP̃ |2 =
1

3

(

−gµν +
PµPν
m2
A

)

hµ
ASP̃

h∗ν
ASP̃

=
1

3






−
∣

∣

∣h
µ

ASP̃

∣

∣

∣

2
+

∣

∣

∣
hµ
ASP̃

Pµ

∣

∣

∣

2

m2
A






. (2.196)

From Eq. (2.194) we obtain

∣

∣

∣h
µ

ASP̃

∣

∣

∣

2
= A2

ASP̃
m2
P̃
+B2

ASP̃
m2
S + 2AASP̃BASP̃P1 · P2, (2.197)

where mP̃ and mS denote the masses of P̃ and S, respectively. Our calculations are performed

in the rest frame of the decaying particle, i.e., Pµ = (mA,0). Consequently,

hµ
ASP̃

Pµ ≡ h0ASP̃P0 = h0
ASP̃

mA
Eq. (2.194)

= −
(

AASP̃E1 +BASP̃E2

)

mA (2.198)
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with E1 =
√

k2(mA,mS ,mP̃ ) +m2
P̃
, E2 =

√

k2(mA,mS ,mP̃ ) +m2
S and k(mA,mS ,mP̃ ) from

Eq. (2.191). Inserting Eqs. (2.197) and (2.198) into Eq. (2.196) then yields

| − iM̄A→SP̃ |2 =
1

3

[

(

AASP̃E1 +BASP̃E2

)2 − (A2
ASP̃

m2
P̃
+B2

ASP̃
m2
S + 2AASP̃BASP̃P1 · P2)

]

=
1

3

[

(A2
ASP̃

+B2
ASP̃

)k2(mA,mS ,mP̃ ) + 2AASP̃BASP̃ (E1E2 − P1 · P2)
]

.

(2.199)

Given that Pµ1 = (E1,k(mA,mS ,mP̃ )) and Pµ2 = (E2,−k(mA,mS ,mP̃ )), we obtain P1 · P2 =

E1E2 + k2(mA,mS ,mP̃ ) or, from Eq. (2.199):

| − iM̄A→SP̃ |2 =
1

3
(AASP̃ −BASP̃ )2k2(mA,mS ,mP̃ ). (2.200)

The formula for the decay width of the process A→ SP̃ may need to consider not only the decay

A0 → S0P̃ 0 but also A0 → S±P̃∓ (depending on isospin of the decay products); for this reason,

we introduce an isospin factor I:

ΓA→SP̃ = I
k(mA,mS ,mP̃ )

8πm2
A

| − iM̄A→SP̃ |2 = I
k3(mA,mS ,mP̃ )

24πm2
A

(AASP̃ −BASP̃ )2. (2.201)

2.6.4 Example: Decaying Scalar State

Let us consider the decay of a scalar state S into two vector states V , i.e., S → V1V2. The

interaction Lagrangian may be given in the following simple form:

LSV V ≡ ASV V SV 0
1µV

µ0
2 . (2.202)

S(P )

ε
(α)
µ (P1)

V2

ε
(β)
ν (P2)

V1

Figure 2.5: Decay process S → V1V2.

Our calculation of the decay width has to consider polarisations of the two vector states. We

denote the momenta of S, V1 and V2 as P , P1 and P2, respectively, while the polarisation vectors

are denoted as ε
(α)
µ (P1) and ε

(β)
ν (P2). Then, upon substituting ∂µ → iPµ1,2 for the decay products,

we obtain the following Lorentz-invariant SV1V2 scattering amplitude −iM(α,β)
S→V1V2

:

−iM(α,β)
S→V1V2

= ε(α)µ (P1)ε
(β)
ν (P2)h

µν
SV V = iε(α)µ (P1)ε

(β)
ν (P2)ASV V g

µν (2.203)

with

hµνSV V = iASV V g
µν , (2.204)
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where hµνSV V denotes the SV V vertex.

The averaged squared amplitude | − iM̄|2 is determined as follows:

−iM(α,β)
S→V1V2

= ε(α)µ (P1)ε
(β)
ν (P2)h

µν
SV V ⇒

∣

∣−iM̄S→V1V2

∣

∣

2
=

1

3

3
∑

α,β=1

∣

∣

∣
−iM(α,β)

S→V1V2

∣

∣

∣

2

=
1

3

3
∑

α,β=1

ε(α)µ (P1)ε
(β)
ν (P2)h

µν
SV V ε

(α)
κ (P1)ε

(β)
λ (P2)h

∗κλ
SV V . (2.205)

Equation (2.185) then yields the same expression as the one presented in Eq. (2.186):

| − iM̄S→V1V2 |2 =
1

3

[

∣

∣hµνSV V
∣

∣

2 −
∣

∣hµνSV V P1µ

∣

∣

2

m2
V1

−
∣

∣hµνSV V P2ν

∣

∣

2

m2
V2

+

∣

∣hµνSV V P1µP2ν

∣

∣

2

m2
V1
m2
V2

]

. (2.206)

From Eq. (2.185) we obtain hµνSV V P1µ = iASV V P
ν
1 , h

µν
SV V P2ν = iASV V P

µ
2 and hµνSV V P1µP2ν

= iASV V P1 · P2 and consequently

| − iM̄S→V1V2 |2 =
1

3

[

4− P 2
1

m2
V1

− P 2
2

m2
V2

+
(P1 · P2)

2

m2
V1
m2
V2

]

A2
SV V . (2.207)

For on-shell states, P 2
1,2 = m2

V1,2
and Eq. (2.207) reduces to

| − iM̄S→V1V2 |2 =
1

3

[

2 +
(P1 · P2)

2

m2
V1
m2
V2

]

A2
SV V =

1

3

[

2 +
(m2

S −m2
V1
−m2

V2
)2

4m2
V1
m2
V2

]

A2
SV V . (2.208)

The decay width is consequently

ΓS→V1V2 = I
k(mS ,mV1 ,mV2)

8πm2
S

| − iM̄S→V1V2 |2 (2.209)

with k(mS ,mV1 ,mV2) from Eq. (2.191); we have considered an isospin factor I in case the vector

particles are not isosinglets (then the contribution of the charged modes to the full decay width

would also have to be considered).

Suppose now that the two vector states were unstable themselves and decayed into pseudoscalars:

V1 → P̃1P̃2 and V2 → P̃3P̃4. Calculation of the decay width for the process S → V1V2 →
P̃1P̃2P̃3P̃4 requires integration over the spectral functions of the two vector resonances, Eq.

(2.189). The decay width then reads

ΓS→V1V2→P̃1P̃2P̃3P̃4
=

mS
∫

m
P̃1

+m
P̃2

dxV1

mS−xV1
∫

m
P̃3

+m
P̃4

dxV2 I
k(mS , xV1 , xV2)

8πm2
S

dV (xV1)dV (xV2)|−iM̄S→V1V2 |2.

(2.210)
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3. Review of Scalar Isosinglets

The scalar isosinglet mesons have been an extremely interesting topic of investigation from both

theoretical and experimental standpoints for decades. Their features have often been ambiguous

due to large background and various decay channels. This chapter is a brief review of the

knowledge about scalar isosinglet mesons, what we think we know about them and how our

understanding of these resonances has developed in experimental work over the last decades.

It will contain a dedicated section regarding the putative new f0(1790) resonance which is of

particular importance for this work because it is very close to, and may interfere with, the

already established f0(1710) state – and the latter is of utmost importance for our calculations

in the three-flavour version of our model.

3.1 The f0(600) Resonance

The f0(600) state (or σ; in older articles: ǫ or η0+) has a long and troubled history. The exis-

tence of this state was suggested in linear sigma models approximately a decade before it was

first discovered, see, e.g., Ref. [48]. The state was introduced theoretically as the putative chi-

ral partner of the pion; however, it was shown to be highly non-trivial to ascertain experimentally.

The earliest versions of the linear sigma model incorporated only the sigma and the pion. The

pion is a well-established q̄q state and consequently its chiral partner also had to be a quarkonium.

The naive expectation was that the mass splitting between the pion and its chiral partner would

not be large, or at least that the mass of the σ state would be in the interval below 1 GeV, with

a predominant decay into pions (∼ 100%). For this reason, many experimental collaborations

have looked closely into ππ scattering amplitudes up to 1 GeV (see below) in order to ascertain

if an I(JPC) = 0(0++) signal could be found. Note, however, that the theoretical q̄q scalar state

possesses the intrinsic angular momentum L = 1 as well as the relative spin of the quarks S = 1.

For this reason one could also easily expect the state to be in the region above 1 GeV. This is

contrary to the expectation of the first version of the σ models. Additionally, four decades ago

Gasiorowicz and Geffen suggested how to introduce vectors (ρ, ω) and axial-vectors (a1, f1) into

linear sigma models utilising the chiral symmetry [49]. (The latter article is also important be-

cause it suggested the existence of an axial-vector triplet, known nowadays as a1, almost 10 years

before the particle was first established reliably in the ρπ final state produced in K−p reactions

[50].) It was subsequently demonstrated that the inclusion of (axial-)vectors requires us to assign

the scalar-isoscalar state present in the σ models to a resonance above, rather than below, 1 GeV

[51, 52, 53, 54, 55, 56, 57]. Experimental data available nowadays seem to strongly favour this

assignment, particularly in view of the fact that the pure non-strange scalar state is expected

to mix with a pure-strange and a glueball scalar state leading to experimental observation of

three scalar states in the mutual vicinity: these could possibly be the established resonances

f0(1370), f0(1500) and f0(1710) [10]. (See below for a review of these resonances.) This implies

that scalar states below 1 GeV, including the f0(600) resonance, cannot be of q̄q structure. The

mentioned theoretical ambiguity regarding the structure of this light scalar state is, however, not

the only problem related to f0(600) – the data on this resonance suggest that its mass and width
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are of comparable magnitude, rendering also the experimental search for this state rather difficult.

Before we proceed with a discussion of the experimental evidence for f0(600), let us summarise

the reasons why the hadronic physics requires the existence of a light scalar meson:

• It is the putative chiral partner of the pion in the sigma models; the vacuum expectation

value of the σ state is used as means of modelling spontaneous chiral symmetry breaking

[48]. Therefore, the existence of the σ meson [expected to possess a mass < 1 GeV in the

plain sigma models without (axial-)vectors] is a natural consequence of the existence of the

pion and of the chiral symmetry (and the breaking of this symmetry).

• As already indicated, subsequent calculations suggested that the scalar q̄q state present in

sigma models cannot correspond to a resonance below 1 GeV but rather to a state above 1

GeV. However, if we act on the assumption of the possible existence of tetraquark (q̄q̄qq)

states [58], then the search for a light scalar state is nonetheless justified: it may possess a

tetraquark structure.

• The Nambu–Jona-Lasinio model [28] requires the existence of a light scalar-isoscalar meson

with mass 2mq where mq denotes the constituent-quark mass; the vacuum expectation

value of the scalar state is again utilised to model the spontaneous breaking of the chiral

symmetry.

• Nucleon-nucleon scattering is expected to occur with exchange of a light scalar meson [59];

f0(980) cannot fulfill this role as it strongly couples to kaons although it was established

as a resonance long before f0(600), see Sec. 3.2, and f0(1370) is too heavy to influence the

nucleon scattering at low energies.

• It is required for a correct description of ππ scattering data, see below.

Experimental evidence for the existence of the f0(600) resonance stems from analyses of ππ scat-

tering amplitudes. This is true historically as well as nowadays; however, given the notoriously

large decay width of the state and the limited statistics of the first experiments, the first data

on ππ scattering provided us only with hints rather than definitive proofs of the existence of this

particle.

In 1973, ππ phase shifts were measured at CERN where pions were scattered off protons: a pion

beam was targeted at a 50 cm long liquid-hydrogen target inducing the reaction π−p→π+π−n at

17.2 GeV, with 300000 events reconstructed [60]. The results of Ref. [60] were later combined with

results obtained from the same π−p reaction induced by targeting pions on butanol (C4H9OH)

[61]. A broad enhancement in the ππ S-wave was observed but no definitive conclusions were

possible. In 1976, the Particle Data Group (PDG) removed this state from their listing. The

next decade saw pp→ ppπ+π− data suggesting a broad S-wave enhancement in the ππ scattering

below 1 GeV [62] but still without definitive conclusions regarding the existence of f0(600). The

resonance was reinstated by the PDG in 1996 after theoretical results amassed suggesting the

existence of the state: the 1993 review of ππ and KK scattering data in Ref. [63] found a pole

with a mass of (506±10) MeV and a width of (494±5) MeV; a model of ππ → ππ and ππ → KK

scattering with crossing symmetry and unitarity found the data to require a light scalar meson

[64] and a model-independent analysis of ππ scattering data below the KK threshold in Ref. [65]
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found a pole with a mass of (553.3 ± 0.5) MeV and a width of (242.6 ± 1.2) MeV (see also Ref.

[66]).

Contrarily, high-statistics data from p̄p annihilation [67, 68] did not yield a clear f0(600) signal;

additionally, there were no conclusive results from central pp collisions either, although a broad

enhancement below 1 GeV was observed [69].

However, subsequent experimental results did suggest the existence of a signal attributed to

f0(600). The E791 Collaboration at Fermilab [70] used a sample of 2 · 1010 events from the π−-
nucleon reaction at 500 GeV to produce charm (D) mesons; 1172±61 events D → π−π+π+ were

induced and strong evidence of a scalar resonance with a mass of 478+24
−23 ± 17 MeV and a decay

width of 324+42
−40±21 MeV was found in the ππ channel using a Dalitz plot. Similarly, the CLEO

Collaboration [71] produced 780000 DD pairs from reaction e+e− → ψ(3770) → D+D−; vari-
ous analysis methods were used and a definitive contribution of f0(600)π

+ in the decay channel

D → π−π+π+ was observed (branching ratio ∼ 50%). Additionally, the BES II Collaboration

produced 58 million J/ψ events from electron-positron annihilation and various decay channels

involving pions and kaons were analysed (see the following subsections). We note here that

a broad f0(600) peak was observed in the decay channel J/ψ → ωπ+π− for which the pole

mass was determined as (541± 39) MeV and the decay width as (504± 84) MeV [72]. Thus, the

analyses found a very broad resonance with a mass of ∼ 500 MeV and a comparable decay width.

On the other hand, the theoretical search for this state is confronted with various problems. As

already mentioned, f0(600) is very broad. It is one of rare meson resonances where the decay

width Γ is virtually the same as the mass; this renders an extrapolation of the pole position

from the ππ scattering data highly non-trivial as the pole is very distant from the real axis.

The resonance may easily be distorted by background effects and by interference with other

scalar isosinglets. For this reason, a parametrisation of f0(600) in terms of a Breit-Wigner

distribution [see Eq. (2.175)] has to be performed with great care (if at all). Nonetheless, it is

possible to determine the pole position of the resonance utilising Roy equations [73] with crossing

symmetry, analyticity and unitarity. This allows one to demonstrate unambiguously that f0(600)

is a genuine resonance – e.g., in the work of Leutwyler et al. [41], a resonance pole was found

at mf0(600) − iΓf0(600)/2 = (441+16
−8 − i272+9

−12.5) MeV. Similarly, Peláez et al. [42] have found

mf0(600) − iΓf0(600)/2 = (461+14.5
−15.5 − i255 ± 16) MeV.

These results were obtained from analyses of ππ scattering data with the pions produced from

kaon decays. Let us therefore briefly review kaon decays in the following. Kaons are produced

by targeting protons onto a metal (such as beryllium). Two types of charged-kaon decays are

relevant here – the exclusive decays into pions: K± → π±π0π0 and K± → π±π+π− (K3π decays;

branching ratio ∼ 10−2 [10]) and the semileptonic decays K+ → π+π−e+ν (and hermitian conju-

gate for K−). The latter ones are referred to as Ke4 decays; they belong to the so-called rare kaon

decays because of the small branching ratio (∼ 10−5 [10]). Note, however, that they also possess

a much cleaner environment than K3π decays where pion rescattering may induce an increased

error in the scattering amplitude. First measurements of the Ke4 decays were performed in 1977

[74] with a number of events several order of magnitudes smaller than the latest measurements

performed at CERN by the NA48/2 Collaboration in 2003 and 2004 [43]. Note that the pion

scattering data allow for determination of ππ scattering lengths, see Refs. [41, 42] and Sections

5.2.8 and 9.5 in this work. We will show in the mentioned sections that the pion scattering lengths
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require the existence of a light scalar state [i.e., f0(600)] as otherwise their proper description is

not possible. However, the broader phenomenology will disfavour a q̄q structure of this resonance.

We note that the PDG lists f0(600) as having a mass of (400 – 1200) MeV and a width of (600

– 1000) MeV [10]. Let us also note that κ [or K⋆
0 (800)], the strange counterpart of f0(600), has

similarly also been subject of a prolonged debate about its existence with some analyses finding

a corresponding pole [75] while others do not [76]. The fact that mκ ≃ Γκ renders it extremely

important not to fit the κ meson with a Breit-Wigner distribution of a constant width; such fits

can easily fail to detect this state. There is, however, a scalar kaon in the region above 1 GeV as

well, the existence of which appears to be confirmed: this state, denoted as K⋆
0 (1430), is found

in the Kπ channel (see Ref. [10] and references therein).

3.2 The f0(980) Resonance

This resonance is close to the kaon-kaon threshold rendering an experimental analysis somewhat

difficult, with different collaborations and reviews obtaining at times very different results. For

the same reason, the structure of the resonance is not clear: it may be interpreted as a quarkonium

[77, 78, 79], as a q̄2q2 state [58, 80, 81, 82, 83, 84], as a KK bound state [85, 86, 87, 88], as a

glueball [89] or even as an ηη bound state [90]. One of the most suitable of ways to ascertain

the f0(980) structure is utilising the decay f0(980) → γγ. The PDG cite world-average value

is Γf0(980)→γγ = 0.29+0.07
−0.06 keV. Various approaches have been utilised to calculate this decay

width: a relativistic nonstrange-quark model obtained values between 1.3 keV and 1.8 keV [77];

assuming a KK structure yielded values between 0.2 keV and 0.6 keV [85] and assuming a

strange-quarkonium structure of the resonance resulted in values ∼ 0.3 keV [78]. Thus the

only assignment that appears to be excluded is the one where the resonance is a non-strange

quarkonium.

The work presented here contains only quarkonium states; the only possible interpretation of

f0(980) within our model could be as a q̄q state. In the U(3) × U(3) version of our model, it is

not possible to interpret f0(980) as a q̄q state within our Fit I, Chapter 9 (the decay width would

be several times too large), and it is strongly disfavoured as a q̄q state within Fit II, Chapter 11

[see in particular the short note on f0(980) at the end of Sec. 11.1.2].

The earliest evidence for f0(980) came from Berkeley in 1972 [91]. (There were even earlier data

from p̄p→π+π−ω at Saclay in 1969 where the analysis required an S-wave isoscalar structure at

∼ 940 MeV [92]; however, no kaon events were considered.) A pion beam of 7.1 GeV was targeted

at protons (in a hydrogen bubble chamber) and reactions π+p→ π+π−∆++ (32100 events) and

π+p → K+K−∆++ (682 events) were observed. The ππ system was found to exhibit a rapid

drop in the cross-section in the energy region between 950 MeV and 980 MeV (i.e., close to the

KK threshold: 2mK± = 987.4 MeV [10]). This effect occurred due to strong coupling of the

ππ and KK channels upon opening of the kaon threshold. Subsequent partial-wave analysis of

both the pion and kaon scattering data yielded a pole at (997 ± 6) MeV; the pole width was

(54 ± 16) MeV. [Incidentally, the same analysis also found a pole at 660 MeV and the width

of 640 MeV, corresponding to the nowadays f0(600) meson, but the pole was not stable in all

parametrisations due to lack of data below 550 MeV.]

CERN-Munich data from 1973 confirmed a strong S-wave enhancement at approximately 1 GeV
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from the one-pion-exchange (OPE) reaction π−p→π+π−n at 17.2 GeV [93]. Subsequent data

from π−p → π+π−n and K+K−n taken at Rutherford Laboratory in Chilton, England, also

produced a sharp drop in the π+π− spectrum close to the KK threshold, assigning this signal

to a JP = 0+ resonance with pole mass of (987 ± 7) MeV and pole width of (48 ± 14) MeV

[94]. Further publications regarding f0(980) are listed in Ref. [95]; let us, however, discuss here

studies of the resonance performed by several collaborations:

• WA76 / WA102. Data were gathered using the CERN Omega Spectrometer in reactions

pp → pf (π
+π−)ps, pp → pf (π

0π0)ps, pp → pf (K
+K−)ps and pp → pf (K̄

0
SK

0
S)ps at 85

GeV and at 300 GeV and in reaction π+p→π+f π+π−ps at 85 GeV (subscripts f and

s denote the fastest and slowest particles in the laboratory frame, respectively). The

f0(980) resonance was identified in both pion and kaon final states; the coupling of the

resonance to kaons (gK) was found to be dominant in comparison to the pion coupling

(gπ): gK/gπ = 2.0± 0.9 [96]. A pole mass of (1001 ± 2) MeV and a pole width of (72 ± 8)

were determined. Note, however, that care is needed when interpreting these results, as

a relativistic form of the Breit-Wigner distribution was utilised to analyse data, with no

dispersive corrections (that are important due to the effects of the KK-threshold opening).

In 1999, data from a higher-resolution reaction pp→ pf (K
+K−)ps and pp→ pf (K̄

0
SK

0
S)ps

at 450 GeV indicated a Breit-Wigner mass of (985 ± 10) MeV and a width of (65 ± 20)

MeV, with interference effects of f0(1500) and f0(1710) included [97]. A similar analysis

was performed for pp→ pf (π
+π−)ps, also at 450 GeV [98] allowing for a combined analysis

to be performed in both pion and kaon channels [99]. Both the T-matrix formalism [100]

and the K-matrix formalism [101] were used. Results were obtained regarding four scalar

resonances: f0(980), f0(1370), f0(1500) and f0(1710). For f0(980), the obtained mean

values were mf0(980) = (987± 6± 6) MeV and Γf0(1500) = (96± 24± 16) MeV. The f0(980)

coupling to kaons was found to be approximately two times larger than the coupling to

pions.

• Crystal Barrel. The f0(980) resonance appeared in high-statistics data produced by 16.8

million p̄p collisions at CERN-LEAR (Low Energy Antiproton Ring) and analysed in 1995.

From these collisions, 712000 events for p̄p→ 3π0 were selected [102]. The f0(980) reso-

nance was reconstructed with a K-matrix approach and the valuesmf0(980) = (994±5) MeV

and Γf0(980) = (26±10) MeV were obtained. Subsequently, data were taken from reactions

p̄p→π0π0π0 (712000 events), p̄p→π0π0η (280000 events) and p̄p→π0ηη (198000 events)

[67]. Data analysis was not conclusive in that different Riemann sheets in the T-matrix

formalism yielded somewhat different pole masses [(938 - 996) MeV] and widths [(70 - 112)

MeV]; nonetheless the existence of a pole (i.e., of a resonance) was ascertained.

• GAMS. Data were taken from the OPE reaction π−p → π0π0n → (4γ)n at GAMS-IHEP

(GAMS: Russian abbreviation for Hodoscope Automatic Multiphoton Spectrometer). A

pion beam at 38 GeV was utilised to induce the reaction. A drop in the ππ cross section

just below 1 GeV was observed allowing for a resonance with a mass of (997 ± 5) MeV

and a width of (48 ± 10) MeV to be reconstructed [103]. The same experiment was later

repeated at the CERN-SPS accelerator using the electromagnetic hodoscope calorimeter

GAMS-4000 but with a pion beam of 100 GeV [104]. The results were similar to those

of Ref. [103] although an optimal fit was found for a Breit-Wigner mass of (960 ± 10)
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MeV, i.e., below the KK threshold. The Collaboration also used an additional production

mechanism that involved targeting protons at 450 GeV onto liquid hydrogen and inducing

the reaction pp→ pf (π
0π0)ps → pf (4γ)ps at CERN-SPS. A Breit-Wigner fit was optimised

at a mass of (955 ± 10) MeV and a width of (69 ± 15) MeV without the consideration of

scalar states above 1 GeV [69]; once these states were considered, a fit to data yielded

mf0(980) = (989 ± 15) MeV and Γf0(980) = (65± 25) MeV [105]. Note that already GAMS

data from Ref. [103] suggested an interesting feature of the π0π0 invariant mass spectrum

where f0(980) was reconstructed: there was a dip in the spectrum (for lower momentum

transfer of π− to the two neutral pions) as well as a peak (if higher momentum transfer was

considered). This unusual feature of f0(980) was analysed in Ref. [106] where the observed

alteration in the spectrum was suggested to occur due to an a1 exchange contribution in

the π−p amplitude that rises with momentum transfer.

• CMD-2. Data regarding f0(980) obtained by this Collaboration were result of studies of

ϕ(1020) radiative decays. To this end, 20 million ϕ events were produced in the annihila-

tion reaction e+e− → π+π−γ and observed by the Cryogenic Magnetic Detector CMD-2 in

Novosibirsk. The ϕ(1020) resonance was reconstructed in the π+π−γ final state; isolating

photons with energy below ∼ 100 MeV and assuming that the pions in this final state

dominantly coupled to f0(980) yielded mf0(980) = 975 MeV. However, the resonance width

was not determined from the mentioned annihilation process but rather held at 40 MeV

[107]. The same process was subsequently repeated [108] with π0π0γ and ηπ0γ final states.

The lack of bremsstrahlung for the neutral final-state modes allowed for a better recon-

struction of f0(980) in the π0π0 channel. Again, a dominant coupling of pions to f0(980)

was assumed once the photons of energy below ∼ 100 MeV were isolated. The ensuing

results reflected those of Ref. [107] in mass; the width was determined to be (56± 20± 10)

MeV. These results are, however, obtained within certain models – as discussed in Ref.

[108]. Note that the annihilation process e+e− → ππγ (at 1020 MeV) was also used by

the KLOE Collaboration in the ”Frascati ϕ factory”, with results very similar to those of

CMD-2 but unfortunately with no determination of the f0(980) width (see Ref. [109] and

references therein).

• Belle. The Belle Collaboration at KEK (High Energy Accelerator Research Organization,

located in Tsukuba, Japan) have used the annihilation process e+e− → e+e−π+π− at 10.58

GeV aquiring high-statistics data, see Ref. [110]. The f0(980) resonance was reconstructed

in the π+π− final state with mf0(980) = 985.6+1.2+1.1
−1.5−1.6 MeV and Γf0(980)→ππ = 34.2+13.9+8.8

−11.8−2.5

MeV. The stated result for the decay width suffers from large errors (particularly at the

upper boundary) and the reason is the possible interference of e+e− → e+e−π+π− events

with dilepton events e+e− → µ+µ− yielding an increased uncertainty in data evaluation.

Subsequent analysis of the same reaction with π0π0 final states [111] yielded mf0(980) =

982.2 ± 1.0+8.1
−8.0 MeV and Γf0(980)→ππ = 66.9 ± 2.2+17.6

−12.5 MeV. The latter is very different

from the value of Ref. [110] because differential cross-sections (in S, D, G waves) were

fitted rather than the total one. However, no consideration was given to the kaon decays

of f0(980). A Breit-Wigner analysis was used in both cases.

The PDG estimates mf0(980) = (980 ± 10) MeV and Γf0(980) = (40− 100) MeV [10].
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3.3 The f0(1370) Resonance

The f0(1370) resonance decays predominantly into pions and is therefore a possible candidate for

a non-strange quarkonium state. We will discuss this possibility from the viewpoint of our model

in Fit II, Chapter 11. It is an established experimental fact that f0(1370) is a broad resonance

with Γf0(1370) ∼ (200 − 500) MeV [10]. Although the stated value of the decay width is not

comparable to the mass of the resonance, there large width nonetheless needs to be considered

with care when features of the resonance are analysed. One of the reasons for the large width

arises from the fact that f0(1370) is reconstructed in various decay channels (see below) that may

have different thresholds. For this reason, in this section we will prefer an analysis combining

different sets of data, in various channels and by various collaborations. The resonance is mostly

observed in p̄p annihilations, π−p scattering and J/ψ decays (see below).

There are several reviews offering combined analyses of f0(1370) features [40, 63, 101, 112, 113,

114, 115, 116, 117, 118, 119]. They are important for at least two reasons. Firstly, they clearly

demonstrate that f0(600) and f0(1370) are distinct resonances [63, 112, 113, 115]. Secondly,

a broad resonance with various decay channels – such as f0(1370) – is bound to experience

interference among different decay channels due to threshold openings. These have to be con-

sidered within comprehensive reviews combining different sets of production data (as performed,

for example, in references that have already been stated). In this section, we will in particular

emphasise results from a comprehensive review of f0(1370) by D. Bugg published in 2007 [40].

Nonetheless, let us first briefly summarise experimental data where a signal for f0(1370) was

seen.

• CERN. A bubble-chamber experiment involving p̄p→ π+π−π+π−π0 (antiprotons at 1.2

GeV targeted at hydrogen at rest) was analysed in 1969. A possible ρρ enhancement was

claimed at 1.4 GeV [120].

• Argonne. Data were taken from 400000 events observed at the Argonne National Labo-

ratory in 1976 from the reaction π−p producing neutrons and neutral pseudoscalar kaons

[121]. Pions were scattered off a 7.5 cm-long liquid-hydrogen target, with ensuing photons

(originating from the kaon decays) detected from scintillation counters in a hodoscope. An

enhancement with Γ ∼ 80 MeV was observed at approximately 1.25 GeV but with I = 1.

Subsequent data from higher statistics (110000 events in π−p→ nK−K+ and 50000 events

in π+n→ pK−K+) confirmed the enhancement, but found it to be rather broad (Γ ∼ 150

MeV, at ∼ 1.3 GeV) and with I = 0 [122]; see also Ref. [123].

• BNL. Data from 15000 events on π−p→ K̄0
SK

0
Sn taken at Brookhaven National Laboratory

suggested a resonance with a mass of ∼ 1463 MeV and a width of Γ ∼ 118 MeV (but with

large errors for the width) [124].

• Crystal Barrel. The earliest evidence for f0(1370) by the Crystal Barrel Collaboration

was published in 1992 from ηη final states [125]. Data were obtained from the reaction

p̄p→ηηπ0 → 6γ, where the antiprotons were stopped by a liquid-hydrogen target at the

centre of the Crystal Barrel detector. In this way, p̄p annihilation states were limited to S

and P waves allowing for a better reconstruction of putative scalar resonances. The Crystal

Barrel itself was in essence comprised of a magnetic detector with a CsI calorimeter used to

detect photons. An optimised fit suggested the existence of a scalar resonance with a mass
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of 1430 MeV and a decay width of 250 MeV. The same Collaboration also analysed data

from p̄p→ π+π−3π0 → ρ+ρ−π0 (antiprotons at 200 MeV stopped in a 4 cm long liquid-

hydrogen target at the centre of the detector); a strong signal with a mass of (1374 ± 38)

MeV and a width of (375 ± 61) MeV was reconstructed in both ρ+ρ− and σσ channels

[126]. Subsequent analysis of data from p̄p→ 3π0 and p̄p→ ηηπ0 found both f0(1370)

and f0(1500) [114, 127, 128]. High-statistics data from reactions p̄p→3π0 (712000 events),

p̄p→ηηπ0 (280000 events) and p̄p→ηπ0π0 (198000 events) were analysed in Refs. [67, 129].

They yielded not only evidence for f0(1370) and f0(1500) but also for the non-strange

isotriplet member of the scalar nonet above 1 GeV, the a0(1450) resonance, found in the

ηπ0π0 final state [130]. Finally, a simultaneous fit [116] of the Crystal Barrel p̄p data with

CERN-Munich data regarding π−p→ π−π+n [93] with BNL analyses from Refs. [124, 131]

and Argonne results from Refs. [123, 132] determined that ππ scattering data above 1 GeV

require the presence of f0(1370).

• Rome-Syracuse. A review of earlier data in Ref. [133] suggested a resonance with a mass

of (1386 ± 10± 28) MeV and a width of (310 ± 17± 47) MeV.

• OBELIX. The Collaboration utilised reactions induced by antineutrons; they were pro-

duced by the charge-exchange reaction p̄p→ n̄n in a 15 cm long liquid-hydrogen target

inside the OBELIX spectrometer at CERN-LEAR [134]. The ensuing beam produced re-

actions n̄p→ π+π−π+ and n̄p→ π+π−π+π−π+. A scalar state with a mass of (1345± 12)

MeV and width of (398 ± 26) MeV was reconstructed.

• Belle. Recently, the Belle Collaboration have claimed observation of a signal consistent

with f0(1370) from B meson decays produced in e+e− collisions: e+e− → Υ → B̄0
SB

0
S,

B̄0
SB

∗
S and B̄∗

SB
∗
S (with B∗

S → γB0
S) and B0

S → J/ψf0(1370) → J/ψπ+π−. The signal

was observed at 1405 ± 15+1
−7 MeV; the width was 54 ± 33+14

−3 MeV [135]. However, no

interference with the nearby scalar states was considered due to low statistics, although

the observation of a signal for f0(980) was also claimed.

However, there are also claims disputing the existence of f0(1370). It has been claimed that

f0(1370) could be merely a broad background in the energy region up to 1.5 GeV interfering with

f0(1500) and producing a peak at 1370 MeV [136]. Additionally, f0(1370) was not unambiguously

identified in the CERN-Munich data of Ref. [93] and might even, with f0(600), represent a single

state - the scalar glueball [137]; see also Ref. [138].

This work will not follow the assertions of the stated references for several reasons:

• It is highly unlikely that f0(600) and f0(1370) merely represent two manifestations of a

single state; features of f0(600) have been discussed in Sec. 3.1 where we have noted that

ππ scattering data unambiguously require a light scalar state corresponding to a pole in

the ππ scattering amplitude. For this reason alone, f0(600) is a state distinct from other

resonances, including f0(1370). [We have already noted at the beginning of this section

that Refs. [63, 112, 113, 115] also demonstrate that f0(600) and f0(1370) are distinct. The

same is shown as well in Ref. [40] in a simultaneous fit of Crystal Barrel data on p̄p and

BES II data from J/ψ decays, see below.]

• The mentioned CERN-Munich data have to be refitted simultaneously with data that have

higher statistics if one would like to make a more elaborate statement regarding scalar
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resonances. This has actually been performed in Ref. [138] where, for example, Argonne

data on KK scattering from Ref. [123] (discussed above) were considered. The Argonne

data possess the largest statistics to date for the KK channel (∼ 105 events), as noted in

Ref. [138]; however, there are even larger statistics in the ππ channel obtained by Crystal

Barrel from p̄p reactions (∼ 7 · 105 events in π0π0; ∼ 3 · 105 events in ηη) [67, 129].

Reference [138] does not consider the Crystal Barrel data, although they appear to be the

most definitive ones regarding f0(1370). For this reason, the ensuing conclusion disputing

the existence of f0(1370) is rather doubtful. The mentioned data from CERN-Munich and

Argonne (and also from BNL [124, 131]) were considered in Ref. [116]. As discussed above,

the combined fit required the presence of f0(1370) with a mass of (1300 ± 15) MeV and a

full width of (230 ± 15) MeV.

• The issue whether f0(1370) is actually merely a broad background in the energy region

above 1 GeV was discussed in some detail in Ref. [40] where it was found to be a gen-

uine resonance. The stated publication contains various interesting statements regarding

f0(1370) and, as a final part of this section, we will discuss the most important ones.

Five sets of data have been simultaneously fitted in Ref. [40]: Crystal Barrel data on p̄p→ 3π0

at rest in liquid [129] and gaseous hydrogen [101]; Crystal Barrel data on p̄p→ηηπ0 at rest in

liquid [125, 127, 139] and gaseous hydrogen [101] and also BES II data on J/ψ → ϕπ+π− [140].

The last set of data actually contains a peak at 1.35 GeV, contributed to interference of f0(1370),

f0(1500) and f2(1270); the corresponding data can be refitted with and without f0(1370). The

main conclusions from the combined fit are:

• Crystal Barrel data on p̄p→ 3π0 require f0(1370) as a 32σ signal in liquid-hydrogen p̄p

reactions (σ: standard deviation) and as a 33σ signal in gaseous-hydrogen p̄p reactions.

• Crystal Barrel data on p̄p→ηηπ0 require f0(1370) as a 17σ signal in liquid-hydrogen p̄p

reactions and as an 8σ signal in gaseous-hydrogen p̄p reactions.

• BES II data on J/ψ → ϕπ+π− require f0(1370) as an 8σ signal.

• It is not possible to simulate f0(1370) as a high-tail representation of f0(600), neither in

the ππ nor in the ηη channels, as the ensuing χ2 fit is noticeably worse than in the case

where f0(1370) is included as a separate resonance.

• If one fits the S-wave ππ scattering amplitude between 1.1 GeV and 1.46 GeV [putative

mass range of f0(1370)] without assuming a Breit-Wigner form (i.e., freely in bins of ππ

invariant mass), then a resonance form of the fitted amplitude is still obtained. The

resonance is labelled as f0(1370).

• CERN-Munich data [93] can be fitted slightly better with f0(1370) than without this state

but are not definitive in this regard.

• Due to lack of experimental data on ππ → 4π, it is only possible to constrain Γf0(1370)→ππ/

Γf0(1370)→4π rather than the two decay widths by themselves (Γ refers to the Breit-Wigner

width). The 2π line-shape of f0(1370) can then be fitted with a range of values for both

Γf0(1370)→ππ and Γf0(1370)→4π . The Breit-Wigner width in the 2π channel optimises the fit
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at Γf0(1370)→ππ = 325 MeV and implies Γf0(1370)→4π = (54 ± 2± 5) MeV with mf0(1370) =

(1309 ± 1 ± 15) MeV. Note, however, that the values of the 2π and 4π decay widths are

strongly dependent on the value of mf0(1370) at which they are determined. The reason

is that the 4π phase space increases rapidly above approximately 1.35 GeV (see the next

point).

• The quantitative features (mass/width) of f0(1370) are strongly dependent on the energy

range considered. Up to approximately 1.35 GeV, the 2π decay channel of f0(1370) is

dominant; thereafter, a rapid rise in the 4π phase space and cross-section occurs and thus

the 4π decay channel becomes dominant and the 2π contribution decreases rapidly. For

this reason, a proper dispersive analysis of ππ scattering in the energy region relevant

for f0(1370) has to consider contributions from both 2π and 4π channels but also the s-

dependence of these channels (s: pion invariant mass). This in turn implies that f0(1370)

has two pion peaks. The peak in the 2π channel is at 1282 MeV and possesses a full width

at half maximum (FWHM) of 207 MeV. The resonance mass at the centre of the FWHM

interval is 1269 MeV. (It does not coincide with the peak mass because the line shape

is not symmetric due to the opening of the 4π phase space.) The 4π peak is shifted by

approximately 50 MeV: the peak is at 1331 MeV and possesses a FWHM of 273 MeV

(these results are in reasonable agreement with 4π analyses of Refs. [126, 133, 134]). The

resonance mass at the centre of the FWHM interval is 1377 MeV – it is thus shifted by

more than 100 MeV in comparison with the 2π channel. We emphasise therefore that care

is needed when one quotes a value of a f0(1370) decay width: the mass of the resonance

always has to be specified as well.

Despite exhibiting the mentioned two peaks, f0(1370) is still a single resonance for at least

two reasons:

• A combined analysis of both 2π and 4π channels yields only one pole. Depending on

the sheet considered, the pole position varies between 1292 MeV and 1309 MeV (close

to the 2π peak because the s-dependence in the 2π channel is smaller than in the 4π

channel). The pole width is at average ∼ 181 MeV.

• Additionally, finding two distinct but near scalar resonances [∼ (50 - 100) MeV mass

difference], one in the 2π channel and one in the 4π channel, would appear to violate

the well-known level repulsion of states with the same quantum numbers. Indeed such

proximate resonances with the same quantum numbers are only expected if they pos-

sess orthogonal wave functions. This can obviously not be the case if two hypothetical

states were both reconstructed from pions. Conversely, an example where this may

occur is given by the pair of resonances f0(1710) – reconstructed predominantly in

kaon final states – and f0(1790), reconstructed predominantly in pion final states (see

Sections 3.5 and 3.6). There is another similar example: the f2(1565) resonance. It

possesses a small-intensity peak in the ππ channel at 1565 MeV and a larger-intensity

peak in the ωω channel at 1660 MeV; however, a dispersive analysis similar to that

performed in Ref. [40] still yields a single pole at 1598 MeV [141].

The PDG nonetheless accumulate all available data on f0(1370) estimating mf0(1370) = (1200 -

1500) MeV and Γf0(1370) = (200 - 500) MeV [10].
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3.4 The f0(1500) Resonance

The discovery of the f0(1500) resonance originated in search for the scalar glueball state. This

resonance is found mostly in pion final states from nucleon-nucleon (or antinucleon-nucleon) and

pion-nucleon scattering processes. If such processes produce four pions, then f0(1500) is recon-

structed from ρρ final states in the 2(π+π−) channel and from σσ final states in the 2(π+π−) or
2(π0π0) channels. The resonance is therefore at least partly reconstructed in channels containing

a double Pomeron exchange rendering the state a glueball candidate [142]. Our results from the

U(2)× U(2) version of the model will confirm this assertion, see Chapter 12.

The f0(1500) resonance was first observed by the Columbia-Syracuse Collaboration in 1982

[143]. A 76-cm bubble chamber at BNL-Columbia containing deuterium at rest was exposed to

antiprotons of various energies yielding the reactions p̄ + p → π0f0(1500) → 3π0 and p̄ + n →
π−f0(1500) → π−π+π−. The mass of the resonance was (1525 ± 5) MeV; the decay width was

(101 ± 13) MeV. The new scalar, found in the pion channel, was determined to be virtually

degenerate in mass with the already-known tensor state f
′
2(1525), produced predominantly in

the kaon channels in the same annihilation process. The state was swiftly confirmed by the

GAMS data (obtained from π−p and π−n annihilation at IHEP) in the subsequent few years

[144, 145], with mass values typically (50−100) MeV larger than the value reported by Columbia-

Syracuse. Note that the GAMS Collaboration typically utilised Breit-Wigner fits, known to

shift in different sets of data due to interference of f0(1500) with the nearby states f0(1370)

and f0(1710). (The same is true for data from π−Be → ηη′π−Be [146] and π−Be → ηηπ−Be
[147] from the Vertex Spectrometer VES, also at IHEP.) Later GAMS publications considered

interference effects with f0(1370) [104, 105] and f0(1710) [148]. In Ref. [105], GAMS data from

the reaction pp → pf (π
0π0)ps → pf (4γ)ps were utilised. The photons were detected by the

Hodoscope Automatic Multiphoton Spectrometer (the Russian abbreviation for which is, as

already indicated, GAMS), momenta of pf were measured by a magnetic spectrometer with gas

chambers while momenta of ps were measured by a recoil proton detector.

• WA76, WA91 and WA102. A range of data regarding f0(1500) were presented by the

WA76, WA91 and WA102 Collaborations using the CERN Omega Spectrometer. In 1989,

data from the reaction pp → pf (π
+π−π+π−)ps at 300 GeV were analysed confirming a

scalar state with a mass of (1449±4) MeV and a width of (78±18) MeV from a Breit-Wigner

fit [149]. The same reaction and the same analysis method were used in the subsequent years

[150]. A five-time increase in statistics allowed for a range of resonances between 1.2 GeV

and 2.0 GeV to be observed by the WA102 Collaboration. This included a JPC = 0++ peak

at 1.45 GeV, found to be a superposition of two scalar resonances, f0(1370) and f0(1500)

[151]. Subsequently, data from reactions pp → pf (K
+K−)ps and pp → pf (K̄

0
SK

0
S)ps [97]

and pp → pf (π
+π−)ps [98] allowed for a combined analysis to be performed in both pion

and kaon channels [99]. Both the T-matrix formalism and the K-matrix formalism were

used to obtain results regarding four scalar resonances: f0(980), f0(1370), f0(1500) and

f0(1710). For f0(1500), the mean obtained values were mf0(1500) = (1502 ± 12 ± 10) MeV

and Γf0(1500) = (98 ± 18 ± 16) MeV. The best WA102 data stem from an analysis of

pp → pf (π
0π0π0π0)ps, pp → pf (π

0π0π+π−)ps and pp → pf (π
+π−π+π−)ps (at 450 GeV)

because they allowed for a study of both σσ and ρρ contributions to scalars above 1 GeV.

Both decay channels were observed for f0(1500) with mf0(1500) = (1511 ± 9) MeV and
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Γf0(1500) = (102 ± 18) MeV [152]. Additionally, data from pp → pf (ηη)ps production

(identified via η → γγ and η → π+π−π0) also allowed for f0(1500) to be reconstructed

[153], with a pole position virtually the same as in Ref. [152].

• Crystal Barrel. The earliest evidence for f0(1500) by the Crystal Barrel Collaboration

at CERN-LEAR was published in 1992 from ηη final states [125]. Data were obtained

from the reaction p̄p→ηηπ0 → 6γ involving antiprotons stopped in liquid hydrogen. Data

analysis in Ref. [125] suggested mf0(1500) = (1560±25) MeV and Γf0(1500) = (245±50) MeV

from a Breit-Wigner fit but no interference with the nearby scalar states was considered.

Further analyses of p̄p→π0π0π0 and p̄p→ηηπ0 [127] as well as p̄p→ηη′π0 [154] confirmed

the state [with the latter reaction having a small branching ratio to f0(1500) due to the

phase-space suppression]. Data with highest statistics were analysed in 1995; they included

16.8 million p̄p collisions. From these collisions, 712000 events for p̄p→ 3π0 were selected,

see Ref. [102]. The f0(1500) resonance was reconstructed with mf0(1500) = (1500 ± 15)

MeV and Γf0(1500) = (120 ± 25) MeV. Additionally, 198000 events for p̄p→ ηηπ0 were

selected yielding mf0(1500) = (1505 ± 15) MeV and Γf0(1500) = (120 ± 30) MeV [139]. The

Collaboration also utilised the p̄p annihilation to study 4π0 decay channel of f0(1500) via

p̄p→ 5π0 in 1996 [68]. This channel is nowadays known to represent approximately 50% of

the f0(1500) decays [10]. In Ref. [68], an enhancement in the 4π scalar channel was observed

at 1505 MeV; the width was 169 MeV. In subsequent work, an additional production

channel was used by the Collaboration: p̄d→ π−4π0p; in this way, data evaluation was

simplified as only one combination of four pions had to be considered (unlike in p̄p→ 5π0

where four-pion states could be reconstructed in five different ways from the five pions)

[155]. Results were nonetheless consistent with Ref. [68]. Note that the Collaboration

has also observed subdominant f0(1500) decays into kaons from p̄p→K0
LK

0
Lπ

0 [156] and

p̄p→K+K−π0 [157], suggesting a small contribution of s̄s to f0(1500).

• OBELIX. Data taken from the reaction p̄p→π+π−π0 at CERN-LEAR were analysed in

1997 [158]. Three scalar poles were found in a K-matrix formalism: f0(980), f0(1370)

and f0(1500), with mf0(1500) = (1449 ± 20) MeV and Γf0(1500) = (114 ± 30) MeV. It was

necessary to include f0(1500) in particular into the fit as the χ/d.o.f. increased from 1.53

to 1.71 if f0(1500) was omitted. The existence of the resonance was subsequently confirmed

by data from n̄p→ π+π+π− [159].

The PDG cites a world-average mass mf0(1500) = (1505 ± 6) MeV and decay width Γf0(1710) =

(109± 7) MeV [10].

3.5 The f0(1710) Resonance

The f0(1710) resonance is of importance for this work because it decays predominantly into

kaons (see below); thus experimental data suggest that it may be a s̄s state. This is confirmed

by our findings in Fit II, Chapter 11. Other approaches suggest that f0(1710) may possess a large

glueball component [160]; however, this may be in doubt due to the latest ZEUS results that

do not exclude coupling of f0(1710) to photons (see below as well). Experimentally, f0(1710) is

reconstructed in π−p and e−p scatterings and J/ψ decays.
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The earliest evidence for the f0(1710) resonance was obtained from the decay J/ψ → γηη at the

SLAC Crystal Ball detector from e+e− annihilation and published in 1982 [161]. A resonance

with a mass of (1640 ± 50) MeV and a decay width of 220+100
−70 MeV was found. The resonance

was determined to have positive charge-conjugation quantum number (C = +1) because it was

produced in a radiative J/ψ decay. Given that it was reconstructed from two pseudoscalar final

states, it could only have even spin and parity (i.e., JP = 0+, 2+, ...) and the initial data

analysis in Ref. [161] preferred J = 2 rather than J = 0 [but the nearby spin-two state f ′2(1525)
was omitted from the analysis].

Confirmation of the new resonance was published several months later by the Brookhaven Na-

tional Laboratory from data on π−p → K̄0
SK

0
Sn [162]. Discovery of a resonance with mass

of (1730 ± 10 ± 20) MeV was claimed; the value of the decay width was later determined as

200+156
−9 MeV [124]. An isoscalar resonance of similar mass [(1650 ± 50) MeV] and decay width

[(200±100) MeV] was found by the MARK II Collaboration at SLAC in 1982 from J/ψ → γρ0ρ0

[163]. Afterwards, J/ψ decays into etas were used by the Crystal Ball Collaboration at SLAC

to reconstruct the resonance, see Ref. [164], confirmed soon thereafter by Ref. [165] (but with no

JP determination).

First DM2 data about this state were published in 1987 [166] citing a resonance at approximately

1.7 GeV (width: approximately 140 MeV). Further analysis yielded a mass (1707±10) MeV and

a width (166.4±33.2) MeV in 1988 [167]. The two sets of data were obtained from J/ψ radiative

decays into pions and kaons, respectively. However, no JP determination was possible due to

a low signal-to-background ratio. The same issue prevented a determination of JP in a further

set of data (J/ψ → ϕπ+π−, ϕK+K−, ϕK̄0
SK

0
S , ωK

+K−, ωK̄0
SK

0
S , ϕK̄K

⋆ and ϕp̄p; only decays

into kaons were relevant) [168].

There were several publications claiming this resonance to possess J = 2 rather than J = 0 (see

Ref. [169, 170] in addition to Ref. [161]). However, more recent data suggest that the resonance

is spin-zero:

• GAMS. Experiments regarding ηη final states, performed at the GAMS-IHEP proton syn-

chrotron from π−p → ηηn → (4γ)n reactions, suggested a mass of (1755 ± 8) MeV and

a width < 50 MeV in 1986 [171]. In 1992, an improved version of the same experiment,

considering also reactions π−p → ηηn∗ → (4γ)nπ0 and π−p → ηηn∗ → (4γ)nπ0π0 (where

n∗ denotes an excited neutron), allowed for analysis of new data combined with the old

1986 data. The Collaboration obtained a mass of (1744± 15) MeV and a width < 80 MeV

at 90% CL [172]. The resonance was found to possess J = 0 already in 1986; the 1992

data suggested that it does not decay into ηη′ or π0π0. A Breit-Wigner fit of GAMS data

yielded mass of (1670 ± 20) MeV and width (260 ± 50) MeV in 2005 [148].

• MARK-III. In 1986 and 1992 the MARK-III Collaboration at SLAC [173] published results

regarding pion production from decays e+e− → J/ψ → γπ+π−π+π− and e+e− → J/ψ →
γπ+π0π−π0 claiming the discovery of two pseudoscalar ρρ states at 1.55 and 1.8 GeV.

Similar results were published in 1989 by the DM2 Collaboration at DCI-Orsay [174] where

the discovery of three η-like states in the region between 1.4 GeV and 2.2 GeV was claimed

(see also results by the E760 Collaboration at Fermilab published in 1993 [175]). The

MARK-III and DM2 Collaborations made use only of 3S1 ππ final states (ρ). A re-analysis

of MARK-III data was performed in 1995 by the Crystal Barrel Collaboration [176]; here,

scalar 3P0 ππ final states (σ) were considered in addition to the vector 3S1 states. A
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different picture emerged: no pseudoscalar peak was found (there was a 0− signal over

the entire energy range between 1.6 GeV and 2.4 GeV but no clear resonance); inclusion

of the σ-like ππ final states yielded a new scalar resonance, denoted as f0(1750) with

mf0(1750) = (1750 ± 15) MeV and Γf0(1750) = (160 ± 40) MeV. The resonance was found

to decay predominantly into σ mesons; decay into ρ states was found to be approximately

4.5 times less probable. The mass of this resonance is close to the PDG-preferred value

mf0(1710) = (1720± 6) MeV but nonetheless appears to be too large when compared to the

value ofmf0(1710) accepted nowadays. Thus the mentioned MARK-III result may be viewed

as evidence that there exists a scalar resonance between 1.7 GeV and 1.8 GeV; however,

it may also be viewed as superposition of two distinct states: f0(1710) and f0(1790), with

evidence for the latter state discussed in the next section.

• BES. Results consistent with the MARK-III reanalysis of Ref. [176] were obtained by

the BES Collaboration at BEPC (Beijing Electron Positron Collider) in 2000 [177] where

an I(JPC) = 0(0++) resonance labelled as f0(1740) with mf0(1740) = 1740+30
−25 MeV and

Γf0(1740) = 120+50
−40 MeV was found. This result was again obtained in the decay channel

e+e− → J/ψ → γπ+π−π+π−. Note, however, that these data involved no kaon decays of

J/ψ. Subsequently, the same collaboration performed an analysis of a larger number of J/ψ

decay channels: J/ψ → γK+K−, ωK+K− and ϕK+K− as well as J/ψ → γπ+π−π+π−,
ωπ+π−π+π− and ϕπ+π− [178]. The kaon channels allowed for reconstruction of the

f0(1710) resonance [referred to as f0(1710 ± 20)] while the pion channels suggested the

existence of a separate f0(1760 ± 20) resonance. Thus a resonance with a mass distinct

from f0(1710) appeared to have been found; it was also produced in different decay channels

[i.e., those involving pions whereas the f0(1710) resonance was reconstructed predominantly

in kaon final states]. This new resonance was later denoted as f0(1790), see next section.

• BES II. An upgrade of BEPC allowed for 58M of J/ψ events to be collected at BES II. In

2003, f0(1710) was confirmed as a JP = 0+ resonance reconstructed in kaon final states

from J/ψ → γK+K− and γK̄0
SK

0
S with mf0(1710) = 1740 ± 4+10

−25 MeV and Γf0(1710) =

166+5+15
−8−10 MeV [179]. These results were confirmed in 2004 from J/ψ → ωK+K− [180].

Additional evidence for the existence of f0(1710) was presented in Ref. [181] from the

χc0 → π+π−K+K− decay; however, this analysis also suggested the existence of a further

scalar state between 1.7 GeV and 1.8 GeV, referred to as f0(1790).

• WA102. Experiments involving pp collisions at 450 GeV were performed by the WA102

Collaboration. Final states were reconstructed from reactions pp→ pf (K
+K−)ps and pp→

pf (K̄
0
SK

0
S)ps (subscripts f and s denote the fastest and slowest protons in the laboratory

frame, respectively). Results for the f0(1710) resonance suggested mf0(1710) = (1730 ± 15)

MeV and Γf0(1710) = (100±25) MeV [97]. The same experiment also allowed for resonances

in the pion final states to be looked for [98]. The corresponding reaction pp→ pf (π
+π−)ps

allowed for the reconstruction of f0(980), f0(1370) and f0(1500) but the fit of f0(1710) was

conspicuously worse than in pp → pf (K
+K−)ps. The two stated publications presented

results of respective Breit-Wigner fits. A coupled-channel analysis of both pion and kaon

final states yielded a pole atmf0(1710) = (1727±12±11) MeV and Γf0(1710) = (126±16±18)
MeV [99]. Note that a subsequent T -matrix analysis [153] of pp → pf (ηη)ps production

data (identified via η → γγ and η → π+π−π0) yielded results very close to those of Ref.
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[99]. Note also that all the mentioned results implied JP = 0+ for f0(1710).

• ZEUS. Electrons at 27.5 GeV were collided with protons at 820 GeV and 920 GeV at the

HERA storage ring in Hamburg (DESY) during the 1996-2000 running period. Reactions

were observed using the ZEUS detector and K̄0
SK

0
S final states were studied. The f0(1710)

was observed from a 5σ JP = 0+ signal yielding mf0(1710) = (1701 ± 5+9
−2) MeV and

Γf0(1710) = (100 ± 24+7
−22) MeV [182]. However, the Collaboration was not able to exclude

the coupling of f0(1710) to photons, implying that this resonance is not a certain candidate

for a predominantly glueball state. Indeed calculations in our model prefer f0(1710) to be

predominantly strange quarkonium, as we will discuss in Chapter 9.

The PDG cites a world-average mass mf0(1710) = (1720± 6) MeV and a decay width Γf0(1710) =

(135 ± 8) MeV [10]. A more detailed discussion of the f0(1710) decay channels can be found in

Sec. 3.7.

3.6 The Peculiar Case of f0(1790)

Our results in Fit II, Chapter 10, will suggest the existence of an I(JPC) = 0(0++), predomi-

nantly s̄s state in the energy region of approximately 1.6 - 1.7 GeV. Assignment of this state

to an experimentally established resonance will depend on decay patterns of our model state;

however, experimental results regarding the I(JPC) = 0(0++) channel in this energy region are

far from clear [although admittedly the issue is less ambiguous than in the case of f0(600)].

The reason is that the existence of two distinct resonances is claimed within an energy interval

of only 100 MeV: in addition to f0(1710), the BES II Collaboration [140] have claimed that a

state labelled as f0(1790) also exists. In the following we will discuss data regarding this reso-

nance; if f0(1790) does exist, then the disentanglement of data regarding this state from those

regarding the close-by state f0(1710) in experimental observations becomes imperative, as en-

tangled data are bound to lead to results that could certainly be described as peculiar (or at

least such that they should not be used in models and theories). Note that data sets regarding

f0(1790) – described in the following – provide us with a rather straightforward tool to distin-

guish this resonance from f0(1710): the f0(1790) resonance decays predominantly into pions and

only marginally into kaons. For f0(1710), the opposite is true. Thus a careful analysis of exper-

imental data should be able to discriminate between these two states. [Additionally, the feature

of predominantly decaying into pions and the mass difference to f0(1370) qualify f0(1790) as a

putative radial excitation of f0(1370).]

Experimental evidence for f0(1790) reads as follows:

• MARK-III / Crystal Barrel. In the previous section we have already discussed the re-

analysis of MARK-III data performed in 1995 by the Crystal Barrel Collaboration [176].

We have indicated that a careful analysis of the mentioned data yields a scalar resonance

denoted as f0(1750) with mf0(1750) = (1750 ± 15) MeV and Γf0(1750) = (160 ± 40) MeV.

However, the mass of this resonance appears to be too large to describe f0(1710) alone;

it appears more probable that the mentioned data actually yield a superposition of the

f0(1710) resonance (the existence of which may be regarded as proven) with a putative

new resonance (the existence of which would require more experimental data, discussed in
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the following). Therefore, the central value of the mass of this resonance may indicate a

superposition of a state denoted nowadays as f0(1790) with f0(1710).

• Crystal Barrel. The Crystal Barrel Collaboration also published analysis of data from the

reaction p̄p → ηηπ0 in 1999 [183]. An 8σ signal was found; the resonance was referred to

as f0(1770) with mf0(1770) = (1770 ± 12) MeV and Γf0(1770) = (220± 40) MeV.

• BES. As mentioned in the previous section, in 2000 the BES Collaboration claimed the

existence of a resonance denoted as f0(1760 ± 20), found to be distinct from the f0(1710)

state [178]. Factors of distinction involved not only the mass but also production channels:

f0(1710) appeared in the J/ψ → γK+K−, ωK+K− and ϕK+K− channels while f0(1760±
20) was reconstructed in J/ψ → γπ+π−π+π−, ωπ+π−π+π− and ϕπ+π−. More conclusive

evidence for a second resonance between 1.7 and 1.8 GeV was obtained by the BES II

Collaboration (see below). Note that already in 1996 the BES Collaboration claimed the

existence of a scalar resonance with a mass of 1781± 8+10
−31 MeV and a width of 85± 24+22

−19

MeV that appeared to correspond well to a resonance at 1.79 GeV [i.e., to the putative

f0(1790) resonance] but was, however, found in the J/ψ → γK+K− channel only [184].

Thus results of Ref. [184] did not include J/ψ decays in the pion channels and possible

interference effects with kaons; therefore they need to be considered with care.

• BES II – J/ψ. An upgrade of BEPC allowed for 58M of J/ψ events to be collected at BES

II. A clear f0(1790) peak corresponding to a 15σ signal was observed in the J/ψ → ϕπ+π−

decay [140] yielding mf0(1790) = 1790+40
−30 MeV and Γf0(1790) = 270+60

−30 MeV. This is the

best available set of data on f0(1790). Conversely, the f0(1710) resonance was observed

in the J/ψ → ϕK+K− channel confirming this resonance as decaying predominantly into

kaons [mf0(1710) and Γf0(1710) were fixed to the PDG values]. An additional reason for

the assertion that there exist two scalar states in the region between 1.7 GeV and 1.8

GeV was presented in Ref. [140]. As already mentioned, a fit of the J/ψ → ϕπ+π− data

allows for determination of the f0(1790) mass and width. Let us assume that f0(1710)

and f0(1790) actually represent the same resonance and let us denote this resonance as

f̃0 – i.e., let f̃0 be the only I(JPC) = 0(0++) resonance between 1.7 GeV and 1.8 GeV.

We can then remove (artificially) the f0(1710) resonance from the J/ψ → ϕK+K− data.

This yields the branching ratio Γf̃0→ππ/Γf̃0→KK = 1.82 ± 0.33 (in addition to a poorer

fit). However, according to Ref. [180] the same ratio for a scalar state between 1.7 GeV

and 1.8 GeV should possess a value < 0.11, obtained from different production channels:

J/ψ → ωπ+π− and J/ψ → ωK+K−. A single resonance must possess the same value of a

branching ratio in all production channels – in our case regardless whether it is produced

in J/ψ → ϕπ+π− and J/ψ → ϕK+K− or in J/ψ → ωπ+π− and J/ψ → ωK+K−. For

the case of the assumed single scalar resonance f̃0 between 1.7 GeV and 1.8 GeV this is

obviously not true: the branching ratios differ by at least a factor of 17. Therefore, there

must exist two distinct resonances.

• BES II – χc0. Additional confirmation of the f0(1790) state can be found in Ref. [181]

from a BES II analysis of the χc0 → π+π−K+K− decay; see also Ref. [185].

Thus there appears to be sufficient evidence for existence of a sixth isoscalar resonance below 1.9

GeV, f0(1790), in addition to f0(600), f0(980), f0(1370), f0(1500) and f0(1710). The relative
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vicinity of f0(1790) to f0(1710) makes it imperative to consider carefully and, if necessary, to

disentangle published results regarding both resonances. We illustrate this point in the following

section where the partial decay widths of f0(1710) are determined.

3.7 Consequences for the f0(1710) Decay Channels

Considering the experimental ambiguities discussed in the previous section, let us now discuss nu-

merical values regarding the f0(1710) decay channels. The PDG [10] lists five decay channels for

this resonance: f0(1710) → KK, ππ, ηη, γγ and ωω. The existence of the decay f0(1710) → ωω

was determined only recently by the BES II Collaboration in 2006 [186]. No precise determina-

tion of the branching ratio was possible because the decay was reconstructed from the reaction

J/ψ → γωω, yielding a strong pseudoscalar contribution and rather weak scalar and tensor con-

tributions. There is no published value of the corresponding Γf0(1710)→ωω that is expected to be

small. The latter is also true for Γf0(1710)→γγ . We therefore consider only the first three decays:

into kaons, pions and etas:

Γf0(1710) ≡ Γf0(1710)→KK + Γf0(1710)→ππ + Γf0(1710)→ηη

= Γf0(1710)→ππ

[

1 +
Γf0(1710)→KK

Γf0(1710)→ππ
+

Γf0(1710)→ηη

Γf0(1710)→ππ

]

. (3.1)

In the next three subsections we will calculate decay widths of f0(1710) in various channels using

the experimentally known ratios Γf0(1710)→ππ/Γf0(1710)→KK and Γf0(1710)→ηη/Γf0(1710)→KK . In

Section 3.7.1 we discuss implications of data on f0(1710) preferred by the PDG; they include

Γf0(1710)→ππ/Γf0(1710)→KK = 0.41+0.11
−0.17 from the BES II Collaboration [187] as well as the ra-

tio Γf0(1710)→ηη/Γf0(1710)→KK = 0.48 ± 0.15 from the WA102 Collaboration [153] (the latter

experiments performed at CERN Omega Spectrometer). Subsection 3.7.2 contains analogous

calculation with the alternative BES II ratio Γf0(1710)→ππ/Γf0(1710)→KK < 0.11 [180] (not used

by the PDG) but retaining the WA102 ratio Γf0(1710)→ηη/Γf0(1710)→KK = 0.48 ± 0.15. In Sub-

section 3.7.3 we use only the WA102 ratios Γf0(1710)→ππ/Γf0(1710)→KK = 0.2± 0.024± 0.036 [99]

and Γf0(1710)→ηη/Γf0(1710)→KK = 0.48 ± 0.15.

Note that there are also corresponding results from a combined fit in Ref. [188] that, however,

do not constrain the 2π/2K ratio very well: Γf0(1710)→ππ/Γf0(1710)→KK = 5.8+9.1
−5.5. Addition-

ally, there are older data from the WA76 Collaboration at CERN [96] reading Γf0(1710)→ππ

/Γf0(1710)→KK = 0.39 ± 0.14; these are qualitatively consistent with results of Ref. [99] and

therefore omitted from our discussion.

3.7.1 The f0(1710) Decay Widths from Data Preferred by the PDG

As already mentioned, the BES II [187] ratio cited by the PDG reads Γf0(1710)→ππ/Γf0(1710)→KK ≡
ΓPDG
f0(1710)→ππ/Γ

PDG
f0(1710)→KK = 0.41+0.11

−0.17. Two comments are in order for this result. Firstly, data

used to extract the stated ratio (J/ψ → γπ+π− and γπ0π0) suffer from a large background in

the π+π− channel (of approximately 50%). This raises doubts about the reliability of the ratio.

Additionally, the ratio was obtained for a scalar resonance with a mass of 1765+4
−3 MeV and width

of (145± 8± 69) MeV. Although the resonance may be assigned to f0(1710) (due to the value of

its width; the mass is too large), the mass of the resonance appears to suggest that it could also
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be a superposition of f0(1710) and f0(1790) rather than representing only a signal for f0(1710).

This possibility was also discussed by the Collaboration itself [187]. Therefore, the stated ra-

tio for Γf0(1710)→ππ/Γf0(1710)→KK has to be regarded with care. Indeed we will also consider

alternative values of the Γf0(1710)→ππ/Γf0(1710)→KK ratio, such as for example a more reliable

result of Γf0(1710)→ππ/Γf0(1710)→KK < 0.11 from Ref. [180], also by the BES II Collaboration (see

Subsection 3.7.2).

Despite the mentioned drawbacks, let us discuss the consequences of Γf0(1710)→ππ/Γf0(1710)→KK ≡
ΓPDG
f0(1710)→ππ/Γ

PDG
f0(1710)→KK = 0.41+0.11

−0.17. The inverse ratio Γf0(1710)→KK/Γf0(1710)→ππ has the cen-

tral value of 2.44. The error value ∆(Γf0(1710)→KK/Γf0(1710)→ππ) is obtained from

Γf0(1710)→KK

Γf0(1710)→ππ
≡ 1

Γf0(1710)→ππ

Γf0(1710)→KK

⇒ ∆
Γf0(1710)→KK

Γf0(1710)→ππ
=

∣

∣

∣

∣

∣

∣

∣

−
∆

Γf0(1710)→ππ

Γf0(1710)→KK

[

Γf0(1710)→ππ

Γf0(1710)→KK

]2

∣

∣

∣

∣

∣

∣

∣

⇒ ∆
Γf0(1710)→KK

Γf0(1710)→ππ
=+0.65

−1.01 . (3.2)

Thus, in total:

Γf0(1710)→KK

Γf0(1710)→ππ
≡

ΓPDG
f0(1710)→KK

ΓPDG
f0(1710)→ππ

= 2.44+0.65
−1.01. (3.3)

The PDG also uses the ratio Γf0(1710)→ηη/Γf0(1710)→KK = 0.48 ± 0.15, published originally by

the WA102 Collaboration in 2000 [153]. Then we obtain for the central value of the ratio

Γf0(1710)→ηη/Γf0(1710)→ππ

Γf0(1710)→ηη

Γf0(1710)→ππ
=

Γf0(1710)→ηη

Γf0(1710)→KK

1

Γf0(1710)→ππ

Γf0(1710)→KK

=
0.48

0.41
= 1.17. (3.4)

(Note that the line above the observable denotes the central value.) Additionally,

Γf0(1710)→ηη

Γf0(1710)→ππ
=

Γf0(1710)→ηη

Γf0(1710)→KK

Γf0(1710)→KK

Γf0(1710)→ππ

⇒ ∆
Γf0(1710)→ηη

Γf0(1710)→ππ
=

√

[

Γf0(1710)→ηη

Γf0(1710)→KK
∆
Γf0(1710)→KK

Γf0(1710)→ππ

]2

+

[

Γf0(1710)→KK

Γf0(1710)→ππ
∆

Γf0(1710)→ηη

Γf0(1710)→KK

]2

(3.5)

and consequently from Eq. (3.2):

Γf0(1710)→ηη

Γf0(1710)→ππ
≡

ΓPDG
f0(1710)→ηη

ΓPDG
f0(1710)→ππ

= 1.17+0.48
−0.61. (3.6)

From Eq. (3.1) we obtain

Γf0(1710)→ππ =
Γf0(1710)

1 +
Γf0(1710)→KK

Γf0(1710)→ππ
+

Γf0(1710)→ηη

Γf0(1710)→ππ

(3.7)
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and thus, given that Γf0(1710) = (135 ± 8) MeV [10], Eqs. (3.3) and (3.6) yield the central value

Γf0(1710)→ππ = 29.28 MeV. The corresponding error value ∆Γf0(1710)→ππ is obtained from Eq.

(3.7) as follows:

∆Γf0(1710)→ππ =















∆Γf0(1710)

1 +
Γf0(1710)→KK

Γf0(1710)→ππ
+

Γf0(1710)→ηη

Γf0(1710)→ππ





2

+











Γf0(1710) ∆
Γf0(1710)→ηη

Γf0(1710)→ππ

[

1 +
Γf0(1710)→KK

Γf0(1710)→ππ
+

Γf0(1710)→ηη

Γf0(1710)→ππ

]2











2

+











Γf0(1710) ∆
Γf0(1710)→KK

Γf0(1710)→ππ

[

1 +
Γf0(1710)→KK

Γf0(1710)→ππ
+

Γf0(1710)→ηη

Γf0(1710)→ππ

]2











2








1
2

(3.8)

Equations (3.3), (3.6) and (3.8) yield

∆Γf0(1710)→ππ =+5.42
−7.69 MeV. (3.9)

Thus,

Γf0(1710)→ππ ≡ ΓPDG
f0(1710)→ππ = 29.28+5.42

−7.69 MeV. (3.10)

We obtain from Eqs. (3.3) and (3.10) for Γf0(1710)→KK :

Γf0(1710)→KK =
Γf0(1710)→KK

Γf0(1710)→ππ
Γf0(1710)→ππ (3.11)

⇒ Γf0(1710)→KK = 71.44 MeV. (3.12)

Error values ∆Γf0(1710)→KK are obtained from

∆Γf0(1710)→KK =

[

(

Γf0(1710)→ππ ∆
Γf0(1710)→KK

Γf0(1710)→ππ

)2

+

(

Γf0(1710)→KK

Γf0(1710)→ππ
∆Γf0(1710)→ππ

)2
]

1
2

(3.13)

⇒ ∆Γf0(1710)→KK =+23.18
−35.02 MeV. (3.14)

Thus in total:

Γf0(1710)→KK ≡ ΓPDG
f0(1710)→KK = 71.44+23.18

−35.02 MeV. (3.15)

Analogously, in the f0(1710)→ ηη channel we obtain from Eqs. (3.6) and (3.10):

Γf0(1710)→ηη =
Γf0(1710)→ηη

Γf0(1710)→ππ
Γf0(1710)→ππ (3.16)

⇒ Γf0(1710)→ηη = 34.26 MeV. (3.17)

while the error values ∆Γf0(1710)→ηη are obtained from
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∆Γf0(1710)→ηη =

[

(

Γf0(1710)→ππ ∆
Γf0(1710)→ηη

Γf0(1710)→ππ

)2

+

(

Γf0(1710)→ηη

Γf0(1710)→ππ
∆Γf0(1710)→ππ

)2
]

1
2

(3.18)

⇒ ∆Γf0(1710)→KK =+15.42
−20.0 MeV. (3.19)

Therefore,

Γf0(1710)→ηη ≡ ΓPDG
f0(1710)→ηη = 34.26+15.42

−20.0 MeV. (3.20)

3.7.2 The f0(1710) Decay Widths from Alternative BES II Data

Results for Γf0(1710)→ππ , Γf0(1710)→KK and Γf0(1710)→ηη , stated respectively in Eqs. (3.10), (3.15)

and (3.20), depend among others on the result Γf0(1710)→ππ/Γf0(1710)→KK = 0.41+0.11
−0.17 from Ref.

[187], the reliability of which was discussed at the beginning of Sec. 3.7.1. In this subsection we

discuss implications of an alternative (and more reliable) BES II result:

Γf0(1710)→ππ

Γf0(1710)→KK
≡

ΓBES II
f0(1710)→ππ

ΓBES II
f0(1710)→KK

< 0.11. (3.21)

This result implies

Γf0(1710)→KK

Γf0(1710)→ππ
≡

ΓBES II
f0(1710)→KK

ΓBES II
f0(1710)→ππ

> 9.09. (3.22)

From Γf0(1710)→ηη/Γf0(1710)→KK = 0.48 [153] we obtain

Γf0(1710)→ηη

Γf0(1710)→ππ
≡

ΓBES II
f0(1710)→ηη

ΓBES II
f0(1710)→ππ

=
Γf0(1710)→ηη

Γf0(1710)→KK

1
Γf0(1710)→ππ

Γf0(1710)→KK

>
0.48

0.11
= 4.36. (3.23)

We will restrain from calculating errors because the ratio Γf0(1710)→ππ/Γf0(1710)→KK < 0.11

provides us only with an upper boundary and no error information. The condition (3.23) implies

Γf0(1710)→ππ

Γf0(1710)→ηη
≡

ΓBES II
f0(1710)→ππ

ΓBES II
f0(1710)→ηη

< 0.23. (3.24)

From conditions (3.7), (3.22) and (3.23) we obtain

Γf0(1710)→ππ ≡ ΓBES II
f0(1710)→ππ < 9.34 MeV. (3.25)

Note that a similar calculation of an interval for Γf0(1710)→KK would yield

Γf0(1710)→KK =
Γf0(1710)→KK

Γf0(1710)→ππ
Γf0(1710)→ππ; (3.26)

then constraining Γf0(1710)→KK is not possible because condition (3.22) determines the lower

boundary for Γf0(1710)→KK/Γf0(1710)→ππ and, contrarily, condition (3.25) suggests the upper

boundary for Γf0(1710)→ππ . For analogous reasons, a calculation of Γf0(1710)→ηη is also not pos-

sible. However, given that Γf0(1710) ≡ Γf0(1710)→KK + Γf0(1710)→ππ + Γf0(1710)→ηη , the condition

(3.25) leads to 125.66 MeV < Γf0(1710)→KK + Γf0(1710)→ηη < 135 MeV ≡ Γf0(1710).
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3.7.3 The f0(1710) Decay Widths from WA102 Data

The WA102 result [99]

Γf0(1710)→ππ

Γf0(1710)→KK
≡

ΓWA102
f0(1710)→ππ

ΓWA102
f0(1710)→KK

= 0.2 ± 0.024 ± 0.036 ≡ 0.2 ± 0.06 (3.27)

implies that the central value of the inverse ratio Γf0(1710)→KK/Γf0(1710)→ππ is 5.0. Corresponding

error values are calculated using the first line of Eq. (3.2):

∆
Γf0(1710)→KK

Γf0(1710)→ππ
= 1.5. (3.28)

Thus in total we obtain

Γf0(1710)→KK

Γf0(1710)→ππ
≡

ΓWA102
f0(1710)→KK

ΓWA102
f0(1710)→ππ

= 5.0 ± 1.5. (3.29)

From Γf0(1710)→ηη/Γf0(1710)→KK = 0.48 ± 0.15 [153] we obtain

Γf0(1710)→ηη

Γf0(1710)→ππ
=

Γf0(1710)→ηη

Γf0(1710)→KK

1

Γf0(1710)→ππ

Γf0(1710)→KK

=
0.48

0.2
= 2.4. (3.30)

Then Eq. (3.5) yields

Γf0(1710)→ηη

Γf0(1710)→ππ
≡

ΓWA102
f0(1710)→ηη

ΓWA102
f0(1710)→ππ

= 2.4 ± 1.04. (3.31)

Given that Γf0(1710) = (135±8) MeV, we obtain the central value Γf0(1710)→ππ = 16.1 MeV from

Eq. (3.7). The error is calculated from Eq. (3.7); we obtain ∆Γf0(1710)→ππ = 3.6 MeV. Thus in

total

Γf0(1710)→ππ ≡ ΓWA102
f0(1710)→ππ = (16.1 ± 3.6) MeV. (3.32)

Equations (3.11), (3.29) and (3.32) yield Γf0(1710)→KK = 80.5 MeV whereas from Eq. (3.13) we

obtain ∆Γf0(1710)→KK = 30.1 MeV. In total:

Γf0(1710)→KK ≡ ΓWA102
f0(1710)→KK = (80.5 ± 30.1) MeV. (3.33)

Finally, from Eqs. (3.16), (3.31) and (3.32) we obtain Γf0(1710)→ηη = 38.6 MeV while Eq. (3.18)

yields ∆Γf0(1710)→ηη = 18.8 MeV. In total:

Γf0(1710)→ηη ≡ ΓWA102
f0(1710)→ηη = (38.6 ± 18.8) MeV. (3.34)

We note from Eq. (3.32) that Γf0(1710)→ππ is approximately by a factor of two smaller in the

WA102 data than in the combined BES II/WA102 data that lead to Γf0(1710)→ππ = 29.28+5.42
−7.69

MeV, Eq. (3.10). This is due to the difference of the Γf0(1710)→ππ/Γf0(1710)→KK ratios from Refs.

[99] and [187].

Therefore, we are now in possession of three distinct sets of data regarding decay widths of

f0(1710): those preferred by the PDG [Eqs. (3.3), (3.6), (3.10), (3.15) and (3.20)], those from

BES II, not used by the PDG [Eqs. (3.21) - (3.25)] and those from WA102 [Eqs. (3.27), (3.29),

(3.31), (3.32), (3.33) and (3.34)]. We will discuss implications of these results for our model in

Sec. 11.1.3.
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4. Construction of a Meson Model

4.1 General Remarks

We have seen in Chapter 2 that QCD possesses an exact SU(3)c local gauge symmetry (the

colour symmetry) and an approximate global U(Nf )R × U(Nf )L symmetry for Nf massless

quark flavours (the chiral symmetry). For sufficiently low temperature and density, quarks and

gluons are confined inside colourless hadrons [i.e., SU(3)c invariant configurations]. Thus, it is

the chiral symmetry which predominantly determines hadronic interactions in the low-energy

region. However, QCD is strongly non-perturbative in the low-energy region as is evident from

the running coupling g2(µ), Eq. (2.86). Thus, in the non-perturbative regime, effective theories

and models based on the features of the QCD Lagrangian are utilised.

Effective field theories which contain hadrons as degrees of freedom rather than quarks and

gluons have been developed along two lines which differ in the way in which chiral symmetry is

realised: linear [48] and non-linear [189]. In the non-linear realisation, the so-called non-linear

sigma model, the scalar states are integrated out, leaving the pseudoscalar states as the only

degrees of the freedom. On the other hand, in the linear representation of the symmetry, the

so-called linear sigma model, both the scalar and pseudoscalar degrees of freedom are present.

In this work, we consider the linear representation of chiral symmetry. Let us discuss the reasons.

• Chiral partners. The linear sigma model contains not only pseudoscalar states but also their

so-called chiral partners from the onset. The definition of the chiral partners requires us to

introduce a quantum number denoted as G-parity [next to the parity P (2.61) and charge

conjugation C (2.64)]. To this end, consider a special case of the flavour transformation

(here exemplary for two flavours)

qf =

(

u

d

)

−→ q′f = U2

(

u

d

)

,

where U2 = exp(iπt2). Then the G-parity operator is defined as G = C ·U2 with the value of the

corresponding quantum number calculated from [190]

G = (−1)L+S+I (4.1)

where I denotes the isospin. [Remember Eqs. (2.94) and (2.95) for the parity P and the charge

conjugation C.] The G-parity is defined in such a way that it possesses true eigenvectors, e.g.,

for pions

G |π0〉 = −|π0〉, (4.2)

G |π+〉 = −|π+〉, (4.3)

G |π−〉 = −|π−〉, (4.4)

unlike the charge conjugation that, per definition, flips the charge of the state concerned:
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C |π+〉 = −|π−〉, (4.5)

C |π−〉 = −|π+〉. (4.6)

Note that the G-parity is also conserved under strong interactions. [It is slightly broken, e.g., in

the decay ω(782)→ π+π− – the branching ratio is ∼ 1.53% [10].]

Then we define the chiral partners as states that have the same quantum numbers with the

exception of parity and G-parity – for example, the scalar states sigma and pion are chiral

partners, see Eqs. (2.110) and (2.111). The particular version of the model constructed in this

work will in addition also include vector mesons and their chiral partners, the axial-vectors. For

example, the vector state ρ and the axial-vector state a1 are chiral partners [see Eqs. (2.112) and

(2.113)]. Thus the existence of the chiral partners is a consequence of an exactly realised QCD

chiral symmetry (see Sec. 2.5).

• Extensions. The linear sigma model can be extended straightforwardly to a larger number

of flavours. This chapter will see the construction of a sigma model with two quark flavours

(light quarks u and d). The extension of the model to three flavours (u, d, s) will be

presented in Chapters 6 – 11. The model can also be extended to four flavours (u, d, s,

c) to account for the abundant meson spectrum around 2 GeV [191]. The extension of

the model to include a scalar glueball state will be presented in Chapter 12. The model

presented in this work contains mesons up to spin 1. It can, however, also be extended

to include tensor mesons [192]. Additionally, the model can be extended to include a

pseudoscalar glueball [191, 193], tetraquarks, i.e., q̄q̄qq mesons [194] and the nucleon and

its chiral partner [59, 195].

• Non-zero temperatures and densities. Although this thesis will be concerned with meson

phenomenology in vacuum, the model can be readily extended to T 6= 0 6= µ to study the

chiral phase transition, the critical point of QCD or matter at finite densities [37, 194, 196,

197, 198].

A model based on QCD must, of course, implement features of the QCD Lagrangian demon-

strated in Chapter 2. Let us summarise these features now.

• Colour symmetry. The SU(3)c gauge symmetry is one of the basic features of QCD. It is an

exact symmetry of the QCD Lagrangian (see Sec. 2.2). In accordance with the confinement

hypothesis, all the states in our model have to be colour-neutral. As we will be working

with q̄q meson states, the confinement will be trivially fulfilled. Note, however, that the

model will contain no order parameter for deconfinement.

• Chiral symmetry. As we have discussed in Sec. 2.5, the QCD Lagrangian with Nf quark

flavours possesses a U(Nf )L × U(Nf )R chiral symmetry. This symmetry is exact in the

limit of vanishing quark masses and it has to be considered in any field theory or model

based on QCD.

• Spontaneous breaking of the chiral symmetry. Experimental data in vacuum (and at suf-

ficiently low temperatures and densities of matter) demonstrate that the chiral U(Nf )L ×
U(Nf )R ≡ U(1)V ×U(1)A×SU(Nf )V ×SU(Nf )A symmetry is broken spontaneously by a
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non-vanishing expectation value of the quark condensate (2.114): 〈q̄q〉 = 〈q̄RqL+q̄LqR〉 6= 0.

As we have seen in Sec. 2.5, this symmetry breaking leads to the emergence of N2
f − 1

pseudoscalar Goldstone bosons. The scalar states representing the chiral partners of the

Goldstone bosons remain massive. For Nf = 2, the three lightest meson states, the pions,

are identified with these Goldstone bosons of QCD. They will be present as explicit degrees

of freedom in our model (together with scalar, vector and axial-vector states).

• Chiral anomaly. As we have seen in Sec. 2.3, the U(Nf )L × U(Nf )R symmetry is broken

by quantum effects to U(1)V × SU(Nf )V × SU(Nf )A [the U(1)A anomaly (2.60)]. The

chiral-anomaly term will allow us to generate the splitting of mass between the pions and

the η meson (as well as η′ in Chapter 6).

• Explicit breaking of the chiral symmetry. The explicit breaking of the axial symmetry

SU(Nf )A is due to non-zero quark masses. The vector symmetry SU(Nf )V is broken by

non-zero, non-degenerate quark masses. Our model will therefore contain terms propor-

tional to quark masses to implement this symmetry-breaking mechanism.

• CPT . QCD also possesses discrete symmetries such as charge conjugation (C ), parity

(P) and time reversal (T ) symmetry (CPT ), which are to a very good precision separately

conserved by strong interactions. We have demonstrated in Sec. 2.4 that the CP -invariance

is a feature of the QCD Lagrangian; therefore, according to the famous CPT theorem

(see Ref. [199] and references therein), QCD is also T -invariant. This fact offers further

constraints in the construction of effective models of QCD as all the terms in such models

have to be CPT invariant.

In Chapter 5 we will study the Nf = 2 version of a linear sigma model which contains scalar (σN ,

a0) and pseudoscalar (ηN , π), and in addition also vector (ωN , ρ) and axial-vector (f1N , a1)

degrees of freedom. Usually, such models are constructed under the requirement of local chiral

invariance U(Nf )R × U(Nf )L, with the exception of the vector meson mass term which renders

the local symmetry a global one [49, 53]. In a slight abuse of terminology, we will refer to these

models as locally chirally invariant models in the following.

As shown in Refs. [49, 52, 53, 54, 57, 200], the locally invariant linear sigma model fails to

simultaneously describe meson decay widths and pion-pion scattering lengths in vacuum. As

outlined in Ref. [52], there are at least two ways to solve this issue. One way is to utilise

a model in which the (up to the vector meson mass term) local invariance of the theory is

retained while higher-order terms are added to the Lagrangian [49, 53, 200]. The second way

which is pursued here is the following: we construct a linear sigma model with global chiral

invariance containing all terms up to naive scaling dimension four [47], see also Ref. [201]. (Note

that the chiral symmetry of the QCD Lagrangian is also a global one.) The global invariance

allows for additional terms to appear in our Lagrangian in comparison to the locally invariant

case presented, e.g., in Ref. [37]. (We remark that, introducing a dilaton field, one can argue

[59, 202, 203] that chirally invariant terms of higher order than scaling dimension four should be

absent. The consequences of the dilaton-field introduction will be discussed in Chapter 12.)

We have to distinguish between two possible assignments for the scalar fields σN = (ūu+ d̄d)/
√
2

and a00 = (ūu− d̄d)/
√
2:

• They may be identified with f0(600) and a0(980) which are members of a nonet that in

addition consists of f0(980) and K
⋆
0 (800).
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• They may be identified with f0(1370) and a0(1450) which are members of a multiplet that

also consists of f0(1500), f0(1710), and K⋆
0 (1430), where the additional scalar-isoscalar

state emerges from the admixture of a glueball field [204, 205, 206, 207].

In the second assignment, scalar mesons below 1 GeV are not (predominantly) quark-antiquark

states. Their spectroscopic wave functions might contain a dominant tetraquark or mesonic

molecular contribution [58, 208, 209, 210, 211]. The correct assignment of the scalar quark-

antiquark fields of the model to physical resonances is not only important as a contribution to

the ongoing debate about the nature of these resonances, but it is also vital for a study of the

properties of hadrons at nonzero temperature and density, where the chiral partner of the pion

plays a crucial role [194].

It is important to stress that the theoretical σN and a0 fields entering the linear sigma model

describe pure quark-antiquark states, just as all the other fields. This property can be easily

proven by using well-known large-Nc results (see Sec. 4.3 and Ref. [21]): the mass and the decay

widths of both σN and a0 fields scale in the model as N0
c and N−1

c , respectively.

4.2 The Lagrangian with Global Chiral Symmetry

In this section we conduct the construction of a linear sigma model with vector and axial-vector

mesons in two flavours. The model is constructed based on the requirements from the QCD

Lagrangian discussed in the previous section. This chapter will discuss the model construction

in the meson sector; for a discussion regarding the model construction, e.g., in the nucleon sector,

see Ref. [212].

We first note that all the states in our model will be hadrons, i.e., colour-neutral. Thus the

confinement hypothesis and the SU(3)c colour symmetry of the QCD will be fulfilled per con-

struction. Note, however, that the model parameters will depend on the number of colours (Nc),

as discussed in Sec. 4.3.

The basic step in the construction of our model is the definition of the meson matrix

Φij ≡
√
2q̄j,Rqi,L. (4.7)

The equivalence sign in Eq. (4.7) states merely that Φij and q̄j,Rqi,L transform in the same manner

under the (left-handed and right-handed) chiral groups. It is not to be comprehended as the

statement that Φij contains perturbative q̄q pairs as the matrix Φij is a non-perturbative object.

The reason is that the perturbative (bare) quarks are non-perturbatively modified in vacuum due

to their strong interaction and the interaction with gluons. The ensuing non-perturbative (or

constituent) quarks are then, in a good approximation, elements of the matrix Φij. It is actually

possible to connect Φij with the perturbative currents q̄j,Rqi,L by rendering Φij non-local:

Φij ≡
√
2

∫

d4y q̄j,R

(

x+
y

2

)

qi,L

(

x− y

2

)

f(y) (4.8)

where f(y) denotes a non-perturbative vertex function and the perturbative limit is, of course,

obtained by setting f(y) = δ(y). It is clear from Eq. (4.8) that the global flavour transformations

are the same for the non-perturbative object Φij and the perturbative quarks. Considering our
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discussion in the previous section regarding the chiral symmetry and its breaking mechanisms,

it is clear that the transformation behaviour of the objects in our model will be pivotal for the

model construction. Thus given our interest in the transformation behaviour only, it is then

sufficient to start with the equivalence Φij ≡
√
2q̄j,Rqi,L.

Considering transformation properties of the quarks (2.32) and (2.33), we obtain immediately

that the matrix Φ transforms as

Φ→ ULΦU
†
R. (4.9)

From Eqs. (2.19) and (4.7) we obtain

Φij ≡
√
2q̄j,Rqi,L =

√
2q̄jPLPLqi =

√
2q̄jPLqi

=
1√
2

(

q̄jqi − q̄jγ5qi
)

=
1√
2

(

q̄jqi + iq̄jiγ
5qi
)

. (4.10)

Then comparing to Eqs. (2.96) and (2.100) we recognise the scalar current

Sij ≡
1√
2
q̄jqi (4.11)

and the pseudoscalar current

Pij ≡
1√
2
q̄jiγ

5qi. (4.12)

In other words,

Φ = S + iP . (4.13)

Thus our matrix Φ is a combination of scalar and pseudoscalar currents. Additionally, the

matrices S and P are hermitian and therefore they can be decomposed in terms of generators ta

of a unitary group U(Nf ) with a = 0, ..., N2
f − 1:

S = Sata, (4.14)

P = P ata, (4.15)

where

Sa ≡
√
2q̄taq, (4.16)

P a ≡
√
2q̄iγ5taq. (4.17)

As a first step toward the model construction, we consider only terms that implement the chiral

symmetry exactly (note again that the symmetry is exact in the QCD Lagrangian as well up to

the axial anomaly that is of quantum nature):

Lsym. = Tr[(∂µΦ)†(∂µΦ)]−m2
0Tr(Φ

†Φ)− λ1[Tr(Φ†Φ)]2 − λ2Tr(Φ†Φ)2. (4.18)

The Lagrangian in Eq. (4.18) is invariant under the transformation (4.9). This is the original

version of the sigma model containing only scalar and pseudoscalar degrees of freedom. Note
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that Lsym. contains only terms up to order four in the naive scaling dimension. Higher-order

terms are usually discarded to preserve renormalisability of the model. However, the model is

not valid up to arbitrary large scales (it is valid only up to the energy of the heaviest resonance

incorporated into the model). For this reason, we consider an alternative criterion allowing us

to constrain the order of terms considered in the Lagrangian. The criterion is the dilatation

invariance rather than renormalisability. The dilatation invariance of the QCD Lagrangian has

already been discussed in Sec. 2.4. In the language of our model where only composite states

rather than partons are present, once a dilaton field G has been included then only terms with

dimensionless couplings are allowed in the Lagrangian in order that, in the chiral limit, the trace

anomaly in the model is generated in the same manner as in the QCD Lagrangian [202, 203]; see

also Chapter 12. Then terms of the form

α[Tr(Φ†Φ)]6 (4.19)

are disallowed because the coupling α would possess dimension [E−2]. The coupling α could

actually be rendered dimensionless by modifying the mentioned term as

α

G2
[Tr(Φ†Φ)]6 (4.20)

that would, however, lead to a singularity for G → 0. Therefore, in the following, we will only

consider terms up to order four in the fields.

The validity of our model is determined by the energy of the heaviest state present in the model.

In Chapter 3, we will discuss the features of the physical scalar resonances that can in principle be

assigned to the scalar states present in our model. These resonances possess energies up to ∼ 1.8

GeV – thus they belong to an energy region where a multitude of vector and axial-vector states is

experimentally established as well [10]. Additionally, (pseudo)scalars are known to interact with

(axial-)vectors [10] and thus any realistic model of QCD should in principle contain as many as

possible of all the mentioned states. For this reason, we need to extend the Lagrangian in Eq.

(4.18) to include the (axial-)vector degrees of freedom. Indeed we will see in Sec. 5.3.2 that the

inclusion of (axial-)vectors into our model necessitates the interpretation of scalars above (rather

than below) 1 GeV as q̄q states.

We construct the vector and axial-vector matrices analogously to those in Eqs. (4.11) and (4.12).

We first define the right-handed matrix

Rµij ≡
√
2q̄j,Rγ

µqi,R
Eq. (2.29)

=
√
2q†jPRγ0γµPRqi

Eq. (2.19)
=

√
2q†j

1 + γ5
2

γ0γµ
1 + γ5

2
qi

=

√
2

4
(q†jγ

0γµqi + q†jγ5γ
0γµqi + q†jγ

0γµγ5qi + q†jγ5γ
0γµγ5qi)

Eq. (2.26)
=

1√
2

(

q̄jγ
µqi − q̄jγ5γµqi

)

(4.21)

and the left-handed matrix

Lµij ≡
√
2q̄j,Lγ

µqi,L =
1√
2

(

q̄jγ
µqi + q̄jγ

5γµqi
)

. (4.22)

As in the case of currents from the QCD Lagrangian, we define
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Rµ = V µ −Aµ, (4.23)

Lµ = V µ +Aµ (4.24)

and thus

V µ
ij ≡

1√
2
q̄jγ

µqi, A
µ
ij ≡

1√
2
q̄jγ

µγ5qi (4.25)

or, upon decomposition in terms of the U(Nf ) generators,

V µ = V µata, (4.26)

Aµ = Aµata, (4.27)

where

V µa ≡
√
2q̄γµtaq, (4.28)

Aµa ≡
√
2q̄γµγ5taq. (4.29)

With Eqs. (2.32), (2.33), (4.21) and (4.22) we obtain immediately that Rµ and Lµ transform as

Rµ → URR
µU †

R (4.30)

and

Lµ → ULL
µU †

L. (4.31)

Let us define the right-handed field-strength tensor Rµν and the left-handed field strength tensor

Lµν as

Rµν = ∂µRν − ∂νRµ, (4.32)

Lµν = ∂µLν − ∂νLµ. (4.33)

Then considering the transformation properties (4.9), (4.30) and (4.31) we can construct further

chirally invariant terms containing both (pseudo)scalars and (axial-)vectors, up to order four in

the fields:

Lsym.,1 = −
1

4
Tr(L2

µν +R2
µν) + Tr

[

m2
1

2
(L2

µ +R2
µ)

]

+ i
g2
2
(Tr{Lµν [Lµ, Lν ]}+Tr{Rµν [Rµ, Rν ]})

+
h1
2
Tr(Φ†Φ)Tr[(Lµ)2 + (Rµ)2] + h2Tr[|LµΦ|2 + |ΦRµ|2] + 2h3Tr(ΦRµΦ

†Lµ)

+ g3[Tr(LµLνL
µLν) + Tr(RµRνR

µRν)] + g4[Tr (LµL
µLνL

ν) + Tr (RµR
µRνR

ν)]

+ g5Tr (LµL
µ) Tr (RνR

ν) + g6[Tr(LµL
µ)Tr(LνL

ν) + Tr(RµR
µ)Tr(RνR

ν)]. (4.34)

The explicit symmetry breaking has to be modelled separately in the (pseudo)scalar and (axial-

)vector channels. In the (pseudo)scalar sector we introduce the term

LESB = Tr[H(Φ + Φ†)], (4.35)
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where

H = diag
[

h10, h
2
0, ...h

Nf

0

]

(4.36)

and hn0 is proportional to the mass of the nth quark flavour. Similarly, in the (axial-)vector

channel we introduce the term

LESB, 1 = Tr
[

∆(L2
µ +R2

µ)
]

, (4.37)

where

∆ = diag [δu, δd, δs...] ∼ diag
[

m2
u,m

2
d,m

2
s...
]

. (4.38)

The chiral anomaly is usually modelled as [213]

Lanomaly = c(det Φ + detΦ†) (4.39)

because the determinant is invariant under SU(Nf )L × SU(Nf )R but not under U(1)A. Note,

however, that the chiral anomaly can also be modelled as

Lanomaly, 1 = c1(det Φ− detΦ†)2. (4.40)

We will discuss the implications of the two anomaly terms in Sec. 6.4; only the term (4.39) will

be used in the two-flavour version of our model (see Chapter 5).

Finally, for the modelling of the spontaneous breaking of the chiral symmetry, let us consider

the (pseudo)scalar Lagrangian (4.18) along the axis Φ = σN t
0:

Vsym.(σN ) = m2
0σ

2
N + (λ1 + λ2)σ

4
N . (4.41)

The minimum σ
(0)
N 6= 0 for m2

0 < 0. This implies spontaneous symmetry breaking because the

vacuum is no longer symmetric under the axial transformation. Note that the scalar isosinglet

state is the only one that can condense in the vacuum because that state is the only with the

same quantum numbers as the vacuum (J , P , C and I).

Then utilising the Lagrangians of Eqs. (4.18), (4.34), (4.35), (4.37) and (4.39) we construct the

following meson Lagrangian for an arbitrary number of flavours Nf and colours Nc:

L = Tr[(DµΦ)†(DµΦ)]−m2
0Tr(Φ

†Φ)− λ1[Tr(Φ†Φ)]2 − λ2Tr(Φ†Φ)2

− 1

4
Tr(L2

µν +R2
µν) + Tr

[(

m2
1

2
+ ∆

)

(L2
µ +R2

µ)

]

+Tr[H(Φ + Φ†)]

+ c(det Φ + detΦ†) + i
g2
2
(Tr{Lµν [Lµ, Lν ]}+Tr{Rµν [Rµ, Rν ]})

+
h1
2
Tr(Φ†Φ)Tr[(Lµ)2 + (Rµ)2] + h2Tr[|LµΦ|2 + |ΦRµ|2] + 2h3Tr(ΦRµΦ

†Lµ)

+ g3[Tr(LµLνL
µLν) + Tr(RµRνR

µRν)] + g4[Tr (LµL
µLνL

ν) + Tr (RµR
µRνR

ν)]

+ g5Tr (LµL
µ) Tr (RνR

ν) + g6[Tr(LµL
µ)Tr(LνL

ν) + Tr(RµR
µ)Tr(RνR

ν)], (4.42)
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where

DµΦ = ∂µΦ− ig1(LµΦ− ΦRµ). (4.43)

The Lagrangian is invariant under P and C transformations. The (pseudo)scalar matrix Φ

transforms under parity as

Φ(t,x)
P→ Φ†(t,−x). (4.44)

This is due to Eq. (2.61) and the definition of Φ, Eq. (4.7):

Φij(t,x) ≡
√
2q̄j,R(t,x)qi,L(t,x) =

√
2q†j,R(t,x)γ

0qi,L(t,x)
Eq. (2.29)

=
√
2q†j(t,x)PRγ0PLqi(t,x)

P→
√
2q†j(t,−x)γ0PRγ0PLγ0qi(t,−x)

Eq. (2.26)
=

√
2q†j(t,−x)PLγ0γ0γ0PRqi(t,−x)

=
√
2q†j,L(t,−x)γ0qi,R(t,−x) =

[√
2q†j,L(t,−x)γ0qi,R(t,−x)

]†
≡ Φ†

ij(t,−x). (4.45)

Parity transforms the left-handed matrix Lµ into the right-handed matrix Rµ and vice versa:

Rµ(t,x)
P→ gµνLν(t,−x), (4.46)

Lµ(t,x)
P→ gµνRν(t,−x), (4.47)

due to Eq. (2.61) and the definitions (4.21) and (4.22):

Rµij ≡
√
2q̄j,R(t,x)γ

µqi,R(t,x) =
√
2q†j,R(t,x)γ

0γµqi,R(t,x)
Eq. (2.29)

=
√
2q†j(t,x)PRγ0γµPRqi(t,x)

P→
√
2q†j(t,−x)γ0PRγ0γµPRγ0qi(t,−x)

Eq. (2.26)
=

√
2q†j(t,−x)PLγ0γ0γµγ0PLqi(t,−x)

=
√
2q†j,L(t,−x)γµγ0qi,L(t,−x)

Eq. (2.24)
=

{

q̄j,L(t,−x)γ0qi,L(t,−x) for µ = 0,

−q̄j,L(t,−x)γkqi,L(t,−x) for µ = k ∈ {1, 2, 3}
(4.48)

and analogously for Lµ.

The matrix Φ transforms under charge conjugation as

Φ
C→ Φt. (4.49)

The proof is analogous to the calculation in Eq. (2.93). Similarly, the left-handed matrix Lµ and

the right-handed matrix Rµ transform as:

Rµ
C→ −Ltµ, (4.50)

Lµ
C→ −Rtµ. (4.51)

Then it is straightforward to demonstrate that all terms in the Lagrangian (4.42) fulfill P -

invariance as well as C-invariance; given that the model is Lorentz-invariant, it is consequently

also T -invariant [199].

Before we discuss the Nf = 2 and Nf = 3 applications of the Lagrangian (4.42), let us discuss

the large-Nc dependence of the model parameters.
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4.3 Large-Nc Behaviour of Model Parameters

It is important to determine the large-Nc dependence of the model parameters for two reasons:

• It allows us to estimate the relative magnitudes of parameters (different parameters will

possess different large-Nc scaling because they may be associated to different vertices). In

this way, parameters shown to be suppressed in comparison with other parameters may be

set to zero.

• It enables us to prove that the states present in our model (up to the dilaton field introduced

in Chapter 12) are indeed q̄q states. This is essential because the goal of this work is to

study whether experimentally ascertained meson states can be interpreted as quarkonia.

Such a study is, of course, only possible if the theoretical framework presented in this work

already contains q̄q states that are to be assigned to physical states – and the success of

the assignment is determined by comparison with experimental data.

The large-Nc dependence of the parameters in Lagrangian (4.42) is [21]:

g1, g2 ∝ N−1/2
c ,

λ2, h2, h3, g3, g4 ∝ N−1
c ,

λ1, h1, g5, g6 ∝ N−2
c ,

m2
0, m

2
1, δu,d,s... ∝ N0

c ,

c ∝ N−Nf/2
c ,

hi0 ∝ N1/2
c . (4.52)

Let us remember that a vertex of n quark-antiquark mesons scales as N
−(n−2)/2
c . As a conse-

quence, the parameters g1, g2 scale as N
−1/2
c , because they are associated with a three-point

vertex of quark-antiquark vector fields (of the kind ρ3). This has already been discussed in Sec.

2.4, see Eq. (2.86).

Similarly, the parameters λ2, h2, h3 scale as N
−1
c , because they are associated with quartic terms

such as π4 and π2ρ2. The parameters λ1, h1 also describe quartic interactions, but are further

suppressed by a factor 1/Nc because of the trace structure of the corresponding terms in the

Lagrangian. The quantities m2
0, m

2
1 are bare-mass terms and therefore scale as N0

c . Note that

our mass terms will be proportional to the square of the pion and kaon decay constants fπ and

fK [see Eqs. (5.14) – (5.19) in the Nf = 2 case and Eqs. (6.34) – (6.47) in the Nf = 3 case].

Consequently, fπ and fK have to scale as N
1/2
c .

The suppression of the parameter c depends on the number of flavours and colours considered.

The axial anomaly is suppressed in the large-Nc limit. Note that c possesses a dimension for

Nf 6= 4. This is an exception to the rule illustrated via term (4.19) where we have discussed that

only dimensionless couplings should appear in the Lagrangian. This is, however, not problematic

because the chiral anomaly also stems from the gauge sector of the QCD Lagrangian, see Eq.

(2.60). [Note that the chiral anomaly can also be modelled using an alternative term: c1(det Φ−
detΦ†)2, see Eq. (6.1) and Sec. 6.4. In this case, c1 ∝ N−Nf

c holds.]
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Note that without any assumptions about the fields we obtain immediately that their masses

scale as N0
c and their decay widths as N−1

c , as we shall see in Chapters 5 – 11. Therefore, they

must also correspond to quark-antiquark degrees of freedom.
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5. Two-Flavour Linear Sigma Model

Having constructed a generic Lagrangian containing meson fields for an arbitrary number of

flavours and colours, let us now discuss the implications of the Lagrangian for the case of two

flavours (and, of course, three colours).

5.1 The Nf = 2 Lagrangian

The globally invariant U(2)L×U(2)R Lagrangian possesses the same structure as the one in Eq.

(4.42):

L = Tr[(DµΦ)†(DµΦ)]−m2
0Tr(Φ

†Φ)− λ1[Tr(Φ†Φ)]2 − λ2Tr(Φ†Φ)2

− 1

4
Tr(L2

µν +R2
µν) + Tr

[(

m2
1

2
+ ∆

)

(L2
µ +R2

µ)

]

+Tr[H(Φ + Φ†)]

+ c(det Φ + detΦ†) + i
g2
2
(Tr{Lµν [Lµ, Lν ]}+Tr{Rµν [Rµ, Rν ]})

+
h1
2
Tr(Φ†Φ)Tr[(Lµ)2 + (Rµ)2] + h2Tr[|LµΦ|2 + |ΦRµ|2] + 2h3Tr(ΦRµΦ

†Lµ)

+ g3[Tr(LµLνL
µLν) + Tr(RµRνR

µRν)] + g4[Tr (LµL
µLνL

ν) + Tr (RµR
µRνR

ν)]

+ g5Tr (LµL
µ) Tr (RνR

ν) + g6[Tr(LµL
µ)Tr(LνL

ν) + Tr(RµR
µ)Tr(RνR

ν)]. (5.1)

In Eq. (5.1),

Φ = (σN + iηN ) t
0 + (a0 + iπ) · t (5.2)

contains scalar and pseudoscalar mesons, where t0, t are the generators of U(2) in the fundamental

representation and ηN denotes the non-strange content of the η meson (more details will be given

in Sec. 7.1). Vector and axial-vector mesons are contained in the left-handed and right-handed

vector fields:

Lµ = (ωµN + fµ1N ) t
0 + (ρµ + a

µ
1 ) · t, (5.3)

Rµ = (ωµN − f
µ
1N ) t

0 + (ρµ − a
µ
1 ) · t, (5.4)

respectively. The covariant derivative

DµΦ = ∂µΦ− ig1(LµΦ− ΦRµ)− ieAµ[t3,Φ] (5.5)

couples scalar and pseudoscalar degrees of freedom to vector and axial-vector ones as well as to the

electromagnetic field Aµ. [The derivative leads to a kinetic term invariant under U(2)L ×U(2)R
and will allow us to calculate the decay width Γa1→πγ in Eq. (5.74). For this reason it contains

Aµ, unlike the derivative in Eq. (4.43).] The left-handed and right-handed field strength tensors

(again with Aµ)

Lµν = ∂µLν − ieAµ[t3, Lν ]−
{

∂νLµ − ieAν [t3, Lµ]
}

, (5.6)

Rµν = ∂µRν − ieAµ[t3, Rν ]−
{

∂νRµ − ieAν [t3, Rµ]
}

, (5.7)
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respectively, couple vector and axial-vector mesons to the electromagnetic field Aµ. Explicit

breaking of the global symmetry is described by the term Tr[H(Φ+Φ†)] ≡ h0Nσ (h0N = const.)

in the (pseudo)scalar sector and by the term Tr
[

∆(L2
µ +R2

µ)
]

in the (axial-)vector channels, with

∆ = diag(δN , δN ) and δN ∼ m2
u,d. The chiral anomaly is described by the term c (det Φ+detΦ†),

see Sec. 4.2. (Note that a slightly different form of the chiral-anomaly term will be utilised in

Sec. 6.4.)

In the pseudoscalar and (axial-)vector sectors the identification of mesons with particles listed

in Ref. [10] is straightforward, as already indicated in Eqs. (5.2) and (5.3)-(5.4): the fields π

and ηN correspond to the pion and the SU(2) counterpart of the η meson, ηN ≡ (ūu+ d̄d)/
√
2,

with a mass of about 700 MeV. This value can be obtained by ”unmixing” the physical η and

η′ mesons, which also contain s̄s contributions. The fields ωµ and ρµ represent the ω(782)

and ρ(770) vector mesons, respectively, while the fields fµ1N and a1
µ represent the f1(1285) and

a1(1260) axial-vector mesons, respectively. (In principle, the physical ω and f1 states also contain

s̄s contributions, however their admixture is negligibly small.) Unfortunately, the identification

of the σN and a0 fields is controversial, the possibilities being the pairs {f0(600), a0(980)} and

{f0(1370), a0(1450)}. As already mentioned, we will refer to these two assignments as Scenarios

I and II, respectively. We discuss the implications of these two scenarios in the following.

The inclusion of (axial-)vector mesons in effective models of QCD has been done also in other

ways than the one presented here. Vector and axial-vector mesons have been included in chiral

perturbation theory in Ref. [214]. While the mathematical expressions for the interaction terms

turn out to be similar to our results, in our linear approach the number of parameters is smaller.

In Ref. [215] the so-called hidden gauge formalism is used to introduce vector mesons, and

subsequently axial-vector mesons, into a chiral Lagrangian with a nonlinear realization of chiral

symmetry. In this case the number of parameters is smaller. This approach is closely related

to the locally chirally invariant models [49, 53] (also called massive Yang-Mills approaches). We

refer also to Ref. [216], where a comparative analysis of effective chiral Lagrangians for spin-1

mesons is presented.

One may raise the question whether vector meson dominance (VMD) is still respected in the

globally invariant linear sigma model (5.1). As outlined in Ref. [217], there are two ways to

realize VMD in a linear sigma model. The standard version of VMD was introduced by Sakurai

[218] and considers vector mesons as Yang-Mills gauge fields [24]; see also Ref. [54]. The gauge

symmetry is explicitly broken by the vector meson masses. Another realization of VMD was first

explored by Lurie [219] whose theory contained a Lagrangian which was globally invariant. It

is interesting to note that Lurie’s Lagrangian contained direct couplings of the photon to pions

and ρ mesons, as well as a ρ-π coupling. It was shown in Ref. [217] that the two representations

of VMD are equivalent if the ρ-π coupling gρππ equals the photon-ρ coupling gρ (the so-called

”universal limit”). It was also shown that, if the underlying theory is globally invariant, the

pion form factor at threshold Fπ(q
2 = 0) = 1 for any value of the above mentioned couplings.

On the other hand, in Sakurai’s theory Fπ(q
2 = 0) 6= 1 unless one demands gρππ

!
= gρ, or other

parameters are adjusted in such a way that Fπ(q
2 = 0) = 1. In other words, for any globally

invariant model, and thus also for ours, one has the liberty of choosing different values for the

photon-ρ and ρ-π couplings, without violating VMD.
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5.1.1 Tree-Level Masses

The Lagrangian (5.1) contains 16 parameters. However, the parameters gk with k = 3, ..., 6 are

not relevant for the results presented here; additionally, the explicit symmetry breaking in the

non-strange sector is negligible because the quark masses are small – therefore, we set δN = 0.

Then the number of undetermined parameters decreases to eleven:

m0, λ1, λ2, m1, g1, g2, c, h0N , h1, h2, h3. (5.8)

The squared tree-level masses of the mesons in our model contain a contribution arising from

spontaneous symmetry breaking, proportional to φ2N . The value φN is the vacuum expectation

value of the σN field and coincides with the minimum of the potential that follows from Eq. (5.1).

The σN field is the only field with the quantum numbers of the vacuum, JPC = 0++, i.e., the

condensation of which does not lead to the breaking of parity, charge conjugation, and Lorentz

invariance. The potential for the σN field reads explicitly

V (σN ) =
1

2
(m2

0 − c)σ2N +
1

4

(

λ1 +
λ2
2

)

σ4N − h0NσN , (5.9)

and its minimum is determined by

0 =

(

dV

dσN

)

σN=φN

=

[

m2
0 − c+

(

λ1 +
λ2
2

)

φ2N

]

φN − h0N . (5.10)

Spontaneous symmetry breaking corresponds to the case when the potential V (φN ) assumes its

minimum for a non-vanishing value σN = φN 6= 0. In order to determine the fluctuation of

the σN field around the new vacuum, one shifts it by its vacuum expectation value φN 6= 0,

σN → σN + φN . The shift leads also to ηN -f1 and π-a1 mixing terms and thus to non-diagonal

elements in the scattering matrix:

−g1φN (fµ1N∂µηN + a
µ
1 · ∂µπ). (5.11)

These terms are removed from the Lagrangian by shifting the f1 and a1 fields as follows [220]:

fµ1N → fµ1N + ZηNwf1N∂
µηN , a

µ
1 → a

µ
1 + Zπwa1∂

µπ,

ηN → ZηN ηN , π → Zππ, (5.12)

where we defined the quantities

wf1N = wa1 =
g1φN
m2
a1

, ZηN = Zπ =

(

1− g21φ
2
N

m2
a1

)−1/2

. (5.13)

More details on these calculations can be found in Ref. [220]; alternatively, see the analogous

calculation performed in the Nf = 3 case later in this work (see Chapters 6 - 11). Note that the

field renormalisation of ηN and π guarantees the canonical normalisation of the kinetic terms.

This is necessary in order to interpret the Fourier components of the properly normalized one-

meson states as creation or annihilation operators [49]. Once the shift σN → σN + φN and the

transformations (5.12) have been performed, the mass terms of the mesons in the Lagrangian
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(5.1) read:

m2
σN = m2

0 − c+ 3

(

λ1 +
λ2
2

)

φ2N , (5.14)

m2
ηN = Z2

[

m2
0 + c+

(

λ1 +
λ2
2

)

φ2N

]

= m2
π + 2cZ2

π, (5.15)

m2
a0 = m2

0 + c+

(

λ1 + 3
λ2
2

)

φ2N , (5.16)

m2
π = Z2

[

m2
0 − c+

(

λ1 +
λ2
2

)

φ2N

]

(5.10)
=

Z2
πh0N
φN

, (5.17)

m2
ωN

= m2
ρ = m2

1 +
φ2N
2

(h1 + h2 + h3), (5.18)

m2
f1N

= m2
a1 = m2

1 + g21φ
2
N +

φ2N
2

(h1 + h2 − h3). (5.19)

Note that the ρ and ωN masses as well as the f1N and a1 masses are degenerate. In Sec. 5.6

we show the Lagrangian in the form when all shifts have been explicitly performed. From Eqs.

(5.18) and (5.19) we obtain:

m2
a1 = m2

ρ + g21φ
2
N − h3φ2N . (5.20)

The pion decay constant fπ is determined from the axial current,

JaAµ
=
φN
Z
∂µπ

a + . . . ≡ fπ∂µπa + . . . → φN = Zfπ. (5.21)

Note that the photon coupling entailed in Eqs. (5.5), (5.6) and (5.7) yields the correct coupling

of photons to pions as the corresponding term from the Lagrangian (5.1) reads

Lγππ = eZ2
π(1− g1wa1φN )Aµ

(

π1∂µπ
2 − π2∂µπ1

)

wa1=g1φN/m
2
a1= eZ2

π

m2
a1 − (g1φN )

2

m2
a1

Aµ
(

π1∂µπ
2 − π2∂µπ1

)

≡ eZ2
πZ

−2
π Aµ

(

π1∂µπ
2 − π2∂µπ1

)

= eAµ
(

π1∂µπ
2 − π2∂µπ1

)

= ieAµ(π−∂µπ
+ − π+∂µπ−), (5.22)

where in the last line we have substituted π1 = (π+ + π−)/
√
2 and π2 = i(π+ − π−)/

√
2. The

photon-pion coupling is thus equal to the elementary electric charge e =
√
4πα where α denotes

the fine-structure constant α = 1/137.035999679(94) in vacuum [10].

We note that the phenomenology of low-lying axial-vector mesons is also considered in approaches

where the Bethe-Salpeter equation is used to unitarise the scattering of vector and pseudoscalar

mesons – see, e.g., Ref. [221]. Here, the Bethe-Salpeter kernel is given by the lowest-order effective

Lagrangian. This leads to the dynamical generation of resonances, one of which has a pole mass

of 1011 MeV and is consequently assigned to the a1(1260) meson. This unitarised approach is

used in Ref. [222] to study the large-Nc behaviour of the dynamically generated resonances, with

the conclusion that the a1(1260) resonance is not a genuine quark-antiquark state.

However, it was shown in Ref. [202] that, while unitarising the chiral Lagrangian by means of

a Bethe-Salpeter study allows one to find poles in the complex plane and identify them with
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physical resonances, it does not necessarily allow one to make a conclusion about the structure

of those resonances in the large-Nc limit. In order to be able to draw correct conclusions, a

Bethe-Salpeter study requires at least one additional term of higher order not included in the

Lagrangian of Refs. [221, 222]. Alternatively, the Inverse Amplitude Method of Ref. [83] can be

used.

A very similar approach to the one in Refs. [221, 222] was also used in Ref. [223] where a very

good fit to the τ decay data from the ALEPH collaboration [224] was obtained by fine-tuning

the subtraction point of a loop diagram. Note, however, that detuning the subtraction point by

5% will spoil the agreement with experimental data. Alternately, these data may be described

by approaches with the a1(1260) meson as an explicit degree of freedom, such as the one in Ref.

[47], where a1(1260) is a quark-antiquark state and where the experimental a1(1260) spectral

function is fitted very well. In Ref. [47], ma1(1260) ≃ 1150 MeV and a full width Γa1(1260) ≃ 410

MeV are obtained. Note that our results, as will be shown later, give very good results on the

a1(1260) phenomenology, for example in the a1(1260) → πγ and a1(1260) → ρπ decay channels,

see Sec. 5.3.3.

For the following discussion, it is interesting to note that the ρ meson mass can be split into two

contributions:

m2
ρ = m2

1 +
φ2N
2

(h1 + h2 + h3). (5.23)

Without further assumptions, it is not possible to relate the quantity m2
1 to microscopic conden-

sates of QCD. However, invoking dilatation invariance, the term m2
1Tr[(L

µ)2 + (Rµ)2]/2 in Eq.

(5.1) arises from a term aG2Tr[(Lµ)2+(Rµ)2]/2 where G is the dilaton field and a a dimensionless

constant [see Eq. (12.5) and Chapter 12]. Upon shifting the dilatation field by G → G0 + G,

with G0 being the gluon condensate, one obtains the term in our Lagrangian upon identifying

m2
1 = aG2

0. Thus, the quantity m
2
ρ in Eq. (5.23) is expressed as a sum of a term which is directly

proportional to the gluon condensate G0, and a term which is directly proportional to the chiral

condensate φ2N .

We shall require that none of the two contributions be negative: in fact, a negative m2
1 = aG2

0

would imply that the system is unstable when φN → 0; a negative φ2N (h1 + h2 + h3)/2 would

imply that spontaneous chiral symmetry breaking decreases the ρ mass. This is clearly unnatural

because the breaking of chiral symmetry generates a sizable effective mass for the light quarks,

which is expected to positively contribute to the meson masses. This positive contribution is

a feature of all known models (such as the Nambu–Jona-Lasinio model and constituent quark

approaches). Indeed, in an important class of hadronic models (see Ref. [225] and refs. therein)

the only and obviously positive contribution to the ρ mass is proportional to φ2N (i.e., m1 = 0).

In the vacuum, the very occurrence of chiral symmetry breaking can be also traced back to the

interaction with the dilaton field: in fact, the quantity −m2
0Tr(Φ

†Φ), where m2
0 < 0, arises from

a dilatation-invariant interaction term of the form bG2Tr(Φ†Φ) upon the identification m2
0 = bG2

0

[see Eq. (12.5)]. This property also implies that the chiral condensate φN is proportional to

the gluon condensate G0, φN ∼ G0. This means that the vacuum expression in Eq. (5.23)

can be rewritten in the form m2
ρ ∼ φ2N , which resembles the KSFR relation [226]. However,

the quantities G0 are φN may vary independently from each other at nonzero temperature and

density, thus generating a nontrivial behaviour of m2
ρ.
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5.1.2 Equivalent Set of Parameters

Instead of the eleven parameters in Eq. (5.8), it is technically simpler to use the following,

equivalent set of eleven parameters in the expressions for the physical quantities:

mπ, mσN , ma0 , mηN , mρ, ma1 , Zπ, φN , g2, h1, h2. (5.24)

The quantities mπ, mρ, ma1 are taken as the mean values of the masses of the π, ρ, and a1 meson,

respectively, as given by the PDG [10]: mπ = 139.57 MeV, mρ = 775.49 MeV, and ma1 = 1230

MeV. While mπ and mρ are measured to very good precision, this is not the case for ma1 . The

mass value given above is referred to as an ”educated guess” by the PDG [10]. Therefore, we

shall also consider a smaller value, as suggested e.g. by the results of Ref. [47]. We shall see that,

although the overall picture remains qualitatively unchanged, the description of the decay width

of a1 into ρπ can be substantially improved.

As outlined in Ref. [57], the mass of the ηN meson can be calculated using the mixing of strange

and non-strange contributions in the physical fields η and η′(958):

η = ηN cosϕη + ηS sinϕη , η
′ = −ηN sinϕη + ηS cosϕη, (5.25)

where ηS is a pure s̄s state and ϕη ≃ −36◦ [227]. (A detailed discussion of the ηN -ηS mixing will

be presented in Sec. 7.1, i.e., in the Nf = 3 version of our model where the pure-strange field ηS
will be included as an explicit degree of freedom.) In this way, we obtain the value mηN = 716

MeV. Given the well-known uncertainty of the value of ϕη, one could also consider other values,

e.g., ϕη = −41.4◦, as published by the KLOE Collaboration [228]. In this case, mηN = 755 MeV.

The variation of the ηN mass does not change the results significantly.

The quantities φN and Zπ are linked to the pion decay constant as φN/Zπ = fπ = 92.4 MeV.

Therefore, the following six quantities remain as free parameters:

mσN , ma0 , Zπ, g2, h1, h2. (5.26)

The masses mσN and ma0 depend on the scenario adopted for the scalar mesons.

At the end of this subsection we report three useful formulas which link the parameters g1, h3,

and m1 of the original set (5.8) to the second set of parameters (5.24) [see also Eq. (5.13)]:

g1 = g1(Zπ) =
ma1

Zπfπ

√

1− 1

Z2
π

, (5.27)

h3 = h3(Zπ) =
m2
a1

Z2
πf

2
π

(

m2
ρ

m2
a1

− 1

Z2
π

)

, (5.28)

m2
1 = m2

1(Zπ, h1, h2) =
1

2

[

m2
ρ +m2

a1 − Z
2
πf

2
π

(

g21 + h1 + h2
)]

. (5.29)

5.2 Decay Widths and ππ Scattering Lengths

In this section, we calculate the formulas for the decay widths and the ππ scattering lengths

and specify their dependence on the parameters mσ, ma0 , Zπ, g2, h1, and h2. Using the scaling

behaviour (4.52) we obtain that all strong decays and scattering lengths scale asN−1
c , as expected.

The decay widths are calculated from the interaction part of the Lagrangian (5.1).
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5.2.1 Decay Width ρ → ππ

The ρππ interaction Lagrangian obtained from Eq. (5.1) reads

Lρππ = Aρππ (∂µπ) · (ρµ × π) +Bρππ (∂µρν) · (∂µπ × ∂νπ) . (5.30)

with the following coefficients

Aρππ = Z2
π [g1(1− g1wa1φN ) + h3wa1φN ] ≡ Z2

πg1
m2
ρ

m2
a1

, (5.31)

Bρππ = −Z2
πg2w

2
a1 . (5.32)

Let us consider the decay of ρ0 only; the decays of the charged states are calculated analogously

and possess the same values because of the isospin symmetry that is manifest in our model. The

third ρ component possesses the following interaction Lagrangian

Lρ0ππ = iAρππρ
0
µ

(

π−∂µπ+ − π+∂µπ−
)

+ iBρππ∂νρ
0
µ

(

∂νπ−∂µπ+ − ∂νπ+∂µπ−
)

. (5.33)

Let us denote the momenta of ρ, π+ and π− as P , P1 and P2, respectively. The ρ meson is a

vector state for which we have to consider the polarisation vector labelled as ε
(α)
µ (P ).

ε
(α)
µ (P )

π(P1)

π(P2)

ρ

Figure 5.1: Decay process ρ→ ππ.

Then, upon substituting ∂µ → −iPµ for the decaying particle and ∂µ → iPµ1,2 for the decay

products, we obtain the following Lorentz-invariant ρππ scattering amplitude −iM(α)
ρ0→ππ

from

the Lagrangian (5.33):

−iM(α)
ρ0→ππ

= ε(α)µ (P )hµρππ = ε(α)µ (P )[Aρππ(P
µ
2 − P

µ
1 ) +BρππPν(P

µ
2 P

ν
1 − Pµ1 P ν2 )], (5.34)

where

hµρππ = Aρππ(P
µ
2 − P

µ
1 ) +BρππPν(P

µ
2 P

ν
1 − Pµ1 P ν2 ). (5.35)

denotes the ρππ vertex.

The vertex can be transformed in the following way:

hµρππ = Aρππ(P
µ
2 − P

µ
1 ) +BρππPν(P

µ
2 P

ν
1 − Pµ1 P ν2 ) = Aρππ(P

µ
2 − P

µ
1 ) +Bρππ

m2
ρ

2
(Pµ2 − P

µ
1 )

=

(

Aρππ +Bρππ
m2
ρ

2

)

(Pµ2 − P
µ
1 ), (5.36)
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where the equality PµP
µ
1 = PµP

µ
2 = m2

ρ/2 was used. The calculation of the decay width will

require the determination of the square of the scattering amplitude. Given that the scattering

amplitude in Eq. (5.34) depends on the polarisation vector ε
(α)
µ (P ), it is necessary to calculate the

average of the amplitude for all values of ε
(α)
µ (P ). For a general scattering amplitude −iM(α)

= ε
(α)
µ (P )hµ of a process containing one vector state with mass m, the calculation reads as

follows:

−iM(α) = ε(α)µ (P )hµ ⇒ | − iM̄|2 = 1

3

3
∑

α=1

| − iM(α)|2 = 1

3

3
∑

α=1

ε(α)µ (P )hµε(α)ν (P )hν

=
1

3

3
∑

α=1

ε(α)µ (P )ε(α)ν (P )hµhν =
1

3

(

−gµν +
PµPν
m2

)

hµhν =
1

3

[

−(hµ)2 + (Pµh
µ)2

m2

]

,

(5.37)

where, in the second line of Eq. (5.37), we have used

3
∑

α=1

ε(α)µ (P )ε(α)ν (P ) = −gµν +
PµPν
m2

. (5.38)

Equation (5.37) contains the metric tensor gµν = diag(1,−1 − 1,−1). Note that, if the vector

particle decays, then Pµ = (P0,0) in the rest frame of the decaying particle and thus

(Pµh
µ)2

m2
≡ (P0h

0)2

m2
=
m2(h0)2

m2
= (h0)2. (5.39)

It is clear that in our case h0ρππ = 0, see Eq. (5.36). Therefore we only have to determine (hµρππ)2:

(hµρππ)
2 =

(

Aρππ +Bρππ
m2
ρ

2

)2
(

m2
π +m2

π − 2P1P2

)

=

(

Aρππ +Bρππ
m2
ρ

2

)2
(

4m2
π −m2

ρ

)

.

(5.40)

Inserting Eq. (5.40) into Eq. (5.37) yields

| − iM̄ρ0→ππ|2 =
1

3

(

Aρππ +Bρππ
m2
ρ

2

)2
(

4m2
π −m2

ρ

)

=
4

3

(

Aρππ +Bρππ
m2
ρ

2

)2

k2(mρ,mπ,mπ), (5.41)

where in the second line we have used Eq. (2.191).

Finally, the full decay width reads

Γρ→ππ =
k(mρ,mπ,mπ)

8πm2
ρ

| − iM̄ρ0→ππ| =
k3(mρ,mπ,mπ)

6πm2
ρ

(

Aρππ +Bρππ
m2
ρ

2

)2

. (5.42)

Note that the formula presented in Eq. (5.42) can be transformed further using Eqs. (2.191),

(5.31) and (5.32); we make explicit the dependence of the decay width on the parameters Zπ and
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g2:

Γρ→ππ(Zπ, g2) =
m5
ρ

48πm4
a1

[

1−
(

2mπ

mρ

)2
]3/2

[

g1Z
2
π +

(

1− Z2
π

) g2
2

]2
. (5.43)

The experimental value is Γexp
ρ→ππ = (149.1± 0.8) MeV [10]. The small experimental error can be

neglected and the central value is used as a further constraint allowing us to fix the parameter

g2 as function of Zπ:

g2 = g2(Zπ) =
2

Z2
π − 1

(

g1Z
2
π ±

4m2
a1

mρ

√

3πΓexp
ρ→ππ

(m2
ρ − 4m2

π)
3/2

)

. (5.44)

Note that all input values in Eq. (5.44) are experimentally known [10]. The parameter g1 =

g1(Zπ) is fixed via Eq. (5.27).

As apparent from Eq. (5.44), two solutions for g2 are obtained. The solution with the positive

sign in front of the square root may be neglected because it leads to unphysically large values for

the a1 → ρπ decay width, which is another quantity predicted by our study that also depends on

g2 [see Eq. (5.94)]. For example, the value Zπ = 1.6 (see below) would lead to g2 ∼= 40 which in

turn would give Γa1→ρπ
∼= 14 GeV – clearly an unphysically large value. Therefore, we will take

the solution for g2 with the negative sign in front of the square root. In this case, reasonable

values for both g2 (see Table 5.1) and Γa1→ρπ (see Sec. 5.2.7) are obtained.

5.2.2 Decay Width f1(1285) → a0π

The f1Na0π interaction Lagrangian from Eq. (5.1) reads

Lf1Na0π = Af1Na0πf
µ
1N (∂µπ · a0) +Bf1Na0πf

µ
1N (∂µa0 · π) (5.45)

with the following coefficients:

Af1Na0π = Zπg1(2g1wa1φN − 1) + Zπwa1(h2 − h3)φN , (5.46)

Bf1Na0π = Zπg1. (5.47)

The decay width of an axial-vector into a scalar and a pseudoscalar has already been considered

in Sec. 2.6.3; the obtained formula for the decay width from Eq. (2.201) can be used here with

I = 3:

Γf1N→a0π =
k3(mf1N ,ma0 ,mπ)

8πm2
f1N

(Af1Na0π −Bf1Na0π)2. (5.48)

Using Eqs. (2.191), (5.46) and (5.47), Eq. (5.48) can be transformed as follows (we make explicit

the dependence on Zπ and h2):

Γf1N→a0π(ma0 , Zπ, h2) =
g21Z

2
π

2π

k3(mf1N ,ma0 ,mπ)

m2
f1N

m4
a1

[

m2
ρ −

1

2
(h2 + h3)φ

2
N

]2

. (5.49)

There is a subtle point to comment on here. When the quark-antiquark a0 state of our model

is identified as the a0(980) meson of the PDG compilation (Scenario I, Sec. 5.3), then this
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decay width can be used to fix the parameter h2 as function of Zπ, h2 ≡ h2(Zπ), by using the

corresponding experimental value Γexp
f1N→a0π

= (8.748 ± 2.097) MeV [10].

h2 = h2(Zπ) =
2

φ2N



m2
ρ −

h3
2
φ2N ±

mf1Nm
2
a0

g1Zπ

√

2πΓexp
f1N→a0π

k3(mf1N ,ma0 ,mπ)



 . (5.50)

Again, there are two solutions, just as in the case of the parameter g2. How strongly the

somewhat uncertain experimental value of Γf1N→a0π influences the possible values of h2, depends

on the choice of the sign in front of the square root in Eq. (5.50). Varying Γf1N→a0π within its

experimental range of uncertainty changes the value of h2 by an average of 25% if the negative

sign is chosen, but the same variation of Γf1N→a0π changes h2 by an average of only 6% if the

positive sign is considered. This is due to the fact that the solution with the positive square root

sign yields larger values of h2 ∼ 80, while the solution with the negative sign leads to h2 ∼ 20.

The absolute change of h2 is the same in both cases. Our calculations have shown that using

the negative sign in front of the square root yields a too small value of the η-η′ mixing angle

ϕ ∼= −9◦. This follows by inserting h2 into Eq. (5.64) so that it is removed as a degree of freedom

(i.e., replaced by Zπ) and calculating the mixing angle ϕη from Eq. (5.58) using the experimental

value of the a0 → ηπ decay amplitude from Ref. [114]. For this reason, we only use the positive

sign in front of the square root in Eq. (5.50), i.e., the constraint leading to higher values of h2.

Then ϕη ∼= −41.8◦ is obtained, in very good agreement with the central value quoted by the

KLOE collaboration [228], ϕη ∼= −41.4◦ (see also Sec. 5.3.1).

It may be interesting to note that only the (disregarded) lower value of h2 leads to the expected

behaviour of the parameter h1 which [according to Eq. (4.52)] should be large-Nc suppressed:

the lower value of h2 yields h1 = 1.8 whereas the higher value of h2 yields h1 = −68 (see Table

5.1).

Note that if the quark-antiquark a0 meson of our model is identified as the a0(1450) meson of

the PDG compilation (Scenario II, Sec. 5.4) then the described procedure of replacing h2 by

Zπ using Eq. (5.50) is no longer applicable because the decay f1N → a0π is kinematically not

allowed and its counterpart a0 → f1Nπ has not been measured.

5.2.3 Decay Width σN → ππ

The interaction Lagrangian of the scalar state σN with the pions from Eq. (5.1) reads:

LσNππ = AσNππσNπ
2 +BσNππσN (∂µπ)

2 + CσNππσNπ�π (5.51)

with

AσNππ = −
(

λ1 +
λ2
2

)

Z2
πφN , (5.52)

BσNππ = −2g1Z2
πwa1 +

(

g21 +
h1 + h2 − h3

2

)

Z2
πw

2
a1φN , (5.53)

CσNππ = −g1Z2
πwa1 . (5.54)
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The corresponding decay amplitude reads

−iMσN→ππ(mσN ) = i

(

AσNππ −BσNππ
m2
σN − 2m2

π

2
− CσNππm2

π

)

(5.55)

and, consequently, summing over all decay channels σ1,2 → π0π0, π±π∓ we obtain the following

formula for the decay width ΓσN→ππ:

ΓσN→ππ =
3k(mσN ,mπ,mπ)

4πm2
σN

| − iMσN→ππ(mσN )|2. (5.56)

Note that, using Eqs. (2.191) and (5.52) - (5.54), we can transform Eq. (5.56) as follows (we

make explicit the dependence on free parameters):

ΓσN→ππ(mσN , Zπ, h1, h2) =
3

32πmσN

√

1−
(

2mπ

mσN

)2
{

m2
σN
−m2

π

Zπfπ

−g
2
1Z

3
πfπ

m4
a1

[

m2
ρ −

φ2N
2

(h1 + h2 + h3)

]

(m2
σN − 2m2

π)

}2

. (5.57)

It is apparent from Eqs. (4.52) that the sigma decay width decreases as the number of colors

Nc increases. Thus, the sigma field in our model is a q̄q state [83]. In Scenario I, Sec. 5.3, we

have assigned the σN field as f0(600), correspondingly we are working with the assumption that

f0(600) [as well as a0(980)] is a q̄q state. In Scenario II, Sec. 5.4, the same assumption is valid

for the f0(1370) and a0(1450) states.

Note that in Eq. (5.57) the first term in braces arises from the scalar σNππ vertex, while the

second term comes from the coupling of the σN to the a1, which becomes a derivatively coupled

pion after the shift (5.12). Because of the different signs, these two terms interfere destructively.

As the decay width of a light σN meson into two pions can be very well reproduced in the linear

sigma model without vector mesons (corresponding to the case g1 → 0), this interference prevents

obtaining a reasonable value for this decay width in the present model with (axial-)vector mesons,

see Sec. 5.3.2. This problem does not occur for a heavy σN meson, see Sec. 5.4.2 and Ref. [55].

5.2.4 Decay Amplitudes a0 → ηπ and a0 → η′π

Our Nf = 2 Lagrangian (5.1) contains the unphysical field ηN . However, by making use of Eq.

(7.23) and invoking the OZI rule, it is possible to calculate the decay amplitude for the physical

process a0 → ηπ as

−iMa0ηπ = cosϕ(−iMa0ηNπ). (5.58)

The following a00ηNπ
0 interaction Lagrangian is obtained from Eq. (5.1):

La0ηNπ = Aa0ηNπa0 · ηNπ +Ba0ηNπa0 · ∂µηN∂µπ + Ca0ηNπ∂µa0 · (π∂µηN + ηN∂
µπ) (5.59)

with
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Aa0ηNπ = −λ2Z2
πφN , (5.60)

Ba0ηNπ = 2g1Z
2
πwa1(g1wa1φN − 1) + (Zπwa1)

2(h2 − h3)φN

≡ −2g
2
1φN
m2
a1

[

1− 1

2

Z4
πf

2
π

m2
a1

(h2 − h3)
]

, (5.61)

Ca0ηNπ = g1wa1Z
2
π. (5.62)

As in Sec. 5.2.3, we obtain

−iMa00→ηNπ0 = i

(

Aa0ηNπ −Ba0ηNπ
m2
a0 −m2

η −m2
π

2
+ Ca0ηNπm

2
a0

)

(5.63)

Using Eqs. (2.191) and (5.60) - (5.62), Eq. (5.63) can be transformed in the following way:

−iMa00→ηNπ0(ma0,Z, h2) =
i

Zπfπ

{

m2
ηN
−m2

a0

+

(

1− 1

Z2
π

)[

1− 1

2

Z2
πφ

2
N

m2
a1

(h2 − h3)
]

(m2
a0 −m

2
π −m2

η)

}

. (5.64)

Note that Eqs. (5.63) and (5.64) contain the unmixed mass mηN which enters when expressing

the coupling constants in terms of the parameters (5.24), as well as the physical mass mη = 547.8

MeV. The latter arises because the derivative couplings in the Lagrangian lead to the appearance

of scalar invariants formed from the four-momenta of the particles emerging from the decay, which

can be expressed in terms of the physical (invariant) masses.

The decay width Γa0→ηπ follows from Eq. (5.58) by including a phase space factor:

Γa0→ηπ(ma0 , Zπ, h2) =
k(ma0 ,mη,mπ)

8πm2
a0

∣

∣

∣
−iMa00→ηNπ0(ma0,Zπ, h2)

∣

∣

∣

2
. (5.65)

In the case of Scenario I (Sec. 5.3), in which a0 ≡ a0(980), we shall compare the decay amplitude

−iMa00→ηNπ0 , Eq. (5.58), with the corresponding experimental value deduced from Crystal Barrel

data: −iMexp
a00→ηπ0 = (3330 ± 150) MeV [114]. This is preferable to the use of the decay width

quoted by the PDG [10] for a0(980), which refers to the mean peak width, an unreliable quantity

due to the closeness of the kaon-kaon threshold.

In the case of Scenario II (Sec. 5.4), in which a0 ≡ a0(1450), it is also possible to calculate

the decay width a0(1450) → η′π, using the OZI rule. The amplitude −iMa0η′π(ma0 , Zπ, h2) is

obtained following the same steps as in the previous case, Eq. (5.64):

−iMa0η′π(ma0 , Zπ, h2) = −i
sinϕ

Zπfπ

{

m2
ηN −m

2
a0

+

(

1− 1

Z2
π

)[

1− 1

2

Z2
πφ

2
N

m2
a1

(h2 − h3)
]

(m2
a0 −m

2
π −m2

η′)

}

, (5.66)

where the difference compared to Eqs. (5.58) and (5.64) is the prefactor − sinϕ and the physical

η′ mass mη′ = 958 MeV. The corresponding decay width reads:

Γa0(1450)→η′π(ma0 , Zπ, h2) =
k(ma0 ,mη′ ,mπ)

8πm2
a0

∣

∣−iMa0η′π(ma0 , Zπ, h2)
∣

∣

2
. (5.67)
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5.2.5 Decay Width a1(1260) → πγ

The a1πγ interaction Lagrangian from Eq. (5.1) reads

La1πγ = eJµA
µ, (5.68)

where Aµ denotes the photon field and Jµ the a1-π current of the form

Jµ = −iBa1πγ
(

a+1µπ
− − a−1µπ+

)

− iCa1πγ
(

a+1µν∂
νπ− − a−1µν∂νπ+

)

(5.69)

with

Ba1πγ = g1Z
2
πfπ, (5.70)

Ca1πγ = Zπwa1 = g1
Z2
πfπ
m2
a1

≡ Ba1πγ
m2
a1

(5.71)

and a±1µν = ∂µa
±
1ν − ∂νa±1µ. The calculation of Γa1→πγ is performed analogously to the generic

one presented in Sec. 2.6.2; considering that the photon has no mass and denoting the momenta

of a1, π and γ respectively as P , P1 and P2, we obtain

Γa1→πγ = e2
k(ma1 ,mπ, 0)

24πm2
a1

∣

∣3B2
a1πγ + C2

a1πγ

[

m2
a1m

2
π + 2(P · P1)

2
]

− 6Ba1πγCa1πγ(P · P1)
∣

∣ .

(5.72)

From P = (ma1 ,0) and P1 = (E1,k(ma1 ,mπ, 0)) we obtain P · P1 = ma1

√

k2(ma1 ,mπ, 0) +m2
π

= (m2
a1 +m2

π)/2 using Eq. (2.191). Additionally, we can substitute Ba1πγ in Eq. (5.72) by Ca1πγ
using Eq. (5.71) and transform Eq. (5.72) as follows:

Γa1→πγ = e2
k(ma1 ,mπ, 0)

24πm2
a1

∣

∣

∣

∣

3C2
a1πγm

4
a1 +

1

2
C2
a1πγ(m

4
a1 +m4

π + 4m2
a1m

2
π)

− 3C2
a1πγm

2
a1(m

2
a1 +m2

π)
∣

∣

= e2C2
a1πγm

2
a1

k(ma1 ,mπ, 0)

24π

∣

∣

∣

∣

∣

1

2

(

mπ

ma1

)4

−
(

mπ

ma1

)2

+
1

2

∣

∣

∣

∣

∣

Eq. (5.71)
= e2g21

Z4
πf

2
π

m2
a1

k(ma1 ,mπ, 0)

24π

∣

∣

∣

∣

∣

1

2

(

mπ

ma1

)4

−
(

mπ

ma1

)2

+
1

2

∣

∣

∣

∣

∣

Eq. (2.191)
=

e2g21Z
4
πf

2
π

48πma1

[

1−
(

mπ

ma1

)2
] ∣

∣

∣

∣

∣

1

2

(

mπ

ma1

)4

−
(

mπ

ma1

)2

+
1

2

∣

∣

∣

∣

∣

Eq. (5.27)
=

e2(Z2
π − 1)ma1

48π

[

1−
(

mπ

ma1

)2
] ∣

∣

∣

∣

∣

1

2

(

mπ

ma1

)4

−
(

mπ

ma1

)2

+
1

2

∣

∣

∣

∣

∣

(5.73)

or in other words

Γa1→πγ(Zπ) =
e2

96π
(Z2

π − 1)ma1

[

1−
(

mπ

ma1

)2
]3

. (5.74)

Note that the a1 → πγ decay width depends only on the renormalisation constant Zπ, explicitly

denoted in Eq. (5.74). In fact, it is generated via the a1-π mixing and vanishes in the limit
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Zπ → 1. [A similar mechanism for this decay is described in Ref. [214].] The fact that we include

photons following the second realisation of VMD described in Ref. [217] renders this process

possible in our model. Inverting Eq. (5.74) we obtain

Z2
π = 1 +

96πΓa1→πγ

e2ma1

[

1−
(

mπ

ma1

)2
]3

⇒ Zπ =

√

√

√

√

√

1 +
96πΓa1→πγ

e2ma1

[

1−
(

mπ

ma1

)2
]3 . (5.75)

The first line of Eq. (5.75) yields in principle two opposite-sign solutions. We work, however,

only with the positive-sign renormalisation.

Using Γexp
a1→πγ = (0.640±0.246) MeV [10], one obtains Zπ = 1.67±0.2 from Eq. (5.75). Unfortu-

nately, the experimental error for the quantity Γa1→πγ is large. Given that almost all quantities

of interest depend very strongly on Zπ, a better experimental knowledge of this decay would be

useful to constrain Zπ. In the study of Scenario I, Sec. 5.3, this decay width will be part of a χ2

analysis, but still represents the main constraint for Zπ.

5.2.6 Decay Width a1(1260) → σNπ

The interaction Lagrangian obtained from Eq. (5.1) reads

La1σNπ = Aa1σNπa1µ · σN∂µπ +Ba1σNπa1µ · π∂µσN (5.76)

with the following coefficients:

Aa1σNπ = Zπ [g1(−1 + 2g1wa1φN ) + (h1 + h2 − h3)wa1φN ] , (5.77)

Ba1σNπ = g1Zπ. (5.78)

As in Sec. 2.6.3 we obtain

Γa1→σNπ =
k3(ma1 ,mσN ,mπ)

24πm2
a1

(Aa1σNπ −Ba1σNπ)2, (5.79)

where we have set the isospin factor I = 1 in Eq. (2.201). Equation (5.79) can be further

transformed using Eqs. (2.191), (5.77) and (5.78):

Γa1→σNπ ≡ Γa1→σNπ(mσN , Zπ, h1, h2) =
k3(ma1 ,mσN ,mπ)

6πm6
a1

g21Z
2
π

[

m2
ρ −

φ2N
2

(h1 + h2 + h3)

]2

.

(5.80)

5.2.7 Decay Width a1(1260) → ρπ

We obtain the following a1ρπ interaction Lagrangian from Eq. (5.1):
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La1ρπ = Aa1ρπa1µ · (π × ρµ) +Ba1ρπa1µ · [(∂µρν − ∂νρµ)× ∂νπ]
+ Ca1ρπ(∂νa1µ − ∂µa1ν) · (ρµ × ∂νπ) (5.81)

with the following coefficients:

Aa1ρπ = Zπ(g
2
1 − h3)φN , (5.82)

Ba1ρπ = Zπg2wa1 , (5.83)

Ca1ρπ = Zπg2wa1 . (5.84)

Let us isolate the interaction Lagrangian of the neutral a1 component from Eq. (5.81):

La01ρπ = −iAa1ρπa01µ(ρµ−π+ − ρµ+π−)
− iBa1ρπa01µ[(∂νρµ− − ∂µρν−)∂νπ+ −

(

∂νρµ+ − ∂µρν+
)

∂νπ
−]

− iCa1ρπ(∂νa01µ − ∂µa01ν)(∂νπ−ρµ+ − ∂νπ+ρµ−). (5.85)

Let us for the beginning consider the decay a01 → ρ−π+ only:

La01ρ−π+ = −iAa1ρπa01µρµ−π+ − iBa1ρπa01µ(∂νρµ− − ∂µρν−)∂νπ+

+ iCa1ρπ(∂νa
0
1µ − ∂µa01ν)∂νπ+ρµ−

= −iAa1ρπa01µρµ−π+ − iBa1ρπa01µ(∂νρµ− − ∂µρν−)∂νπ+

− iCa1ρπ∂νa01µ(∂µπ+ρν− − ∂νπ+ρµ−). (5.86)

Let us denote the momenta of a1, ρ and π as P , P1 and P2. Our decay process involves two

vector states: a1 and ρ. For this reason we have to consider the corresponding polarisation

vectors labelled as ε
(α)
µ (P ) for a1 and ε

(β)
ν (P1) for ρ. Then, upon substituting ∂µ → −iPµ for

the decaying particle and ∂µ → iPµ1,2 for the decay products, we obtain the following Lorentz-

invariant a1ρπ scattering amplitude −iM(α,β)

a01→ρ−π+ :

−iM(α,β)

a01→ρ−π+ = ε(α)µ (P )ε(β)ν (P1)h
µν
a1ρπ = ε(α)µ (P )ε(β)ν (P1)

× {Aa1ρπgµν +Ba1ρπ [P
µ
1 P

ν
2 − (P1 · P2)g

µν ]

+Ca1ρπ [P
µ
2 P

ν − (P · P2)g
µν ]} (5.87)

with

hµνa1ρπ = Aa1ρπg
µν +Ba1ρπ [P

µ
1 P

ν
2 − (P1 · P2)g

µν ] + Ca1ρπ [P
µ
2 P

ν − (P · P2)g
µν ] , (5.88)

where hµνa1ρπ denotes the a1ρπ vertex [more precisely, this is only the a1ρ
−π+ vertex but, as evident

from Eq. (5.85), it is the same as the a1ρ
+π− vertex up to a sign that is of no importance for

the calculation of the decay width]. Given that Ba1ρπ = Ca1ρπ [see Eqs. (5.83) and (5.84)], we

observe that the vertex of Eq. (5.88) possesses exactly the same form as the one presented in Eq.
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(2.182). Consequently, we can utilise results from Sec. 2.6.2 where the generic decay of an axial-

vector into a vector and a pseudoscalar was presented. The squared averaged decay amplitude

for the decay a1 → ρπ then reads

| − iM̄a01→ρ−π+ |2 = 1

3

[

∣

∣hµνa1ρπ
∣

∣

2 − |h
µν
a1ρπPµ|2

m2
a1

− |h
µν
a1ρπP1ν |2

m2
ρ

+
|hµνa1ρπPµP1ν |2

m2
ρm

2
a1

]

. (5.89)

Using the identities P1 · P2 = (m2
a1 −m2

ρ −m2
π)/2, P · P1 = ma1E1 and P · P2 = ma1E2, we can

now calculate the four contributions to | − iM̄a01→ρ−π+|2 in Eq. (5.89):

∣

∣hµνa1ρπ
∣

∣

2
= 4A2

a1ρπ +B2
a1ρπ[m

2
πm

2
ρ + 2(P1 · P2)

2] + C2
a1ρπ[m

2
πm

2
a1 + 2(P · P2)

2]

− 6Aa1ρπBa1ρπ(P1 · P2)− 6Aa1ρπCa1ρπ(P · P2) + 6Ba1ρπCa1ρπ(P1 · P2)(P · P2)

Eqs. (5.82) - (5.84)
≡ Z4

πf
2
π

{

4(g21 − h3)2 +
g21g

2
2

m4
a1

[

m4
a1 +m4

π +m4
ρ +m2

πm
2
ρ

+ m2
a1(m

2
π − 2m2

ρ) + 3(m2
a1 −m

2
ρ −m2

π)ma1E2

]

− 3
g1g2(g

2
1 − h3)
m2
a1

(

m2
a1 −m

2
ρ −m2

π + 2ma1E2

)

}

, (5.90)

∣

∣hµνa1ρπPµ
∣

∣

2
= A2

a1ρπm
2
ρ + C2

a1ρπ

[

(P · P1)
2m2

π + (P · P2)
2m2

ρ − 2(P · P1)(P · P2)(P1 · P2)
]

+ 2Aa1ρπCa1ρπ
[

(P · P1)(P1 · P2)− (P · P2)m
2
ρ

]

Eqs. (5.82) - (5.84)
≡ Z4

πf
2
π

{

(g21 − h3)2m2
a1 +

g21g
2
2

4m4
a1

[

(m2
a1 −m

2
π)

2(m2
a1 +m2

π − 2m2
ρ)

+ (m2
π +m2

a1)m
4
ρ − 4(m2

a1 −m
2
ρ −m2

π)m
2
a1E1E2

]

+
g1g2(g

2
1 − h3)
m2
a1

[2m2
a1E1E2 − (m2

a1 −m
2
ρ −m2

π)m
2
a1 ]

}

, (5.91)

∣

∣hµνa1ρπP1ν

∣

∣

2
= A2

a1ρπm
2
a1 +B2

a1ρπ

[

(P · P1)
2m2

π + (P1 · P2)
2m2

a1 − 2(P · P1)(P · P2)(P1 · P2)
]

+ 2Aa1ρπBa1ρπ
[

(P · P1)(P · P2)− (P1 · P2)m
2
a1

]

Eqs. (5.82) - (5.84)
≡ Z4

πf
2
π

{

(g21 − h3)2m2
ρ +

g21g
2
2

4m4
a1

[

(m2
π −m2

ρ)
2(m2

π +m2
ρ − 2m2

a1)

+ (m2
π +m2

ρ)m
4
a1 − 4(m2

a1 −m
2
ρ −m2

π)m
2
a1E1E2

]

+
g1g2(g

2
1 − h3)
m2
a1

[

(m2
a1 −m

2
π)ma1E1 − 2ma1m

2
ρ

(

E2 +
E1

2

)]}

, (5.92)

∣

∣hµνa1ρπPµP1ν

∣

∣

2
= [Aa1ρπ(P · P1)]

2 Eqs. (5.82) - (5.84)
≡ (g21 − h3)2Z4

πf
2
πm

2
a1E

2
1 (5.93)

with E1 =
√

k2(ma1 ,mρ,mπ) +m2
ρ and E2

2 =
√

k2(ma1 ,mρ,mπ) +m2
π.

The formula for the decay width Γa1→ρπ is the same as the one presented in Eq. (2.187), multiplied

by a factor of two in order to consider the two decay channels a01 → ρ−π+ and a01 → ρ+π− from

Eq. (5.85):

Γa1→ρπ =
k(ma1 ,mρ,mπ)

4πm2
a1

| − iM̄a01→ρ−π+ |2 (5.94)
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with | − iM̄a01→ρ−π+ |2 from Eq. (5.89), i.e., Eqs. (5.90) - (5.93).

5.2.8 Tree-Level Scattering Lengths

The calculation of the tree-level ππ scattering lengths has been described in detail in Ref. [220];

in this section we will repeat the main points.

Figure 5.2: Diagrams contributing to the ππ scattering lengths. The dashed lines denote the pions, the

solid lines denote the intermediate scalar meson whereas the wavy lines denote the intermediate vector

state.

The scattering lengths are calculated from three contributions: the ”pure” ππ (contact) scat-

tering, ππ scattering via the virtual σN meson (s, t, u channels; s, t, u denote the Mandelstam

variables) and ππ scattering via the virtual ρ meson (also s, t, u channels). Consequently, the

corresponding scattering Lagrangian consists of a term containing 4π vertices (L4π) and terms

describing interactions of pions with σN [depicted in LσNππ, Eq. (5.51)] and interactions of pions

with ρ [depicted in Lρππ, Eq. (5.30)]:

Lππ = L4π + LσNππ + Lρππ, (5.95)

where the following form of L4π is obtained from the Lagrangian (5.1):

L4π = − 1

4
(λ1 +

λ2
2
)Z4

π(π
2)2 +

1

2
(g21 − h3)w2

a1Z
4
π (∂µπ · π)2

+
1

4
(h1 + h2 + h3)w

2
a1 Z

4
π π

2(∂µπ)
2. (5.96)

Note that Eq. (5.95) may also contain contributions proportional to [(∂µπ) × (∂νπ)]2 from the

g3,4 terms in the Lagrangian (5.1). However, we do not consider these terms because all our

calculations will be at threshold where the terms with only pion derivatives do not contribute.

Let us denote the incoming pions with labels a and b and the outgoing pions with labels c and

d. The ππ scattering amplitudeMππ(s, t, u) obtained from the Lagrangian (5.95) then has three

contributions, one for the s, t and u channels, respectively:

Mππ(s, t, u) = iδabδcdA(s, t, u) + iδacδbdA(t, u, s) + iδadδbcA(u, s, t), (5.97)

where
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A(s, t, u) = (g21 − h3)Z4
πw

2
a1s− 2

(

λ1 +
λ2
2

)

Z4
π − (h1 + h2 + h3)Z

4
πw

2
a1(s− 2m2

π)

− [−2m2
πCσNππ +BσNππ(2m

2
π − s) + 2AσNππ]

2 1

s−m2
σN

+

(

Aρππ +Bρππ
t

2

)2 u− s
t−m2

ρ

+
(

Aρππ +Bρππ
u

2

)2 t− s
u−m2

ρ

, (5.98)

A(t, u, s) = (g21 − h3)Z4
πw

2
a1t− 2

(

λ1 +
λ2
2

)

Z4
π − (h1 + h2 + h3)Z

4
πw

2
a1(t− 2m2

π)

− [−2m2
πCσNππ +BσNππ(2m

2
π − t) + 2AσNππ]

2 1

t−m2
σN

+
(

Aρππ +Bρππ
s

2

)2 u− t
s−m2

ρ

+
(

Aρππ +Bρππ
u

2

)2 s− t
u−m2

ρ

, (5.99)

A(u, s, t) = (g21 − h3)Z4
πw

2
a1u− 2

(

λ1 +
λ2
2

)

Z4
π − (h1 + h2 + h3)Z

4
πw

2
a1(u− 2m2

π)

− [−2m2
πCσNππ +BσNππ(2m

2
π − u) + 2AσNππ]

2 1

u−m2
σN

+
(

Aρππ +Bρππ
s

2

)2 t− u
s−m2

ρ

+

(

Aρππ +Bρππ
t

2

)2 s− u
t−m2

ρ

(5.100)

with AσNππ, BσNππ, CσNππ, Aρππ and Bρππ respectively from Eqs. (5.52), (5.53), (5.54), (5.31)

and (5.32). Note that the scattering amplitude Mππ vanishes at threshold: Mππ(0, 0, 0) = 0

[220].

We can now calculate the three contributions to the scattering amplitude at threshold (pπ =

0 ⇒ P 2
π = m2

π and thus s ≡ 4P 2
π = 4m2

π, t = 0, u = 0). Let us first substitute the coefficient

Aρππ in Eqs. (5.98) - (5.100) using Eq. (5.31); note that, at threshold, there is no contribution

from the terms ∼ Bρππ. We then obtain

A(s, t, u)|s=4m2
π
= 4g21Z

4
πw

2
a1m

2
π − 2

(

λ1 +
λ2
2

)

Z4
π − 2(h1 + h2 + 3h3)Z

4
πw

2
a1m

2
π

− 4[(BσNππ + CσNππ)m
2
π −AσNππ]2

1

4m2
π −m2

σN

+ 8[g1Z
2
π(1− g1wa1φN ) + h3Z

2
πwa1φN ]

2m
2
π

m2
ρ

, (5.101)

A(t, u, s)|s=4m2
π
= −2

(

λ1 +
λ2
2

)

Z4
π + 2(h1 + h2 + h3)Z

4
πw

2
a1m

2
π − 4g21Z

4
π

m2
πm

2
ρ

m4
a1

+ 4[(BσNππ − CσNππ)m2
π +AσNππ]

2 1

m2
σN

(5.102)

and

A(u, s, t)|s=4m2
π
= A(t, u, s)|s=4m2

π
. (5.103)
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The scattering amplitude T 0 for zero isospin is obtained from [229]

T 0|s=4m2
π
= 3A(s, t, u)|s=4m2

π
+A(t, u, s)|s=4m2

π
+A(u, s, t)|s=4m2

π
. (5.104)

Additionally, the interdependence of T 0 and the S-wave, isospin-zero ππ scattering length a00 is,

at threshold, given by the following formula [see Ref. [220], Eq. (4.30)]:

a00|s=4m2
π
=

1

32π
T 0|s=4m2

π
. (5.105)

Inserting Eqs. (5.101) - (5.103) into Eq. (5.104) and substituting T 0|s=4m2
π
in Eq. (5.105) yields

(in units of m−1
π ):

a00|s=4m2
π
=

1

32π

{

12(g21 − h3)Z4
πw

2
a1m

2
π − 10

(

λ1 +
λ2
2

)

Z4
π − 2(h1 + h2 + h3)Z

4
πw

2
a1m

2
π

+ 12[(BσNππ + CσNππ)m
2
π −AσNππ]2

1

m2
σN
− 4m2

π

+ 8[(BσNππ − CσNππ)m2
π +AσNππ]

2 1

m2
σN

+ 16g21Z
4
π

m2
πm

2
ρ

m4
a1

}

. (5.106)

Upon substitution of AσNππ, BσNππ and CσNππ, respectively, from Eqs. (5.52), (5.53) and (5.54),

we obtain the following formula for the scattering length:

a00|s=4m2
π
≡ a00|s=4m2

π
(Zπ,mσN , h1) =

1

4π

(

2g21Z
4
π

m2
π

m4
a1

{

m2
ρ +

φ2N
16

[12g21 − 2(h1 + h2)− 14h3]

}

− 3

2

{

g21Z
2
πφN

m2
π

m4
a1

[

2m2
a1 +m2

ρ −
φ2N
2

(h1 + h2 + h3)

]

−
Z2
πm

2
σN −m2

π

2φN

}2
1

4m2
π −m2

σN

+

{

g21Z
2φN

m2
π

m4
a1

[

m2
ρ −

φ2N
2

(h1 + h2 + h3)

]

+
Z2
πm

2
σN −m2

π

2φN

}2
1

m2
σN





− 5

8

Z2
πm

2
σN −m2

π

f2π
. (5.107)

We use the value a0 exp0 = 0.218±0.020 in accordance with the data from the NA48/2 collaboration

[43].

Given that T 1 = A(t, u, s)−A(u, s, t) [229], we obtain T 1 = 0 at threshold because of A(u, s, t)|s=4m2
π

= A(t, u, s)|s=4m2
π
[see Eq. (5.103)]. Therefore,

a10|s=4m2
π
= 0. (5.108)

The S-wave, isospin-two ππ scattering length is obtained from the corresponding I = 2 scattering

amplitude T 2 given by [229]

T 2|s=4m2
π
= A(t, u, s)|s=4m2

π
+A(u, s, t)|s=4m2

π

Eq. (5.103)
≡ 2A(t, u, s)|s=4m2

π
. (5.109)

Analogously to Eq. (5.105),

32πa20|s=4m2
π
≡ T 2|s=4m2

π
(5.110)
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or

16πa20|s=4m2
π
≡ A(t, u, s)|s=4m2

π
, (5.111)

implying

a20|s=4m2
π
≡ 1

16π
A(t, u, s)|s=4m2

π
. (5.112)

Then inserting Eqs. (5.52), (5.53), (5.54) and (5.102) into Eq. (5.112) we obtain:

a20|s=4m2
π
≡ a20|s=4m2

π
(Zπ,mσN , h1) = −

1

4π

(

g21Z
4
π

m2
π

m4
a1

[

m2
ρ −

φ2N
2

(h1 + h2 + h3)

]

−
{

g21Z
2
πφN

m2
π

m4
a1

[

m2
ρ −

φ2N
2

(h1 + h2 + h3)

]

+
Z2
πm

2
σN −m2

π

2φN

}2
1

m2
σN

+
Z2
πm

2
σN −m2

π

4f2π



 .

(5.113)

The experimental result for a20 from the NA48/2 collaboration is a2 exp0 = −0.0457± 0.0125 [43].

Note that the ππ scattering lengths were also studied away from threshold in Ref. [230], in a

model quite similar to ours. We will discuss the scattering lengths also within the extended

U(3)× U(3) version of our model in Sec. 9.5.

5.3 Scenario I: Light Scalar Quarkonia

We can now discuss two different interpretations of the scalar mesons. Sections 5.3.1 - 5.3.4

describe the results obtained when f0(600) and a0(980) are interpreted as scalar quarkonia (Sce-

nario I). Then, in Sec. 5.4, we discuss the results obtained when f0(1370) and a0(1450) are

interpreted as scalar quarkonia (Scenario II).

5.3.1 Fit procedure

As a first step we utilise the central value of the experimental result Γexp
ρ→ππ = 149.1 MeV [10]

in order to express the parameter g2 as a function of Zπ via Eq. (5.44). Moreover, we fix the

mass ma0 = 980 MeV [10] and we also use the central value Γf1N→a0π(Zπ, h2) = 8.748 MeV to

express h2 as a function of Zπ. The results are practically unaffected by the 6% uncertainty in

h2 originating from the uncertainty in Γf1N→a0π, see Eq. (5.50).

As a result, the set of free parameters in Eq. (5.26) is further reduced to three parameters:

Zπ, mσN , h1. (5.114)

Note that in this scenario the field σN is identified with the resonance f0(600), but the exper-

imental uncertainty on its mass is so large that it does not allow us to fix mσN . We therefore

keep mσN as a free parameter.

We now determine the parameters Zπ, h1, and mσN using known data on the a1 → πγ decay

width (5.74) and on the ππ scattering lengths a00 and a20 reported in Eqs. (5.107) and (5.113).

This is a system of three equations with three variables and can be solved uniquely. We make
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use of the χ2 method in order to determine not only the central values for our parameters but

also their error intervals:

χ2(Zπ,mσN , h1) =

(

Γa1→πγ(Zπ)− Γexp
a1→πγ

△Γexp
decay

)2

+
∑

i∈{0,2}

(

ai0(Zπ,mσN , h1)− a
i, exp
0

△ai, exp0

)2

. (5.115)

The errors for the model parameters are calculated as the square roots of the diagonal elements

of the inverted Hessian matrix obtained from χ2(Zπ,mσN , h1). The minimal value is obtained for

χ2 = 0, as expected given that the parameters are determined from a uniquely solvable system

of equations. The values of the parameters are as follows:

Zπ = 1.67 ± 0.2 , mσN = (332 ± 456) MeV , h1 = −68± 338. (5.116)

Clearly, the error intervals for mσN and h1 are very large. Fortunately, it is possible to constrain

the h1 error interval as follows. As evident from Eq. (5.18), m2
ρ contains two contributions –

the bare mass term m2
1 and the quark condensate contribution (∼ φ2N ). The contribution of

the quark condensate is special for the globally invariant sigma model; in the locally invariant

model mρ is always equal to m1 [37]. Each of these contributions should have at most the

value of 775.49 MeV (= mρ) because otherwise either the bare mass or the quark condensate

contribution to the rho mass would be negative, which appears to be unphysical. A plot of

the function m1 = m1(Zπ, h1, h2(Zπ)), see Eq. (5.29), for the central values of Zπ = 1.67 and

Γexp
f1N→a0π

= 8.748 MeV is shown in Fig. 5.3.

-400 -300 -200 -100
h 1

500

1000

1500

2000

m 1HMeVL

m Ρ

Figure 5.3: m1 as function of h1, constrained at the central value of Zπ = 1.67. The black dot marks

the position of central values h1 = −68 and m1 = 652 MeV.

Note that varying the value of Γexp
f1N→a0π

within its experimental boundaries would only very

slightly change h1 by ±4 and this parameter is thus unaffected by the experimental error for

Γexp
f1N→a0π

. If the value of m1 were known exactly, then Eq. (5.29) would allow us to constrain

h1 via Zπ. However, given that at this point we can only state that 0 ≤ m1 ≤ mρ, for each

Zπ one may consider all values of h1 between two boundaries, one obtained from the condition

m1(Zπ, h1, h2(Zπ)) ≡ 0 and another obtained from the condition m1(Zπ, h1, h2(Zπ)) ≡ mρ. For

example, using the central value of Zπ = 1.67, we obtain −83 ≤ h1 ≤ −32. The lower boundary

follows from m1 ≡ mρ and the upper boundary from m1 ≡ 0, see Fig. 5.3. Note that the
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central value h1 = −68 from Eq. (5.116) corresponds to m1 = 652 MeV. If the minimal value of

Zπ = 1.47 is used, then h1 = −112 is obtained from m1 ≡ mρ and h1 = −46 from m1 ≡ 0. Thus,

−112 ≤ h1 ≤ −46 for Zπ = 1.47. Analogously, −64 ≤ h1 ≤ −24 is obtained for the maximal

value Zπ = 1.87.

Clearly, each lower boundary for h1 is equivalent to m1 ≡ mρ and each upper boundary for h1
is equivalent to m1 ≡ 0. Thus, in the following we will only state the values of Zπ and m1; h1
can always be calculated using Eq. (5.29). In this way, the dependence of our results on m1 and

thus on the origin of the ρ mass will be exhibited.

The value of mσN can be constrained in a way similar to h1 using the scattering length a00; the

scattering length a20 possesses a rather large error interval making it unsuitable to constrain mσN .

Fig. 5.4 shows the different values for a00 and a20 depending on the choice of Zπ and m1.
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ZΠ = 1.67 ,
m1 = 652 MeV

ZΠ = 1.87 , m1 = 0

ZΠ = 1.47 , m1 = 0

ZΠ = 1.87 , m1 = m Ρ

ZΠ = 1.47 , m1 = m Ρ
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-0.044

-0.042

-0.040

-0.038

-0.036
a 0
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Figure 5.4: Scattering lengths a00 and a
2
0 as function ofmσN

(the shaded band corresponds to the NA48/2

value of a00; no error interval is shown for a20 due to the large interval size [43]).

It is obvious that the value of a00 is only consistent with the NA48/2 value [43] if mσN is in the

interval [288, 477] MeV, i.e., mσN = 332+145
−44 MeV. This value for mσN follows if the parameters

Z and m1 are varied within the allowed boundaries. If we only consider the a00 curve that is

obtained for the central values of Z and m1, a much more constrained value of mσN = 332+24
−13

MeV follows from Fig. 5.4. We will be working with the broader interval of mσN . Even then,

constraining m1 to the interval [0,mρ], the error bars for mσN are reduced by at least a factor

of three in comparison to the result (5.116) following from the χ2 calculation.

We summarise our results for the parameters Z and mσN :

Zπ = 1.67 ± 0.2 , mσN = 332+145
−44 MeV. (5.117)

The central values of all parameters of the original set (5.8) are given in Table 5.1. They follow

from the χ2 fit (mσN , h1), via decay width constraints (h2, g2), and from Eqs. (5.14) - (5.19) and

(5.27) - (5.28). The central values of Zπ, mσN and h1, Eq. (5.116), have been used to calculate

all other parameters. We neglect the errors, apart from those of m1, which in this scenario vary

in a large range.

Note that the values of a20 depend strongly on the choice of the parameters Zπ and m1. Whereas

for the central values of Zπ and m1 this scattering length is constant and has the value a20 =

−0.0454, its value increases if Zπ and m1 are considered at their respective boundaries, see Fig.

5.4.
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Parameter mσN h1 h2 h3
Value 332 MeV -68 80 2.4

Parameter g1 g2 m0 m1

Value 6.4 3.1 210 MeV 652+123
−652 MeV

Parameter λ1 λ2 c h0N
Value -14 33 88744 MeV2 1 · 106 MeV3

Table 5.1: Central values of parameters for Scenario I.

The value of Zπ alone allows us to calculate certain decay widths in the model. For example, as

a consistency check we obtain Γa1→πγ = 0.640+0.261
−0.231 MeV which is in good agreement with the

experimental result. Also, given that the a0 → ηNπ decay amplitude only depends on Zπ, it is

possible to calculate the value of this amplitude, Eq. (5.64). For Zπ = 1.67, we obtain the value

of 3939 MeV for the decay amplitude a0 → ηπ involving the physical η field if the η-η′ mixing

angle of ϕη = −36◦ [227] is taken. The Crystal Barrel Collaboration [114] obtained 3330 MeV

and hence there is an approximate discrepancy of 20%. If the KLOE Collaboration [228] value of

ϕη = −41.4◦ is considered, then the value of Aa0→ηπ = 3373 MeV follows – in perfect agreement

with the Crystal Barrel value. From this we conclude that this scenario prefers a relatively large

value of the η-η′ mixing angle. In fact, if we use the Crystal Barrel value Aexp
a0→ηπ = 3330 MeV

as input, we would predict ϕη = −41.8◦ for the central value of Zπ as well as ϕη = −42.3◦ and

ϕη = −41.6◦ for the highest and lowest values of Zπ, respectively, i.e., ϕη = −41.8◦+0.2◦
−0.5◦ . This

is in excellent agreement with the KLOE collaboration result ϕη = −41.4◦ ± 0.5◦ but also with

the results from approaches using the Bethe-Salpeter formalism, such as the one in Ref. [231].

5.3.2 Decay Width σN → ππ

The sigma decay width ΓσN→ππ depends on all three parameters Zπ, m1 (originally h1), and

mσN . In Fig. 5.5 we show the dependence of this decay width on the sigma mass for fixed values

of Zπ and m1, varying the latter within their respective boundaries.

ZΠ = 1.47 ,
m1 = m Ρ

ZΠ = 1.87 , m1 = m Ρ

ZΠ = 1.47 , m1 = 0
ZΠ = 1.87 , m1 = 0

ZΠ = 1.67 , m1 = 652 MeV
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IMeVM

200

400
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G ΣN®ΠΠ
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Figure 5.5: ΓσN→ππ as function of mσN
for different values of Zπ and m1. The PDG [10] notes ΓσN

=

(600 − 1000) MeV; the results from the chiral perturbation theory suggest ΓσN
= 544 MeV [41] and

ΓσN
= 510 MeV [42].

Generally, the values that we obtain are too small when compared to the PDG data [10] and to

other calculations of the sigma meson decay width, such as the one performed by Leutwyler et
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al. [41] who found ΓσN→ππ/2 = 272+9
−12.5 MeV and Peláez et al. [42] who found ΓσN→ππ/2 =

(255 ± 16) MeV. The largest values for the decay width that we were able to obtain within our

model are for the case when Zπ is as small as possible, Zπ = 1.47, and m1 = 0, i.e., when the

ρ mass is solely generated by the quark condensate. As seen above, for this case the scattering

lengths allow a maximum value mσN = 477 MeV, for which ΓσN→ππ
∼= 145 MeV. In all other

cases, the decay width is even smaller. However, as will be discussed in Sec. 5.3.3, the case

m1 = 0 leads to the unphysically small value Γa1→σNπ ≃ 0 and should therefore not be taken too

seriously. As apparent from Fig. 5.4, excluding small values of m1 would require smaller values

for mσN in order to be consistent with the scattering lengths. According to Fig. 5.5, however,

this in turn leads to even smaller values for the decay width.

Hence, we conclude that the isoscalar meson in our model cannot be f0(600), thus excluding

that this resonance is predominantly a q̄q state and the chiral partner of the pion. Then the

interpretation of the isospin-one state a0(980) as a (predominantly) quarkonium state is also

excluded. The only choice is to consider Scenario II, see Sec. 5.4, i.e., to interpret the scalar

states above 1 GeV, f0(1370) and a0(1450), as being predominantly quarkonia. If the decay

width of f0(1370) could be described by the model, this would be a very strong indication that

these higher-lying states can be indeed interpreted as (predominantly) q̄q states. Note that

very similar results about the nature of the light scalar mesons were also found using different

approaches: from an analysis of the meson behaviour in the large-Nc limit in Refs. [83] and [232]

as well as from lattice studies, such as those in Refs. [233].

We remark that the cause for preventing a reasonable fit of the light sigma decay width is the

interference term arising from the vector mesons in Eq. (9.27). In the unphysical case without

vector meson degrees of freedom, a simultaneous fit of the decay width and the scattering lengths

is possible, see Fig. 5.6 and Ref. [55].

ZΠ = 1

ZΠ = 1.67 , m1 = 652 MeV
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Figure 5.6: ΓσN→ππ as function of mσN
in the case without (axial-)vectors (upper line, corresponds to

Zπ = 1) and in the case with (axial-)vectors (lower line, exemplary for the central values of Zπ and m1).

A strong suppression of ΓσN
is observed upon inclusion of the (axial-)vectors into the model.

5.3.3 Decays of the a1(1260) Meson

We first consider the decay width Γa1→ρπ. For a given ma1 , this decay width depends only on

Zπ. The PDG quotes a rather large band of values, Γ
(exp)
a1→ρπ = (250− 600) MeV. For ma1 = 1230

MeV, our fit of meson properties yields Zπ = 1.67± 0.2. The ensuing region is shown as shaded
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area in Fig. 5.7. For ma1 = 1230 MeV, Γa1→ρπ decreases from 2.4 GeV to 353 MeV, if Zπ varies

from 1.47 to 1.87.

We also observe from Fig. 5.7 that the range of values for Zπ, which give values for Γa1→ρπ

consistent with the experimental error band, becomes larger if one considers smaller masses

for the a1 meson. We have taken ma1 = 1180 MeV and ma1 = 1130 MeV, the latter being

similar to the values used in Refs. [47] and [234]. Repeating our calculations, we obtain a new

range of possible values for Zπ, Zπ ≃ 1.69 ± 0.2 for ma1 = 1180 MeV and Zπ ≃ 1.71 ± 0.2 for

ma1 = 1130 MeV. For the respective central values of Zπ we then compute Γ
ma1=1180 MeV
a1→ρπ = 483

MeV (Z
ma1=1180MeV
π = 1.69) and Γ

ma1=1130 MeV
a1→ρπ = 226 MeV (Z

ma1=1130MeV
π = 1.71), in good

agreement with experimental data. All other results remain valid when ma1 is decreased by

about 100 MeV. Most notably, the f0(600) decay width remains too small.

ma 1 = 1130 MeV

ma 1 = 1180 MeV

ma 1
= 1230 MeVma 1 = 1230 MeV

1.5 1.6 1.7 1.8
ZΠ
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1000

1500

2000

G a 1®ΡΠHMeVL

Figure 5.7: Γa1→ρπ for different values of ma1
. The shaded area corresponds to the possible values of

Γa1→ρπ as stated by the PDG.

We also consider the a1 → σNπ decay width. Experimental data on this decay channel [10] are

inconclusive. The value Γa1→σNπ = 56 MeV is obtained for the central values of Zπ, m1, mσN

and Γf1N→a0π (which was used to constrain h2 via Zπ). Taking the limitm1 = 0 pulls the value of

Γa1→σNπ down to practically zero, regardless of whether Zπ = Zπmin or Zπ = Zπmax. This is an

indication that the m1 = 0 limit, where mρ is completely generated from the quark condensate,

cannot be physical. Note that the case Zπ = Zπmax = 1.87 and m1 ≡ mρ, i.e., where the quark

condensate contribution to the ρ mass vanishes, leads to a rather large value of Γa1→σNπ, e.g.,

for the central value of mσN = 332 MeV the value of Γa1→σNπ = 120 MeV follows. Interestingly,

this picture persists even if lower values of ma1 are considered. Improving experimental data for

this decay channel would allow us to further constrain our parameters.

5.3.4 The Case of Isospin-Exact Scattering Lengths

So far, the values of the scattering lengths used in our fit, a00 = 0.218±0.020 and a20 = −0.0457±
0.0125 [43], account for the small explicit breaking of isospin symmetry due to the difference of

the up and down quark masses. However, in our model the isospin symmetry is exact. Thus,

one should rather use the isospin-exact values a
0 (I)
0 = 0.244±0.020 and a

2 (I)
0 = −0.0385±0.0125

[235]. In this section we will briefly show that the conclusions reached so far remain qualitatively

unchanged if the isospin-exact values for the scattering lengths are considered.
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Performing the χ2 fit, Eq. (5.115), with Γa1→πγ, a
0 (I)
0 and a

2 (I)
0 as experimental input yields

Zπ = 1.67± 0.2 – unchanged in comparison with the previous case (Zπ is largely determined by

Γa1→πγ which is the same in both χ2 calculations), h1 = −116±70, and mσN = (284±16) MeV.

Note that in this case the errors are much smaller than previously. The reason is that the mean

value of mσN is almost on top of the two-pion decay threshold and thus leads to an artificially

small error band. For such small values of mσN the decay width ΓσN→ππ is at least an order

of magnitude smaller than the physical value, but even for values of mσN up to 500 MeV (not

supported by our error analysis) the decay width never exceeds 150 MeV, see Fig. 5.5.

5.4 Scenario II: Scalar Quarkonia above 1 GeV

A possible way to resolve the problem of the unphysically small two-pion decay width of the

sigma meson is to identify the fields σN and a0 of the model with the resonances f0(1370) and

a0(1450), respectively. Thus, the scalar quarkonium states are assigned to the energy region

above 1 GeV. In the following we investigate the consequences of this assignment. However, the

analysis cannot be conclusive for various reasons:

• The glueball field is missing. Many studies find that its role in the mass region at about 1.5

GeV is crucial, since it mixes with the other scalar resonances. Indeed, we will extend the

Nf = 2 model in Chapter 12 to include the dilaton field representing the scalar glueball;

however, the ensuing result about the structure of f0(1370) as a q̄q state (see Sec. 5.4.2)

will remain unchanged.

• The light scalar mesons below 1 GeV, such as f0(600) and a0(980), are not included as

elementary fields in our model. The question is if they can be dynamically generated from

the pseudoscalar fields already present in our model by solving a Bethe-Salpeter equation.

If not, they should be introduced as additional elementary fields from the very beginning

[see also the discussion in Ref. [202]].

• Due to absence of the resonance f0(600), the ππ scattering length a00 cannot be correctly

described at tree-level: whereas a20 stays always within the experimental error band, a00
clearly requires a light scalar meson for a proper description of experimental data because

a large value of mσN drives this quantity to the Weinberg limit (≃ 0.159 [236]) which is

outside the experimental error band (see Fig. 5.4).

Despite these drawbacks, we turn to a quantitative analysis of this scenario.

5.4.1 Decays of the a0(1450) Meson

As in Scenario I, the parameter g2 can be expressed as a function of Zπ by using the ρ→ ππ decay

width (5.43). However, the parameter h2 can no longer be fixed by the f1N → a0π decay width:

the a0 meson is now identified with the a0(1450) resonance listed in Ref. [10], with a central

mass of ma0 = 1474 MeV, and thus f1N is too light to decay into a0 and π. One would be able

to determine h2 from the (energetically allowed) decay a0(1450) → f1Nπ, but the corresponding

decay width is not experimentally known.

Instead of performing a global fit, it is more convenient to proceed step by step and calculate

the parameters Zπ, h1, h2 explicitly. We vary mσN ≡ mf0(1370) within the experimentally known

error band [10] and check if our result for Γf0(1370)→ππ is in agreement with experimental data.
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We first determine Zπ from a1 → πγ, Eq. (5.75), and obtain Zπ = 1.67 ± 0.21. We then

immediately conclude that the a1 → ρπ decay width, Eq. (5.94), will remain the same as in

Scenario I because this decay width depends on Zπ (which is virtually the same in both scenarios)

and g2 [which is fixed via Γρ→ππ, Eq. (5.44), in both scenarios].

The parameter h1, being large-Nc suppressed, will be set to zero in the present study. We then

only have to determine the parameter h2. This is done by fitting the total decay width of the

a0(1450) meson to its experimental value [10],

Γa0(1450)(Zπ, h2) = Γa0→πη + Γa0→πη′ + Γa0→KK + Γa0→ωNππ ≡ Γexp
a0(1450)

= (265± 13) MeV.

(5.118)

Although kaons have not yet been included into the calculations, we can easily evaluate the decay

into KK by using flavour symmetry

Γa0(1450)→KK(Zπ, h2) = 2
k(ma0 ,mK ,mK)

8πm2
a0

| − iM̄a0(1450)→KK(Zπ, h2)|2, (5.119)

−iM̄a0(1450)→KK(Zπ, h2) =
i

2Zπfπ

{

m2
ηN
−m2

a0 +

(

1− 1

Z2
π

)

×
[

1− 1

2

Z2
πφ

2
N

m2
a1

(h2 − h3)
]

(m2
a0 − 2m2

K)

}

. (5.120)

The remaining, experimentally poorly known decay width Γa0(1450)→ωNππ can be calculated from

the sequential decay a0 → ωNρ → ωNππ. Note that the first decay step requires the ρ to be

slightly below its mass shell, since ma0 < mρ+mωN
. We denote the off-shell mass of the ρ meson

by xρ. From the Lagrangian (6.1) we obtain the following a0ωNρ interaction Lagrangian:

La0ωNρ = (h2 + h3)φNa0 · ωNµρµ. (5.121)

The generic calculation of the decay width of a scalar state S into two vector states V1,2 has

already been presented in Sec. 2.6.4. We identify the state V2 in the decay amplitude (2.207)

with our off-shell ρmeson; the vertex from the Lagrangian (5.121) reads hµνa0ωNρ = i(h2+h3)φNg
µν

and consequently we obtain from Eq. (2.209):

Γa0(1450)→ωN ρ(xρ) =
k(ma0 ,mωN

, xρ)

8πm2
a0

(h2 + h3)
2Z2

πf
2
π

×
[

3−
x2ρ
m2
ρ

+
(m2

a0 − x2ρ −m2
ωN

)2

4m2
ωN
m2
ρ

]

(5.122)

with I = 3 used in the formula presented in Eq. (2.209).

The full decay width Γa0(1450)→ωNππ is then obtained from Eq. (2.210):

Γa0(1450)→ωNππ =

∞
∫

0

dxρ Γa0→ωNρ(xρ) dρ(xρ), (5.123)

where dρ(xρ) is the mass distribution of the ρ meson, which is taken to be of relativistic Breit-

Wigner form [see Eq. (2.175)]:

dρ(xρ) = Nρ

x2ρΓ
exp
ρ→ππ

(x2ρ −m2
ρ)

2 + (xρΓ
exp
ρ→ππ)

2 θ(xρ − 2mπ), (5.124)
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where Γexp
ρ→ππ = 149.1 MeV and mρ = 775.49 MeV [10]. [As demonstrated in Eq. (2.174), one

should in general use the theoretical quantity Γρ→ππ(xρ) instead of Γexp
ρ→ππ, see Refs. [46, 237].

This is, however, numerically irrelevant in the following.] The normalisation constant Nρ is

chosen such that
∞
∫

0

dxρ dρ(xρ) = 1, (5.125)

in agreement with the interpretation of dxρ dρ(xρ) as the probability that the off-shell ρ meson

has a mass between xρ and xρ + dxρ.

Inserting Eqs. (5.65), (5.67), (5.119) and (5.123) into Eq. (5.118), we can express h2 as a function

of Zπ, analogously to Eq. (5.44) where g2 was expressed as a function of Zπ. Similarly to that

case, we obtain two bands for h2, −115 ≤ h2 ≤ −20 and −25 ≤ h2 ≤ 10, the width of the bands

corresponding to the uncertainty in determining Zπ, Zπ = 1.67±0.21. Both bands for h2 remain

practically unchanged if the 5% experimental uncertainty of Γexp
a0(1450)

is taken into account and

thus we only use the mean value 265 MeV in the following. Since h1 is assumed to be zero, Eq.

(5.29) allows to express m1 as a function of Zπ, m1 = m1(Zπ, h1 = 0, h2(Zπ)) (we neglect the

experimental uncertainties of mρ, ma1 , and fπ). The result is shown in Fig. 5.8. The first band

of (lower) h2 values should be discarded because it leads to m1 > mρ. The second set of (higher)

values leads to m1 < mρ only if the lower boundary for Zπ is 1.60 rather than 1.46. Thus, we

shall use the set of larger h2 values and take the constraint m1 < mρ into account by restricting

the values for Zπ to the range Zπ = 1.67+0.21
−0.07. As can be seen from Fig. 5.8, this sets a lower

boundary for the value of m1, m1 ≥ 580 MeV. Thus, in this scenario we obtain m1 = 720+55
−140

MeV.
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Figure 5.8: Dependence of m1 on Zπ. The upper curve corresponds to the lower set of h2 values and

the lower curve to the higher set of h2 values. The horizontal line corresponds to mρ.

The values for the other parameters can be found in Table 5.2 (only central values are shown

with the exception of m1 where the corresponding uncertainties are stated as well).

Note that λ1 ≪ λ2, in agreement with the expectations from the large-Nc limit, Eq. (4.52). The

value of m1 = 720 MeV is sizable and constitutes a dominant contribution to the ρ mass. This

implies that non-quark contributions, for instance a gluon condensate, play a decisive role in the

ρ mass generation.

As a final step, we study the ratios Γa0(1450)→η′π/Γa0(1450)→ηπ and Γa0(1450)→KK/Γa0(1450)→ηπ .
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Parameter h1 h2 h3 g1
Value 0 4.7 2.4 6.4

Parameter g2 m2
0 m1 λ1

Value 3.1 -811987 MeV2 720+55
−140 MeV -3.6

Parameter λ2 c h0N
Value 84 88747 MeV2 1 · 106 MeV3

Table 5.2: Central values of the parameters for Scenario II.

Their experimental values read [10]

Γexp
a0(1450)→η′π

Γexp
a0(1450)→ηπ

= 0.35 ± 0.16, (5.126)

Γexp

a0(1450)→KK

Γexp
a0(1450)→ηπ

= 0.88 ± 0.23. (5.127)

Using the central value Zπ = 1.67 and ϕη = −36◦ for the η-η′ mixing angle, we obtain

Γa0(1450)→η′π/Γa0(1450)→ηπ = 1.0 and Γa0(1450)→KK/Γa0(1450)→ηπ = 0.96. The latter is in very

good agreement with the experiment, the former a factor of two larger. Note, however, that ac-

cording to Eqs. (5.58) and (5.66) the value of the ratio Γa0(1450)→η′π/Γa0(1450)→ηπ is proportional

to sin2 ϕη/ cos
2 ϕη. If a lower value of the angle is considered, e.g., ϕη = −30◦, then we obtain

Γa0(1450)→η′π/Γa0(1450)→ηπ = 0.58 for the central value of Zπ and the central value of Γa0(1450)
in Eq. (5.118). Taking Zπ = Zπmax and the upper boundary Γexp

a0(1450)
= 278 MeV results in

Γa0(1450)→η′π/Γa0(1450)→ηπ = 0.48, i.e., in agreement with the experimental value. Therefore,

our results in this scenario favour a smaller value of ϕη than the one suggested by the KLOE

Collaboration [228].

It is possible to calculate the decay width Γa0(1450)→ωNππ using Eq. (5.123). We have obtained

a very small value Γa0(1450)→ωNππ = 0.1 MeV. From Eq. (5.65) we obtain Γa0(1450)→ηπ = 89.5

MeV, such that the ratio Γa0(1450)→ωNππ/Γa0(1450)→ηπ = 0.0012, in contrast to the results of Ref.

[238].

5.4.2 Decays of the f0(1370) Meson

It is now possible to calculate the width for the f0(1370) → ππ decay using Eq. (9.27). The

decay width depends on the f0(1370) mass, Zπ, h1, and h2 which is expressed via Zπ using Eq.

(5.118). The values of the latter three are listed in Table 5.2. In Fig. 5.9 we show the decay

width as a function of the mass of f0(1370).

Assuming that the two-pion decay dominates the total decay width (true up to a mass of 1350

MeV, see Sec. 3.3), we observe a good agreement with the experimental values. The values of the

decay width are ∼ 100 MeV larger than those of Ref. [40] but this is not surprising as the current

version of the model contains no strange degrees of freedom (they are discussed in Chapters 9

and 11) and no glueball (discussed in Chapter 12). We will see in the mentioned chapters that the

currently missing contributions to the decay width will reduce the upper boundary on mf0(1370).

Nevertheless, the correspondence with the experiment is a lot better in this scenario where we

have identified f0(1370) rather than f0(600) as the (predominantly) isoscalar q̄q state. Note that
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this result has been obtained using the decay width of the a0(1450) meson (in order to express

h2 via Zπ) which is also assumed to be a scalar q̄q state in this scenario.

It is remarkable that vector mesons are crucial to obtain realistic values for the decay width of

f0(1370): without vector mesons, the decay width is ∼ 10 GeV and thus much too large. This

is why Scenario II has not been considered in the standard linear sigma model.
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Figure 5.9: Dependence of the σN ≡ f0(1370) decay width on mσN
. The experimental value of the width

is expected to be in the range (1200-1500) MeV [10].

The four-body decay f0(1370) → 4π can also be studied. Similarly to the a0(1450) → ωNρ decay,

we view f0(1370) → 4π as a sequential decay of the form f0(1370) → ρρ→ 4π. The Lagrangian

(6.1) leads to

Lσρρ =
1

2
(h1 + h2 + h3)φNσNρ

2
µ (5.128)

and repeating the calculation of Sec. 2.6.4 we obtain

Γf0(1370)→ρρ(x1ρ, x2ρ) =
3

16π

k(mf0 , x1ρ, x2ρ)

m2
f0

(h1 + h2 + h3)
2

× Z2
πf

2
π

[

4−
x21ρ + x22ρ

m2
ρ

+
(m2

f0
− x21ρ − x22ρ)2

4m4
ρ

]

, (5.129)

where x1ρ and x2ρ are the off-shell masses of the ρ mesons. The decay width Γf0→4π is then

given by

Γf0(1370)→4π =

∞
∫

0

∞
∫

0

dx1ρ dx2ρ Γf0(1370)→ρρ(x1ρ, x2ρ)dρ(x1ρ) dρ(x2ρ), (5.130)

with Γf0(1370)→ρρ(x1ρ, x2ρ) from Eq. (5.129) and dρ(xρ) from Eq. (5.124).

Using the previous values for the parameters we obtain that the ρρ contribution for the decay is

small: Γf0(1370)→ρρ→4π ≃ 10±10 MeV. (The error comes from varying Zπ between 1.6 and 1.88.)

Reference [40] quotes 54 MeV for the total 4π decay width at ∼ 1300 MeV. Since Ref. [239]

ascertains that about 26% of the total 4π decay width originates from the ρρ decay channel, our

result is qualitatively consistent with these findings.

5.5 Conclusions from the Two-Flavour Version of the Model

In this chapter we have presented the two-flavour version of the generic Lagrangian with vector

mesons and global chiral invariance introduced in Chapter 4. This Lagrangian describes mesons
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as pure quarkonium states. As shown in Sec. 5.3, the resulting low-energy phenomenology is

in general in good agreement with experimental data – with one exception: the model fails to

correctly describe the f0(600) → ππ decay width. This led us to conclude that f0(600) and

a0(980) cannot be predominantly q̄q states.

Assigning the scalar fields σN and a0 of the model to the f0(1370) and a0(1450) resonances, re-

spectively, improves the results for the decay widths considerably. We have obtained Γf0(1370)→ππ

≃ (300-500) MeV for mf0(1370) = (1200-1400) MeV (see Fig. 5.9). Thus, the scenario in which

the scalar states above 1 GeV, f0(1370) and a0(1450), are considered to be (predominantly) q̄q

states appears to be favoured over the assignment in which f0(600) and a0(980) are considered

(predominantly) q̄q states. However, a more detailed study of this scenario is necessary, because

a glueball state with the same quantum numbers mixes with the quarkonium states. This allows

to include the experimentally well-known resonance f0(1500) into the study.

Of course, interpreting f0(1370) and a0(1450) as q̄q states leads to question about the nature

of f0(600) and a0(980). Their presence is necessary for the correct description of ππ scattering

lengths that differ from experiment for too large values of the isoscalar mass (see Sec. 5.3.1). We

distinguish two possibilities: (i) They can arise as (quasi-)molecular states. This is possible if the

attraction in the ππ and KK channels is large enough. In order to prove this, one should solve

the corresponding Bethe-Salpeter equation in the framework of Scenario II. In this case f0(600)

and a0(980) can be classified as genuinely dynamically generated states and should not appear

in the Lagrangian, see the discussion in Ref. [202]. If, however, the attraction is not sufficient

to generate the two resonances f0(600) and a0(980) we are led to the alternative possibility that

(ii) these two scalar states must be incorporated into the model as additional tetraquark states

[194]. In this case they shall appear from the very beginning in the Lagrangian and should not

be considered as dynamically generated states. Of course, the isoscalar tetraquark, quarkonium,

and glueball will mix to produce f0(600), f0(1370), and f0(1500), and the isovector tetraquark

and quarkonium will mix to produce a0(980) and a0(1450).

An extension of the model to Nf = 3 will be performed in the next chapters. One reason is that

much more data are available for the strange mesons, which constitute an important test for the

validity of our approach. In addition, an extremely important question arising from the results

presented so far will be addressed: whether the conclusions reached at Nf = 2 [in particular that

f0(1370) rather than f0(600) is a q̄q state] hold in the more general three-flavour case.

5.6 The Full Nf = 2 Lagrangian

This is the final form of the Lagrangian (5.1) that is obtained after the shifts (5.12) and the

renormalisation of the pseudoscalar wave functions; ρµν ≡ ∂µρν−∂νρµ; aµν1 ≡ ∂µaν1−∂νa
µ
1 ; (A)3

marks the third component of the vector A. Note that the term L4 contains the (axial-)vector

four-point vertices [the terms ∼ g3,4,5,6 in the Lagrangian (5.1)]. We do not give the explicit form

of L4 because it is not relevant for the results that are presented here.

L =
1

2
(∂µσN + g1Zπ π · aµ1 + g1wa1Z

2
π ∂

µπ · π + g1ZπηNf
µ
1 + g1wa1Z

2
πηN ∂

µηN )
2

− 1

2

[

m2
0 − c+ 3

(

λ1 +
λ2
2

)

φ2N

]

σ2N
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+
1

2
(Zπ∂

µπ + g1Zπρ
µ × π − g1fµ1Na0 − g1wa1Zπ∂µηNa0 − g1σNaµ1 − g1wa1ZπσN∂µπ)2

+
1

2
(Zπ∂

µηN − g1σNfµ1N − g1wa1ZπσN∂µηN − g1 a
µ
1 · a0 − g1wa1Zπ ∂µπ · a0)

2

− 1

2

[

m2
0 − c+

(

λ1 +
λ2
2

)

φ2N

]

Z2
ππ

2 − 1

2

[

m2
0 + c+

(

λ1 +
λ2
2

)

φ2N

]

Z2
πη

2
N

+
1

2
[∂µa0 + g1ρ

µ × a0 + g1Zπf
µ
1Nπ + g1wa1Z

2
ππ∂

µηN + g1ZπηN a
µ
1 + g1wa1Z

2
πη N∂

µπ]2

− 1

2

[

m2
0 + c+

(

λ1 +
3

2
λ2

)

φ2N

]

a2
0 −

λ2
2
[(σNa0 + Z2

πηN π)2 + Z2
πa

2
0π

2 − Z2
π(a0 · π)2]

− 1

4

(

λ1 +
λ2
2

)

(σ2N + a2
0 + Z2

πη
2
N + Z2

ππ
2)2 −

(

λ1 +
λ2
2

)

φNσN (σ2N + a2
0 + Z2

πη
2
N + Z2

ππ
2)

− λ2φNa0 · (σNa0 + Z2
πηN π)− 1

4
(∂µωνN − ∂νωµN )2 +

m2
1

2
(ωµN )

2

− 1

4
[∂µρν − ∂νρµ + g2ρ

µ × ρν + g2a
µ
1 × aν1 + g2wa1Zπ∂

µπ × aν1 + g2wa1Zπa
µ
1 × ∂νπ

+ g2w
2
a1Z

2
π(∂

µπ )× (∂νπ)]2

+
m2

1

2
(ρµ)2 − 1

4
(∂µf ν1N − ∂νfµ1N )2 +

m2
1 + g21φ

2
N

2
(fµ1N )

2 +
m2

1 + g21φ
2
N

2
(aµ1 )

2

− 1

4
[∂µaν1 − ∂νaµ1 + g2ρ

µ × aν1 + g2wa1Zπρ
µ × ∂νπ + g2a

µ
1 × ρν + g2wa1Zπ(∂

µπ)× ρν ]2

− g21 φN a1µ · [ρµ × Zππ − fµ1Na0 − wa1Zπa0 ∂
µηN ]

− g21wa1Zπ φN ∂µπ · [Zπρµ × π − fµ1Na0 − wa1Zπ∂µηN a0]

+ g21 φNf1Nµ (a
µ
1 · a0 + wa1Zπ∂

µπ · a0)

+ g21wa1Zπ φN ∂µηN (aµ1 · a0 + wa1Zπ∂
µπ · a0)

+ g21 φN σN [(fµ1N )
2 + 2wa1Zπf1N µ∂

µηN + w2
a1Z

2
π(∂

µηN )
2]

+ g21 φN σN [(aµ1 )
2 + 2wa1Zπa1µ · ∂µπ + w2

a1Z
2
π(∂

µπ)2]

− 1

2

g21φ
2
N

m2
a1

Z2
π (∂µηN∂

µηN + ∂µπ · ∂µπ)

+ eAµ{(a0 × ∂µa0)3 + Z2
π(π × ∂µπ)3 − 4(ρµν × ρν)3 − 4[(a1ν + Zπwa1∂νπ)× a

µν
1 ]3

+ g1{2Zπ(fµ1N + Zπwa1∂
µηN )(a0 × π)3 + Zπ(σN + φN )[(a

µ
1 + Zπwa1∂

µπ)× π]3

+ ηN [a0 × (aµ1 + Zπwa1∂
µπ)]3 − a30(a10ρµ1 + a20ρ

µ2)− Z2
ππ

3(π1ρµ1 + π2ρµ2)

+ ρµ3[(a10)
2 + (a20)

2 + Z2
π(π

1)2 + Z2
π(π

2)2]}
+ 4g2{[ρ2

ν + a2
1ν + Z2

πw
2
a1 (∂νπ)

2 + Zπwa1a1ν · ∂νπ]ρµ3

+ 2ρν · (aν1 + Zπwa1∂
νπ)× (aµ31 + Zπwa1∂

µπ3)

− (ρν · ρµ + a1ν · aµ1 + Zπwa1a1ν · ∂µπ + Zπwa1a
µ
1 · ∂νπ + Z2

πw
2
a1∂νπ · ∂

µπ)ρν3

− (ρµ · a1ν + a
µ
1 · ρν + Zπwa1ρ

µ · ∂νπ + Zπwa1ρν · ∂µπ)aν31 }}

+
e2

2
AµA

µ[(a10)
2 + (a20)

2 + Z2
π(π

1)2 + Z2
π(π

2)2 + 4(ρν1)2 + 4(ρν2)2

+ 4(a11ν + Zπwa1∂νπ
1)2 + 4(a21ν + Zπwa1∂νπ

2)2]

− 2e2AµAν [ρ
µ1ρν1 + ρµ2ρν2 + (aµ11 + Zπwa1∂

µπ1)(aν11 + Zπwa1∂
νπ1)

+ (aµ21 + Zπwa1∂
µπ2)(aν21 + Zπwa1∂

νπ2)] + Lh1,2,3 + L4 (5.131)
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Lh1,2,3 =

(

h1
4

+
h2
4

+
h3
4

)

(

σ2N + 2φNσN + Z2
πη

2
N + a2

0 + Z2
ππ

2
)

(ω2
Nµ + ρ2

µ)

+

(

h1
4

+
h2
4
− h3

4

)

(

σ2N + 2φNσN + Z2
πη

2
N + a2

0 + Z2
ππ

2
)

{f21Nµ + a2
1µ

+ Z2
πw

2
a1 [(∂µηN )

2 + (∂µπ)
2] + 2Zπwa1(f1Nµ∂

µηN + a1µ · ∂µπ)}

+

(

h1
4

+
h2
4

+
h3
4

)

φ2N (ω
2
Nµ + ρ2

µ) +

(

h1
4

+
h2
4
− h3

4

)

φ2N (f
2
1Nµ + a2

1µ)

+ (h2 + h3)ωNµ[(σN + φN )a0 + Z2
πηNπ] · ρµ

+ (h2 − h3)[(σN + φN )a0 + Z2
πηNπ] · [f1Nµaµ1

+ Zπwa1(a1µ∂
µηN + f1Nµ∂

µπ) + Z2
πw

2
a1(∂µηN )(∂

µπ)]

+ (h2 + h3)Zπ(a0 × π) · (ωNµaµ1 + Zπwa1ωNµ∂
µπ)

+ (h2 − h3)Zπ(a0 × π) · (f1Nµρµ + Zπwa1ρµ∂
µηN )

+ h3Zπ[ηNa0 − (σN + φN )π] · [ρµ × (aµ1 + Zπwa1∂
µπ)]

− h3
2
{(a0 × ρµ)2 − [a0 × (aµ1 + Zπwa1∂

µπ)]2 + Z2
π(π × ρµ)2

− Z2
π[π × (aµ1 + Zπwa1∂

µπ)]2} (5.132)
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6. Three-Flavour Linear Sigma Model

In this chapter we discuss the application of the generic Lagrangian from Chapter 4 to three

flavours: scalar, pseudoscalar, vector and axial-vector strange mesons are added to the model.

6.1 The Nf = 3 Lagrangian

The globally invariant U(3)L×U(3)R Lagrangian possesses the same structure as the one in Eq.

(4.42) up to the chiral-anomaly term c1 (see discussion in Sec. 6.4):

L = Tr[(DµΦ)
†(DµΦ)]−m2

0Tr(Φ
†Φ)− λ1[Tr(Φ†Φ)]2 − λ2Tr(Φ†Φ)2

− 1

4
Tr(L2

µν +R2
µν) + Tr

[(

m2
1

2
+ ∆

)

(L2
µ +R2

µ)

]

+Tr[H(Φ + Φ†)]

+ c1(det Φ− detΦ†)2 + i
g2
2
(Tr{Lµν [Lµ, Lν ]}+Tr{Rµν [Rµ, Rν ]})

+
h1
2
Tr(Φ†Φ)Tr(L2

µ +R2
µ) + h2Tr[|LµΦ|2 + |ΦRµ|2] + 2h3Tr(LµΦR

µΦ†).

+ g3[Tr(LµLνL
µLν) + Tr(RµRνR

µRν)] + g4[Tr (LµL
µLνL

ν) + Tr (RµR
µRνR

ν)]

+ g5Tr (LµL
µ) Tr (RνR

ν) + g6[Tr(LµL
µ)Tr(LνL

ν) + Tr(RµR
µ)Tr(RνR

ν)]. (6.1)

In the three-flavour case, it is more convenient to write the (pseudo)scalar and (axial-)vector

matrices explicitly straightaway rather than implicitly in terms of the U(3) group generators.

The scalar states present in the U(3)L × U(3)R version of the model are [see Eq. (4.11)]:

S =
1√
2









σN+a00√
2

a+0 K+
S

a−0
σN−a00√

2
K0
S

K−
S K̄0

S σS









(6.2)

and the pseudoscalar states are [see Eq. (4.12)]:

P =
1√
2







ηN+π0
√
2

π+ K+

π− ηN−π0
√
2

K0

K− K̄0 ηS






. (6.3)

Consequently, the Φ matrix from Eq. (4.7) now reads

Φ = S + iP =
1√
2









(σN+a00)+i(ηN+π0)√
2

a+0 + iπ+ K+
S + iK+

a−0 + iπ− (σN−a00)+i(ηN−π0)√
2

K0
S + iK0

K−
S + iK− K̄0

S + iK̄0 σS + iηS









(6.4)

and the adjoint matrix Φ† is

Φ† =
1√
2









(σN+a00)−i(ηN+π0)√
2

a+0 − iπ+ K+
S − iK+

a−0 − iπ−
(σN−a00)−i(ηN−π0)√

2
K0
S − iK0

K−
S − iK− K̄0

S − iK̄0 σS − iηS









. (6.5)
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(Note again that, in this work, K0
S does not denote the short-lived pseudoscalar kaon but a

neutral scalar kaon.)

The matrix containing vectors is [see Eq. (4.26)]:

V µ =
1√
2









ωµ
N+ρµ0√

2
ρµ+ K⋆µ+

ρµ−
ωµ
N−ρµ0√

2
K⋆µ0

K⋆µ− K̄⋆µ0 ωµS









(6.6)

whereas the matrix containing axial-vectors is [see Eq. (4.27)]:

A =
1√
2









fµ1N+aµ01√
2

aµ+1 Kµ+
1

aµ−1
fµ1N−aµ01√

2
Kµ0

1

Kµ−
1 K̄µ0

1 fµ1S









. (6.7)

The matrices from Eqs. (6.6) and (6.7) are combined into a right-handed structure just as in Eq.

(4.23):

Rµ =
1√
2









ωµ
N
+ρµ0√
2
− fµ1N+aµ01√

2
ρµ+ − aµ+1 K⋆µ+ −Kµ+

1

ρµ− − aµ−1
ωµ
N−ρµ0√

2
− fµ1N−aµ01√

2
K⋆µ0 −Kµ0

1

K⋆µ− −Kµ−
1 K̄⋆µ0 − K̄µ0

1 ωµS − f
µ
1S









(6.8)

and into a left-handed structure just as in Eq. (4.24):

Lµ =
1√
2









ωµ
N+ρµ0√

2
+

fµ1N+aµ01√
2

ρµ+ + aµ+1 K⋆µ+ +Kµ+
1

ρµ− + aµ−1
ωµ
N−ρµ0√

2
+

fµ1N−aµ01√
2

K⋆µ0 +Kµ0
1

K⋆µ− +Kµ−
1 K̄⋆µ0 + K̄µ0

1 ωµS + fµ1S









. (6.9)

The covariant derivative is defined in accordance with Eq. (4.43):

DµΦ = ∂µΦ− ig1(LµΦ− ΦRµ) (6.10)

couples scalar and pseudoscalar degrees of freedom to vector and axial-vector ones and, unlike

the one in Eq. (5.5), it contains no photon field Aµ. The reason is that this and the subsequent

chapters will be dedicated to meson decays into other mesons only; the only exception will be

the decay a1 → πγ but the a1πγ Lagrangian in the Nf = 3 case would be exactly the same as

the one presented in Eq. (5.68) for Nf = 2 and thus we do not need to recalculate it in this

version of the model.

The left-handed and right-handed field strength tensors are defined just as in Eqs. (4.32) and

(4.33):

Lµν = ∂µLν − ∂νLµ, (6.11)

Rµν = ∂µRν − ∂νRµ. (6.12)

Explicit breaking of the global symmetry in the (pseudo)scalar channel is described by the term

Tr[H(Φ + Φ†)], see Eq. (4.35), and in the (axial-)vector channel by the term Tr
[

∆(L2
µ +R2

µ)
]

,

see Eq. (4.37), where
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H =







h0N
2 0 0

0 h0N
2 0

0 0 h0S√
2






, (6.13)

∆ =







δN 0 0

0 δN 0

0 0 δS






. (6.14)

As in Chapter 5, the spontaneous breaking of the chiral symmetry will be implemented by

condensing scalar isosinglet states – in the case of Nf = 3, there are two such states [see Eq.

(6.2)]: σN ≡ (ūu + d̄d)/
√
2 and σN ≡ s̄s. Let us denote their respective condensates as φN

and φS . The relations between φN,S and the pion decay constant fπ as well as the kaon decay

constant fK are determined analogously to Eq. (5.21)]:

φN = Zπfπ, (6.15)

φS =
ZKfK√

2
, (6.16)

where fπ = 92.4 MeV and fK = 155.5/
√
2 MeV [10]. Then the chiral condensates φN and φS

lead to the following mixing terms in the Lagrangian (6.1):

− g1φN (fµ1N∂µηN + a
µ
1 · ∂µπ)−

√
2g1φSf

µ
1S∂µηS

−
(

g1√
2
φS +

g1
2
φN

)

(

Kµ0
1 ∂µK̄

0+Kµ+
1 ∂µK

− + h.c.
)

and

+

(

i
g1√
2
φS − i

g1
2
φN

)

(

K̄⋆µ0∂µK
0
S+K

⋆µ−∂µK
+
S

)

+

(

−i g1√
2
φS + i

g1
2
φN

)

(

K⋆µ0∂µK̄
0
S+K

⋆µ+∂µK
−
S

)

. (6.17)

The first term in the first line of Eq. (6.17) corresponds exactly to the term (5.11) obtained in

the Nf = 2 case; the other contributions are new. Note that, in the Nf = 3 case, the mixing

between the pseudoscalars and the axial-vectors is accompanied by the vector-scalar mixing of

the fields K⋆ and KS . The corresponding coupling is imaginary but this is not problematic as

the Lagrangian is nonetheless hermitian, i.e., real.

The mixing terms (6.17) are removed by the following suitable shifts of the (axial-)vector states:

fµ1N → fµ1N + wf1N∂
µηN , (6.18)

a
µ
1 → a

µ
1+wa1∂

µπ, (6.19)

fµ1S → fµ1S + wf1S∂
µηS , (6.20)

Kµ0
1 → Kµ0

1 + wK1∂
µK0 (and h.c.), (6.21)

K⋆µ0 → K⋆µ0 + wK⋆∂µK0
S , (6.22)

K⋆µ+ → K⋆µ+ + wK⋆∂µK+
S , (6.23)

K̄⋆µ0 → K̄⋆µ0 + w∗
K⋆∂µK̄0

S , (6.24)

K⋆µ− → K⋆µ− + w∗
K⋆∂µK−

S . (6.25)
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The shifts (6.18) and (6.19) correspond to the one performed in the Nf = 2 case (5.12). The

quantities wf1N , wa1 , wf1S , wK1 and wK⋆ are calculated from the condition that the mixing terms

(6.17) vanish once the shifts of the (axial-)vectors have been implemented:

[

−g1φN +

(

g21 +
h1
2

+
h2
2
− h3

2

)

wf1Nφ
2
N + (m2

1 + 2δN )wf1N +
h1
2
wf1Nφ

2
S

]

× (fµ1N∂µηN + a
µ
1 · ∂µπ)

!
= 0, (6.26)

[

−
√
2g1φS +

(

2g21 +
h1
2

+ h2 − h3
)

wf1Sφ
2
S + (m2

1 + 2δS)wf1S +
h1
2
wf1Sφ

2
N

]

fµ1S∂µηS
!
= 0,

(6.27)
[

− g1√
2
φS +

g21 − h3√
2

wK1φNφS +
g21 + h1 + h2

2
wK1φ

2
S + (m2

1 + δN + δS)wK1 −
g1
2
φN

+

(

g21
4

+
h1
2

+
h2
4

)

wK1φ
2
N

]

(

Kµ0
1 ∂µK̄

0+Kµ+
1 ∂µK

− + h.c.
)

!
= 0, (6.28)

[

i
g1√
2
φS +

h3 − g21√
2

wK⋆φNφS +
g21 + h1 + h2

2
wK⋆φ2S + (m2

1 + δN + δS)wK⋆ − ig1
2
φN

+

(

g21
4

+
h1
2

+
h2
4

)

wK⋆φ2N

]

(

K̄⋆µ0∂µK
0
S+K

⋆µ−∂µK
+
S

) !
= 0,

+

[

−i g1√
2
φS +

h3 − g21√
2

w∗
K⋆φNφS +

g21 + h1 + h2
2

w∗
K⋆φ2S + (m2

1 + δN + δS)w
∗
K⋆ + i

g1
2
φN

+

(

g21
4

+
h1
2

+
h2
4

)

w∗
K⋆φ2N

]

(

K⋆µ0∂µK̄
0
S+K

⋆µ+∂µK
−
S

) !
= 0. (6.29)

Equation (6.26) corresponds exactly to the fµ1N -∂µηN and a
µ
1 -∂µπ mixing terms obtained upon

the stated shifts in the Nf = 2 case. Equations (6.26) – (6.29) are fulfilled only if we define:

wf1N = wa1 =
g1φN
m2
a1

, (6.30)

wf1S =

√
2g1φS
m2
f1S

, (6.31)

wK1 =
g1(φN +

√
2φS)

2m2
K1

, (6.32)

wK⋆ = i
g1(φN −

√
2φS)

2m2
K⋆

. (6.33)

The definitions (6.30) – (6.33) require the knowledge of the following mass terms obtained from

the Lagrangian (6.1):

m2
σN

= m2
0 + 3

(

λ1 +
λ2
2

)

φ2N + λ1φ
2
S , (6.34)

m2
π = Z2

π

[

m2
0 +

(

λ1 +
λ2
2

)

φ2N + λ1φ
2
S

]

≡ Z2
πh0N
φN

, (6.35)
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m2
a0 = m2

0 +

(

λ1 + 3
λ2
2

)

φ2N + λ1φ
2
S , (6.36)

m2
ηN = Z2

π

[

m2
0 +

(

λ1 +
λ2
2

)

φ2N + λ1φ
2
S + c1φ

2
Nφ

2
S

]

≡ m2
π + c1Z

2
πφ

2
Nφ

2
S , (6.37)

m2
σS

= m2
0 + λ1φ

2
N + 3(λ1 + λ2)φ

2
S , (6.38)

m2
ηS = Z2

ηS

[

m2
0 + λ1φ

2
N + (λ1 + λ2)φ

2
S + c1

φ4N
4

]

= Z2
ηS

(

h0S
φS

+
c1
4
φ4N

)

, (6.39)

m2
KS

= Z2
KS

[

m2
0 +

(

λ1 +
λ2
2

)

φ2N +
λ2√
2
φNφS + (λ1 + λ2)φ

2
S

]

, (6.40)

m2
K = Z2

K

[

m2
0 +

(

λ1 +
λ2
2

)

φ2N −
λ2√
2
φNφS + (λ1 + λ2)φ

2
S

]

, (6.41)

m2
ωN

= m2
ρ = m2

1 + 2δN +
φ2N
2

(h1 + h2 + h3) +
h1
2
φ2S , (6.42)

m2
f1N

= m2
a1 = m2

1 + 2δN + g21φ
2
N +

φ2N
2

(h1 + h2 − h3) +
h1
2
φ2S , (6.43)

m2
ωS

= m2
1 + 2δS +

h1
2
φ2N + φ2S

(

h1
2

+ h2 + h3

)

, (6.44)

m2
f1S

= m2
1 + 2δS +

h1
2
φ2N + 2g21φ

2
S + φ2S

(

h1
2

+ h2 − h3
)

, (6.45)

m2
K⋆ = m2

1 + δN + δS +
φ2N
2

(

g21
2

+ h1 +
h2
2

)

+
1√
2
φNφS(h3 − g21) +

φ2S
2

(

g21 + h1 + h2
)

,

(6.46)

m2
K1

= m2
1 + δN + δS +

φ2N
2

(

g21
2

+ h1 +
h2
2

)

+
1√
2
φNφS(g

2
1 − h3) +

φ2S
2

(

g21 + h1 + h2
)

,

(6.47)

with the renormalisation factors ensuring the canonical normalisation of the ηN,S , π and KS

wave functions

Zπ ≡ ZηN =
ma1

√

m2
a1 − g21φ2N

(just as before), (6.48)

ZK =
2mK1

√

4m2
K1
− g21(φN +

√
2φS)2

, (6.49)

ZηS =
mf1S

√

m2
f1S
− 2g21φ

2
S

, (6.50)

ZKS
=

2mK⋆
√

4m2
K⋆ − g21(φN −

√
2φS)2

. (6.51)

It is obvious from Eqs. (6.48) - (6.51) that all the renormalisation coefficients will have values

larger than 1.

Note that the right-hand sides of Eqs. (6.35) and (6.39) are obtained by minimising the potential

V(φN , φS) present in the Lagrangian (6.1). The potential reads:

V(φN , φS) =
1

2
m2

0(φ
2
N +φ2S)+

λ1
4
(φ4N +2φ2Nφ

2
S+φ

4
S)+

λ2
4

(

φ4N
2

+ φ4S

)

−h0NφN −h0SφS (6.52)
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and, consequently, the first derivatives of the potential V(φN , φS) from the above Eq. (6.52) are

∂V(φN , φS)
∂φN

= [m2
0 + λ1(φ

2
N + φ2S)]φN +

λ2
2
φ3N − h0N , (6.53)

∂V(φN , φS)
∂φS

= [m2
0 + λ1(φ

2
N + φ2S)]φS + λ2φ

3
S − h0S . (6.54)

Then we obtain

∂V(φN , φS)
∂φN

!
= 0⇔ h0N = m2

0 + λ1(φ
2
N + φ2S)]φN +

λ2
2
φ3N , (6.55)

∂V(φN , φS)
∂φS

!
= 0⇔ h0S = m2

0 + λ1(φ
2
N + φ2S)]φS + λ2φ

3
S . (6.56)

and the right-hand side of Eqs. (6.35) and (6.39) ensue.

Note also that from Eq. (6.48) we obtain the g1 = g1(Zπ) dependence, just as in Eq. (5.27):

g1 = g1(Zπ) =
ma1

Zπfπ

√

1− 1

Z2
π

(6.57)

and also from Eqs. (6.42) and (6.43):

h3 = h3(Zπ) =
m2
a1

Z2
πf

2
π

(

m2
ρ

m2
a1

− 1

Z2
π

)

. (6.58)

Utilising Eq. (6.57) we can transform Eq. (6.30) as follows:

wa1 =

ma1
Zπfπ

√

1− 1
Z2
π
φN

m2
a1

=

√

1− 1
Z2
π

ma1

=

√

Z2
π − 1

Zπma1

. (6.59)

Additionally, from Eqs. (6.49), (6.50) and (6.51) we obtain

g1 = g1(Zπ, ZK) =
2mK1

Zπfπ + ZKfK

√

1− 1

Z2
K

, (6.60)

g1 = g1(ZK , ZηS ) =
mf1S

ZKfK

√

1− 1

Z2
ηS

, (6.61)

g1 = g1(Zπ, ZKS
) =

2mK⋆

Zπfπ − ZKfK

√

1− 1

Z2
KS

. (6.62)

Then analogously to Eq. (6.59) we obtain from Eqs. (6.32) and (6.60):

wK1 =

2mK1
Zπfπ+ZKfK

√

1− 1
Z2
K

(φN +
√
2φS)

2m2
K1

=

√

1− 1
Z2
K

mK1

=

√

Z2
K − 1

ZKmK1

. (6.63)

It is very important to stress that Eq. (6.49) is not the only equation regarding ZK . From Eqs.

(6.44) and (6.45) we obtain

m2
f1S
−m2

ωS
= 2[g21(Zπ)− h3(Zπ)]φ2S

φS=
1√
2
ZKfK
≡ [g21(Zπ)− h3(Zπ)]Z2

Kf
2
K

⇒ ZK =
1

fK

√

m2
f1S
−m2

ωS

g21(Zπ)− h3(Zπ)
(6.64)
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with g1(Zπ) and h3(Zπ) from Eqs. (6.57) and (6.58), respectively. Also, from Eqs. (6.46) and

(6.47) we obtain

m2
K1
−m2

K⋆
=
√
2φNφS [g

2
1(Zπ)− h3(Zπ)]

φS=
1√
2
ZKfK ,φN=Zπfπ

≡ ZπfπZKfK [g
2
1(Zπ)− h3(Zπ)]

⇒ ZK =
m2
K1
−m2

K⋆

ZπfπfK [g
2
1(Zπ)− h3(Zπ)]

. (6.65)

Therefore, in order to be consistent, the values of ZK have to simultaneously fulfill three equa-

tions: (6.49), which is the definition of ZK ; (6.64) and (6.65). This will represent a very strong

constraint on the values of the parameters in the Lagrangian (6.1).

We also emphasise that the explicit form of the Lagrangian (6.1) is an extremely complicated

function due to the abundance of terms permitted by the global U(3)L × U(3)R symmetry [in-

creased further by the eight shifts (6.18) – (6.25)] and also because of the large number of fields

from both non-strange and strange sectors. For this reason, the evaluation of the Lagrangian

and the extrapolation of vertices necessary for the calculation of decay widths in this chapter

as well as Chapters 7 – 11 have been performed using a computer algorithm (available from the

author upon request).

Most model parameters can be calculated from the meson mass terms (6.34) – (6.47). However,

using only mass terms as means of parameter calculation would leave some important parameters

undetermined, such as, e.g., g2 [that strongly influences the (axial-)vector phenomenology, see

below]. For this reason, our parameter calculation will use some decay widths as well, but only

as few as necessary to determine the model parameters. All other decay widths will then be

calculated as a consequence, thus raising the predictive power of the model.

Before we determine the parameters we first need to assign the fields from our model to the

physical ones.

6.2 Assigning the Fields

The model contains four nonets: scalar (6.2), pseudoscalar (6.3), vector (6.6) and axial-vector

(6.7) containing both non-strange and strange states. If we consider isospin multiplets as single

degrees of freedom, then there are sixteen resonances that can be described by the model: σN ,

σS, a0, KS (scalar); ηN , ηS , π, K (pseudoscalar); ωµN , ω
µ
S, ρ

µ, K⋆µ (vector) and fµ1N , f
µ
1S , a

µ
1 ,

K1 (axial-vector). All of the states present in the model possess the q̄q structure, for the same

reasons as those presented in Sec. 4.3.

As in Ref. [52], in the non-strange sector we assign the fields π and ηN to the pion and the SU(2)

counterpart of the η meson, ηN ≡ (ūu + d̄d)/
√
2. The fields ωµN and ρµ represent the ω(782)

and ρ(770) vector mesons, respectively, and the fields fµ1N and a
µ
1 represent the f1(1285) and

a1(1260) mesons, respectively. In the strange sector, we assign the K fields to the kaons; the ηS
field is the strange contribution to the physical η and η′ fields; the ωS, f1S, K⋆ and K1 fields

correspond to the φ(1020), f1(1420), K
⋆(892), and K1(1270) mesons, respectively.

Unfortunately, the assignment of the scalar fields is substantially less clear. Experimental data

presented in Chapter 3 suggest the existence of six scalar-isoscalar states below 1.8 GeV: f0(600),

f0(980), f0(1370), f0(1500), f0(1710) and f0(1790). Our model contains the pure non-strange

isoscalar σN , the pure strange isoscalar σS and the scalar kaon KS . We will see in the subsequent
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chapters that our model yields mixing of σN and σS producing a predominantly non-strange state,

labelled as σ1, and a predominantly strange state, labelled as σ2. Assigning σ1 and σ2 to physical

states will be the primary focus of Chapters 9 and 11. Therefore, a conclusive assignment of the

latter states is not possible at this point.

Similarly, the isospin triplet a0 can be assigned to different physical resonances, although in

this case there are only two candidate states: a0(980) and a0(1450). An analogous statement

holds for the scalar kaon KS that can be assigned to the resonances K⋆
0 (800) or K⋆

0 (1430). In

the following chapters we will therefore consider two possibilities for assignments of scalar fields

performing two fits:

• Fit I, where a0 is assigned to a0(980) and KS to K⋆
0 (800) (Chapters 8 and 9) – we assign

our scalar states to resonances below 1 GeV.

• Fit II, where a0 is assigned to a0(1450) and KS to K⋆
0 (1430) (Chapters 10 and 11) – we

assign our scalar states to resonances above 1 GeV.

Note that Fit I implies that a0(980) is a non-strange q̄q state and that K⋆
0 (800) is a strange q̄q

state. Conversely, Fit II implies that a0(1450) is a non-strange q̄q state and that K⋆
0 (1430) is a

strange q̄q state. Given the large number of the f0 resonances, it will not be possible to assign σ1
and σ2 ab initio in the two fits; the assignment of these two states will depend on the fit results.

However, some remarks regarding the model parameters are in order before the calculations can

proceed.

6.3 General Discussion of the Model Parameters

The model contains 18 parameters:

m2
0, m

2
1, c1, δN , δS , g1, g2, g3, g4, g5, g6, h0N , h0S , h1, h2, h3, λ1, λ2. (6.66)

Let us make following observations regarding the model parameters:

• The parameters h0N and h0S model the explicit breaking of the chiral symmetry (ESB)

in the (pseudo)scalar sector via the term Tr[H(Φ + Φ†)] in the Lagrangian (6.1); they are

calculated using the extremum equations (6.53) and (6.54) of the potential V(φN , φS) or,
equivalently, from the mass terms of the pion, Eq. (6.35), and of ηS , the strange counterpart

of the η meson [see Eq. (6.39)]. From Eqs. (6.35), (6.37) and (6.39) we can then conclude

that the masses of π, ηN and ηS are generated by ESB: the pion mass completely and the

ηN,S masses via interplay of ESB and the chiral anomaly. Given that h0N and h0S are

determined uniquely from Eqs. (6.35) and (6.39), we are then left with 16 free parameters.

• The parameters δN and δS model the explicit symmetry breaking in the vector and axial-

vector channels. The ESB stems from the non-vanishing quark masses and therefore we

employ the correspondence δN ∝ m2
u,d and δS ∝ m2

s. Given that mu,d ≪ ms, we will set

δN = 0 throughout this work; δS will be determined by the fit of (axial-)vector masses.

Consequently, the number of free parameters is decreased to 15.

• Our fit will make use of all scalar mass terms except mσN and mσS due to the well-known

ambiguities regarding the phenomenology of scalar mesons (see Chapter 3). However, the
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mass terms that will be used in the fit only contain the linear combination m2
0+λ1(φ

2
N+φ2S)

rather than the parameters m2
0 and λ1 (that only appear separately in mσN and mσS ).

Nonetheless, the knowledge of the mentioned linear combination will allow us to express

the parameter λ1 via the bare-mass parameter m2
0. Consequently, the number of free

parameters is decreased to 14.

• Similarly, the (axial-)vector mass terms [Eqs. (6.42) - (6.47)] allow only for the linear

combination m2
1 + h1(φ

2
N + φ2S)/2 rather than the parameters m2

1 and h1 separately to be

determined. Given that the parameter h1 is suppressed in the limit of a large number of

colours (large-Nc limit, see discussion in Sec. 4.3), we will set h1 = 0 throughout this work.

Thus the number of unknown parameters is decreased to 13. [Note that the parameter

λ1 is also large-Nc suppressed and could also in principle be set to zero; however we do

not set λ1 = 0 as in that case there would be no mixing between σN and σS , see Eq.

(9.16). Nonetheless, the mixing between the two pure σ states is shown to be small in Sec.

9.1.3 (see Fig. 9.4) – this is in line with expectations because the mixing is governed by a

large-Nc suppressed parameter.]

• The parameter g2 is determined by the decay width Γρ→ππ, see Eq. (5.44). Additionally,

the parameters g3, g4, g5 and g6 do not influence any of the decays to be discussed in this

work and are therefore also left out from the fit. Thus the number of unknown parameters

is decreased to eight.

• The parameter c1 can be substituted by the η-η′ mixing angle ϕη , as we will see in Sec. 7.1,

Eq. (7.24). The value of the mixing angle ϕη can be determined in a way that the masses

of η and η′ are as close to the physical masses as possible. That in turn implies that the

value of the parameter c1 is determined uniquely by mη and mη′ – and therefore, c1 is not

a free parameter in the model.

• It is obvious from Eqs. (6.57) - (6.62) that the parameters g1 and h3 can be substituted

by a pair of renormalisation coefficients. In principle, any pair of coefficients can be used;

however, given that the coefficients Zπ and ZK appear respectively in the chiral conden-

sates φN and φS (that, in turn, influence all observables in this work), it is convenient to

substitute g1 and h3 by Zπ and ZK . The coefficients ZηS and ZKS
can be calculated from

Eqs. (6.50) and (6.51).

We are therefore left with six parameters: Zπ, ZK , m2
1, h2, δS and λ2 and one parameter

combination: m2
0 + λ1(φ

2
N + φ2S). Before we turn to the calculation of the parameters, let us

briefly discuss the chiral-anomaly term in the Lagrangian (6.1) and the large-Nc behaviour of

the model parameters.

6.4 Modelling the Chiral Anomaly

We turn now to the chiral-anomaly term present in our Lagrangian (6.1). The goal of this sub-

section is to clarify how different ways of chiral-anomaly modelling influence the mass terms;

the mass terms in turn represent a crucial part of the fit that will enable us to determine model

parameters.
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The term c1(det Φ − detΦ†)2 in the Lagrangian (6.1) describes the chiral anomaly of QCD as

was first discussed by Veneziano and Witten in 1979 [240]. We will refer to this chiral-anomaly

term as the VW term in the following. The term has been subject of further calculations in Ref.

[241]. However, this is not the only way to model the chiral anomaly; an alternative had been

discussed in 1971 by Kobayashi, Kondo and Maskawa [242]. This alternative term has the form

c(det Φ + detΦ†) as described by ’t Hooft [213]; see also Ref. [243]. We will refer to this term

as the Kobayashi-Kondo-Maskawa-’t Hooft (KKMH) term in the following. Although the two

terms model the same (chiral) anomaly of QCD, there are some notable differences between the

two terms.

• The Veneziano-Witten term is of order O(6) in the naive scaling of fields whereas the

KKMH term is of order O(3) in fields. We have stated in Sec. 4.2 (see also Chapter 12)

that, in principle, our Lagrangian only allows for terms up to order O(4) in fields so that

the dilatation invariance is satisfied. However, the chirally anomalous terms do not need

to fulfill this invariance and therefore one can choose either of the two terms, or both, or

even additional terms compatible with the anomaly.

• The Veneziano-Witten term of the chiral anomaly influences only the phenomenology of

the pseudoscalar singlets (ηN and ηS , i.e., η and η′). The contribution can be inferred from

Eqs. (6.1), (6.37) and (6.39):

(m2
ηN

)VW ≡ m2
ηN
∼ c1Z2

πφ
2
Nφ

2
S , (6.67)

(m2
ηS )

VW ≡ m2
ηS ∼ c1Z

2
ηS

φ4N
4

, (6.68)

LηNηS = −c1
ZηSZπ

2
φ3NφSηNηS . (6.69)

(See also Sec. 7.1.) Additionally, we can see from Eq. (6.37) that the chiral anomaly is

responsible for the mass splitting between the pseudoscalar isotriplet π and its SU(2)

counterpart, the isosinglet ηN . Contrarily, the KKMH term influences phenomenology of

other scalar mesons as well [244]. The (pseudo)scalar mass terms and other relevant parts

of the Lagrangian are in this case as follows:

(m2
σN

)KKMH = m2
0 + 3

(

λ1 +
λ2
2

)

φ2N + λ1φ
2
S −

c√
2
φS , (6.70)

(m2
ηN )

KKMH = Z2
π

[

m2
0 +

(

λ1 +
λ2
2

)

φ2N + λ1φ
2
S +

c√
2
φS

]

≡ (m2
π)

KKMH +
√
2cZ2

πφS ,

(6.71)

(m2
a0)

KKMH = m2
0 +

(

λ1 + 3
λ2
2

)

φ2N + λ1φ
2
S +

c√
2
φS , (6.72)

(m2
π)

KKMH = Z2
π

[

m2
0 +

(

λ1 +
λ2
2

)

φ2N + λ1φ
2
S −

c√
2
φS

]

≡ Z2
πh0N
φN

, (6.73)

(m2
σS
)KKMH = m2

0 + λ1φ
2
N + 3(λ1 + λ2)φ

2
S , (6.74)

(m2
ηS )

KKMH = Z2
ηS [m

2
0 + λ1φ

2
N + (λ1 + λ2)φ

2
S ] =

Z2
ηS

φS
(h0S +

c

2
√
2
φ2N ), (6.75)
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(m2
KS

)KKMH = Z2
KS

[

m2
0 +

(

λ1 +
λ2
2

)

φ2N +
λ2√
2
φNφS + (λ1 + λ2)φ

2
S +

c

2
φN

]

,

(6.76)

(m2
K)

KKMH = Z2
K

[

m2
0 +

(

λ1 +
λ2
2

)

φ2N −
λ2√
2
φNφS + (λ1 + λ2)φ

2
S −

c

2
φN

]

, (6.77)

LKKMH
ηNηS = −cZπZηS√

2
φNηNηS , (6.78)

LKKMH
σNσS

∼ c√
2
φNσNσS , (6.79)

V(φN , φS)KKMH ∼ − c

2
√
2
φ2NφS . (6.80)

From Eqs. (6.70) - (6.77) we can see that the KKMH term influences all scalars and

pseudoscalars except for s̄s states (and analogously to the case of the Veneziano-Witten

term, it induces the mass splitting between π and ηN ); the contributions from the KKMH

term have the same magnitude but opposite sign for pairs of states with the same parity but

different isospin (σN -a0 and ηN -π) or with the same isospin but different parity (KS-K).

Additionally, the KKMH term influences not only the ηN -ηS mixing but also the mixing

of σN and σS . Note that the contribution to the potential V(φN , φS), Eq. (6.80), does not
change the conditions regarding the spontaneous symmetry breaking, i.e., the potential

with this contribution still yields Eqs. (9.4) and (9.15).

Although one might assume that the results regarding phenomenology to be presented in this

work will differ depending on the choice of the chiral-anomaly term, this is not the case for the

following reasons: (i) for the ηN -ηS mixing, the constants c and c1 are mutually dependent, as

obvious from a comparison of Eqs. (6.80) and (6.69):

c
φN√
2
≡ c1

φ3NφS
2
⇔ c ≡ c1

φ2NφS√
2

; (6.81)

(ii) Eqs. (9.4) and (9.15) regarding the correct implementation of the spontaneous breaking of

the chiral symmetry are not affected by the lack of presence of the chiral-anomaly term in the

potential and (iii) for the σN -σS mixing, the full mixing term is the sum of Eqs. (9.16) and

(6.79): LKKMH
σNσS = (c/

√
2 − 2λ1φN )φSσNσS ; the parameter λ1 cannot be calculated but only

constrained from the linear combination m2
0 + λ1(φ

2
N + φ2S) and therefore the value of λ1 can

always be adjusted in such a way that it absorbs the contribution from the parameter c to the

mixing: for this reason, the results regarding the σN -σS mixing are unaffected by our choice of

chiral-anomaly term. Of course, this may not be true for all the decays that could in principle

be calculated from our Lagrangian. The reason is that the contributions of the full c and c1
terms to the Lagrangian would not be the same (although both describe the same anomaly);

we nonetheless note that the chiral anomaly does not influence any other decays that will be

presented in this work other than those already mentioned. Then for reason of simplicity we

will be using the VW term in the Nf = 3 version of our model. Note that this form of the

chiral-anomaly term allows us to incorporate a pseudoscalar glueball field G̃ into our model in

a very simple way: the term ic̃G̃(det Φ − detΦ†) couples our (pseudo)scalar fields to G̃ with a

single constant c̃.
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7. The Fit Structure

As already mentioned, there are six free parameters: Zπ, ZK , m
2
1, h2, δS and λ2 and one

parameter combination: m2
0 + λ1(φ

2
N + φ2S) that need to be determined from our fit. Let us

note at the beginning that these parameters can be combined into three groups: (i) parameters

influencing only (pseudo)scalar phenomenology: m2
0 + λ1(φ

2
N + φ2S) and λ2; (ii) parameters

influencing only (axial-)vector phenomenology: m2
1, h2 and δS and (iii) parameters appearing in

Lagrangian terms relevant for the phenomenology of both (pseudo)scalars and (axial-)vectors:

Zπ and ZK . If there were no parameters from the group (iii), then the other parameters would

neatly split into two independent groups thus noticeably simplifying the fit; however, the presence

of the renormalisation coefficients Zπ and ZK complicates the search for a fit considerably. The

following observables enter the fit:

• In the (pseudo)scalar sector, we consider all mass terms except for mσN and mσS . We

do not consider the σ masses because the data regarding the I(JPC) = 0(0++) states is

poor [10], especially in the region under 1 GeV. Therefore, six mass terms enter the fit,

i.e., Eqs. (6.35) - (6.37) and (6.39) - (6.41). Note that we first have to implement the

mixing of the pure non-strange state ηN and the pure strange state ηS that will allow us to

calculate mη and mη′ . Note also that the inclusion of ma0 into the fit forces us to consider

two different assignments of the isotriplet scalar state [given that the experimental data

ascertain the existence of two I(JPC) = 1(0++) states, a0(980) and a0(1450)]. This in turn

means that we will have to consider two different fits, each containing an assignment of the

a0 state in our model to the physical state in the region under 1 GeV (referred to as Fit

I in the following) or above 1 GeV (referred to as Fit II in the following). Note that the

scalar kaon state KS present in the model can also be assigned to a physical state in two

different ways: although the PDG confirmes the existence of only one meson with quantum

numbers I(JP ) = 1/2(0+), the K⋆
0 (1430) state, we will nonetheless also work with K⋆

0 (800)

or κ in our Fit I. This is necessary as otherwise a scalar isotriplet from the region under

1 GeV [a0(980)] would enter the same fit as the scalar kaon from the region above 1 GeV

[K⋆
0 (1430)] which would be counter-intuitive because it would imply a large mass splitting

(≃ 400 MeV) between a non-strange meson and a kaon whereas one would expect the mass

splitting to be ≃ 100 MeV, i.e., close to the strange-quark mass.

• In the (axial-)vector channel, we consider all mass terms that follow from the Lagrangian

(6.1), i.e., Eqs. (6.42) - (6.47).

• Our result regarding the decay a1 → πγ from the Nf = 2 version of the model is still

valid as the corresponding interaction Lagrangian remains the same once the U(3)× U(3)

version of the model is considered. We have seen in Sec. 5.2.5 that this decay width depends

only on Zπ but does not constrain Zπ very well due to lack of precise experimental data.

Still, the fit to be performed in the following sections should also take this constraint into

account (by producing Zπ within the limits provided by Γa1→πγ). Note that in principle

Zπ can also be determined from τ -lepton decays [245]. However, the model presented in

this work neglects weak interactions and, for this reason, only Γa1→πγ will be used.
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• Each of the two fits to be performed will have a decay width that only depends on h2. In

the case of Fit I, this will be the decay width Γf1N→a0(980)π and in the case of Fit II, this

will be the total decay width of a0(1450). This is analogous to Scenarios I and II in the

U(2)× U(2) version of the model.

• We have already noted that there are three formulas for the renormalisation coefficient ZK :

Eqs. (6.49), (6.64) and (6.65). These equations have to be pairwise the same:

2mK1
√

4m2
K1
− g21(φN +

√
2φS)2

!
=

1

fK

√

m2
f1S
−m2

ωS

g21 − h3
, (7.1)

2mK1
√

4m2
K1
− g21(φN +

√
2φS)2

!
=

m2
K1
−m2

K⋆

ZπfπfK(g
2
1 − h3)

. (7.2)

However, each of the Eqs. (7.1), (7.2) contains mass terms (mK⋆ , mωS
, mK1 , mf1S ) that

are not mere numbers but also themselves functions of the parameters Zπ, ZK , m2
1, h2

and δS [see Eqs. (6.46), (6.44), (6.47) and (6.45)]. Additionally, the equations also contain

parameters g1 and h3 [see Eqs. (6.57) and (6.58)] that depend on mρ and ma1 , with the

latter two themselves mass terms depending on the parameters Zπ, ZK , m
2
1 and h2. Note

also that the parameters g1 and h3 enter all of the mass terms mentioned.

Therefore, Eqs. (7.1) and (7.2) actually represent a system of implicit equations for the fit

parameters:

2mK1 [Zπ, ZK ,m
2
1, h2, δS ]

√

4m2
K1

[Zπ, ZK ,m2
1, h2, δS ]− g21 [Zπ, ZK ,m2

1, h2](φN [Zπ] +
√
2φS [ZK ])2

!
=

1

fK

√

m2
f1S

[Zπ, ZK ,m
2
1, h2, δS ]−m2

ωS
[Zπ, ZK ,m

2
1, h2, δS ]

g21 [Zπ, ZK ,m
2
1, h2]− h3[Zπ, ZK ,m2

1, h2]
, (7.3)

2mK1 [Zπ, ZK ,m
2
1, h2, δS ]

√

4m2
K1

[Zπ, ZK ,m
2
1, h2, δS ]− g21 [Zπ, ZK ,m2

1, h2](φN [Zπ] +
√
2φS [ZK ])2

!
=
m2
K1

[Zπ, ZK ,m
2
1, h2, δS ]−m2

K⋆ [Zπ, ZK ,m
2
1, h2, δS ]

ZπfπfK(g
2
1 [Zπ, ZK ,m

2
1, h2]− h3[Zπ, ZK ,m2

1, h2])
. (7.4)

Equations (7.3) and (7.4) have to be considered as well, and represent an additional, strong

constraint in the fit.

We therefore have 16 equations for seven unknowns [Zπ, ZK , m2
1, h2, δS , λ2 and m2

0+λ1(φ
2
N +

φ2S)].

Before we perform the fits, it is necessary to discuss the issue of the η-η′ mixing in the model

given that the corresponding masses enter the fit (and also determine the value of the parameter

c1, as we have already mentioned).

7.1 Mixing of η and η′

The pure non-strange and strange fields ηN and ηS mix in the Lagrangian (6.1):

LηNηS = −c1
ZηSZπ

2
φ3NφSηNηS . (7.5)
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The full ηN -ηS interaction Lagrangian has the form

LηNηS, full =
1

2
(∂µηN )

2 +
1

2
(∂µηS)

2 − 1

2
m2
ηN ηN

2 − 1

2
m2
ηSηS

2 + zηηNηS , (7.6)

where zη is the mixing term of pure states ηN ≡ (ūu− d̄d)/
√
2 and ηS ≡ s̄s.

Comparing Eqs. (7.5) and (7.6) we see that in the case of our model Lagrangian the mixing term

zη is

zη = −c1
ZηSZπ

2
φ3NφS . (7.7)

However, the mixing between the pure states ηN and ηS can be equivalently expressed as the

mixing between the octet state

η8 =

√

1

6
(ūu+ d̄d− 2s̄s) ≡

√

1

3
ηN −

√

2

3
ηS (7.8)

and the singlet state

η0 =

√

1

3
(ūu+ d̄d+ s̄s) ≡

√

2

3
ηN +

√

1

3
ηS . (7.9)

We determine the physical states η and η′ as mixture of the octet and singlet states with a mixing

angle ϕP :
(

η

η′

)

=

(

cosϕP − sinϕP
sinϕP cosϕP

)(

η8
η0

)

(7.10)

or, using Eqs. (7.8) and (7.9),

(

η

η′

)

=

(

cosϕP − sinϕP
sinϕP cosϕP

)





√

1
3 −

√

2
3

√

2
3

√

1
3





(

η8
η0

)

. (7.11)

If we introduce arcsin(
√

2/3) = 54.7456◦ ≡ ϕI , then the trigonometric addition formulas lead to

(

η

η′

)

=

(

cos(ϕP + ϕI) − sin(ϕP + ϕI)

sin(ϕP + ϕI) cos(ϕP + ϕI)

)(

ηN
ηS

)

. (7.12)

Defining the η-η′ mixing angle ϕη
ϕη = −(ϕP + ϕI), (7.13)

we obtain

(

η

η′

)

=

(

cosϕη sinϕη
− sinϕη cosϕη

)(

ηN
ηS

)

(7.14)

or in other words

η = cosϕηηN + sinϕηηS , (7.15)

η′ = − sinϕηηN + cosϕηηS . (7.16)

The interaction Lagrangian, Eq. (7.6), contains only pure states ηN and ηS . Inverting Eqs. (7.15)

and (7.16)
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ηN = cosϕηη − sinϕηη
′, (7.17)

ηS = sinϕηη + cosϕηη
′, (7.18)

and substituting ηN and ηS by η and η′ in Eq. (7.6) we obtain

Lηη′ =
1

2
[(∂µη)

2(cosϕη)
2 + (∂µη

′)2(sinϕη)
2 − sin(2ϕη)∂µη∂

µη′]

+
1

2
[(∂µη)

2(sinϕη)
2 + (∂µη

′)2(cosϕη)
2 + sin(2ϕη)∂µη∂

µη′]

− 1

2
m2
ηN [η

2(cosϕη)
2 + (η′)2(sinϕη)

2 − sin(2ϕη)ηη
′]

− 1

2
m2
ηS [η

2(sinϕη)
2 + (η′)2(cosϕη)

2 + sin(2ϕη)ηη
′]

+ zη{[η2 − (η′)2] sinϕη cosϕη + cos(2ϕη)ηη
′}

=
1

2
(∂µη)

2 +
1

2
(∂µη

′)2 − 1

2
[m2

ηN
(cosϕη)

2 +m2
ηS
(sinϕη)

2 − zη sin(2ϕη)]η2

− 1

2
[m2

ηN
(sinϕη)

2 +m2
ηS
(cosϕη)

2 + zη sin(2ϕη)](η
′)2

− 1

2
[(m2

ηS −m
2
ηN ) sin(2ϕη)− 2zη cos(2ϕη)]ηη

′. (7.19)

From Eq. (7.19) we obtain the following relations for mη and mη′ in terms of the pure non-

strange and strange mass terms mηN and mηS [with the latter known from Eqs. (6.37) and

(6.39), respectively]:

m2
η = m2

ηN
cos2 ϕη +m2

ηS
sin2 ϕη − zη sin(2ϕη), (7.20)

m2
η′ = m2

ηN
sin2 ϕη +m2

ηS
cos2 ϕη + zη sin(2ϕη). (7.21)

Additionally, assigning our fields η and η′ to physical (asymptotic) states requires that the

Lagrangian Lηη′ does not contain any η-η′ mixing terms and thus from Eq. (7.19) we obtain

zη
!
= (m2

ηS −m
2
ηN ) tan(2ϕη)/2. (7.22)

Consequently, from Eqs. (7.7) and (7.22) we obtain

(m2
ηS −m

2
ηN ) tan(2ϕη) = −c1ZηSZπφ

3
NφS . (7.23)

Given that mηN and mηS depend on c1 [see Eqs. (6.37) and (6.39)], we obtain from Eq. (7.23)

that
{

Z2
ηS

[

m2
0 + λ1φ

2
N + (λ1 + λ2)φ

2
S + c1

φ4N
4

]

− Z2
π

[

m2
0 +

(

λ1 +
λ2
2

)

φ2N + λ1φ
2
S + c1φ

2
Nφ

2
S

]}

× tan(2ϕη) = −c1ZηSZπφ3NφS

⇔
{

(Z2
ηS − Z

2
π)[m

2
0 + λ1(φ

2
N + φ2S)] + λ2

(

Z2
ηSφ

2
S −

Z2
π

2
φ2N

)

+ c1

(

Z2
ηS

4
φ2N − Z2

πφ
2
S

)

φ2N

}

× tan(2ϕη) = −c1ZηSZπφ3NφS

⇔ c1 =
4(Z2

π − Z2
ηS
)[m2

0 + λ1(φ
2
N + φ2S)] + 2λ2

(

Z2
πφ

2
N − 2Z2

ηS
φ2S
)

(

Z2
ηS
φ2N − 4Z2

πφ
2
S

)

φ2N tan(2ϕη) + 4ZηSZπφ
3
NφS

tan(2ϕη). (7.24)
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Using Eq. (7.24) it is possible to calculate c1 from the η-η′ mixing angle ϕη (and vice versa) if

the other parameters are known. We will choose ϕη such that our results for mηN and mηS are

as close as possible to their experimental values; then c1 is no longer a free parameter, as already

mentioned in the general discussion of the fit.
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8. Fit I: Scalars below 1 GeV

Seven unknowns [Zπ, ZK , m
2
1, h2, δS, λ2 and m2

0 + λ1(φ
2
N + φ2S)] enter the fit together with 16

equations: for mπ, mK , mKS
≡ mK⋆

0 (800)≡κ, ma0 ≡ ma0(980), mη, mη′ [the latter two via Eqs.

(7.20) and (7.21) from mηN and mηS ], mρ, mK⋆, mωS
, ma1 , mK1 , mf1S , Γa1→πγ , Γf1N→a0(980)π

(Fit I) or Γa0(1450) (Fit II) as well as Eqs. (7.3) and (7.4). Explicitly, the fit results should

satisfy the following equations (experimental central values from the PDG [10]; at this point we

disregard the experimental uncertainties):

Z2
π

[

m2
0 + λ1(φ

2
N + φ2S) +

λ2
2
φ2N

]

= (139.57 MeV)2 ≡ m2
π, (8.1)

Z2
K

[

m2
0 + λ1(φ

2
N + φ2S) + λ2

(

φ2N
2
− φNφS√

2
+ φ2S

)]

= (493.677 MeV)2 ≡ m2
K , (8.2)

Z2
KS

[

m2
0 + λ1(φ

2
N + φ2S) + λ2

(

φ2N
2

+
φNφS√

2
+ φ2S

)]

= (676 MeV)2 ≡ m2
κ, (8.3)

m2
0 + λ1(φ

2
N + φ2S) +

3

2
λ2φ

2
N = (980 MeV)2 ≡ m2

a0(980)
, (8.4)

Z2
π

[

m2
0 + λ1(φ

2
N + φ2S) +

λ2
2
φ2N + c1φ

2
Nφ

2
S

]

cos2 ϕη

+ Z2
ηS

[

m2
0 + λ1(φ

2
N + φ2S) + λ2φ

2
S + c1

φ4N
4

]

sin2 ϕη

+ c1
ZηSZπ

2
φ3NφS sin(2ϕη) = (547.853 MeV)2 ≡ m2

η, (8.5)

Z2
π

[

m2
0 + λ1(φ

2
N + φ2S) +

λ2
2
φ2N + c1φ

2
Nφ

2
S

]

sin2 ϕη

+ Z2
ηS

[

m2
0 + λ1(φ

2
N + φ2S) + λ2φ

2
S + c1

φ4N
4

]

cos2 ϕη

− c1
ZηSZπ

2
φ3NφS sin(2ϕη) = (957.78 MeV)2 ≡ m2

η′ , (8.6)

m2
1 + (h2 + h3)

φ2N
2

= (775.49 MeV)2 ≡ m2
ρ, (8.7)

m2
1 + g21φ

2
N + (h2 − h3)

φ2N
2

= (1230 MeV)2 ≡ m2
a1 , (8.8)

m2
1 + δS +

(

g21 + h2
) φ2N

4
+

1√
2
(h3 − g21)φNφS +

(

g21 + h2
) φ2S

2
= (891.66 MeV)2 ≡ m2

K⋆, (8.9)

m2
1 + δS +

(

g21 + h2
) φ2N

4
+

1√
2
(g21 − h3)φNφS +

(

g21 + h2
) φ2S

2
= (1272 MeV)2 ≡ m2

K1
, (8.10)

m2
1 + 2δS + (h2 + h3)φ

2
S = (1019.455 MeV)2 ≡ m2

ωS
, (8.11)

m2
1 + 2δS + 2g21φ

2
S + (h2 − h3)φ2S = (1426.4 MeV)2 ≡ m2

f1S
, (8.12)

e2

96π
(Z2

π − 1)ma1

[

1−
(

mπ

ma1

)2
]3

= 0.640 MeV ≡ Γa1→πγ , (8.13)
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g21Z
2
π

16π

[m4
f1N
− 2m2

f1N
(m2

a0 +m2
π) + (m2

a0 −m2
π)

2]3/2

m5
f1N

m4
a1

×
[

m2
ρ −

1

2
(h2 + h3)φ

2
N

]2

= 8.748 MeV ≡ Γf1N→a0(980)π , (8.14)

and additionally the ZK Eqs. (7.3) and (7.4). We have set h1 = 0 = δN ; note that c1 = c1(ϕη) by

Eq. (7.24) and that we also use φN = Zπfπ (fπ = 92.4 MeV), φS = ZKfK/
√
2 (fK = 155.5/

√
2

MeV), g1 from Eq. (6.57), h3 from Eq. (6.58), ZKS
from Eq. (6.51) and ZηS from Eq. (6.50).

Note also that the mass terms present in Eqs. (6.57), (6.58), (6.51) and (6.50) are themselves

functions of the parameters stated at the beginning of this section.

Therefore, a comment is necessary before we proceed with the parameter determination. Equa-

tions (8.1) - (8.14), (7.3) and (7.4) could in principle be subject of a χ2 fit analogous to the one

performed in the Nf = 2 version of our model, see Sec. 5.3. However, the Nf = 3 version of the

model requires us to consider a significantly larger number of equations and parameters. For this

reason, a χ2 fit in Nf = 3 is extremely complicated to perform numerically, not least because the

large number of input equations would imply an extremely large number of local minima that

would have to be considered. In addition, the minima strongly depend on the initial conditions

of the parameters. To circumvent the technical issues that a χ2 fit would bring about, we will

use an iterative procedure (described below) rather than a fit to determine the parameters of the

model. The procedure does not allow for errors to be determined (this would be possible in a

fit) but nonetheless the parameters determined in this way can in turn be used as initial condi-

tions in a χ2 fit ascertaining that a global minimum has been found. Such a χ2 fit is currently

under development [246] and it appears to assign small errors to our parameters (of the order of

several percent). Thus all results presented in this and the subsequent chapters 9 – 11 should be

considered as possessing an error . 10%. Then we can refer to the parameter determinations in

the stated chapters as ”Fit I” and ”Fit II”.

The parameter values can be found iteratively in the following four steps:

• Step 1: Zπ, ZK , (pseudo)scalar parameters. Solve the first four equations in the fit [Eqs.

(8.1) - (8.4)] and determine Zπ and ZK (among others).

• Step 2: (axial-)vector masses. Constrain the values of mρ, ma1 , mK⋆, mωS
, mK1 and mf1S

via the ZK Eqs. (7.3) and (7.4).

• Step 3: (axial-)vector parameters. Calculate h2,m
2
1 and δS from the mass values determined

in Step 2.

• Step 4: η-η′ mixing angle ϕη. Calculate ϕη from mη and mη′ ; additionally, c1 is calculated

from Eq. (7.24).

Step 1. Let us note that the first four equations entering the fit, i.e., Eqs. (8.1) - (8.4) contain

four variables: Zπ, ZK , λ2, m
2
0 + λ1(φ

2
N + φ2S) if we assign certain values to ma1 and mK⋆ (e.g.,

ma1 = 1230 MeV andmK⋆ = 891.66 MeV [10]) in order for ZKS
to be calculated [subsequently, it

is possible to choose (axial-)vector parameters in the mass terms forma1 andmK⋆ – see Eqs. (8.8)

and (8.9) – in such a way that the values assigned are correct]. Note, however, that the starting

values of ma1 andmK⋆ are not strongly constrained because ZKS
changes by approximately 0.1%
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ifma1 andmK⋆ are varied, see Fig. 8.1. Indeed, experimental data allow for a rather large interval

in particular of ma1 because a1(1260) is a very broad resonance, with Γa1(1260) = (250 − 600)

MeV [10].

1200 1250 1300 1350 1400
m a1HMeVL

1.0045

1.0050

1.0055

1.0060
ZKS

820 840 860 880 900
m K ÷HMeVL

1.0046

1.0048

1.0050

1.0052

1.0054

1.0056

ZKS

Figure 8.1: Dependence of the renormalisation coefficient ZKS
onma1

(left panel) andmK⋆ (right panel).

We thus obtain a system of four equations with four unknowns. This equation system can be

solved exactly with a numerical analysis yielding the following parameter values:

Zπ = 0.31,

ZK = 0.51,

λ2 = 931,

m2
0 + λ1(φ

2
N + φ2S) = −172665 MeV2.

Unfortunately, the stated solutions cannot be used because that would imply Zπ < 1 and ZK < 1

that cannot be true due to the definitions of Zπ, Eq. (6.48), and ZK , Eq. (6.49) as otherwise

one would have to allow either for imaginary scalar-vector coupling g1 in the Lagrangian (6.1) or

for imaginary condensates φN,S. Therefore, we have to consider other (approximate) solutions

of Eqs. (8.1) - (8.4). A numerical analysis leads to the parameter values shown in Table 8.1.

Parameter Value Observable Value [MeV]

Zπ 1.38 mπ 138.04

ZK 1.39 mK 490.84

λ2 58.5 ma0(980) 978

m2
0 + λ1(φ

2
N + φ2S) −463425 MeV2 mκ 1129

Table 8.1: Best solutions of Eqs. (8.1) - (8.4) under the conditions Zπ

!
> 1, ZK

!
> 1.

The parameters produce an excellent agreement with all input masses except mκ where the value

from the fit is almost by a factor of two larger than the PDG value mexp
κ = (676 ± 40) MeV.

However, we note that the κ resonance is very broad [Γexp
κ = (548 ± 24) MeV] and therefore we

will, for the moment, disregard the large mass difference between the fit result and the PDG

value. Additionally, Γa1→πγ = 0.322 MeV is obtained from the parameter values in Table 8.1,

slightly smaller than the lower boundary on this decay width cited by the PDG to be 0.394 MeV.

Step 2. Let us now turn to the parameters in (axial-)vector mass terms. The most convenient

way to proceed is to first determine the values of vector and axial-vector masses that lead to
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the pairwise equality of the three ZK formulas, Eqs. (7.3) and (7.4). Note that the calculation

involving Eqs. (7.3) and (7.4) requires knowledge of Zπ and ZK (see Table 8.1) and also of mρ,

ma1 , mK⋆, mωS
, mK1 and mf1S . We start with the PDG values of all masses except ma1 (as

already mentioned, the variation ofma1 is experimentally allowed by the large decay width of this

resonance and it does not lead to an inconsistency with the determination of scalar parameters

in Table 8.1). We then look for conditions under which the pairwise equality of the three ZK
formulas can be obtained. Unfortunately, the mentioned equality does not exist for the PDG

values of masses. We therefore alternate all the mass values (holding all masses except ma1 as

close as possible to their respective experimental values) until the pairwise equality of the three

ZK formulas has been reached. In this way we obtain (axial-)vector masses as follows:

ma1 = 1396 MeV, mρ = 775.49 MeV, mK⋆ = 832.53 MeV,

mωS
= 870.35 MeV, mK1 = 1520 MeV, mf1S = 1643.4 MeV.

Step 3. Once the values of the (axial-)vector masses are known, then the (axial-)vector fit

parameters are determined in such a way that the mass values determined by the three ZK
formulas are reproduced. Note, however, that this does not require for many parameters to be

calculated: h2 is already known from Γf1N→a0(980)π ; g1 and h3 are determined from mρ and ma1

[see Eqs. (6.57) and (6.58)] and consequently we need to calculate only the values of m2
1 and δS .

As already mentioned in Chapter 7, it is possible to calculate the parameter h2 via Γf1N→a0(980)π,

Eq. (8.14). In Scenario I of the two-flavour version of the model (Sec. 5.3) we have seen that in

this way two sets of h2 values arise, a set of relatively lower and a set of relatively higher values,

see Eq. (5.50). We have also seen that the set of relatively lower h2 values does not yield a correct

value of the a0(980) → ηπ decay amplitude. Therefore, we are also in this case naturally inclined

to use the set of higher h2 values, i.e., h2 ∼ 80. However, the only way to obtain a fit in this case

is to allow for negative values of m2
1 and δS (see Table 8.2). However, such a fit could not be

considered physical as it would imply an imaginary vector meson mass in the chirally restored

phase.

Parameter Value

m2
1 −6972 MeV2

δS −4042 MeV2

h2 161

Table 8.2: (Axial-)vector parameters from Eqs. (8.7) - (8.12) using the higher set of h2 values from Eq.

(8.14). The parameter h2 has a rather large value due to the large value of ma1
, constrained from the ZK

formulas (7.3) and (7.4).

For these reasons, we have to use the smaller set of h2 values [and later ascertain whether it is

still possible to obtain a correct value of the a0(980) → ηπ decay amplitude, see Sec. 9.2]. In

this case, the fit yields positive values of m2
1 and δS .

Step 4. Using Eqs. (7.20) and (7.21) we can calculate the η-η′ mixing angle ϕη under the

conditions that mη and mη′ are as close as possible to their respective experimental values.

Additionally, we also require ϕη <| 45◦ | as otherwise we would have the (counter-intuitive)

ordering mηS < mηN . Under the latter condition it is actually not possible to exactly obtain the
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Parameter Value

m2
1 6972 MeV2

δS 2292 MeV2

h2 40.6

Table 8.3: (Axial-)vector parameters from Eqs. (8.7) - (8.12) using the lower set of h2 values from Eq.

(8.14).

experimental value of mη but rather a slightly lower one: mη = 517.13 MeV. We obtain also

mη′ = 957.78 MeV ≡ mexp
η′ with ϕη = −42◦; Eq. (7.24) yields c1 = 0.0015 MeV−2.

Table 8.4 shows results for all parameters from Fit I.

Parameter Value Parameter Value

Zπ 1.38 g1, Eq. (6.57) 7.54

ZK 1.39 g2, Eq. (5.44) −11.2
λ2 58.5 h3, Eq. (6.58) −26.3

m2
0 + λ1(φ

2
N + φ2S) −463425 MeV2 h0N , Eq. (6.35) 1.279 · 106 MeV3

m1 697 MeV h0S , Eq. (6.39) 3.443 · 107 MeV3

δS 2292 MeV2 h1 0

h2 40.6 δN 0

c1 0.0015 MeV−2 g3,4,5,6 0

Table 8.4: Best values of parameters from Fit I (experimental uncertainties are omitted).

Table 8.5 shows the results for all observables from Fit I. Note that the implemented iterative

calculation of the parameters does not allow for an error determination and thus we also do

not cite experimental errors in Table 8.5. Additionally, some mass values (e.g., mπ and mK)

are known very precisely (up to several decimals), i.e., the corresponding errors are very small.

Our model does not aim to reproduce these mass values to such a high precision – it suffices to

reproduce the experimental masses sufficiently closely. Then our results for some masses [such

as ma0(980)] will be within errors, others will not (mπ and mK) but they will still be sufficiently

close to the experimental result (within several MeV) rendering them acceptable.

Nonetheless, the proximity of our results to the experiment is actually not accomplished very

well at this point (because the underlying assumption of scalar q̄q states below 1 GeV is generally

disfavoured by our model, see below) – we will see that the correspondence of our results with

the data is significantly improved once the scalar q̄q states are assumed to be above 1 GeV, see

Table 10.3.

We observe from Table 8.5 that, in addition to a rather large value of mκ, the fit also yields too

large values of ma1 and mf1S . The a1(1260) resonance is very broad: Γexp
a1(1260)

= (250 − 600)

MeV [10] and thus the discrepancy between our and the experimental results is not too serious;

however, the f1(1420) ≡ f1S resonance is much narrower [Γexp
f1(1420)

= (54.9 ± 2.6) MeV] and

therefore, in this case, the discrepancy with the experimental value is rather large. The same

holds for the ωS ≡ ϕ(1020) resonance, a sharp peak with a width of 4.26 ± 0.04 MeV [10] and

also for K⋆(892), although for the latter resonance the discrepancy with the experimental mass

is of the order of the decay width, i.e., (50.8 ± 0.9) MeV. Note that the discrepancy between

the fit value and experimental result is also very large for our K1 resonance; however, this can
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Observable Our Value [MeV] Experimental Value [MeV]

mπ 138.04 139.57

mK 490.84 493.68

ma0(980) 978.27 980

mκ 1128.7 676

mη 517.13 547.85

mη′ 957.78 957.78

mρ 775.49 775.49

ma1 1396 1230

mK⋆ 832.53 891.66

mωS
870.35 1019.46

mK1 1520 1272

mf1S 1643.4 1426.4

Γa1→πγ 0.369 0.640

Γf1N→a0(980)π 8.748 8.748

Table 8.5: Observables from Fit I.

be amended by assigning the K1 state in the model to the K1(1400) resonance rather than

to K1(1270). Data regarding the former resonance suggest mK1(1400) = (1403 ± 7) MeV and

ΓK1(1400) = (174 ± 13) MeV and then the discrepancy between our value mK1 = 1520 MeV

and the experimental result is smaller than the value of the K1(1400) decay width. [Note,

however, that the stated correspondence to K1(1400) is actually in itself problematic because

axial-vector kaons are expected to mix, see Sec. 10.3. The mixing of the K1 states is well-

established [10, 247, 248, 249, 250, 251]; thus the absence of the mixing within Fit I represents

another discrepancy with experiment.]

Note that the results also imply m1 = 697 MeV, i.e., non-quark contributions are favoured to

play a decisive role in the ρ mass generation.
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9. Implications of Fit I

Despite some discrepancies between results stemming from the fit and experimental data, we will

proceed with calculations of hadronic decay widths in scalar and axial-vector channels (as these

channels possess the most ambiguities regarding not only the decay widths but also regarding

the structure of resonances).

9.1 Phenomenology in the I(JPC) = 0(0++) Channel

As apparent from Eqs. (6.34) and (6.38), the masses of the strange and non-strange sigma fields,

mσN and mσS , depend on m2
0 + 3λ1φ

2
N + λ1φ

2
S and m2

0 + λ1φ
2
N + 3λ1φ

2
S , respectively, and thus

cannot be calculated with the knowledge of the parameter combination m2
0+λ1(φ

2
N +φ2S) stated

in Table 8.4. However, if the linear combination m2
0+λ1(φ

2
N +φ2S) is known, then the parameter

λ1 can be expressed in terms of the mass parameter m2
0 (given that Zπ and ZK are also known).

Nonetheless, this is not satisfactory because it does not allow us to constrain the masses and

decay widths of the two I(JPC) = 0(0++) resonances present in the model. In the next two

subsections we will therefore derive a constraint on m2
0 and λ1, using the spontaneous breaking

of chiral symmetry. We will discuss conditions under which the vacuum potential V(φN , φS)
arising from the Lagrangian (6.1) allows for the Spontaneous Symmetry Breaking (SSB) to

occur while having the correct behaviour in the limit of large values of condensates φN and φS
(limφN,S→∞ V(φN , φS)→∞).

9.1.1 A Necessary Condition for the Spontaneous Symmetry Breaking

Calculating the elements of the Hesse matrix from the potential V(φN , φS) with respect to the

condensates φN and φS yields:

∂2V(φN , φS)
∂φ2N

= m2
0 + λ1(3φ

2
N + φ2S) +

3

2
λ2φ

2
N , (9.1)

∂2V(φN , φS)
∂φ2S

= m2
0 + λ1φ

2
N + 3(λ1 + λ2)φ

2
S , (9.2)

∂2V(φN , φS)
∂φN∂φS

= 2λ1φNφS . (9.3)

From Eqs. (9.1) - (9.2) we obtain the following form of the Hesse matrix in the limit φN = φS = 0:

H(m2
0) =

(

m2
0 0

0 m2
0

)

and the vacuum is unstable only if the Hesse matrix has negative eigenvalues or in other words

m2
0

!
< 0. (9.4)

This is a necessary condition for the Spontaneous Symmetry Breaking to occur. However, we

still need to ascertain whether the potential V(φN , φS) from Eq. (6.52) has the right behaviour

in the limit φN,S →∞. This will be verified in the following subsection.
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9.1.2 A Condition for λ1,2 from SSB

Let us isolate the quartic terms from the potential V(φN , φS), Eq. (6.52), in the following ex-

pression V4(φN , φS):

V4(φN , φS) =
λ1
4
(φ4N + 2φ2Nφ

2
S + φ4S) +

λ2
4

(

φ4N
2

+ φ4S

)

. (9.5)

The quadratic terms in the potential V(φN , φS) represent a negative-sign contribution due to

the condition m2
0

!
< 0. Thus, a correct implementation of the Spontaneous Symmetry Breaking

requires that the quartic term V4(φN , φS) is a positive-sign contribution to V(φN , φS) because

otherwise the potential V(φN , φS) would not exhibit minima. Let us now define the variables

xσ ≡ φ2N and yσ ≡ φ2S , bringing V4(φN , φS), Eq. (9.5), to the following form:

V4(φN , φS) =
2λ1 + λ2

8
x2σ +

λ1 + λ2
4

y2σ +
λ1
2
xσyσ (xσ ≥ 0, yσ ≥ 0). (9.6)

Obviously the conditions 2λ1 + λ2
!
> 0 ∧ λ1 + λ2

!
> 0 have to be satisfied. In other words:

λ1
!
> −λ2

2
for λ2 > 0 (9.7)

λ1
!
> −λ2 for λ2 < 0. (9.8)

Additionally, we have to ascertain that V4(φN , φS) is a positive-sign contribution to V(φN , φS)
in all directions of the condensates. In order to verify that this is fulfilled, we set yσ ≡ ησxσ
(ησ ≥ 0) yielding the following form of V4(φN , φS):

V4(φN , φS) = aσx
2
σ + bση

2
σx

2
σ + cσησx

2
σ ≡ fσ(ησ)x2σ (9.9)

with aσ ≡ (2λ1+λ2)/8
!
> 0, bσ ≡ (λ1+λ2)/4

!
> 0, cσ ≡ λ1/2 and fσ(ησ) ≡ bση2σ+ cσησ+aσ

!
> 0.

The latter can be written in the following way:

fσ(ησ) ≡ bσ
(

ησ +
cσ
2bσ

)2

+

(

aσ −
c2σ
4bσ

)

. (9.10)

Thus, additionally to the already stated condition bσ
!
> 0 we also need to ascertain that aσ− c2σ

4bσ

!
>

0 in order for fσ(ησ)
!
> 0 to be fulfilled. Consequently, we obtain

aσ >
c2σ
4bσ
⇒ cσ < 2

√

aσbσ (9.11)

or in other words

λ1
2
< 2

√

(2λ1 + λ2)(λ1 + λ2)

32
=

1

2

√

(

λ1 +
λ2
2

)

(λ1 + λ2)⇔ λ1 <

√

(

λ1 +
λ2
2

)

(λ1 + λ2).

(9.12)

The square root on the right-hand side of inequality (9.12) is well defined due to the already

stated conditions (9.7) and (9.8). For λ1 < 0, only the condition (9.7), i.e., λ1
!
> −λ2/2 and

λ2 > 0 can be fulfilled. Consequently,

−λ2
2

< λ1 < 0 and λ2 > 0. (9.13)
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For λ1 > 0, the square of the inequality (9.12) yields

λ21 < λ21 +
3

2
λ1λ2 +

λ22
2
⇔ 0 < λ2(3λ1 + λ2)⇔































λ2 < 0 ∧ λ1 < −λ2/3
[contradiction to λ1

!
> −λ2

from condition (9.8)]

λ2 > 0 ∧ λ1 > −λ2/3
(fulfilled per definition because λ1 > 0).

(9.14)

Combining both conditions (9.13) and (9.14) yields

λ2 > 0 and λ1 >
−λ2
2

. (9.15)

The conditions (9.4) and (9.15) will be used in the following calculation of the decay widths in

the scalar meson sector.

9.1.3 Scalar Isosinglet Masses

The Lagrangian (6.1) yields mixing between the σN and σS fields with the mixing term given by

LσNσS = −2λ1φNφSσNσS. (9.16)

The full σN -σS interaction Lagrangian has the form

LσNσS , full =
1

2
(∂µσN )

2 +
1

2
(∂µσS)

2 − 1

2
m2
σNσN

2 − 1

2
m2
σSσS

2 + zσσNσS , (9.17)

where zσ is the mixing term of the pure states σN ≡ (ūu+ d̄d)/
√
2 and σS ≡ s̄s.

The mixing between the states σN and σS yields two fields, denoted henceforth as σ1 and σ2
[analogously to Eq. 7.10]:

(

σ1
σ2

)

=

(

cosϕσ sinϕσ
− sinϕσ cosϕσ

)(

σN
σS

)

. (9.18)

At this point, it is not possible to assign the fields σ1 and σ2 (considered to be physical just as

the resonances η and η′ in Sec. 7.1). The reason is that the experimental data suggest a larger

number of physical resonances in the scalar isosinglet channel than can be accommodated within

the model (as discussed in Chapter 3). We will therefore calculate masses and decay widths of

the resonances σ1 and σ2; the resonances will then be assigned to physical states depending on

the results regarding the σ1,2 masses and decay widths.

We can calculate the masses of the mixed sigma states, mσ1 and mσ2 , and the σN -σS mixing

angle ϕσ analogously to the calculations concerning mη, mη′ and ϕη in Eqs. (7.20) - (7.23). We

obtain

m2
σ1 = m2

σN cos2 ϕσ +m2
σS sin2 ϕσ − zσ sin(2ϕσ), (9.19)

m2
σ2 = m2

σN sin2 ϕσ +m2
σS cos2 ϕσ + zσ sin(2ϕσ) (9.20)

with mσN from Eq. (6.34), mσS from Eq. (6.38) and the mixing term

zσ
!
= (m2

σS −m
2
σN ) tan(2ϕσ)/2. (9.21)
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Consequently, from Eqs. (9.16) and (9.21) we obtain

(m2
σS −m

2
σN ) tan(2ϕσ) = −4λ1φNφS (9.22)

or, in other words,

ϕσ = −1

2
arctan

(

4λ1φNφS
m2
σS
−m2

σN

)

Eqs. (6.34), (6.38)
=

1

2
arctan

[

8λ1φNφS
(4λ1 + 3λ2)φ2N − (4λ1 + 6λ2)φ2S

]

, (9.23)

with λ1 constrained via m2
0 + λ1(φ

2
N + φ2S) = −463425 MeV2.

Using the parameter combination m2
0 + λ1(φ

2
N + φ2S) allows us to remove λ1 from the mixing

term (9.16) as well as from the mass terms (6.34) and (6.38). The parameter λ1 then fulfills the

condition (9.15), as is evident from Fig. 9.1.
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Figure 9.1: Dependence of parameter λ1 on m2
0 from Fit I. The condition (9.15), i.e., λ1 > −λ2/2, is

apparently fulfilled for all values of m2
0 < 0.

This leads to the dependence ofmσ1 andmσ2 , Eqs. (9.19) and (9.20), onm2
0 only. The dependence

is depicted in Fig. 9.2, with m2
0 ≤ 0 in accordance with Eq. (9.4).

We conclude immediately from Fig. 9.2 that the values of mσ1 and mσ2 vary over wide intervals,

respectively, and that it is therefore not possible to assign the mixed states σ1 and σ2 to physical

states using only the masses of the mixed states. Note also that, at m2
0 ≃ −2.413 · 106 MeV2,

mσN becomes larger than mσS , ϕσ = 45◦ (see Fig. 9.3) and thus σ1 and σ2 interchange places.

Therefore, m2
0 = −2.413 · 106 MeV2 represents the lower limit for m2

0 and thus, together with

Eq. (9.4), we obtain

−2.413 · 106 MeV2 ≤ m2
0 ≤ 0. (9.24)

From the previous inequality we obtain the following boundaries for mσ1,2 :

456 MeV ≤ mσ1 ≤ 1139 MeV, (9.25)

1187 MeV ≤ mσ2 ≤ 2268 MeV. (9.26)
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Figure 9.2: Dependence of mσ1
(full lower curve), mσ2

(full upper curve), mσN
(dashed lower curve) and

mσS
(dashed upper curve) on m2

0 under the condition m2
0 < 0.

Considering the mass values, σ1 may correspond either to f0(600) or f0(980) and σ2 may cor-

respond to f0(1370), f0(1500) or f0(1710). [We do not consider the as yet unconfirmed states

f0(2020), f0(2100) and f0(2200) although they could also come within the mσ2 range. Note also

our comments in Sec. 3.6 regarding the f0(1790) resonance that decays predominantly into pions

and appears to be a radial excitation of f0(1370) – therefore it cannot correspond to our state σ2
that is predominantly strange, as we will see in the following.] Therefore, a mere calculation of

scalar masses does not allow us to assign the scalar states σ1 and σ2 to physical resonances. To

resolve this ambiguity, we will calculate various decay widths of the states σ1 and σ2; comparison

of the decay widths with experimental data [10] will allow for a definitive statement regarding

the assignment of our theoretical states to the physical ones.

-2.5´106 -2.0´106 -1.5´106 -1.0´106 -500 000
m 0
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-40

-20

20
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Figure 9.3: Dependence of the σN -σS mixing angle ϕσ on m2
0, Eq. (9.23).

Nonetheless, from the variation of the σN - σS mixing angle ϕσ we can conclude that the σ1 field is

predominantly non-strange and the σ2 field is predominantly composed of strange quarks, see Fig.

9.4. Note that the two diagrams on Fig. 9.4 were obtained from two simultaneous, implicit plots of

ϕσ(λ1), Eq. (9.23), and mσ1,2 [ϕσ(λ1)], Eqs. (9.19) and (9.20), with m2
0+λ1(φ

2
N +φ2S) = −463425

MeV2 and m2
0 from inequality (9.24).
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Figure 9.4: The σN -σS mixing angle ϕσ as function of mσ1,2
.

We illustrate the contribution of mσN to mσ1 and of mσS to mσ2 in Fig. 9.5. The contributions

expectedly decrease with mσ1,2 because the mixing angle approaches −45 (see Fig. 9.4) where σ1
and σ2 interchange places.
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Figure 9.5: Contribution of the pure non-strange field σN to σ1 (left panel) and of the pure strange field

σS to σ2 (right panel), respectively in dependence on mσ1
and mσ2

.

9.1.4 Decay Width σ1,2 → ππ

The Lagrangian (6.1) contains the pure states σN and σS ; the interaction Lagrangian of these

states with the pions reads:

Lσππ = AσNππσN [(π
0)2 + 2π+π−] +BσNππσN [(∂µπ

0)2 + 2∂µπ
+∂µπ−]

+ CσNππσN (π
0�π0 + π+�π− + π−�π+)

+AσSππσS [(π
0)2 + 2π+π−] +BσSππσS[(∂µπ

0)2 + 2∂µπ
+∂µπ−] (9.27)

with
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AσNππ = −
(

λ1 +
λ2
2

)

Z2
πφN , (9.28)

BσNππ = −2g1Z2
πwa1 +

(

g21 +
h1 + h2 − h3

2

)

Z2
πw

2
a1φN , (9.29)

CσNππ = −g1Z2
πwa1 , (9.30)

AσSππ = −λ1Z2
πφS , (9.31)

BσSππ =
h1
2
Z2
πw

2
a1φS . (9.32)

Note that the term BσNππ, Eq. (9.29), can be further transformed as follows:

BσNππ
Eq. (6.30)

= Z2
π

g21φN
m2
a1

(

−2 + g21φ
2
N

m2
a1

+
h1 + h2 − h3

2

φ2N
m2
a1

)

= Z2
π

g21φN
m4
a1

(

−2m2
a1 + g21φ

2
N +

h1 + h2 − h3
2

φ2N

)

Eq. (6.43)
= Z2

π

g21φN
m4
a1

(

−2m2
a1 +m2

a1 −m
2
1 −

h1
2
φ2S − 2δN

)

≡ −Z2
π

g21φN
m4
a1

(

m2
a1 +m2

1

)

, (9.33)

as h1 = 0 = δN . Note also that the decay of the pure strange state σS into pions is driven by

the large-Nc suppressed couplings λ1 and h1, see Eq. (4.52).

At this point it is necessary to disentangle the pure states σN and σS that do not represent

asymptotic states in the σππ Lagrangian (9.27). To obtain decay widths of the physical, mixed

states σ1 and σ2, we have to consider the full Lagrangian containing the σ fields [LσNσS , full from
Eq. (9.17)]:

Lσππ, full = LσNσS , full + Lσππ

=
1

2
(∂µσN )

2 +
1

2
(∂µσS)

2 − 1

2
m2
σN
− 1

2
m2
σS

+ zσσNσS

+AσNππσN [(π
0)2 + 2π+π−] +BσNππσN [(∂µπ

0)2 + 2∂µπ
+∂µπ−]

+ CσNππσN (π
0�π0 + π+�π− + π−�π+)

+AσSππσS [(π
0)2 + 2π+π−] +BσSππσS [(∂µπ

0)2 + 2∂µπ
+∂µπ−]. (9.34)

Let us now insert the inverted Eq. (9.18) into Eq. (9.34); analogously to Eq. (7.6) we obtain:

Lσππ, full =
1

2
[(∂µσ1)

2(cosϕσ)
2 + (∂µσ2)

2(sinϕσ)
2]

+
1

2
[(∂µσ1)

2(sinϕσ)
2 + (∂µσ2)

2(cosϕσ)
2]

− 1

2
m2
σN

[σ21(cosϕσ)
2 + σ22(sinϕη)

2 − sin(2ϕσ)σ1σ2]

− 1

2
m2
σS [σ

2
1(sinϕσ)

2 + σ22(cosϕσ)
2 + sin(2ϕσ)σ1σ2]

+ zσ[(σ
2
1 − σ22) sinϕσ cosϕσ + cos(2ϕσ)σ1σ2]

+ (AσNππ cosϕσ +AσSππ sinϕσ)σ1[(π
0)2 + 2π+π−]
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+ (BσNππ cosϕσ +BσSππ sinϕσ)σ1[(∂µπ
0)2 + 2∂µπ

+∂µπ−]

+ CσNππ cosϕσσ1(π
0�π0 + π+�π− + π−�π+)

+ (AσSππ cosϕσ −AσNππ sinϕσ)σ2[(π0)2 + 2π+π−]

+ (BσSππ cosϕσ −BσNππ sinϕσ)σ2[(∂µπ0)2 + 2∂µπ
+∂µπ−]

− CσNππ sinϕσσ2(π0�π0 + π+�π− + π−�π+)

=
1

2
(∂µσ1)

2 +
1

2
(∂µσ2)

2 − 1

2
[m2

σN (cosϕσ)
2 +m2

σS (sinϕσ)
2 − zσ sin(2ϕσ)]σ21

− 1

2
[m2

σN
(sinϕσ)

2 +m2
σS
(cosϕσ)

2 + zσ sin(2ϕσ)]σ
2
2

− 1

2
[(m2

σS
−m2

σN
) sin(2ϕσ)− 2zσ cos(2ϕσ)]σ1σ2

+ (AσNππ cosϕσ +AσSππ sinϕσ)σ1[(π
0)2 + 2π+π−]

+ (BσNππ cosϕσ +BσSππ sinϕσ)σ1[(∂µπ
0)2 + 2∂µπ

+∂µπ−]

+ CσNππ cosϕσσ1(π
0�π0 + π+�π− + π−�π+)

+ (AσSππ cosϕσ −AσNππ sinϕσ)σ2[(π0)2 + 2π+π−]

+ (BσSππ cosϕσ −BσNππ sinϕσ)σ2[(∂µπ0)2 + 2∂µπ
+∂µπ−]

− CσNππ sinϕσσ2(π0�π0 + π+�π− + π−�π+). (9.35)

From Eq. (9.35) we then retrieve the already known Eqs. (9.19) and (9.20) for m2
σ1,2 as well as

the condition (9.21) for zσ ascertaining that there is no mixing between the physical states σ1
and σ2. Let us now write the Lagrangian (9.35) in the following form:

Lσππ, full =
1

2
(∂µσ1)

2 − 1

2
m2
σ1σ

2
1

+ (AσNππ cosϕσ +AσSππ sinϕσ)σ1[(π
0)2 + 2π+π−]

+ (BσNππ cosϕσ +BσSππ sinϕσ)σ1[(∂µπ
0)2 + 2∂µπ

+∂µπ−]

+ CσNππ cosϕσσ1(π
0�π0 + π+�π− + π−�π+)

+
1

2
(∂µσ2)

2 − 1

2
m2
σ2σ

2
2

+ (AσSππ cosϕσ −AσNππ sinϕσ)σ2[(π0)2 + 2π+π−]

+ (BσSππ cosϕσ −BσNππ sinϕσ)σ2[(∂µπ0)2 + 2∂µπ
+∂µπ−]

− CσNππ sinϕσσ2(π0�π0 + π+�π− + π−�π+). (9.36)

σ1,2(P )

π(P2)

π(P1)

Figure 9.6: Decay process σ1,2 → ππ.
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The decay amplitudes of the mixed states read

−iMσ1→ππ(mσ1) = i

{

cosϕσ

[

AσNππ −BσNππ
m2
σ1 − 2m2

π

2
− CσNππm2

π

]

+sinϕσ

[

AσSππ −BσSππ
m2
σ1 − 2m2

π

2

]}

= i

{

cosϕσ

[

AσNππ −
BσNππ

2
m2
σ1 + (BσNππ − CσNππ)m2

π

]

+sinϕσ

[

AσSππ −BσSππ
m2
σ1 − 2m2

π

2

]}

(9.37)

and

−iMσ2→ππ(mσ2) = i

{

cosϕσ

[

AσSππ −BσSππ
m2
σ2 − 2m2

π

2

]

− sinϕσ

[

AσNππ −
BσNππ

2
m2
σ2 + (BσNππ − CσNππ)m2

π

]}

. (9.38)

Summing over all decay channels σ1,2 → π0π0, π±π∓ we obtain the following formulas for the

decay widths Γσ1,2→ππ:

Γσ1→ππ =
3k(mσ1 ,mπ,mπ)

4πm2
σ1

| − iMσ1→ππ(mσ1)|2, (9.39)

Γσ2→ππ =
3k(mσ2 ,mπ,mπ)

4πm2
σ2

| − iMσ2→ππ(mσ2)|2. (9.40)

We have considered an isospin factor of 6 in the above Eqs. (9.39) and (9.40). The Lagrangian

(9.36) provides us with an additional factor of 22 = 4 in Γσ1,2→ππ respectively from the charged

(π±π∓) and neutral (π0π0) modes, i.e., in total with a factor of 8. However, there is a sym-

metrisation factor of 1/
√
2 that also has to be considered for the neutral modes; therefore,

their contribution to Γσ1,2→ππ is actually not 22 but rather (2/
√
2)2 = 2 that together with the

charged-mode contribution 22 = 4 yields a total isospin factor of 6.
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Figure 9.7: Γσ1→ππ and Γσ2→ππ as functions of mσ1
and mσ2

, respectively.
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A plot of the two decay widths is presented in Fig. 9.7. We conclude from the left panel of

Fig. 9.7 that our state σ1 possesses the best correspondence with the f0(600) resonance. For

example, setting mσ1 = 800 MeV yields Γσ1→ππ = 473.5 MeV. From the right panel of Fig. 9.7

we note that Γσ2→ππ increases very rapidly with mσ2 and therefore the best values are obtained

for mσ2 ≃ 1300 MeV. If we consider data from Ref. [40], then our results are fairly close to the

results from this review: Ref. [40] cites the value of 325 MeV at mf0(1370) = (1309± 1± 15) MeV

from an f0(1370) Breit-Wigner fit and we obtain Γσ2→ππ = 325 MeV at mσ2 = 1368 MeV; Ref.

[40] cites the value of 207 MeV for the full width at one-half maximum (FWHM) with the peak

in the decay channel f0(1370) → ππ at mf0(1370) = 1282 MeV – we obtain Γσ2→ππ = 207 MeV at

mσ2 = 1341 MeV and at mσ2 = 1200 MeV. Let us, however, emphasise that these results suggest

f0(1370) to be predominantly a s̄s state as we can see from Fig. 9.5. Concretely, results suggest

that f0(1370) is 88% a s̄s state at mσ2 = 1368 MeV, 92% a s̄s state at mσ2 = 1341 MeV and 89%

a s̄s state at mσ2 = 1200 MeV. Note that we do not assign error values to our masses because

the errors in our model are determined by errors of experimental data used for our calculations

and no errors were assigned to Γf0(1370)→ππ in Ref. [40].

As evident from Fig. 9.7, Γσ2→ππ = 0 for mσ2 = 1260 MeV, corresponding to m2
0 = −463425

MeV2 and thus mσ1 = 978 MeV (see Fig. 9.2). The reason is that, due to the constraint

m2
0 +λ1(φ

2
N +φ2S) = −463425 MeV2 (see Table 8.4), we obtain λ1 = 0 for m2

0 = −463425 MeV2;

consequently, according to Eq. (9.23), one also obtains that the σN - σS mixing angle ϕσ = 0.

Thus σN and σS decouple at this point. Usually, this would merely imply that the 2π decay

amplitude Mσ2→ππ(mσ2), Eq. (9.38), of the (now pure-strange) state σ2 ≡ σS would become

suppressed but it would not necessarily vanish. It could still be non-zero by large-Nc suppressed

parameters, in our case λ1 and h1 that appear in AσSππ and BσSππ [Eqs. (9.31) and (9.32),

respectively]. However, we have set h1 ≡ 0 throughout our calculations (see Table 8.4) and, as

we have just discussed, λ1 also vanishes at this point. For this reason, AσSππ = 0 = BσSππ and

consequently also Mσ2→ππ = 0. Therefore, Γσ2→ππ = 0. Note that setting h1 6= 0 would not

alter the fact that Γσ2→ππ vanishes for a certain value of mσ2 . The reason is the relative minus

sign of the two terms inMσ2→ππ [see Eq. (9.38)], allowing for a value of ϕσ to be found where

they exactly cancel out.

9.1.5 Decay Width σ1,2 → KK

The interaction Lagrangian of the pure states σN and σS with the kaons, Eq. (6.1), reads:

LσKK = AσNKKσN (K
0K̄0 +K−K+) +BσNKKσN (∂µK

0∂µK̄0 + ∂µK
−∂µK+)

+ CσNKK∂µσN (K
0∂µK̄0 + K̄0∂µK0 +K−∂µK+ +K+∂µK−)

+AσSKKσS(K
0K̄0 +K−K+) +BσSKKσS(∂µK

0∂µK̄0 + ∂µK
−∂µK+)

+ CσSKK∂µσS(K
0∂µK̄0 + K̄0∂µK0 +K−∂µK+ +K+∂µK−)

= AσNKKσN (K
0K̄0 +K−K+) + (BσNKK − 2CσNKK)σN (∂µK

0∂µK̄0 + ∂µK
−∂µK+)

− CσNKKσN (K0�K̄0 + K̄0�K0 +K−�K+ +K+�K−)

+AσSKKσS(K
0K̄0 +K−K+) + (BσSKK − 2CσSKK)σS(∂µK

0∂µK̄0 + ∂µK
−∂µK+)

− CσSKKσS(K0�K̄0 + K̄0�K0 +K−�K+ +K+�K−) (9.41)
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with

AσNKK =
Z2
K√
2
[λ2(φS −

√
2φN )− 2

√
2λ1φN ], (9.42)

BσNKK =
g1
2
Z2
KwK1 [−2 + g1wK1(φN +

√
2φS)] +

Z2
K

2
w2
K1

[(2h1 + h2)φN −
√
2h3φS ], (9.43)

CσNKK =
g1
2
Z2
KwK1 , (9.44)

AσSKK =
Z2
K√
2
[λ2(φN − 2

√
2φS)− 2

√
2λ1φS ], (9.45)

BσSKK =

√
2

2
Z2
Kg1wK1 [−2 + g1wK1(φN +

√
2φS)] +

Z2
K√
2
w2
K1

[
√
2(h1 + h2)φS − h3φN ], (9.46)

CσSKK =

√
2

2
Z2
Kg1wK1 ≡

√
2CσNKK . (9.47)

Let us consider only the σ1,2 → K0K̄0 decay channel (σ1,2 → K+K− will give the same contri-

bution to the full decay width due to the isospin symmetry). As in Eq. (9.34) we obtain from

Eqs. (9.17) and (9.41)

LσKK, full = LσNσS , full + LσKK

=
1

2
(∂µσN )

2 +
1

2
(∂µσS)

2 − 1

2
m2
σN
− 1

2
m2
σS

+ zσσNσS

+AσNKKσNK
0K̄0 + (BσNKK − 2CσNKK)σN∂µK

0∂µK̄0

− CσNKKσN (K0�K̄0 + K̄0�K0)

+AσSKKσSK
0K̄0 + (BσSKK − 2CσSKK)σS∂µK

0∂µK̄0

− CσSKKσS(K0�K̄0 + K̄0�K0). (9.48)

Inserting the inverted Eq. (9.18) into Eq. (9.48), identifying m2
σ1,2 from Eqs. (9.19) and (9.20)

and zσ from Eq. (9.21) and rearranging parameters as in Eq. (9.35) leads to

LσKK, full =
1

2
(∂µσ1)

2 − 1

2
m2
σ1σ

2
1

+ (AσNKK cosϕσ +AσSKK sinϕσ)σ1K
0K̄0

+ [(BσNKK − 2CσNKK) cosϕσ + (BσSKK − 2CσSKK) sinϕσ]σ1∂µK
0∂µK̄0

− (CσNKK cosϕσ + CσSKK sinϕσ)σ1(K
0�K̄0 + K̄0�K0)

+
1

2
(∂µσ2)

2 − 1

2
m2
σ2σ

2
2

+ (AσSKK cosϕσ −AσNKK sinϕσ)σ2K
0K̄0

+ [(BσSKK − 2CσSKK) cosϕσ − (BσNKK − 2CσNKK) sinϕσ]σ2∂µK
0∂µK̄0

− (CσSKK cosϕσ − CσNKK sinϕσ)σ2(K
0�K̄0 + K̄0�K0). (9.49)
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Let us denote the momenta of the two kaons as P1 and P2. Energy conservation on the vertex

implies P = P1 + P2, where P denotes the momentum of σ1 or σ2; given that our particles are

on-shell, we obtain

P1 · P2 =
P 2 − P 2

1 − P 2
2

2
≡ m2

σ1 − 2m2
K

2
. (9.50)

Then the decay amplitudes of the mixed states σ1,2 read

−iMσ1→K0K̄0(mσ1) = i
{

cosϕσ
[

AσNKK − (BσNKK − 2CσNKK)P1 · P2 + 2CσNKKm
2
K

]

+sinϕσ

[

AσSKK − (BσSKK − 2CσSKK)
m2
σ1 − 2m2

K

2
+ 2CσSKKm

2
K

]}

= i

{

cosϕσ

[

AσNKK − (BσNKK − 2CσNKK)
m2
σ1 − 2m2

K

2
+ 2CσNKKm

2
K

]

+sinϕσ

[

AσSKK − (BσSKK − 2CσSKK)
m2
σ1 − 2m2

K

2
+ 2CσSKKm

2
K

]}

(9.51)

and

−iMσ2→K0K̄0(mσ2) = i

{

cosϕσ

[

AσSKK − (BσSKK − 2CσSKK)
m2
σ2 − 2m2

K

2
+ 2CσSKKm

2
K

]

− sinϕσ

[

AσNKK − (BσNKK − 2CσNKK)
m2
σ2 − 2m2

K

2
+ 2CσNKKm

2
K

]}

.

(9.52)

σ1,2(P )

K̄0(P2)

K0(P1)

Figure 9.8: Decay process σ1,2 → K0K̄0.

Finally, taking into account all contributions to the decay widths of the mixed states σ1,2, i.e.,

σ1,2 → K0K̄0 +K−K+, we obtain

Γσ1→KK =
k(mσ1 ,mK ,mK)

4πm2
σ1

| − iMσ1→K0K̄0(mσ1)|2, (9.53)

Γσ2→KK =
k(mσ2 ,mK ,mK)

4πm2
σ2

| − iMσ2→K0K̄0(mσ2)|2. (9.54)

The decay widths are depicted in Fig. 9.9. The kaon-kaon threshold opens at 981.7 MeV, see

Table 8.5. Therefore, the decay σ1 → KK is phase-space suppressed. Nonetheless, these results
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Figure 9.9: Γσ1→KK and Γσ2→KK as functions of mσ1
and mσ2

, respectively.

suggest that σ1 ≡ f0(600) also decays into kaons above the threshold, which is in principle

possible but has not been observed [10]. The results regarding σ1 are actually more consistent

with the decay f0(980) → KK but an interpretation of σ1 as f0(980) is not possible due to the

results in the two-pion channel, see previous subsection 9.1.4 and Fig. 9.7. We can therefore

conclude that a proper determination of Γσ1→KK is not possible if one only considers σ1 – we

have to consider results regarding σ2 → KK as well.

The decay width Γσ2→KK rises rapidly with mσ2 . The lowest value is Γσ2→KK = 171 MeV

at mσ2 = 1187 MeV, a value consistent with experiment [124, 170, 253, 259, 260, 261]. Our

analysis of the σ2 → ππ decay yielded three values of the mσ2 where the correspondence with

the decay width f0(1370) → ππ was particularly good: mσ2 = 1200 MeV, mσ2 = 1341 MeV and

mσ2 = 1368 MeV. In the σ2 → KK channel we obtain Γσ2→KK = 240 MeV for mσ2 = 1200

MeV, Γσ2→KK = 1125 MeV for mσ2 = 1341 MeV and Γσ2→KK = 1281 MeV for mσ2 = 1368

MeV. (The width rises to Γσ2→KK = 2021 MeV for mσ2 = 1500 MeV.) Thus, there is some

discrepancy between the results in the σ2 → ππ and σ2 → KK channels, unless one works with

mσ2 = 1200 MeV. (9.55)

The latter mass implies m2
0 = −160233 MeV from Eq. (9.20) leading to

mσ1 = 705 MeV (9.56)

via Eq. (9.19). Consequently, Γσ1≡f0(600)→KK = 0 asmσ1 is below the kaon-kaon decay threshold,

a result in accordance with experimental data and also consistent with the assignment σ1 ≡
f0(600). Note that mσ1 = 705 MeV also yields Γσ1→ππ = 305 MeV via Eq. (9.39).

We can also look into results regarding the ratio Γσ2→KK/Γσ2→ππ, see Fig. 9.10. Experimental

data about this ratio are by far inconclusive [99, 140, 188, 262]; we observe Γσ2→KK/Γσ2→ππ =

1.15 at mσ2 = 1200 MeV, larger than any set of experimental data reported so far. The reason

is the relatively large decay width σ2 → KK; in fact, we observe from Fig. 9.10 that Γσ2→ππ <

Γσ2→KK at all values of mσ2 except for the lowest ones (. 1200 MeV). This would imply that

f0(1370) decays predominantly into kaons, as one would expect from a s̄s state, but it is clearly

at odds with the data [10].
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9.1.6 Decay Width σ1,2 → ηη

The Lagrangian (6.1) contains only the pure fields σN,S and ηN,S ; the corresponding interaction

Lagrangian reads:

LσηNηS = −Z2
πφN

(

λ1 +
λ2
2

+ c1φ
2
S

)

σNη
2
N − Z2

ηSφN

(

λ1 +
c1
2
φ2N

)

σNη
2
S

− 3

2
c1ZπZηSφ

2
NφSσNηNηS

+ Z2
πwa1

[

g1(g1wa1φN − 1) +
φN
2
wa1(h1 + h2 − h3)

]

σN (∂µηN )
2

+
h1
2
Z2
ηS
w2
f1S
φNσN (∂µηS)

2 + g1wa1Z
2
π∂µσN∂

µηNηN

− (λ1 + λ2)Z
2
ηSφSσSη

2
S − Z2

πφS(λ1 + c1φ
2
N )σSη

2
N −

1

2
c1ZπZηSφ

3
NσSηNηS

+ Z2
ηS
wf1S

[√
2g1(
√
2g1wf1SφS − 1) + wf1SφS

(

h1
2

+ h2 − h3
)]

σS(∂µηS)
2

+
h1
2
Z2
πw

2
a1φSσS(∂µηN )

2 +
√
2g1Z

2
ηS
wf1S∂µσS∂

µηSηS . (9.57)

As in the case of Lσππ, Eq. (9.27), decays of the pure non-strange state σN → ηSηS and of the

pure strange state σS → ηNηN are driven by the large-Nc suppressed couplings λ1 and h1, see

Eq. (4.52).

Note that the coupling of σN to (∂µηN )
2 in Eq. (9.57) can be transformed in the following way:

Z2
πwa1

[

g1(g1wa1φN − 1) +
φN
2
wa1(h1 + h2 − h3)

]

= Z2
πwa1

{

wa1

[

g21φN +
φN
2

(h1 + h2 − h3)
]

− g1
}
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Eqs. (6.43)
= Z2

πwa1

(

wa1
m2
a1 −m2

1 − h1
2 φ

2
S − 2δN

φN
− g1

)

Eqs. (6.30)
= −Z2

π

w2
a1

φN

(

m2
1 +

h1
2
φ2S + 2δN

)

, (9.58)

where we have used wa1m
2
a1/φN = g1, and that the coupling of σS to (∂µηS)

2 in Eq. (9.57) can

be similarly transformed in the following way:

Z2
ηSwf1S

[√
2g1(
√
2g1wf1SφS − 1) + wf1SφS

(

h1
2

+ h2 − h3
)]

= Z2
ηS
wf1S

{

wf1S

[

2g21φS + φS

(

h1
2

+ h2 − h3
)]

−
√
2g1

}

Eqs. (6.45)
= Z2

ηS
wf1S

(

wf1S
m2
f1S
−m2

1 − h1
2 φ

2
N − 2δS

φS
−
√
2g1

)

Eqs. (6.31)
= −Z2

ηS

w2
f1S

φS

(

m2
1 +

h1
2
φ2N + 2δS

)

, (9.59)

where we have used wf1Sm
2
f1S
/(
√
2φS) = g1. Substituting Eqs. (9.58) and (9.59) into Eq. (9.57)

and additionally substituting ηN and ηS by η and η′ according to Eqs. (7.17) and (7.18), we

obtain the following form of the interaction Lagrangian:

Lσηη = AσN ηησNη
2 +BσNηησN (∂µη)

2 + CσNηη∂µσN∂
µηη

+AσSηησSη
2 +BσSηησS(∂µη)

2 +CσSηη∂µσS∂
µηη (9.60)

with

AσNηη = −Z2
πφN

(

λ1 +
λ2
2

+ c1φ
2
S

)

cos2 ϕη − Z2
ηSφN

(

λ1 +
c1
2
φ2N

)

sin2 ϕη

− 3

4
c1ZπZηSφ

2
NφS sin(2ϕη)

= −φN
{

λ1(Z
2
π cos

2 ϕη + Z2
ηS sin2 ϕη) +

λ2
2
Z2
π cos

2 ϕη

+c1

[

Z2
ηS

2
φ2N sin2 ϕη + Z2

πφ
2
S cos

2 ϕη +
3

4
ZπZηSφNφS sin(2ϕη)

]}

, (9.61)

BσNηη = −Z2
π

w2
a1

φN

(

m2
1 +

h1
2
φ2S + 2δN

)

cos2 ϕη +
h1
2
Z2
ηS
w2
f1S
φN sin2 ϕη , (9.62)

CσNηη = g1wa1Z
2
π cos

2 ϕη, (9.63)

AσSηη = −(λ1 + λ2)Z
2
ηS
φS sin

2 ϕη − Z2
πφS(λ1 + c1φ

2
N ) cos

2 ϕη −
1

4
c1ZπZηSφ

3
N sin(2ϕη)

= −λ1φS(Z2
ηS sin2 ϕη + Z2

π cos
2 ϕη)− Z2

ηSλ2φS sin
2 ϕη

− Zπc1φN
[

ZπφNφS cos
2 ϕη +

1

4
ZηSφ

2
N sin(2ϕη)

]

, (9.64)

BσSηη = −Z2
ηS

w2
f1S

φS

(

m2
1 +

h1
2
φ2N + 2δS

)

sin2 ϕη +
h1
2
Z2
πw

2
a1φS cos

2 ϕη, (9.65)

147



CσSηη =
√
2Z2

ηSg1wf1S sin2 ϕη. (9.66)

As in Eq. (9.34) we obtain from Eqs. (9.17) and (9.60)

Lσηη, full = LσNσS , full + Lσηη

=
1

2
(∂µσN )

2 +
1

2
(∂µσS)

2 − 1

2
m2
σN −

1

2
m2
σS + zσσNσS

+AσNηησNη
2 +BσNηησN (∂µη)

2 +CσNηη∂µσN∂
µηη

+AσSηησSη
2 +BσSηησS(∂µη)

2 + CσSηη∂µσS∂
µηη. (9.67)

Substituting σN,S by σ1,2 we obtain

Lσηη, full =
1

2
(∂µσ1)

2 − 1

2
m2
σ1σ

2
1

+ (AσN ηη cosϕσ +AσSηη sinϕσ)σ1η
2

+ (BσN ηη cosϕσ +BσSηη sinϕσ)σ1(∂µη)
2

+ (CσN ηη cosϕσ + CσSηη sinϕσ)∂µσ1∂
µηη

+
1

2
(∂µσ2)

2 − 1

2
m2
σ2σ

2
2

+ (AσSηη cosϕσ −AσNηη sinϕσ)σ2η2

+ (BσSηη cosϕσ −BσNηη sinϕσ)σ2(∂µη)2

+ (CσSηη cosϕσ − CσNηη sinϕσ)∂µσ2∂µηη. (9.68)

σ1,2(P )

η(P2)

η(P1)

Figure 9.11: Decay process σ1,2 → ηη.

Let us set P as momentum of σ1 or σ2 (depending on the decaying particle) and P1 and P2

as the momenta of the η fields. Upon substituting ∂µ → −iPµ for the decaying particles and

∂µ → iPµ1,2 for the decay products, the decay amplitudes of the mixed states σ1,2 read

−iMσ1→ηη(mσ1) = i {cosϕσ(AσN ηη −BσNηηP1 · P2 + CσNηηP · P1)

+ sinϕσ

[

AσSηη −BσSηη
m2
σ1 − 2m2

η

2
+ CσSηη

m2
σ1

2

]}
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Figure 9.12: Γσ1→ηη and Γσ2→ηη as functions of mσ1
and mσ2

, respectively.

= i

{

cosϕσ

[

AσNηη −BσNηη
m2
σ1 − 2m2

η

2
+ CσNηη

m2
σ1

2

]

+sinϕσ

[

AσSηη −BσSηη
m2
σ1 − 2m2

η

2
+ CσSηη

m2
σ1

2

]}

, (9.69)

−iMσ2→ηη(mσ2) = i

{

cosϕσ

[

AσSηη −BσSηη
m2
σ2 − 2m2

η

2
+ CσSηη

m2
σ2

2

]

− sinϕσ

[

AσNηη −BσNηη
m2
σ2 − 2m2

η

2
+ CσNηη

m2
σ2

2

]}

. (9.70)

Finally, we obtain the following formulas for the decay widths:

Γσ1→ηη =
k(mσ1 ,mη ,mη)

8πm2
σ1

| − iMσ1→ηη(mσ1)|2, (9.71)

Γσ2→ηη =
k(mσ2 ,mη ,mη)

8πm2
σ2

| − iMσ2→ηη(mσ2)|2. (9.72)
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Figure 9.13: Ratio Γσ2→ηη/Γσ2→ππ as function of mσ2
.
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The decay widths are shown diagrammatically in Fig. 9.12. As expected, Γσ1→ηη is suppressed

due to a limited phase space for ηη. We observe a strong increase of Γσ2→ηη over the f0(1370)

mass interval (see the right panel in Fig. 9.12). Our results regarding the decay channels σ2 → ππ

and σ2 → KK favour mσ2 = 1200 MeV for which we obtain Γσ2→ηη = 31 MeV.

A plot of Γσ2→ηη/Γσ2→ππ is shown in Fig. 9.13. There is a discontinuity in the ratio Γσ2→ηη/Γσ2→ππ

at the point mσ2 = 1260 MeV; for mσ2 = 1200 MeV we obtain Γσ2→ηη/Γσ2→ππ = 0.15, in ac-

cordance with the result Γf0(1370)→ηη/Γf0(1370)→ππ = 0.19± 0.07 from Ref. [40]. We also observe

that the σ2 → KK channel is dominant in comparison with the σ2 → ηη channel, see Fig. 9.14,

reaffirming the conclusion reached from the comparison of the decays σ2 → KK and σ2 → ηη

(see Fig. 9.10).

9.2 Decay Amplitude a0(980) → ηπ

We have seen in Chapter 8 that a calculation of the parameter h2 via the decay width Γf1N→a0(980)π,

Eq. (8.14), yields two sets of values, a relatively lower and a relatively higher one. In the

U(2) × U(2) version of the model, Sec. 5.2.2, the higher set of h2 values was found to be pre-

ferred. Conversely, Fit I in Chapter 8 prefers lower values of h2; in this section we discuss

whether, in that case, it is still possible to obtain a correct value of the a0(980) → ηπ decay

amplitude.

The a00ηπ
0 interaction Lagrangian reads

La0ηπ = Aa0ηNπa
0
0ηNπ

0 +Ba0ηNπa
0
0∂µηN∂

µπ0 +Ca0ηNπ∂µa
0
0(π

0∂µηN + ηN∂
µπ0) +Aa0ηSπa

0
0ηSπ

0

(9.73)

with
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Figure 9.14: Ratio Γσ2→KK/Γσ2→ηη as function of mσ2
.
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Aa0ηNπ = (−λ2 + c1φ
2
S)Z

2
πφN , (9.74)

Ba0ηNπ = −2g
2
1φN
m2
a1

[

1− 1

2

Z4
πf

2
π

m2
a1

(h2 − h3)
]

, (9.75)

Ca0ηNπ = g1wa1Z
2
π, (9.76)

Aa0ηSπ =
1

2
c1ZπZηSφ

2
NφS . (9.77)

Substituting ηN by η cosϕη and ηS by η sinϕη [see Eqs. (7.17) and (7.18)] we obtain from the

Lagrangian (9.73)

La0ηπ = Aa0ηNπ cosϕηa
0
0ηπ

0 +Ba0ηNπ cosϕηa
0
0∂µη∂

µπ0

+ Ca0ηNπ cosϕη∂µa
0
0(π

0∂µη + η∂µπ0) +Aa0ηSπ sinϕηa
0
0ηπ

0. (9.78)

Consequently, the decay amplitudeMa00→ηπ0 reads

−iMa00→ηπ0(mη) = i

{

cosϕη

[

Aa0ηNπ −Ba0ηNπ
m2
a0 −m2

η −m2
π

2
+ Ca0ηNπm

2
a0(980)

]

+sinϕηAa0ηSπ} . (9.79)

Note that we can writeMa00→ηπ0(mη) also as

−iMa00→ηπ0(mη) = −i[cosϕηMa00→ηNπ0(mη) + sinϕηMa00→ηSπ0(mη)], (9.80)

where

−iMa00→ηNπ0(mη) = i

[

Aa0ηNπ −Ba0ηNπ
m2
a0 −m2

η −m2
π

2
+ Ca0ηNπm

2
a0(980)

]

(9.81)

and

−iMa00→ηSπ0(mη) = iAa0ηSπ. (9.82)

In Eqs. (9.81) and (9.82), Ma00→ηNπ0 is obtained only from terms containing ηN in Eq. (9.73)

whereasMa00→ηSπ0 is obtained from the a00ηSπ
0 coupling in Eq. (9.73). Note also thatMa00→ηNπ0

possesses an analogous form to Eq. (5.63).

All the parameters as well as ma0(980), mη and mπ are determined uniquely from the fit and can

be found in Tables 8.4 and 8.5. Consequently, we obtain from Eq. (9.79)

| Ma00(980)→ηπ0(mη) |= 3155 MeV. (9.83)

The value is within experimental data statingMa0ηπ(mη) = (3330± 150) MeV [114]. Note that

we have used ϕη = −42◦, in accordance with results derived in Step 4 of Chapter 8.
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9.3 Decay Width K⋆
0
(800) → Kπ

In this section we turn to the phenomenology of the scalar kaon KS , assigned to K⋆
0 (800), or κ, in

Fit I. The scalar kaon is known to decay into Kπ [10]. The corresponding interaction Lagrangian

from Eq. (6.1) reads (we consider only the neutral component; the other ones possess analogous

forms)

LKSKπ = AKSKπK
0
S(K̄

0π0 −
√
2K−π+) +BKSKπK

0
S(∂µK̄

0∂µπ0 −
√
2∂µK

−∂µπ+)

+ CKSKπ∂µK
0
S(π

0∂µK̄0 −
√
2π+∂µK

−) +DKSKπ∂µK
0
S(K̄

0∂µπ0 −
√
2K−∂µπ+) (9.84)

with the following coefficients:

AKSKπ =
ZπZKZKS√

2
λ2φS , (9.85)

BKSKπ = −ZπZKZKS

4
wa1wK1

[

g21(3φN +
√
2φS)− 2g1

wa1 + wK1

wa1wK1

+ h2(φN +
√
2φS)− 2h3φN

]

,

(9.86)

CKSKπ =
ZπZKZKS

4
[2g1(

√
2ig1wK⋆wK1φS − iwK⋆ − wK1)− 2

√
2ih3wK⋆wK1φS ], (9.87)

DKSKπ = −ZπZKZKS

4
{g1[2wa1 − 2iwK⋆ + ig1wa1wK⋆(3φN −

√
2φS)]

+ i(h2 − 2h3)wK⋆wa1φN −
√
2ih2wK⋆wa1φS}. (9.88)

Note that the coefficients containing the imaginary unit are nonetheless real because wK⋆ , Eq.

(6.33), is imaginary.

Let us focus on the decay K0
S → K0π0 in the following. The contribution of the charged modes

to the decay width is twice the contribution of the neutral modes, as apparent from Eq. (9.84).

(We are changing the charge of the decay products in comparison to the one present in the

interaction Lagrangian. The Lagrangian itself has to be charge-neutral and therefore contains

particles and antiparticles simultaneously; however, decay products are charge-conjugated in the

scattering matrix, see Sec. 2.6). It is then straightforward to calculate the decay amplitude (P ,

P1 and P2 denote momenta of KS , kaon and pion, respectively, and we substitute ∂µ → −iPµ
for the decaying particles and ∂µ → iPµ1,2 for the decay products):

−iMK0
S→K0π0 = i(AKSKπ −BKSKπP1 · P2 + CKSKπP · P1 +DKSKπP · P2). (9.89)

Due to energy conservation on the vertex, P = P1 + P2; thus we obtain

−iMK0
S→K0π0 = i[AKSKπ−BKSKπP1 ·P2+CKSKπ(P

2
1 +P1 ·P2)+DKSKπ(P

2
2 +P1 ·P2)]. (9.90)

Kaons and pions in the decay process are on-shell particles; therefore P 2
1 = m2

K and P 2
2 = m2

π.

Additionally, P1 · P2 = (P 2 − P 2
1 − P 2

2 )/2 ≡ (m2
KS
−m2

K −m2
π)/2. Therefore,

−iMK0
S→K0π0 = i

[

AKSKπ + (CKSKπ +DKSKπ −BKSKπ)
m2
KS
−m2

K −m2
π

2

+ CKSKπm
2
K +DKSKπm

2
π

]

. (9.91)
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The decay width ΓK0
S→Kπ then reads

ΓK0
S
→Kπ = 3

k(mKS
,mK ,mπ)

8πm2
KS

| − iMK0
S
→K0π0 |2. (9.92)

Note that all parameters entering Eqs. (9.91) and (9.92) are known from Table 8.4; ZKS
, wa1 ,

wK1 and wK⋆ are determined respectively from Eqs. (6.51), (6.30), (6.32) and (6.33). Then the

value of ΓK0
S→Kπ is determined uniquely:

ΓK0
S→Kπ = 490 MeV. (9.93)

The result is close to the value quoted by the PDG: Γexp
κ = (548±24) MeV [10]. The κ resonance

is experimentally known to be broad and this finding is reproduced in our model. (Note, however,

that our mKS
is approximately by a factor of two larger than mexp

κ = 676 MeV, see Table 8.5

and Chapter 8.)

Let us also point out the remarkable influence of the diagonalisation shift, Eqs. (6.19) and (6.21)

- (6.25), on this decay width: omitting the shift (wa1 = wK⋆ = wK1 = 0), i.e., ignoring mixing

terms from Eq. (6.17), would yield ΓK⋆
0 (800)→Kπ ≃ 3 GeV. Consequently, coefficients arising

from the shift [Eqs. (9.86) - (9.88)] induce a destructive interference in the Lagrangian (9.84)

decreasing the decay width by approximately a factor of 6.

9.4 Phenomenology of the Vector and Axial-Vector Mesons in Fit I

An important test of our Fit I derived in Chapter 8 is the phenomenology of the vector and

axial-vector states. In the vector channel, the exact value of Γρ→ππ = 149.1 MeV has already

been implemented to determine the parameter g2 (see Table 8.4). In principle our model also

allows for the discussion of the phenomenology for the isosinglet vector state ωS ≡ ϕ(1020).

This state decays into kaons; our Fit I yields mωS
= 870.35 MeV thus implying that no tree-

level calculation of the decay width can be performed as mωS
is below the two-kaon threshold.

Therefore, this state is not well described within Fit I. [Note that decays of the non-strange

vector isosinglet ωN cannot be calculated within the model because there are no corresponding

vertices: ωN always appears quadratically in the Lagrangian (6.1).] Therefore in this section we

only need to consider the phenomenology of theK⋆ meson to complete the vector phenomenology

(see subsection 9.4.5).

Fit I has also yielded mf1S = 1643.4 MeV, see Table 8.5. As discussed in Chapter 8, mf1S

is too large when compared to the experimental result mexp
f1(1420)

= (1426.4 ± 0.9) MeV. The

f1S ≡ f1(1420) resonance decays predominantly into K⋆K [10]. The corresponding decay width

can be calculated within our model and it will represent an important test of Fit I because

f1(1420) is a sharp resonance with Γexp
f1(1420)

= (54.9 ± 2.6) MeV, see subsection 9.4.6. The K1

phenomenology is discussed in Sec. 9.4.7. We will, however, begin with the phenomenology of

a1(1260). This state possesses a large decay width [(250 − 600) MeV [10]] with a dominant ρπ

decay channel. From our model, a1(1260) is expected to be the chiral partner of the ρ meson

and to become degenerate with this state upon the chiral transition. However, one first needs

to ascertain whether the a1(1260) phenomenology in vacuum can be described correctly from

Fit I. This is discussed in the following subsections 9.4.1 and 9.4.2. The phenomenology of the

axial-vector isosinglet f1N ≡ f1(1285) is discussed subsequently in Sec. 9.4.4; as in the case of

f1(1420), only the K⋆K decay channel can be considered in our model.
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9.4.1 Decay Width a1(1260) → ρπ in Fit I

The interaction Lagrangian for the decay a1(1260)→ ρπ has the same form as in the U(2)×U(2)

version of the model, Sec. 5.2.7. We can therefore make use of the same formula for Γa1(1260)→ρπ

as in Eq. (5.94). The decay width depends (among other parameters) on g2; this parameter is

fixed via the decay width Γρ→ππ [Eq. (5.44)] and given that our Fit I yields a relatively large value

of ma1 = 1395.5 MeV, see Table 8.5, then we obtain a value of g2 = −11.2 for Γρ→ππ = 149.1

MeV [10] (see Table 8.4). The large magnitude of this parameter influences Γa1(1260)→ρπ in a very

strong way: we obtain Γa1(1260)→ρπ ≃ 13 GeV for the stated value of g2 and other parameters

listed in Table 8.4. In fact, we would require g2 & 10 for Γa1(1260)→ρπ to have values within

the PDG interval (250 − 600) MeV [10], see Fig. 9.15. Note that integrating over the ρ spectral

function, just as in Sec. 2.6.2, yields the decay width of ∼ 11 GeV – again unphysically large.
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Figure 9.15: Γa1(1260)→ρπ as function of g2 in Fit I.

Our fit determines all parameter values uniquely and therefore we do not have a possibility to

fine-tune Γa1(1260)→ρπ; the only exception arises by changing Γρ→ππ to increase g2 and conse-

quently decrease Γa1(1260)→ρπ (note, however, that the experimental uncertainty regarding Γρ→ππ

is actually very small: ±0.8 MeV [10]). Consequent changes in Γa1(1260)→ρπ are depicted in Fig.

9.16.
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Figure 9.16: Γa1(1260)→ρπ as function of Γρ→ππ.
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We can see from Fig. 9.16 that Γa1(1260)→ρπ < 600 MeV only if Γρ→ππ < 38 MeV, more than

100 MeV smaller than the physical value of Γρ→ππ = 149.1 MeV [10]. Alternatively, increasing

Γρ→ππ also leads to a very strong increase of Γa1(1260)→ρπ with Γa1(1260)→ρπ > 1 GeV already at

Γρ→ππ ≃ 44 MeV. Therefore, we observe a strong tension between the decays in the non-strange

vector and axial-vector channels – it is not possible to obtain correct decay width values in both

channels at the same time as either the decay ρ→ ππ is subdominant [and Γa1(1260)→ρπ within

the physical range] or the decay ρ→ ππ is correctly described but the channel a1(1260) → ρπ is

virtually dissolved in the continuum.

9.4.2 Decay Width a1(1260) → f0(600)π in Fit I

Unlike the case of the a1(1260) → ρπ decay, the interaction Lagrangian for the process a1(1260) →
f0(600)π with f0(600) ≡ σ1 is slightly different than in the U(2) × U(2) version of the model,

Sec. 5.2.6:

La1σπ = Aa1σNπa
µ0
1 σN∂µπ

0 +Ba1σNπa
µ0
1 π

0∂µσN +Aa1σSπa
µ0
1 σS∂µπ

0 (9.94)

with the following coefficients:

Aa1σNπ = Zπ [g1(−1 + 2g1wa1φN ) + (h1 + h2 − h3)wa1φN ] , (9.95)

Ba1σNπ = g1Zπ, (9.96)

Aa1σSπ = h1Zπwa1φS. (9.97)

It is necessary to substitute the pure states σN and σS by the mixed states σ1 and σ2 in Eq.

(9.94); we are considering only the decay a1(1260) → σ1π and thus it suffices to perform the

substitutions σN → cosϕσσ1 and σS → sinϕσσ2:

La1σπ = (Aa1σNπ cosϕσ +Aa1σSπ sinϕσ)a
µ0
1 σ1∂µπ

0 +Ba1σNπ cosϕσa
µ0
1 π

0∂µσ1, (9.98)

where ϕσ is the σN -σS mixing angle, Eq. (9.23). The interaction Lagrangian from Eq. (9.98)

possesses an analogous form to the one presented in Eq. (2.192), with the latter describing a

generic decay of an axial-vector state A into a scalar S and a pseudoscalar P̃ . Thus we can

use the generic formula for the decay width from Eq. (2.201) upon substituting A↔ a1, S↔σ1,
P̃ ↔π, AASP̃ ↔ Aa1σNπ cosϕσ + Aa1σSπ sinϕσ and AASP̃ ↔ Ba1σNπ cosϕσ. We consequently

obtain Γa1(1260)→σ1π as shown in Fig. 9.17.

We observe from Fig. 9.17 that Γa1(1260)→σ1π rapidly decreases with the available phase space.

The exact value of Γa1(1260)→σ1π is therefore strongly dependent on mσ1 ; e.g., we obtain the

result Γa1(1260)→σ1π = 21 MeV for mσ1 = 705 MeV [our best value of mσ1 , see Eq. (9.56)].

Nonetheless, these results show Γa1(1260)→σ1π to be suppressed in comparison with Γa1(1260)→ρπ

and qualitatively similar to the values in Scenario I of the U(2)× U(2) version of the model.

9.4.3 Decay Width a1(1260) → K⋆K → KKπ in Fit I

The corresponding interaction Lagrangian is a feature of the U(3) × U(3) version of the model.

The Lagrangian reads
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Figure 9.17: Γa1(1260)→σ1π as function of mσ1
.

La1K⋆K = Aa1K⋆Ka
µ0
1 (K⋆0

µ K̄
0 +K⋆−

µ K+)

+Bµ
a1K⋆Ka

µ0
1 [(∂νK

⋆0
µ − ∂µK⋆0

ν )∂νK̄0 + (∂νK
⋆−
µ − ∂µK⋆−

ν )∂νK+]

+ ∂νaµ01 (K⋆0
ν ∂µK̄

0 −K⋆0
µ ∂νK̄

0 +K⋆−
ν ∂µK

+ −K⋆−
µ ∂νK

+)] + h.c. (9.99)

with the following coefficients:

Aa1K⋆K = − i
4
ZK

[

g21(3φN −
√
2φS) + h2(φN −

√
2φS)− 2h3φN

]

, (9.100)

Ba1K⋆K = − i
2
ZKg2wK1 , (9.101)

Ca1K⋆K = − i
2
ZKg2wK1 . (9.102)

We can now consider results from Sec. 2.6.2 where a generic decay of an axial-vector into a vector

and pseudoscalar was considered. The decay a1 → K̄⋆K is tree-level forbidden because a1 is

below the K⋆K threshold. However, if an off-shell K⋆ state is considered then the ensuing decay

a1 → K̄⋆K → K̄Kπ can be studied. We can therefore use Eq. (2.190) as formula for the decay

width (the isospin factor is I = 4) and integrate over the K⋆ spectral function in Eq. (2.189).

The value of the K⋆ decay width used in the spectral function is given further below, in Eq.

(9.124). We obtain

Γa1→K̄⋆K→K̄Kπ = 1.97 GeV. (9.103)

The decay is strongly enhanced for the same reasons as in the previousy discussed a1(1260)

channels.

9.4.4 Decay Width f1(1285) → K⋆K in Fit I

The f1N ≡ f1(1285) meson is the non-strange axial-vector isosinglet state, i.e., the isospin-zero

partner of the a1(1260) resonance. These two resonances are degenerate in our model [see Eq.

(6.43)] given that the model implements the isospin symmetry exactly.
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There are two decays of the f1(1285) resonance that can be calculated from the U(3) × U(3)

version of our model: a decay involving non-strange states, f1(1285) → a0(980)π, and a decay

into kaons, f1(1285) → K̄⋆K. The former decay width has already been utilised to calculate

the parameter h2 in Fit I, see Chapter 7 and Eq. (8.14); therefore, this decay width corresponds

exactly to the experimental value Γf1(1285)→a0(980)π = 8.748 MeV (see Table 8.5). The latter

decay width is discussed in this section. The PDG actually lists the f1(1285) → K̄⋆K process

as ”not seen” although the three-body decay f1(1285) → K̄Kπ possesses a branching ratio of

(9.0±0.4)%; the full decay width of the resonance is Γf1(1285) = (24.3±1.1) MeV [10]. The stated

three-body decay can, within our model, arise from the sequential decay f1(1285) → K̄⋆K →
K̄Kπ. Therefore, in this section, we discuss implications of the interaction Lagrangian for the

f1(1285)→ K̄⋆K decay.

The f1NK
⋆K interaction Lagrangian from Eq. (6.1) reads

Lf1NK⋆K = Af1NK⋆Kf
µ
1N (K

⋆0
µ K̄

0 +K⋆+
µ K− − K̄⋆0

µ K
0 −K⋆−

µ K+)

+Bf1NK⋆Kf
µ
1N [(∂νK

⋆0
µ − ∂µK⋆0

ν )∂νK̄0 + (∂νK
⋆+
µ − ∂µK⋆+

ν )∂νK−

− (∂νK̄
⋆0
µ − ∂µK̄⋆0

ν )∂νK0 − (∂νK
⋆−
µ − ∂µK⋆−

ν )∂νK+]

+ Cf1NK⋆K∂
νfµ1N (K

⋆0
µ ∂νK̄

0 −K⋆0
ν ∂µK̄

0 +K⋆+
µ ∂νK

− −K⋆+
ν ∂µK

−

− K̄⋆0
µ ∂νK

0 + K̄⋆0
ν ∂µK

0 −K⋆−
µ ∂νK

+ +K⋆−
ν ∂µK

+) (9.104)

with the following coefficients:

Af1NK⋆K =
i

4
ZK

[

g21(3φN −
√
2φS) + h2(φN −

√
2φS)− 2h3φN

]

, (9.105)

Bf1NK⋆K =
i

2
ZKg2wK1 , (9.106)

Cf1NK⋆K = − i
2
ZKg2wK1 . (9.107)

Let us now turn to the decay process f1S → K̄⋆0K0 from Eq. (9.104); other decay processes from

Eq. (9.104) will be considered by an appropriate isospin factor. Let us denote the momenta of

f1N , K̄
⋆0
µ andK0 as P , P1 and P2. The decay process involves two vector states: f1N andK⋆. We

therefore have to consider the corresponding polarisation vectors labelled as ε
(α)
µ (P ) for f1N and

ε
(β)
ν (P1) forK

⋆. Then, upon substituting ∂µ → −iPµ for the decaying particle and ∂µ → iPµ1,2 for

the decay products, we obtain the following Lorentz-invariant f1NK̄
⋆0K0 scattering amplitude

−iM(α,β)

f1N→K̄⋆0K0 :

−iM(α,β)

f1N→K̄⋆0K0 = ε(α)µ (P )ε(β)ν (P1)h
µν
f1N K̄⋆0K0 = iε(α)µ (P )ε(β)ν (P1)

× {Af1NK⋆Kg
µν + [Bf1NK⋆K(Pµ1 P

ν
2 − (P1 · P2)g

µν ]

+Cf1NK⋆K [(P · P2)g
µν − Pµ2 P ν ]} (9.108)

with

hµν
f1N K̄⋆0K0 = i {Af1NK⋆Kg

µν + [Bf1NK⋆K(P
µ
1 P

ν
2 − (P1 · P2)g

µν ]

+Cf1NK⋆K [(P · P2)g
µν − Pµ2 P ν ]} , (9.109)
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where hµν
f1N K̄⋆0K0 denotes the f1NK̄

⋆0K0 vertex. We observe that the form of the vertex in

Eq. (9.109) is analogous to that of the a1ρπ vertex of Eq. (5.88). Therefore we can use the

formulas for the a1(1260) → ρπ decay amplitude and decay width to calculate Γf1S→K̄⋆K (nat-

urally, upon substitution of corresponding coefficients: Aa1ρπ → Af1NK⋆K , Ba1ρπ → Bf1NK⋆K ,

Ca1ρπ → −Cf1NK⋆K); an isospin factor of four has to be considered to account for the decays

f1N → K̄⋆0K0, K̄0K⋆0, K⋆+K− and K⋆−K+. Note that all parameters entering the coefficients

Af1NK⋆K , Bf1NK⋆K and Cf1NK⋆K in Eqs. (9.105) - (9.107) are known from Table 8.4; mass values

can be found in Table 8.5.

The decay f1N → K̄⋆K is actually tree-level forbidden if one considers the physical masses

of the three resonances concerned: mexp
f1(1285)

= (1281.8 ± 0.6) MeV < mexp
K⋆+ mexp

K because

mexp
K⋆ = (891.66 ± 0.26) MeV and mexp

K = (493.677 ± 0.016) MeV. However, our Fit I yields

ma1 = 1396 MeV and given that (due to the isospin invariance of our model) mf1N = ma1 , then

the tree-level decay f1N → K̄⋆K is nonetheless kinematically allowed. The problem is that the

value of the parameter g2 = −11.2 possesses a rather large modulus that with all other parameter

values leads to

Γf1N→K̄⋆K = 2.15 GeV. (9.110)

A similar problem was present in Sec. 9.4.1; let us again try to remedy the issue by varying

Γρ→ππ to decrease g2.
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Figure 9.18: Γf1N≡f1(1285)→K̄⋆K as function of Γρ→ππ .

As apparent from Fig. 9.18, obtaining reasonable values of Γf1N→K̄⋆K (expected to be≤ (2.2±0.1)
MeV from the PDG branching ratio for f1(1285) → K̄Kπ stated at the beginning of this section)

would require Γρ→ππ ≃ 20 MeV, clearly at odds with experiment [10]. Note that the same

holds if one integrates over the spectral function of the K⋆ meson (as in Sec. 2.6.2): we obtain

Γf1N→K̄⋆K→K̄Kπ = 1.98 GeV and, again, Γρ→ππ
!∼ 20 MeV for Γf1N→K̄⋆K→K̄Kπ < 2 MeV to

be true. Thus Fit I yields kaon decay widths of the f1(1285) resonance that are three orders of

magnitude larger than suggested by experimental data.
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9.4.5 Decay Width K⋆
→ Kπ in Fit I

In this section we describe the phenomenology of the vector kaon K⋆, the strange counterpart of

the ρ state present in our model. Our K⋆ state is assigned to K⋆(892). This resonance decays

to ≃ 100% into Kπ [10].

The K⋆0Kπ interaction Lagrangian from Eq. (6.1) reads

LK⋆Kπ = AK⋆KπK
⋆0
µ (π0∂µK̄0 −

√
2π+∂µK−) +BK⋆KπK

⋆0
µ (K̄0∂µπ0 −

√
2K−∂µπ+)

+ CK⋆Kπ∂νK
⋆0
µ (∂µK̄0∂νπ0 −

√
2∂µK−∂νπ+)

+ C∗
K⋆Kπ∂νK

⋆0
µ (∂µπ0∂νK̄0 −

√
2∂µπ+∂νK−)

+A∗
K⋆KπK̄

⋆0
µ (π0∂µK0 −

√
2π−∂µK+) +B∗

K⋆KπK̄
⋆0
µ (K0∂µπ0 −

√
2K+∂µπ−)

+ C∗
K⋆Kπ∂νK̄

⋆0
µ (∂µK0∂νπ0 −

√
2∂µK+∂νπ−)

+ CK⋆Kπ∂νK̄
⋆0
µ (∂µπ0∂νK0 −

√
2∂µπ−∂νK+) (9.111)

with the following coefficients:

AK⋆Kπ =
i

2
ZπZK

[

g1(
√
2g1wK1φS − 1)−

√
2h3wK1φS

]

, (9.112)

BK⋆Kπ =
i

4
ZπZK

[

2g1 + wa1(−3g21 − h2 + 2h3)φN +
√
2wa1(g

2
1 + h2)φS

]

, (9.113)

CK⋆Kπ =
i

2
ZπZKwa1wK1g2. (9.114)

The interaction Lagrangian containing K⋆± is analogous to the Lagrangian presented in Eq.

(9.111). Note that the Lagrangian in Eq. (9.111) contains not only the parameter combinations

AK⋆Kπ, BK⋆Kπ and CK⋆Kπ but also their complex conjugates. This is necessary to ascertain that

the Lagrangian is hermitian; indeed we obtain L†K⋆Kπ = LK⋆Kπ upon substituting AK⋆Kπ →
A∗
K⋆Kπ, BK⋆Kπ → B∗

K⋆Kπ, CK⋆Kπ → C∗
K⋆Kπ, K

⋆0
µ → K̄⋆0

µ , K0 → K̄0, K+ → K−, π+ → π−. In
the following we will focus only on the decay K⋆0 → Kπ; the corresponding decay of K̄⋆0 yields

the same result due to isospin symmetry (as do the corresponding K⋆± decays).

The calculation of ΓK⋆0→Kπ requires knowledge of decay widths in two distinct channels: K⋆0 →
K0π0 and K⋆0 → K+π−. (Note the changed charges for the decay products, as in Sec. 9.3). As

apparent from Eq. (9.111), these differ by a factor of two: ΓK⋆0→K+π− = 2ΓK⋆0→K0π0 . Then

ΓK⋆0→Kπ = 3ΓK⋆0→K0π0 . Let us therefore calculate the decay width for the processK⋆0 → K0π0.

We denote the momenta of K⋆, π and K as P , P1 and P2, respectively. K
⋆
µ is a vector state for

which we have to consider the polarisation vector ε
(α)
µ (P ). Then, upon substituting ∂µ → −iPµ

for the decaying particle and ∂µ → iPµ1,2 for the decay products, we obtain the following Lorentz-

invariant K⋆Kπ scattering amplitude −iM(α)
K⋆0→K0π0 from the Lagrangian (9.111):

−iM(α)
K⋆0→K0π0 = ε(α)µ (P )hµK⋆Kπ = −ε(α)µ (P ) {AK⋆KπP

µ
2 +BK⋆KπP

µ
1 + CK⋆Kπ[P

µ
2 (P · P1)

− Pµ1 (P · P2)]} (9.115)

with

hµK⋆Kπ = −{AK⋆KπP
µ
2 +BK⋆KπP

µ
1 + CK⋆Kπ[P

µ
2 (P · P1)− Pµ1 (P · P2)]} , (9.116)
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where hµK⋆Kπ denotes the K⋆Kπ vertex.

It will be necessary to determine the square of the scattering amplitude in order to calculate the

decay width. Given that the scattering amplitude in Eq. (9.115) depends on the polarisation

vector ε
(α)
µ (P ), it is necessary to calculate the average of the amplitude for all values of ε

(α)
µ (P ).

This has already been performed in Sec. 5.2.1 for the decay ρ → ππ; we can calculate | −
iM̄K⋆0→K0π0 |2 in accordance with Eq. (5.37). We first calculate the squared vertex (hµK⋆Kπ)

2

using Eq. (9.115):

(hµK⋆Kπ)
2 = A2

K⋆Kπm
2
K +B2

K⋆Kπm
2
π + C2

K⋆Kπ[P
µ
2 (P · P1)− Pµ1 (P · P2)]

2

+ 2AK⋆KπBK⋆KπP1 · P2 + 2AK⋆KπCK⋆Kπ[P · P1m
2
K − (P1 · P2)(P · P2)]

+ 2BK⋆KπCK⋆Kπ[(P1 · P2)(P · P1)− P · P2m
2
π]. (9.117)

Additionally, again from Eq. (9.115):

(h0K⋆Kπ)
2 = A2

K⋆KπE
2
K +B2

K⋆KπE
2
π + C2

K⋆Kπ[EK(P · P1)− Eπ(P · P2)]
2

+ 2AK⋆KπBK⋆KπEπEK + 2AK⋆KπCK⋆Kπ[(P · P1)E
2
K − EπEK(P · P2)]

+ 2BK⋆KπCK⋆Kπ[EπEK(P · P1)− (P · P2)E
2
π]. (9.118)

From Eqs. (5.37), (9.117) and (9.118) we obtain

| − iM̄K⋆0→K0π0 |2 = 1

3
{(A2

K⋆Kπ +B2
K⋆Kπ)k

2(mK⋆ ,mK ,mπ)

+ C2
K⋆Kπ{k2(mK⋆ ,mK ,mπ)[(P · P1)

2 + (P · P2)
2]

− 2(P · P1)(P · P2)(EπEK − P1 · P2)}
+ 2AK⋆KπBK⋆Kπ(EπEK − P1 · P2)

+ 2AK⋆KπCK⋆Kπ[k
2(mK⋆ ,mK ,mπ)P · P1 − (P · P2)(EπEK − P1 · P2)]

+ 2BK⋆KπCK⋆Kπ[(P · P1)(EπEK − P1 · P2)− k2(mK⋆ ,mK ,mπ)(P · P2)]}

=
1

3

{

{A2
K⋆Kπ +B2

K⋆Kπ + C2
K⋆Kπ[(P · P1)

2 + (P · P2)
2]

+2CK⋆Kπ[AK⋆Kπ(P · P1)−BK⋆Kπ(P · P2)]}k2(mK⋆,mK ,mπ)

+2{AK⋆KπBK⋆Kπ − C2
K⋆Kπ(P · P1)(P · P2) + CK⋆Kπ(BK⋆KπP · P1

−AK⋆KπP · P2)}(EπEK − P1 · P2)} . (9.119)

Note that Eq. (9.119) can also be written in a slightly different, but equivalent, manner. To this

end, note that the vertex hµK⋆Kπ from Eq. (9.116) can be transformed as

hµK⋆Kπ = −[AK⋆KπP
µ
2 +BK⋆KπP

µ
1 + CK⋆Kπ(mK⋆EπP

µ
2 −mK⋆EKP

µ
1 )]

= −(BK⋆Kπ − CK⋆KπmK⋆EK)P
µ
1 − (AK⋆Kπ + CK⋆KπmK⋆Eπ)P

µ
2 . (9.120)

Inserting Eq. (9.120) into Eq. (5.37) yields
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| − iM̄K⋆0→K0π0 |2 = 1

3
{−[(BK⋆Kπ − CK⋆KπmK⋆EK)P

µ
1 + (AK⋆Kπ + CK⋆KπmK⋆Eπ)P

µ
2 ]

2

+
1

m2
K⋆

[(BK⋆Kπ − CK⋆KπmK⋆EK)P1µP
µ

+ (AK⋆Kπ + CK⋆KπmK⋆Eπ)P2µP
µ]2}. (9.121)

Using P1 · P = mK⋆Eπ and P2 · P = mK⋆EK we obtain from Eq. (9.121)

| − iM̄K⋆0→K0π0 |2 = 1

3
[(BK⋆Kπ − CK⋆KπmK⋆EK)

2 + (AK⋆Kπ + CK⋆KπmK⋆Eπ)
2

− 2(AK⋆Kπ + CK⋆KπmK⋆Eπ)(BK⋆Kπ − CK⋆KπmK⋆EK)]k
2(mK⋆ ,mK ,mπ)

=
1

3
[AK⋆Kπ −BK⋆Kπ + CK⋆KπmK⋆(Eπ + EK)]

2k2(mK⋆,mK ,mπ)

=
1

3
(AK⋆Kπ −BK⋆Kπ + CK⋆Kπm

2
K⋆)2k2(mK⋆,mK ,mπ). (9.122)

Using Eq. (9.122) – or, equivalently, Eq. (9.119) – we obtain the following formula for ΓK⋆0→K0π0 :

ΓK⋆0→Kπ = 3
k(mK⋆ ,mK ,mπ)

8πm2
K⋆

| − iM̄K⋆0→K0π0 |2, (9.123)

where we have used the already discussed equality ΓK⋆0→Kπ = 3ΓK⋆0→K0π0 .

Note that all parameters entering Eq. (9.123), i.e., Eqs. (9.112) - (9.114) and (9.122), have been

determined uniquely from our Fit I, see Table 8.4. Therefore we can calculate the value of the

decay width immediately and obtain

ΓK⋆0→Kπ = 32.8 MeV. (9.124)

The experimental value reads Γexp
K⋆0→Kπ

= 46.2 MeV [10]. Therefore, the value obtained within

Fit I is by approximately 13 MeV (or 30%) too small.

9.4.6 Decay Width f1(1420) → K⋆K in Fit I

The f1(1420) ≡ f1S resonance represents a sharp peak in the K⋆K channel with a mass of

mexp
f1(1420)

= (1426.4 ± 0.9) MeV and width Γexp
f1(1420)

= (54.9 ± 2.6) MeV [10]. (There are also

other decay channels for this resonance but they are subdominant.) As discussed in Chapter 8,

Fit I yields a rather large value of mf1(1420) = 1643.4 MeV, see Table 8.5. In this section we

address the question whether a value of Γf1(1420) close to the experimental value Γexp
f1(1420)

can be

obtained, thus improving the f1(1420) phenomenology in Fit I.

The f1SK
⋆K interaction Lagrangian from Eq. (6.1) reads

Lf1SK⋆K = Af1SK⋆Kf
µ
1S(K

⋆0
µ K̄

0 +K⋆+
µ K− − K̄⋆0

µ K
0 −K⋆−

µ K+)

+Bf1SK⋆Kf
µ
1S [(∂νK

⋆0
µ − ∂µK⋆0

ν )∂νK̄0 + (∂νK
⋆+
µ − ∂µK⋆+

ν )∂νK−

− (∂νK̄
⋆0
µ − ∂µK̄⋆0

ν )∂νK0 − (∂νK
⋆−
µ − ∂µK⋆−

ν )∂νK+]

+ Cf1SK⋆K∂
νfµ1S(K

⋆0
µ ∂νK̄

0 −K⋆0
ν ∂µK̄

0 +K⋆+
µ ∂νK

− −K⋆+
ν ∂µK

−

− K̄⋆0
µ ∂νK

0 + K̄⋆0
ν ∂µK

0 −K⋆−
µ ∂νK

+ +K⋆−
ν ∂µK

+) (9.125)
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with

Af1SK⋆K =
i

4
ZK

[

g21(
√
2φN − 6φS) +

√
2h2(φN −

√
2φS) + 4h3φS

]

, (9.126)

Bf1SK⋆K = − i√
2
ZKg2wK1 , (9.127)

Cf1SK⋆K =
i√
2
ZKg2wK1 . (9.128)

The Lagrangian (9.125) allows us to calculate the decay width for the process f1S → K̄⋆0K0.

Let us denote the momenta of f1S, K̄
⋆0
µ and K0 as P , P1 and P2. Two vector states are involved

in the decay process: f1S and K⋆
µ. As in Sec. 9.4.4, we consider the corresponding polarisation

vectors labelled as ε
(α)
µ (P ) for f1S and ε

(β)
ν (P1) for K⋆

µ. Then substituting ∂µ → −iPµ the for

decaying particle and ∂µ → iPµ1,2 for the decay products, we obtain the following f1SK̄
⋆0K0

scattering amplitude −iM(α,β)

f1S→K̄⋆0K0 from the Lagrangian (9.125):

−iM(α,β)

f1S→K̄⋆0K0 = ε(α)µ (P )ε(β)ν (P1)h
µν
f1SK̄⋆0K0 = iε(α)µ (P )ε(β)ν (P1)

× {Af1SK⋆Kg
µν + [Bf1SK⋆K(P

µ
1 P

ν
2 − (P1 · P2)g

µν ]

+Cf1SK⋆K [(P · P2)g
µν − Pµ2 P ν ]} (9.129)

with

hµν
f1SK̄⋆0K0 = i {Af1SK⋆Kg

µν + [Bf1SK⋆K(Pµ1 P
ν
2 − (P1 · P2)g

µν ]

+Cf1SK⋆K [(P · P2)g
µν − Pµ2 P ν ]} , (9.130)

where hµ
f1SK̄⋆0K0 denotes the f1SK̄

⋆0K0 vertex. The vertex in Eq. (9.130) is analogous to the

a1ρπ vertex of Eq. (5.88). Therefore we can use the formulas for the a1(1260) → ρπ decay

amplitude and decay width to calculate Γf1S→K̄⋆K . The corresponding coefficients in the two

vertices have to be substituted: Aa1ρπ → Af1SK⋆K , Ba1ρπ → Bf1SK⋆K , Ca1ρπ → −Cf1SK⋆K and

an isospin factor of four has to be considered to account for the decays f1S → K̄⋆0K0, K̄0K⋆0,

K⋆+K− and K⋆−K+. However, as in Sec. 9.4.4, the large modulus of the parameter g2 = −11.2
(see Table 8.4) leads to

Γf1S→K̄⋆K = 17.6 GeV. (9.131)

This value is in stark contrast to the one reported by the PDG: Γexp
f1(1420)

= (54.9 ± 2.6) MeV.

Therefore Fit I, where the scalar meson states are assumed to be under 1 GeV, yields a very

poor phenomenology of the strange axial-vector isosinglet: mf1(1420) = 1643.4 MeV is by ap-

proximately 200 MeV too large and Γf1S→K̄⋆K = 17.6 GeV is unphysical (as it is two orders of

magnitude too large). Note that we have obtained similarly large values of Γa1(1260)→ρπ ≈ 13

GeV in Sec. 9.4.1 and of Γf1N→K̄⋆K ≈ 2 GeV in Sec. 9.4.4, again due to the large value of g2.

Analogously to considerations in the mentioned sections, let us vary Γρ→ππ to examine the

corresponding change of Γf1S→K̄⋆K , as Γρ→ππ determines g2 uniquely.

We observe from Fig. 9.19 that Γf1S→K̄⋆K corresponds to Γexp
f1(1420)

= (54.9 ± 2.6) MeV only if

Γρ→ππ ∼ 30 MeV. Thus we would require Γρ→ππ that is approximately 120 MeV smaller than

162



40 60 80 100 120 140
G Ρ®ΠΠHMeVL

5000

10 000

15 000

G
f1 S®K

÷

K
HMeVL

Figure 9.19: Γf1S≡f1(1420)→K̄⋆K as function of Γρ→ππ.

Γexp
ρ→ππ. Consequently, there is tension between Γf1S→K̄⋆K and Γρ→ππ as it is not possible to

obtain physical values simultaneously for both decay widths. This problem is analogous to the

one described in Sec. 9.4.1 for Γa1(1260)→ρπ and in Sec. 9.4.4 for Γf1N→K̄⋆K and represents an

additional difficulty for Fit I.

9.4.7 K1 Decays in Fit I

We have seen at the end of Chapter 8 that Fit I yields mK1 = 1520 MeV, a value that is

significantly larger than the mass of the resonance K1(1270) to which our K1 state was assigned

in Sec. 6.2. For this reason, we have reassigned our K1 state to K1(1400) because the mass of

this resonance [mK1(1400) = (1403 ± 7) MeV] corresponds better to the value of mK1 obtained

from our Fit I. In this section we discuss whether it is possible to obtain a correct value for the

decay width of the K1 field [the experimental result reads ΓK1(1400) = (174 ± 13) MeV]. To this

end, we will consider all hadronic decays of K1(1400) that can be calculated within our model:

K1(1400) → K⋆π, ρK and ωK.

We present the relevant interaction Lagrangians in a single equation:

LK1 = AK1K⋆πK
µ0
1

(

K̄⋆0
µ π

0 −
√
2K⋆−

µ π+
)

+BK1K⋆π

{

Kµ0
1

[

(

∂νK̄
⋆0
µ − ∂µK̄⋆0

ν

)

∂νπ0 −
√
2
(

∂νK
⋆−
µ − ∂µK⋆−

ν

)

∂νπ+
]

+∂νKµ0
1

[

(

K̄⋆0
ν ∂µπ

0 − K̄⋆0
µ ∂νπ

0
)

−
√
2
(

K⋆−
ν ∂µπ

+ −K⋆−
µ ∂νπ

+
)

]}

+AK1ρKK
µ0
1

(

ρ0µK̄
0 −
√
2ρ+µK

−
)

+BK1ρK

{

Kµ0
1

[

(

∂νρ
0
µ − ∂µρ0ν

)

∂νK̄0 −
√
2
(

∂νρ
+
µ − ∂µρ+ν

)

∂νK−
]

+∂νKµ0
1

[

(

ρ0ν∂µK̄
0 − ρ0µ∂νK̄0

)

−
√
2
(

ρ+ν ∂µK
− − ρ+µ ∂νK−)

]}

+AK1ωNKK
µ0
1 ωNµK̄

0 +BK1ωNK

[

Kµ0
1 (∂νωNµ − ∂µωNν) ∂νK̄0

+∂νKµ0
1

(

ωNν∂µK̄
0 − ωNµ∂νK̄0

)

]

(9.132)
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with

AK1K⋆π =
i√
2
Zπ(h3 − g21)φS , (9.133)

BK1K⋆π = − i
2
Zπg2wa1 , (9.134)

AK1ρK =
i

4
ZK

[

g21(φN +
√
2φS)− h2(φN −

√
2φS)− 2h3φN

]

, (9.135)

BK1ρK =
i

2
ZKg2wK1 , (9.136)

AK1ωNK = − i
4
ZK [g21(φN +

√
2φS)− h2(φN −

√
2φS)− 2h3φN ], (9.137)

BK1ωNK = − i
2
ZKg2wK1 . (9.138)

We observe from Eq. (9.132) that the interaction Lagrangians for the decay processes K0
1 →

K⋆0π0, K0
1 → ρ0K0 and K0

1 → ωNK
0 possess the same form:

LK1 = AK1K
µ0
1 V 0

µ P̄
0

+BK1

[

Kµ0
1

(

∂νV
0
µ − ∂µV 0

ν

)

∂ν P̄ 0 + ∂νKµ0
1

(

V 0
ν ∂µP̄

0 − V 0
µ ∂νP̄

0
)

]

, (9.139)

where AK1 = {AK1K⋆π, AK1ρK , AK1ωNK}, BK1 = {BK1K⋆π, BK1ρK , BK1ωNK}, Vµ = {K̄⋆
µ, ρµ,

ωNµ} and P̄ = {π, K̄}. Let us therefore consider a generic decay process of the form K1 →
V 0P̄ 0 [if applicable, the contribution of the decays into charged modes to the full decay width

will be larger by a factor of two than the contribution of the neutral modes, see Eq. (9.132)].

To this end, we denote the momenta of K1, V and P̄ as P , P1 and P2, respectively. The stated

decay process involves two vector states: K1 and V . As in Sec. 2.6.2, we have to consider

the corresponding polarisation vectors; let us denote them as ε
(α)
µ (P ) for K1 and ε

(β)
ν (P1) for

V . Consequently, upon substituting ∂µ → −iPµ for the decaying particle and ∂µ → iPµ1,2
for the decay products, we obtain the following Lorentz-invariant K1V P̄ scattering amplitude

−iM(α,β)

K1→V 0P̄ 0 :

−iM(α,β)

K1→V 0P̄ 0 = ε(α)µ (P )ε(β)ν (P1)h
µν
K1V P̄

= iε(α)µ (P )ε(β)ν (P1)

×AK1g
µν +BK1 [P

µ
1 P

ν
2 + Pµ2 P

ν − (P1 · P2)g
µν − (P · P2)g

µν ] (9.140)

with

hµν
K1V P̄

= i {AK1g
µν +BK1 [P

µ
1 P

ν
2 + Pµ2 P

ν − (P1 · P2)g
µν − (P · P2)g

µν ]} , (9.141)

where hµν
K1V P̄

denotes the K1V P̄ vertex.

The vertex of Eq. (9.141) corresponds to the vertex of Eq. (2.183). We can therefore utilise the

decay width formula derived in Sec. 2.6.2 for a generic decay of an axial-vector state into a vector

and a pseudoscalar state. Setting AAV P̃ ≡ AK1 and BAV P̃ ≡ BK1 in the Lagrangian (2.181) we

obtain from Eq. (2.188)

ΓK1→V P̄ = I
k(mK1 ,mV ,mP̄ )

8πm2
K1

| − iM̄K1→V 0P̄ 0 |2 (9.142)
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Figure 9.20: ΓK1→K⋆π as function of Γρ→ππ .

with the isospin factor I = 3 for K1 → K⋆π and K1 → ρK and I = 1 for K1 → ωK – as

apparent from Eq. (9.132), the decay width into charged modes (if applicable) will be larger by

a factor of two than the decay width into neutral modes.

We turn now to the discussion of results for the three decays in Eq. (9.132).

Decay Width K1 → K⋆π

In this case we set V 0 ≡ K⋆ and P̄ ≡π in Eq. (9.142). Given that all parameters entering Eqs.

(9.133) and (9.134) are known from Table 8.4, we consequently obtain the following value of the

decay width

ΓK1→K⋆π = 6.73 GeV. (9.143)

This decay width suffers from the same issues as the decay widths in Sections 9.4.1, 9.4.4 and

9.4.6: if we vary Γρ→ππ to ascertain whether ΓK1→K⋆π can be sufficiently decreased, then the

dependence in Fig. 9.20 is obtained. It is apparent from Fig. 9.20 that Γρ→ππ would have to be

decreased by approximately 120 MeV for ΓK1(1400)→K⋆π = (164 ± 16) MeV [10] to be obtained.

The value in Eq. (9.143) is thus by an order of magnitude too large.

Decay Width K1 → ρK

As in the case of ΓK1→K⋆π, we use the parameter values from Table 8.4 to calculate the coefficients

in Eqs. (9.135) and (9.136). Again, there is no freedom to adjust parameters as they are uniquely

determined from the fit. We obtain from Eq. (9.142)

ΓK1→ρK = 4.77 GeV. (9.144)

This value is of the same order of magnitude as the one in Eq. (9.143), and equally unphysical.

Additionally, the value in Eq. (9.144) cannot be sufficiently decreased to ΓK1(1400)→ρK = (2.1 ±
1.1) MeV [10] unless Γρ→ππ ≃ 25 MeV, see Fig. 9.21. The value of Eq. (9.144) is thus by three

orders of magnitude too large.
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Figure 9.21: ΓK1→ρK as function of Γρ→ππ.

Decay Width K1 → ωNK

Similarly to the previous two K1 decays, we obtain from Eqs. (9.137), (9.138) and (9.142) and

Table 8.4:

ΓK1→ωNK = 1.59 GeV. (9.145)

This value is also dramatically larger than the physical value ΓK1(1400)→ωK = (1.7 ± 1.7) MeV

[10]. The large value of ΓK1→ωNK is decreased to the physical value of the K1(1400) decay width

in this channel only if Γρ→ππ ≃ 25 MeV is considered, see Fig. 9.22. The value of Eq. (9.145) is

thus by three orders of magnitude too large.
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Figure 9.22: ΓK1→ωNK as function of Γρ→ππ .

The K1 phenomenology is therefore very poorly described in Fit I. Combined results of Eqs.

(9.143), (9.144) and (9.145) suggest that the full decay width of the K1(1400) resonance should

be ∼ 10 GeV, two orders of magnitude larger than the experimental value ΓK1(1400) = (174±13)

MeV [10]. Such a resonance would then not be observable in the physical spectrum. These

results are consequently another indication that the fit with the scalar states below 1 GeV is not
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favoured.

Let us also note that the stated results for the decay widths ΓK1→K⋆π, ΓK1→ρK and ΓK1→ωK

would all require similar values of Γρ→ππ ∼ (25−30) MeV. This in turn implies that g2 ∼ 14 would

be needed for the K1(1400) decays to be described properly, see Fig. 9.23. On the other hand,

g2 = −11.2 used throughout this chapter is obtained under the condition that Γρ→ππ = 149.1

MeV = Γexp
ρ→ππ. We thus have g2 with the needed modulus, but the sign of g2 leads to the

mentioned bad results regarding the K1(1400) decay width.
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Figure 9.23: Parameter g2 as function of Γρ→ππ.

Let us nonetheless consider ππ scattering lengths as well, just as in Scenario I of the U(2)×U(2)

version of the model.

9.5 Pion-Pion Scattering Lengths

In this section we calculate the ππ scattering lengths at threshold, analogously to the calculation

already performed in the two-flavour version of the model (see Sec. 5.2.8). The main difference to

the calculation in the two-flavour case lies in the fact that now the inclusion of an additional (pure

strange) scalar isosinglet σS generates an additional mixed (and predominantly strange) scalar

isosinglet field (σ2) that in principle also influences the ππ scattering. Note that an explicit

calculation of the ππ scattering terms yields no further contributing terms other than those

already mentioned here and in Sec. 5.2.8 – i.e., ”pure” ππ scattering (contact scattering) and

scattering via virtual σ and ρ mesons. The former are represented only by σN in the two-flavour

version of the model and by σ1,2 in the current version of the model. Therefore, we have to

modify the ππ scattering amplitude to include the contribution from the additional scalar field.

This is implemented by considering the σππ Lagrangian Lσππ, Eq. (9.27), and substituting the

pure fields σN,S by the mixed fields σ1,2. To this end, let us rewrite Lσππ in the following way:

Lσππ = (AσNππ cosϕσ +AσSππ sinϕσ)σ1π
2 +BσNππ cosϕσσ1(∂µπ)

2 + CσNππ cosϕσσ1π ·�π

+ (−AσNππ sinϕσ +AσSππ cosϕσ)σ2π
2 −BσNππ sinϕσσ2(∂µπ)2 − CσNππ sinϕσσ2π ·�π

(9.146)

167



with AσNππ, BσNππ, CσNππ and AσSππ from Eqs. (9.28) - (9.31); for simplicity, we have also

made use of BσSππ ∼ h1 = 0, Eq. (9.32).

Then we obtain the following contribution from the the ππσ vertex to the scattering amplitude

Mππ (the calculation is analogous to the one described in Ref. [220]):

Mππ(s, t, u) ∼ −i δabδcd[−2m2
πCσNππ cosϕσ +BσNππ cosϕσ(2m

2
π − s) + 2(AσNππ cosϕσ

+AσSππ sinϕσ)]
2 1

s−m2
σ1

− i δacδbd [−2m2
πCσNππ cosϕσ +BσNππ cosϕσ(2m

2
π − t) + 2(AσNππ cosϕσ

+AσSππ sinϕσ)]
2 1

t−m2
σ1

− i δadδbc[−2m2
πCσNππ cosϕσ +BσNππ cosϕσ(2m

2
π − u) + 2(AσNππ cosϕσ

+AσSππ sinϕσ)]
2 1

u−m2
σ1

− i δabδcd[2m2
πCσNππ sinϕσ −BσNππ sinϕσ(2m2

π − s) + 2(AσSππ cosϕσ

−AσNππ sinϕσ)]2
1

s−m2
σ2

− i δacδbd [2m2
πCσNππ sinϕσ −BσNππ sinϕσ(2m2

π − t) + 2(AσSππ cosϕσ

−AσNππ sinϕσ)]2
1

t−m2
σ2

− i δadδbc[2m2
πCσNππ sinϕσ −BσNππ sinϕσ(2m2

π − u) + 2(AσSππ cosϕσ

−AσNππ sinϕσ)]2
1

u−m2
σ2

. (9.147)

Let us now rewrite the ππ scattering amplitude of Eqs. (5.97) in the following way [we substitute

Aρππ and Bρππ present in Eqs. (5.98) - (5.100) by terms in Eqs. (5.31) and (5.32)]:

Mππ(s, t, u) = iδabδcd
{

(g21 − h3)Z4
πw

2
a1s− 2

(

λ1 +
λ2
2

)

Z4
π − (h1 + h2 + h3)Z

4
πw

2
a1(s− 2m2

π)

−[−2m2
πCσNππ cosϕσ +BσNππ cosϕσ(2m

2
π − s) + 2(AσNππ cosϕσ

+AσSππ sinϕσ)]
2 1

s−m2
σ1

− [2m2
πCσNππ sinϕσ −BσNππ sinϕσ(2m2

π − s) + 2(AσSππ cosϕσ

−AσNππ sinϕσ)]2
1

s−m2
σ2

+Z4
π

[

g1(1− g1wa1φN ) + h3wa1φN − g2w2
a1

t

2

]2 u− s
t−m2

ρ

+Z4
π

[

g1(1− g1wa1φN ) + h3wa1φN − g2w2
a1

u

2

]2 t− s
u−m2

ρ

}

+ iδacδbd
{

(g21 − h3)Z4
πw

2
a1t− 2

(

λ1 +
λ2
2

)

Z4
π − (h1 + h2 + h3)Z

4
πw

2
a1(t− 2m2

π)
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−[−2m2
πCσNππ cosϕσ +BσNππ cosϕσ(2m

2
π − t) + 2(AσNππ cosϕσ

+AσSππ sinϕσ)]
2 1

t−m2
σ1

− [2m2
πCσNππ sinϕσ −BσNππ sinϕσ(2m2

π − t) + 2(AσSππ cosϕσ

−AσNππ sinϕσ)]2
1

t−m2
σ2

+Z4
π

[

g1(1− g1wa1φN ) + h3wa1φN − g2w2
a1

s

2

]2 u− t
s−m2

ρ

+Z4
π

[

g1(1− g1wa1φN ) + h3wa1φN − g2w2
a1

u

2

]2 s− t
u−m2

ρ

}

+ i δadδbc
{

(g21 − h3)Z4
πw

2
a1u− 2

(

λ1 +
λ2
2

)

Z4
π − (h1 + h2 + h3)Z

4
πw

2
a1(u− 2m2

π)

−[−2m2
πCσNππ cosϕσ +BσNππ cosϕσ(2m

2
π − u) + 2(AσNππ cosϕσ

+AσSππ sinϕσ)]
2 1

u−m2
σ1

− [2m2
πCσNππ sinϕσ −BσNππ sinϕσ(2m2

π − u) + 2(AσSππ cosϕσ

−AσNππ sinϕσ)]2
1

u−m2
σ2

+Z4
π

[

g1(1− g1wa1φN ) + h3wa1φN − g2w2
a1

s

2

]2 t− u
s−m2

ρ

+Z4
π

[

g1(1− g1wa1φN ) + h3wa1φN − g2w2
a1

t

2

]2 s− u
t−m2

ρ

}

≡ iδabδcdA(s, t, u) + iδacδbdA(t, u, s) + i δadδbcA(u, s, t). (9.148)

We can now consider the three components of the scattering amplitude at threshold.

A(s, t, u)|s=4m2
π
= 4(g21 − h3)Z4

πw
2
a1m

2
π − 2

(

λ1 +
λ2
2

)

Z4
π − 2(h1 + h2 + h3)Z

4
πw

2
a1m

2
π

− 4[(BσNππ + CσNππ)m
2
π cosϕσ − (AσNππ cosϕσ +AσSππ sinϕσ)]

2 1

4m2
π −m2

σ1

− 4[(BσNππ + CσNππ)m
2
π sinϕσ + (AσSππ cosϕσ −AσNππ sinϕσ)]2

1

4m2
π −m2

σ2

+ 8[g1Z
2
π(1− g1wa1φN ) + h3Z

2
πwa1φN ]

2m
2
π

m2
ρ

. (9.149)

Using Eq. (6.30) we can transform the last line of Eq. (9.149) in the following way:

1− g1wa1φN = 1− g21φ
2
N

m2
a1

=
m2
a1 − g21φ2N
m2
a1

Eq. (6.48)
=

1

Z2
π

⇒ g1Z
2
π(1− g1wa1φN ) + h3Z

2
πwa1φN = g1 + h3Z

2
π

g1φ
2
N

m2
a1

Eq. (6.58)
= g1

[

1 +
1

m2
a1

(

m2
ρ −

m2
a1

Z2
π

)

Z2
π

]

= g1Z
2
π

m2
ρ

m2
a1

(9.150)

169



and thus we obtain

A(s, t, u)|s=4m2
π
= 4(g21 − h3)Z4

πw
2
a1m

2
π − 2

(

λ1 +
λ2
2

)

Z4
π − 2(h1 + h2 + h3)Z

4
πw

2
a1m

2
π

− 4[(BσNππ + CσNππ)m
2
π cosϕσ − (AσNππ cosϕσ +AσSππ sinϕσ)]

2 1

4m2
π −m2

σ1

− 4[(BσNππ + CσNππ)m
2
π sinϕσ + (AσSππ cosϕσ −AσNππ sinϕσ)]2

1

4m2
π −m2

σ2

+ 8g21Z
4
π

m2
πm

2
ρ

m4
a1

. (9.151)

We also obtain

A(t, u, s)|s=4m2
π
= −2

(

λ1 +
λ2
2

)

Z4
π + 2(h1 + h2 + h3)Z

4
πw

2
a1m

2
π − 4g21Z

4
π

m2
πm

2
ρ

m4
a1

+ 4[(BσNππ − CσNππ)m2
π cosϕσ + (AσNππ cosϕσ +AσSππ sinϕσ)]

2 1

m2
σ1

+ 4[(CσNππ −BσNππ)m2
π sinϕσ + (AσSππ cosϕσ −AσNππ sinϕσ)]2

1

m2
σ2

(9.152)

and

A(u, s, t)|s=4m2
π
= A(t, u, s)|s=4m2

π
. (9.153)

We can now calculate the scattering lengths. We already know from Sec. 5.2.8 that

T 0|s=4m2
π
≡ 32πa00|s=4m2

π
= 3A(s, t, u)|s=4m2

π
+A(t, u, s)|s=4m2

π
+A(u, s, t)|s=4m2

π
. (9.154)

We then obtain

32πa00|s=4m2
π
= 12(g21 − h3)Z4

πw
2
a1m

2
π − 10

(

λ1 +
λ2
2

)

Z4
π − 2(h1 + h2 + h3)Z

4
πw

2
a1m

2
π

+ 12[(BσNππ + CσNππ)m
2
π cosϕσ − (AσNππ cosϕσ +AσSππ sinϕσ)]

2 1

m2
σ1 − 4m2

π

+ 12[(BσNππ + CσNππ)m
2
π sinϕσ + (AσSππ cosϕσ −AσNππ sinϕσ)]2

1

m2
σ2 − 4m2

π

+ 8[(BσNππ − CσNππ)m2
π cosϕσ + (AσNππ cosϕσ +AσSππ sinϕσ)]

2 1

m2
σ1

+ 8[(CσNππ −BσNππ)m2
π sinϕσ + (AσSππ cosϕσ −AσNππ sinϕσ)]2

1

m2
σ2

+ 16g21Z
4
π

m2
πm

2
ρ

m4
a1

. (9.155)

Similarly to Eq. (9.33), let us note that the linear combination BσNππ+CσNππ can be transformed
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in the following way:

BσNππ + CσNππ
Eq. (6.30)

= Z2
π

g21φN
m2
a1

(

−3 + g21φ
2
N

m2
a1

+
h1 + h2 − h3

2

φ2N
m2
a1

)

= Z2
π

g21φN
m4
a1

(

−3m2
a1 + g21φ

2
N +

h1 + h2 − h3
2

φ2N

)

Eq. (6.43)
= Z2

π

g21φN
m4
a1

(

−3m2
a1 +m2

a1 −m
2
1 −

h1
2
φ2S − 2δN

)

≡ −Z2
π

g21φN
m4
a1

(

2m2
a1 +m2

1

)

, (9.156)

where we have used h1 = 0 = δN , and also that the linear combination BσNππ − CσNππ can be

written in this way:

BσNππ − CσNππ
Eq. (6.30)

= Z2
π

g21φN
m2
a1

(

−1 + g21φ
2
N

m2
a1

+
h1 + h2 − h3

2

φ2N
m2
a1

)

= Z2
π

g21φN
m4
a1

(

−m2
a1 + g21φ

2
N +

h1 + h2 − h3
2

φ2N

)

Eq. (6.43)
= Z2

π

g21φN
m4
a1

(

−m2
1 −

h1
2
φ2S − 2δN

)

≡ −Z2
π

g21φN
m4
a1

m2
1. (9.157)

Then, using Eqs. (9.28), (9.31), (9.156) and (9.157), we obtain from Eq. (9.155):

32πa00|s=4m2
π
= [12g21 − 2(h1 + h2)− 14h3]Z

4
πw

2
a1m

2
π − 10

(

λ1 +
λ2
2

)

Z4
π + 16g21Z

4
π

m2
πm

2
ρ

m4
a1

+ 12Z4
π

[

g21φN
m4
a1

(

2m2
a1 +m2

1

)

m2
π cosϕσ − λ1(φN cosϕσ + φS sinϕσ)

−λ2
2
φN cosϕσ

]2 1

m2
σ1 − 4m2

π

+ 12Z4
π

[

g21φN
m4
a1

(

2m2
a1 +m2

1

)

m2
π sinϕσ − λ1(φN sinϕσ − φS cosϕσ)

−λ2
2
φN sinϕσ

]2 1

m2
σ2 − 4m2

π

+ 8Z4
π

[

g21φN
m4
a1

m2
1m

2
π cosϕσ + λ1(φN cosϕσ + φS sinϕσ) +

λ2
2
φN cosϕσ

]2
1

m2
σ1

+ 8Z4
π

[

g21φN
m4
a1

m2
1m

2
π sinϕσ + λ1(φN sinϕσ − φS cosϕσ) +

λ2
2
φN sinϕσ

]2
1

m2
σ2

(9.158)

and finally the following formula for the S-wave, isospin-zero ππ scattering length a00:

a00|s=4m2
π
=
Z4
π

π

{

[

3

8
g21 −

1

16
(h1 + h2)−

7

16
h3

]

w2
a1m

2
π −

5

16

(

λ1 +
λ2
2

)

+
1

2
g21Z

4
π

m2
πm

2
ρ

m4
a1

+
3

8

[

g21φN
m4
a1

(

2m2
a1 +m2

1

)

m2
π cosϕσ − λ1(φN cosϕσ + φS sinϕσ)

−λ2
2
φN cosϕσ

]2 1

m2
σ1 − 4m2

π
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+
3

8

[

g21φN
m4
a1

(

2m2
a1 +m2

1

)

m2
π sinϕσ − λ1(φN sinϕσ − φS cosϕσ)

−λ2
2
φN sinϕσ

]2 1

m2
σ2 − 4m2

π

+
1

4

[

g21φN
m4
a1

m2
1m

2
π cosϕσ + λ1(φN cosϕσ + φS sinϕσ) +

λ2
2
φN cosϕσ

]2
1

m2
σ1

+
1

4

[

g21φN
m4
a1

m2
1m

2
π sinϕσ + λ1(φN sinϕσ − φS cosϕσ) +

λ2
2
φN sinϕσ

]2
1

m2
σ2

}

. (9.159)

Given that T 1 = A(t, u, s)−A(u, s, t), we obtain T 1 = 0 at threshold because of A(t, u, s)|s=4m2
π
=

A(u, s, t)|s=4m2
π
[see Eq. (9.153)]. Therefore,

a10 = 0. (9.160)

We now turn to the calculation of the S-wave, isospin-two ππ scattering length a20. As already

known from Sec. 5.2.8,

T 2|s=4m2
π
= A(t, u, s)|s=4m2

π
+A(u, s, t)|s=4m2

π
(9.161)

or in other words

T 2|s=4m2
π
= 2A(t, u, s)|s=4m2

π
(9.162)

because of Eq. (9.153). Given that

32πa20 ≡ T 2|s=4m2
π
, (9.163)

we consequently obtain

16πa20 ≡ A(t, u, s)|s=4m2
π
. (9.164)

Then substituting Eqs. (9.28), (9.31) and (9.157) into Eq. (9.152) implies

16πa20 = −2
(

λ1 +
λ2
2

)

Z4
π + 2(h1 + h2 + h3)Z

4
πw

2
a1m

2
π − 4g21Z

4
π

m2
πm

2
ρ

m4
a1

+ 4Z4
π

[

g21φN
m4
a1

m2
1m

2
π cosϕσ + λ1(φN cosϕσ + φS sinϕσ) +

λ2
2
φN cosϕσ

]2
1

m2
σ1

+ 4Z4
π

[

g21φN
m4
a1

m2
1m

2
π sinϕσ + λ1(φN sinϕσ − φS cosϕσ) +

λ2
2
φN sinϕσ

]2
1

m2
σ2

. (9.165)

Finally, we obtain

a20 =
Z4
π

π

{

1

8
(h1 + h2 + h3)w

2
a1m

2
π −

1

8

(

λ1 +
λ2
2

)

− 1

4
g21
m2
πm

2
ρ

m4
a1

+
1

4

[

g21φN
m4
a1

m2
1m

2
π cosϕσ + λ1(φN cosϕσ + φS sinϕσ) +

λ2
2
φN cosϕσ

]2
1

m2
σ1

+
1

4

[

g21φN
m4
a1

m2
1m

2
π sinϕσ + λ1(φN sinϕσ − φS cosϕσ) +

λ2
2
φN sinϕσ

]2
1

m2
σ2

}

. (9.166)
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We observe from of Eqs. (9.159) and (9.166) that the ππ scattering lengths now depend on two

scalar masses (mσ1 andmσ2) unlike in the two-flavour version of the model where the dependence

was only on one scalar mass (mσN ). Both scattering lengths are depicted as functions of mσ1 in

Fig. 9.24.
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Figure 9.24: Pion-pion scattering lengths from Fit I. We do not indicate the NA48/2 error bands [43]

because a00 (left panel) is completely outside the NA48/2 interval a00 = 0.218± 0.020 and a20 (left panel)

is completely within the NA48/2 interval a20 = −0.0457± 0.0125. The latter is true because the NA48/2

result possesses large errors and our a20 barely changes with mσ1
.

We observe that the obtained values of the isospin-zero scattering length a00 are smaller than those

in Scenario I of the two-flavour model as well as those reported by the NA48/2 Collaboration

[43]. The largest value of this scattering length is a00 = 0.184, obtained for mσ1 = 456 MeV [note

that this is the smallest value of mσ1 , determined by the condition m2
0 = 0, see Eq. (9.25)]. The

scattering length a20 is within the NA48/2 results.

We can therefore conclude that, as in Scenario I of the two-flavour version of the model, it is

not possible to obtain satisfying results for scattering lengths as well as scalar decay widths

simultaneously: the decay widths Γσ1→ππ and Γσ2→ππ possess very good values respectively for

mσ1 = 705 MeV and mσ1 = 1200 MeV [see Eqs. (9.56) and (9.55) and Fig. 9.7]; however, the

same is not true for a00 = 0.165 that is outside the NA48/2 interval reading a00 = 0.218 ± 0.020

although a20 = −0.0442 is within the respective NA48/2 interval (that is, however, rather broad:

a20 = −0.0457 ± 0.0125 [43]). Note that the discrepancy with the NA48/2 result becomes even

larger if the isospin-exact values of a
0 (I)
0 = 0.244± 0.020 and a

2 (I)
0 = −0.0385± 0.0125 from Sec.

5.3.4 are considered. Therefore, our Fit I yields the reverse situation to that of Scenario I in the

U(2)×U(2) version of the model where we were able to describe the scattering lengths correctly

but the σN decay width was too small. Nonetheless, it is apparent that the scattering lengths

still require the existence of a light scalar meson as they saturate for large values of mσ1 .

Note that it is possible to obtain the already-known results for the scattering lengths within the

Nf = 2 model in Scenario I. Setting the σN -σS mixing angle ϕσ = 0 and considering the limit

mσS → ∞ leads to the diagrams already depicted in Scenario I of the two-flavour version of

the model (see Fig. 5.4) once the parameter values have been adjusted to those from the stated

scenario.

A different limit is obtained from our Fit I by artificially decoupling σ2 (i.e., setting mσ2 →∞)

but still allowing for mσ1 and ϕσ to change simultaneously with m2
0 [see Eqs. (9.19) and (9.23)].

In this limit, ϕσ is not fixed to zero. We observe that the correspondence of the scattering

lengths to data is in this case very much spoiled. Acceptable values of a20 are obtained only in a
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small range of 960 MeV ≤ mσ1 ≤ 994 MeV while a00 < 0.161 for all values of mσ1 , see Fig. 9.25.

In the case of a00 with two scalar resonances, Fig. 9.24, the values of a00 were relatively larger

for relatively smaller values of mσ1 whereas here, in the one-resonance case, the dependence of

scattering lengths on mσ1 gains a parabolic form and therefore peaks in a limited mσ1 interval.

The scattering length a00 then continues to decrease with decreasing mσ1 until the contribution of

the pole term 1/(m2
σ1−4m2

π) becomes sufficiently large and forces a00 to rise again (this, however,

happens only for mσ1 ≃ 300 MeV, i.e., m2
0 > 0, according to Fig. 9.2 – we do not represent this

value of mσ1 in Fig. 9.25 and thus do not see an increase of a00 there); a20 possesses no pole at ππ

threshold and therefore retains a parabolic form until mσ1 = 0.
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Figure 9.25: Scattering lengths a00 and a20 as functions of mσ1
in the limit mσ2

→ ∞. The shaded area

on the left panel represents the NA48/2 result regarding a00 [43]; the entire right panel represents the a20
interval from NA48/2.

We can thus conclude that artificially removing σ2 from the ππ scattering worsens the correspon-

dence with the NA48/2 results considerably although, given the relatively large values of mσ2

[see Eq. (9.26)], one would have expected that the contribution of σ2 to the scattering lengths

is suppressed. Nonetheless, the scattering lengths depend decisively on the scalar masses – as

already mentioned, they saturate for large values of the masses (see Fig. 9.24). Our Fit II will

be developed under the assumption that the scalar I = 1/2 and I = 1 states are above 1 GeV

yielding mσ1,2 > 1 GeV as well (see Sec. 11.1.1). Our combined analysis in Sec. 11.1.5 will sub-

sequently yield m
(FIT II)
σ1 = 1310 MeV and m

(FIT II)
σ2 = 1606 MeV. This implies that there needs

to be no calculation of scattering lengths in Fit II because the scattering lengths will be in their

respective Weinberg limits [236]: a
0(FIT II)
0 ≃ 0.158, a

2(FIT II)
0 ≃ −0.0448.

9.6 Conclusions from Fit with Scalars below 1 GeV

In the previous sections we have addressed the question whether it is possible to obtain a rea-

sonable phenomenology of mesons in vacuum under the assumption that scalar q̄q states possess

energies below 1 GeV. To this end, we have looked for a fit (labelled Fit I) incorporating the

masses of π, K, η, η′,ρ, K⋆, ωS ≡ ϕ(1020), a1, K1, f1S ≡ f1(1420), decay widths Γa1→πγ

and Γf1N→a0(980)π , as well as the masses of the scalar states a0 and KS assigned to a0(980)

and K⋆
0 (800) ≡ κ, respectively. We have not included any scalar isosinglet masses into the fit in

order to let these masses remain a prediction of the fit.
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We summarise the main conclusions of the fit as follows:

• It is possible to find a fit; masses entering the fit are well described except

• mκ = 1128.7 MeV, almost by a factor of two larger than the corresponding PDG value

[10] (but the κ resonance is very broad),

• ma1 = 1395.5 MeV, approximately 170 MeV larger than the corresponding PDG value

mexp
a1 = 1230 MeV [but the a1(1260) resonance is also broad and the PDG mass is

only an educated guess],

• mK1 = 1520 MeV, approximately 250 MeV larger than the mass ofK1(1270); however,

assigning our K1 field to the (broad) resonance K1(1400) yields the stated result for

mK1 acceptable,

• mωS
= 870.35 MeV, approximately 150 MeV less than mexp

ϕ(1020) = 1019.46 MeV and

mf1S = 1643.4 MeV, approximately 220 MeV larger than mexp
f1(1420)

= 1426.4 MeV –

this in particular represents a problem because ϕ(1020) and f1(1420) are rather sharp

resonances.

Additionally, Γa1→πγ = 0.369 MeV is outside the experimental interval Γexp
a1→πγ = 0.640 ±

0.246 MeV [10].

• It is not possible to assign the two mixed scalar isosinglets σ1 (predominantly non-strange)

and σ2 (predominantly strange) to measured resonances if one considers only their masses

because mσ1 and mσ2 vary in rather large intervals: 456 MeV ≤ mσ1 ≤ 1139 MeV and 1187

MeV ≤ mσ2 ≤ 2268 MeV. (Interval boundaries are determined by the conditions m2
0 < 0

and mσN < mσS .) Therefore, an analysis of scalar decay widths is called for.

• We obtain satisfying results in the decay channels σ1,2 → ππ and σ1,2 → KK if we set

mσ1 = 705 MeV and mσ2 = 1200 MeV leading to Γσ1→ππ = 305 MeV and Γσ2→ππ = 207

MeV in the former and Γσ1→KK = 0 and Γσ2→KK = 240 MeV in the latter channel. This

allows us to assign σ1 to f0(600) and σ2 to f0(1370); Γσ2→ππ was chosen such that it

corresponds to Γf0(1370)→ππ = 207 MeV from Ref. [40]. Consequently, we interpret f0(600)

as a predominantly non-strange q̄q state while f0(1370) is interpreted as a predominantly

strange quarkonium. The results also suggest, however, that f0(1370) should predominantly

decay into kaons (as Γσ2→KK/Γσ2→ππ = 1.15) – not surprising for a strange quarkonium

but clearly at odds with experimental data [10].

• Satisfying results are obtained in the σ1,2 → ηη decay channel: mσ1 = 705 MeV yields

Γσ1→ηη = 0 (as expected) and mσ2 = 1200 MeV yields Γσ1→ηη = 31 MeV (also in line

with expectations). Additionally, one obtains Γσ2→ηη/Γσ2→ππ = 0.15, in accordance with

the result Γf0(1370)→ηη/Γf0(1370)→ππ = 0.19 ± 0.07 from Ref. [40]. However, the ratio

Γσ2→KK/Γσ2→ηη ≫ 1 again suggests that f0(1370) should decay predominantly into kaons,

problematic from the experimental point of view.

• We obtain ΓK⋆
0 (800)→Kπ = 490 MeV, a satisfying result predicting a broad scalar kaon

resonance in accordance with the PDG data [10]. However, the mass of the resonance is

mK⋆
0 (800)

= 1128.7 MeV, and thus larger than mexp
K⋆

0 (800)
= 676 MeV by a factor of two.
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• The decay amplitude a0(980)→ ηπ is within experimental data.

• For the scattering lengths, we obtain a00 < 0.184 for all values of mσ1 ; a
0
0 is thus below

NA48/2 results [43]. Contrarily, the scattering length a20 is within the NA48/2 results

(that, for this scattering length, possess rather large uncertainties). We can therefore

conclude that Fit I does not allow for scattering lengths as well as scalar decay widths

to be described simultaneously: although we obtain satisfying values for the decay widths

Γσ1→ππ and Γσ2→ππ, the same is not true for a00. Nonetheless, the scattering lengths still

require the existence of a light scalar meson because they saturate for large values of mσ1 .

• Additionally, the phenomenology in the vector and axial-vector channels is not well de-

scribed.

• ΓK⋆→Kπ = 32.8 MeV whereas experimental data suggest Γexp
K⋆→Kπ = 46.2 MeV [10].

• The decay width Γa1(1260)→ρπ depends (among others) on the parameter g2, fixed via

Γρ→ππ. A calculation of Γa1(1260)→ρπ then yields values of more than 10 GeV if we

set Γρ→ππ = 149.1 MeV (as suggested by the PDG [10]). Alternatively, if one forces

Γa1(1260)→ρπ < 600 MeV to comply with the data, then Γρ→ππ < 38 MeV is obtained

– a value that is approximately 100 MeV less than the experimental result. We also

obtain Γa1→K̄⋆K→K̄Kπ = 1.97 GeV.

• Analogous statements are true for f1(1285) and f1(1420). Fit I yields Γf1(1285)→K̄⋆K ≃
2.15 GeV for Γρ→ππ = 149.1 MeV; the physical value Γf1(1285)→K̄⋆K . 2 MeV is

obtained only for Γρ→ππ ∼ 20 MeV. The fit also yields Γf1(1420)→K̄⋆K ≃ 18 GeV for

Γρ→ππ = 149.1 MeV with the physical value Γf1(1420)→K̄⋆K ≃ 54.9 MeV obtained for

Γρ→ππ ∼ 27 MeV.

• The phenomenology of the K1(1400) meson is described as poorly as the a1(1260)

phenomenology. Combined results in the decay channels K1(1400) → K⋆π, ρK and

ωK suggest that the full decay width of the K1(1400) resonance should be ∼ 10 GeV,

two orders of magnitude larger than the experimental value ΓK1(1400) = (174 ± 13)

MeV [10]. The decay widths ΓK1(1400)→ρK = 4.77 GeV and ΓK1(1400)→ωK = 1.59

GeV are three orders of magnitude larger than their respective experimental values

Γexp
K1(1400)→ρK = (2.1±1.1) MeV and Γexp

K1(1400)→ωK = (1.7±1.7) MeV; ΓK1(1400)→K⋆π =

6.73 GeV is an order of magnitude larger than Γexp
K1(1400)→K⋆π = (164 ± 16) MeV. In

fact, the only piece of K1(1400) experimental data correctly described in Fit I is

represented by the fact that K1(1400) → K⋆π is found to be the dominant decay

channel of this resonance; all other results are not compatible with the data.

Thus we cannot accommodate a correct (axial-)vector phenomenology within the fit: either

a1(1260), f1(1285), f1(1420) and K1(1400) are too broad [∼ (1− 10) GeV] or the ρ meson

is too narrow (. 40 MeV).

Then the fit results, and thus the assumption of scalar q̄q states below 1 GeV, are extremely

problematic.
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10. Fit II: Scalars above 1 GeV

In this chapter we look for a fit of meson masses (labelled Fit II) assuming that scalar q̄q states

have masses above 1 GeV and discuss the ensuing phenomenology. We will consequently be able

to draw comparative conclusions with regard to results obtained from Fit I where, conversely,

scalar q̄q states were assigned to resonances below 1 GeV.

The formal structure of Fit II is very similar to that of Fit I. We have already described in Chapter

6 how the initial set of 18 parameters in the Lagrangian (6.1) is reduced to seven unknowns:

Zπ, ZK , m
2
1, h2, δS, λ2 and m2

0 + λ1(φ
2
N + φ2S). In order to implement Fit II, we make use of

16 equations: for mπ, mK , mKS
≡ mK⋆

0 (1430)
, ma0 ≡ ma0(1450), mη, mη′ [the latter two via Eqs.

(7.20) and (7.21) from mηN and mηS ], mρ, mK⋆, mωS
, ma1 , mK1 , mf1S , Γa1→πγ and Γa0(1450)

as well as Eqs. (7.3) and (7.4), the latter two for ZK . Thus, in this fit our fields a0 and KS

are assigned respectively to a0(1450) and K
⋆
0 (1430), i.e., to states above 1 GeV. Conversely, this

means that now we are working with the assumption that a0(1450) and K
⋆
0 (1430) are q̄q states.

Consequently, in Fit II there are no states from our model that are assigned to the resonances

a0(980) and κ; these resonances could be introduced into our model only as additional fields,

such as, for example, tetraquarks [194]. Note that there may also exist mixing in the isotriplet

channel between a0(980) and a0(1450). The mixing is, however, small [211] and can be neglected.

As mentioned previously, Fit II will require knowledge of the full a0(1450) decay width. The

corresponding formulas are discussed in the following section.

10.1 Full decay width of a0(1450)

Experimental data [10] suggest that a0(1450) possesses six decay channels: into πη, πη′, KK,

ωππ, a0(980)ππ and γγ. The latter two are poorly known and suppressed; we therefore omit these

two decay channels from our considerations. The remaining decay channels can be calculated

directly from our model as follows:

• The decay width Γa0(1450)→πη is obtained from the interaction Lagrangian (9.73) as de-

scribed in Sec. 9.2 by assigning our a0 field to a0(1450). We use the following formula for

the decay width:

Γa00(1450)→ηπ0 =
k(ma0(1450),mη,mπ)

8πm2
a0(1450)

| − iMa00(1450)→ηπ0(mη)|2 (10.1)

withMa00(1450)→ηπ0(mη) from Eq. (9.79).

• The decay width Γa0(1450)→πη′ is also obtained from the interaction Lagrangian (9.73).

Analogously to Eq. (9.80) we obtain for the decay amplitude

−iMa00(1450)→η′π0(mη′) = −i[cosϕηMa00→ηSπ0(mη′)− sinϕηMa00→ηNπ0(mη′)] (10.2)

withMa00→ηNπ0 andMa00→ηSπ0 respectively from Eqs. (9.81) and (9.82). Then the decay

width is calculated as

Γa00(1450)→η′π0 =
k(ma0(1450),mη′ ,mπ)

8πm2
a0(1450)

| − iMa00(1450)→η′π0(mη′)|2. (10.3)

177



• The a00KK interaction Lagrangian obtained from Eq. (6.1) has the following form:

La0KK = Aa0KKa
0
0(K

0K̄0 −K−K+) +Ba0KKa
0
0(∂µK

0∂µK̄0 − ∂µK−∂µK+)

+ Ca0KK∂µa
0
0(K

0∂µK̄0 + K̄0∂µK0 −K−∂µK+ −K+∂µK−) (10.4)

with

Aa0KK =

√
2

2
λ2Z

2
K(
√
2φN − φS), (10.5)

Ba0KK = Z2
K

{

g1wK1

[

1− 1

2
g1wK1(φN +

√
2φS)

]

−
w2
K1

2
(h2φN −

√
2h3φS)

}

, (10.6)

Ca0KK = −g1
2
Z2
KwK1 . (10.7)

We observe that the Lagrangian in Eq. (10.4) possesses the same form as LσKK from Eq.

(9.41). Therefore, analogously to the calculation performed in Sec. 9.1.5 we obtain

Γa00(1450)→KK̄ =
k(ma0(1450),mK ,mK)

4πm2
a0(1450)

| − iMa00(1450)→KK̄ |2, (10.8)

where we have considered an isospin factor of two for the decays a00(1450) → K0K̄0 and

a00(1450) → K−K+. The decay amplitude −iMa00(1450)→KK̄ reads

−iMa00(1450)→KK̄ = −i
{

Aa0KK −Ba0KK
[

m2
a0(1450)

2
−m2

K

]

+ Ca0KKm
2
a0(1450)

}

. (10.9)

• The decay width Γa0(1450)→ωππ is calculated via the sequential decay a0(1450) → ωρ →
ωππ. The interaction Lagrangian is already known from Scenario II of the two-flavour

version of our model, Eq. (5.121); the formula for the decay width Γa0(1450)→ωρ→ωππ is

stated in Eq. (5.123).

• The full decay width of the a0(1450) resonance is obtained from Eqs. (10.1), (10.3), (10.8)

and (5.123):

Γa0(1450) = Γa00(1450)→ηπ0 + Γa00(1450)→η′π0 + Γa00(1450)→KK̄ + Γa0(1450)→ωρ→ωππ . (10.10)

The experimental value of this decay width is Γa0(1450) = (265 ± 13) MeV [10].

10.2 Implementation of Fit II

Analogously to our calculations in Chapter 8, we look for a fit satisfying the following equations

(experimental central values from the PDG [10]; no consideration of experimental uncertainties

at this point):
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Z2
π

[

m2
0 + λ1(φ

2
N + φ2S) +

λ2
2
φ2N

]

= (139.57 MeV)2 ≡ m2
π, (10.11)

Z2
K

[

m2
0 + λ1(φ

2
N + φ2S) + λ2

(

φ2N
2
− φNφS√

2
+ φ2S

)]

= (493.677 MeV)2 ≡ m2
K , (10.12)

Z2
KS

[

m2
0 + λ1(φ

2
N + φ2S) + λ2

(

φ2N
2

+
φNφS√

2
+ φ2S

)]

= (1425 MeV)2 ≡ m2
K⋆

0 (1430)
, (10.13)

m2
0 + λ1(φ

2
N + φ2S) +

3

2
λ2φ

2
N = (1474 MeV)2 ≡ m2

a0(1450)
, (10.14)

Z2
π

[

m2
0 + λ1(φ

2
N + φ2S) +

λ2
2
φ2N + c1φ

2
Nφ

2
S

]

cos2 ϕη

+ Z2
ηS

[

m2
0 + λ1(φ

2
N + φ2S) + λ2φ

2
S + c1

φ4N
4

]

sin2 ϕη

+ c1
ZηSZπ

2
φ3NφS sin(2ϕη) = (547.853 MeV)2 ≡ m2

η, (10.15)

Z2
π

[

m2
0 + λ1(φ

2
N + φ2S) +

λ2
2
φ2N + c1φ

2
Nφ

2
S

]

sin2 ϕη

+ Z2
ηS

[

m2
0 + λ1(φ

2
N + φ2S) + λ2φ

2
S + c1

φ4N
4

]

cos2 ϕη

− c1
ZηSZπ

2
φ3NφS sin(2ϕη) = (957.78 MeV)2 ≡ m2

η′ , (10.16)

m2
1 + (h2 + h3)

φ2N
2

= (775.49 MeV)2 ≡ m2
ρ, (10.17)

m2
1 + g21φ

2
N + (h2 − h3)

φ2N
2

= (1230 MeV)2 ≡ m2
a1 , (10.18)

m2
1 + δS +

(

g21 + h2
) φ2N

4
+

1√
2
(h3 − g21)φNφS +

(

g21 + h2
) φ2S

2
= (891.66 MeV)2 ≡ m2

K⋆,

(10.19)

m2
1 + δS +

(

g21 + h2
) φ2N

4
+

1√
2
(g21 − h3)φNφS +

(

g21 + h2
) φ2S

2
= (1272 MeV)2 ≡ m2

K1
, (10.20)

m2
1 + 2δS + (h2 + h3)φ

2
S = (1019.455 MeV)2 ≡ m2

ωS
, (10.21)

m2
1 + 2δS + 2g21φ

2
S + (h2 − h3)φ2S = (1426.4 MeV)2 ≡ m2

f1S
, (10.22)

e2

96π
(Z2

π − 1)ma1

[

1−
(

mπ

ma1

)2
]3

= 0.640 MeV ≡ Γa1→πγ , (10.23)

Γa00(1450)→ηπ0 + Γa00(1450)→η′π0 + Γa00(1450)→KK̄ + Γa0(1450)→ρπ→ωππ = 265 MeV ≡ Γa0(1450),

(10.24)

as well as the ZK Eqs. (7.3) and (7.4). Note that also in this fit we set h1 = 0 = δN ; that

c1 = c1(ϕη) from Eq. (7.24) and that we also use φN = Zπfπ (fπ = 92.4 MeV), φS = ZKfK/
√
2

(fK = 155.5/
√
2 MeV), g1 from Eq. (6.57), h3 from Eq. (6.58), ZKS

from Eq. (6.51) and ZηS
from Eq. (6.50).

Now we can make use of the same four-step procedure described in Chapter 8 to ascertain whether

an acceptable fit can be found.
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Step 1. We first consider the first four equations entering the fit, i.e., Eqs. (10.11) - (10.14)

that depend only on four variables: Zπ, ZK , λ2 and m2
0 + λ1(φ

2
N + φ2S). As in Fit I, we set

ma1 = mexp
a1 = 1230 MeV and mK⋆ = mexp

K⋆ = 891.66 MeV [10] in order for the renormalisation

coefficient ZKS
to be calculated. We again find that ZKS

changes only minutely with ma1 and

mK⋆ and therefore the exact values of these two masses are at this point not of great importance.

We thus obtain a system of four equations (10.11) - (10.14) with four unknowns that can be

solved exactly; we obtain the following parameter values:

Zπ = 0.36

ZK = 0.47

λ2 = 1860

m2
0 + λ1(φ

2
N + φ2S) = −856580 MeV2.

Unfortunately, this set of solutions cannot be used further as it implies Zπ < 1 and ZK < 1,

a condition that by the definitions of these renormalisation coefficients [Eqs. (6.48) and (6.49)]

cannot be fulfilled as otherwise either g21 < 0 or φ2N < 0 [in Eq. (6.48)] and (φN +
√
2φS)

2 < 0 [in

Eq. (6.49)] would have to be true. We do not consider an imaginary scalar-vector coupling g1 or

imaginary condensates φN,S – therefore, we have to work for alternative (approximate) solutions

for Eqs. (10.11) - (10.14). We then obtain the parameter values shown in Table 10.1.

Parameter Value Observable Value [MeV]

Zπ 1.66 mπ 138.65

ZK 1.515 mK 497.96

λ2 89.7 ma0(1450) 1452

m2
0 + λ1(φ

2
N + φ2S) −1044148 MeV2 mK⋆

0 (1430)
1550

Table 10.1: Best solutions of Eqs. (10.11) - (10.14) under the conditions Zπ

!
> 1, ZK

!
> 1.

The value of mKS
is larger than the PDG value due to the pattern of explicit symmetry breaking

that in our model makes strange mesons approximately 100 MeV (≃ strange-quark mass) heavier

than their non-strange counterparts. We also note that the K⋆
0 (1430) resonance is rather broad

[Γexp
K⋆

0 (1430)
= (270± 80) MeV] and therefore a deviation of 100 MeV exhibited by mKS

is not too

large.

Additionally, Γa1→πγ = 0.628 MeV is obtained from the parameter values in Table 10.1, within

the interval Γexp
a1→πγ = (0.640 ± 0.246) MeV cited by the PDG [10]. This is in contrast to the

corresponding result in Fit I where we obtained Γa1→πγ = 0.322 MeV (see Table 8.1).

Step 2. We now look for values of mρ, ma1 , mK⋆, mωS
, mK1 and mf1S that lead to the pairwise

equality of the three ZK formulas, Eqs. (7.3) and (7.4). We use the already known values of Zπ
and ZK from Table 10.1 and also the PDG values of all mentioned (axial-)vector masses except

ma1 [because the value cited by the PDG is merely an educated guess and also because a1(1260)

is a rather broad resonance]. As in Fit I, it is not possible to equate pairwise the ZK formulas in

Eqs. (7.3) and (7.4) if we use the PDG values of the masses. A numerical analysis demonstrates

that Eqs. (7.3) and (7.4) are fulfilled if the following mass values are used:
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ma1 = 1219 MeV, mρ = 775.49 MeV, mK⋆ = 916.52 MeV,

mωS
= 1036.90 MeV, mK1 = 1343 MeV, mf1S = 1457.0 MeV. (10.25)

Steps 3 and 4. The (axial-)vector fit parameters can now be determined in such a way that the

mass values determined by the three ZK formulas are reproduced. The total decay width of

a0(1450), Eq. (10.10), allow us in principle to determine the value of parameter h2, if all other

parameters entering Eq. (10.10) are known, i.e., if the parameters Zπ, ZK , λ2, g1, h3 and c1 have

been determined. The parameters Zπ, ZK and λ2 are known from Table 10.1; g1 and h3 can be

calculated from mρ and ma1 via Eqs. (6.57) and (6.58). As already discussed in Chapter 6, the

parameter c1 influences only the phenomenology of η and η′; these two fields appear in two of the

a0(1450) decay channels and for that reason we first have to determine the value of c1 before the

value of h2 can be calculated. This is performed using the mass terms for η and η′, Eqs. (10.15)
and (10.16). We substitute c1 by ϕη, Eq. (7.24) and use the parameter values from Table 10.1

as well as the mass values from Eqs. (10.25). A subsequent analysis yields mη = 523.20 MeV,

mη′ = 957.78 MeV and consequently ϕη = −43.9◦. Therefore, as in Fit I, it is possible to exactly

obtain the experimental value of mη′ , but not of mη, due to the condition that ϕη <| 45◦ | which
is necessary to ascertain mηN < mηS . (Enforcing mη = mexp

η would require ϕη >| 45◦ | and
would spoil the result for mη′ .) Then Eq. (7.24) yields c1 = 0.00063 MeV−2.

Consequently, all parameters entering the formula for the full decay width of a0(1450), see Eq.

(10.10), are known; we obtain h2 = −0.736 from the condition Γa0(1450) = 265 MeV. The value

of h2 is considerably smaller than in Fit I that yielded h2 = 40.6. The best values of the two

remaining parameter values (m1 and δS), obtained from the (axial-)vector mass formulas in Eqs.

(6.42) - (6.47) and mass values in Eqs. (10.25), read m1 = 762 MeV and δS = 4852 MeV2.

Table 10.2 shows the cumulated results for all parameters from Fit II.

Parameter Value Parameter Value

Zπ 1.66 g1, Eq. (6.57) 6.35

ZK 1.515 g2, Eq. (5.44) 3.07

λ2 89.7 h3, Eq. (6.58) 2.56

m2
0 + λ1(φ

2
N + φ2S) −1044148 MeV2 h0N , Eq. (6.35) 1.072 · 106 MeV3

m1 762 MeV h0S , Eq. (6.39) 3.388 · 107 MeV3

δS 4852 MeV2 h1 0

h2 −0.736 δN 0

c1 0.00063 MeV−2 g3,4,5,6 0

Table 10.2: Cumulated best values of parameters from Fit II.

Table 10.3 shows the cumulated results for all observables from Fit II. We observe that all mass

values stemming from Fit II are within 3% of their respective experimental values, with three

exceptions: mη, mK⋆
0 (1430)

and mK1 .

We have already noted that the value of mη reproduced by our fit cannot correspond exactly

to the experimental value mexp
η = 547.85 MeV as this would require ϕη >| 45◦ | and thus also

mηN > mηS . The values of mη and mη′ present in Table 10.3 imply ϕη = −43.9◦; it is therefore
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Observable Our Value [MeV] Experimental Value [MeV]

mπ 138.65 139.57

mK 497.96 493.68

ma0(1450) 1452 1474

mK⋆
0 (1430)

1550 1425

mη 523.20 547.85

mη′ 957.78 957.78

mρ 775.49 775.49

ma1 1219 1230

mK⋆ 916.52 891.66

mωS
1036.90 1019.46

mK1 1343 1272

mf1S 1457.0 1426.4

Γa1→πγ 0.622 0.640

Γa0(1450) 265 265

Table 10.3: Cumulated values of observables from Fit II (experimental uncertainties omitted).

possible to (marginally) decrease ϕη to −45◦ and obtain a slightly larger value of mη (but still

smaller than mexp
η ). Then, however, the result for mη′ would be spoiled. We will therefore work

with the values of mη and mη′ as stated in Table 10.3.

We have also already noted that the value of mK⋆
0 (1430)

from Table 10.3 is larger than the corre-

sponding PDG value due to the pattern of explicit symmetry breaking that in our model made

K⋆
0 (1430) approximately 100 MeV (≃ strange-quark mass) heavier than its non-strange counter-

part, a0(1450). The K
⋆
0 (1430) resonance also possesses a decay width of approximately 270 MeV

and therefore the stated deviation of mK⋆
0 (1430)

from experiment is acceptable.

We observe from Table 10.3 that the value of mK1 is approximately 70 MeV larger thanmK1(1270)

= 1272 MeV [10]. It is, however, approximately, 60 MeV smaller thanmK1(1400) = 1403 MeV [10].

Both mentioned resonances are rather broad [ΓK1(1270) = (90± 20) MeV; ΓK1(1400) = (174± 13)

MeV]. Therefore, the field K1 from our model can in principle be assigned to either of them.

However, a more plausible explanation is that our K1 field is a mixture of the two physical fields

K1(1270) andK1(1400) – or, in other words, that the physical resonancesK1(1270) andK1(1400)

are mixtures of the field K1 from our model and an additional field currently not present in our

model. We discuss this possibility in Sec. 10.3.

Finally, let us also note that Fit II yields a large value of m1 = 762 MeV, just as Fit I. This

implies that non-quark contributions are expected to play a strong role in the mass generation

of the ρ meson. However, Fit II also yields the decay width Γa1→πγ within the experimental

boundaries (unlike Fit I) and we observe additionally that the correspondence of our mass values

to experiment is in Fit II decisively better than in Fit I (see Tables 8.5 and 10.3). We can thus

conclude that the results obtained until now give Fit II precedence over Fit I.
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10.3 Two K1 Fields

We have seen in the previous section that Fit II implies mK1 = 1343 MeV, a value that is

virtually the median of mK1(1270) and mK1(1400). Thus our previous assignment of the K1 field

from the model to the K1(1270) resonance appears to be somewhat in doubt as mK1 deviates

almost equally from both mK1(1270) and mK1(1400). In this section we propose an explanation for

the value of mK1 obtained from Fit II [247, 248, 249, 250, 251, 252].

Let us postulate the existence of the following two nonets, labelled Aµ1 and Bµ
1 :

Aµ1 =
1√
2









f1N,A+a01√
2

a+1 K+
1,A

a−1
f1N,A−a01√

2
K0

1,A

K−
1,A K̄0

1,A f1S,A









µ

, Bµ
1 =

1√
2









f1N,B+b01√
2

b+1 K+
1,B

b−1
f1N,B−b01√

2
K0

1,B

K−
1,B K̄0

1,B f1S,B









µ

.

(10.26)

Let us assign the field aµ1 from Aµ1 to the a1(1260) resonance and the field bµ1 from Bµ
1 to the

b1(1235) resonance. The a1(1260) meson is a I(JPC) = 1(1++) state whereas b1(1235) is a

I(JPC) = 1(1+−) state. Thus the resonances possess different charge conjugation C.

Due to P = (−1)L+1, where P denotes parity and L the orbital angular momentum, both res-

onances exhibit L = 1; however, the difference in C implies S = 1 for a1(1260) and S = 0 for

b1(1235), with C = (−1)L+S and S denoting the spin. In the spectroscopic 2S+1LJ notation

(J : total angular momentum), our states are thus P -wave states: aµ1 is a 3P1 state while bµ1
represents a 1P1 state. Consequently, all states present in the nonet Aµ1 are 3P1 states and all

states present in the nonet Bµ
1 are 1P1 states. Thus the nonet Aµ1 contains axial-vectors while

the nonet Bµ
1 contains pseudovectors. We then assign the fields in the two nonets as follows:

f1N,A ≡ f1(1285), f1S,A ≡ f1(1420), f1N,B ≡ h1(1170), f1S,B ≡ h1(1380). Let us not assign K1,A

and K1,B for the moment.

It is possible to bring about the mixing of the two nonets using the explicit symmetry breaking

in the axial-vector channel, modelled by the ∆ matrix in Eq. (6.14). Indeed a calculation of the

following term containing the commutator of Aµ1 and Bµ
1

Tr(∆[A1µ, B
µ
1 ]) (10.27)

yields

Tr(∆[A1µ, B
µ
1 ]) =

1

2
(δS − δN )(K̄0

1µ,AK
µ0
1,B − K̄0

1µ,BK
µ0
1,A +K−

1µ,AK
µ+
1,B −K+

1µ,AK
µ−
1,B). (10.28)

Note that the commutator [A1, B1] is CP invariant: P invariance is trivially fulfilled due to

A1
P→ A1, B1

P→ B1 while the C transformation (A1
C→ At

1, B1
C→ −Bt

1) yields Tr(∆[A1µ, B
µ
1 ])

C→
Tr(∆(Bµt

1 A
t
1µ −At

1µB
µt
1 )) = Tr(∆(A1µB

µ
1 −B

µ
1A1µ)

t) = Tr(∆[A1µ, B
µ
1 ]).

Therefore, the non-vanishing difference of quark masses m2
s−m2

u ∼ δS−δN induces mixing of the

axial-vector nonet Aµ1 with the pseudovector nonet Bµ
1 . The term (10.27) yields mixing of the

K1 states; in other words, the K1 fields from the two nonets mix due to explicit breaking of the

chiral symmetry. Consequently, we assert that the physical fields K1(1270) and K1(1400) arise

from the mixing of K1,A and K1,B . The K1 state from our Lagrangian (6.1) then corresponds to
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K1,A whose 1P1 counterpart is not present in the model. For this reason, it is not surprising that

our model yields mK1 different from masses of both K1(1270) and K1(1400), see Table 10.3.

Therefore, an extension of our model by a nonet of 1P1 states may be a useful tool to further

study kaon phenomenology. Such spin-orbit mixing has been considered, e.g., in Ref. [247] (see

also Ref. [248]) where, within a non-relativistic constituent quark model, it was found that two

mixing scenarios of theK1,A andK1,B states are possible: (i) K1,A-K1,B mixing angle ϕK1 ≃ 37◦,
mK1,A

= 1322 MeV and mK1,B
= 1356 MeV; (ii) ϕK1 = 45◦, mK1,A

= mK1,B
= 1339 MeV. As

shown in Ref. [247], possibility (ii) would imply ma1 = mb1 = 1211 MeV, slightly at odds with

experimental data citing mb1 = (1229.5±3.2) MeV [10] whereas possibility (i) yields ma1 = 1191

MeV and mb1 = 1231 MeV [and also mK1(1270) = 1273 MeV, mK1(1400) = 1402 MeV] and thus a

better correspondence with experiment. Our model is of course different from that of Ref. [247];

however, the qualitative consistency of our (independently obtained) value mK1 = 1343 MeV

with the results of Ref. [247] seems to confirm the notion that K1(1270) and K1(1400) indeed

arise from the mixing of 1P1 and 3P1 nonets.

Note that the inclusion and further study of the term (10.27) in our model would make the mixing

of K1,A and K1,B an intrinsic property of the model; however, there are also alternative mixing

mechanisms, not based on an analysis of mass eigenstates, such as mixing via decay channels as

suggested in Ref. [249]. Additionally, a calculation of ϕK1 from a QCD-like theory in Ref. [250]

found ϕK1 ≃ 35◦ to be preferred; for other analyses of ϕK1 , see Ref. [251]. It is possible to study

mixing of other states from the two nonets as well, such as f1N,A-f1S,A and f1N,B-f1S,A mixings

in Refs. [250, 252].

We will discuss the broader K1 phenomenology (decay widths) further on, in Sec. 11.3.7.
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11. Implications of Fit II

We now turn to the discussion of meson phenomenology that follows from Fit II. As in Fit I, we

will devote particular attention to hadronic decay widths of scalar and axial-vector resonances

as a matter of comparing results between Fits I and II but also because these resonances possess

the most ambiguities regarding their structure and decay widths.

11.1 Phenomenology in the I(JPC) = 0(0++) Channel

In this section we discuss results regarding the masses and decay widths of the two scalar states

σ1 and σ2. These states arise from mixing of the two pure states σN and σS present in Lagrangian

(6.1). The mixing is described at the beginning of Sec. 9.1.3, see Eqs. (9.16) - (9.23). We note

again that the mass terms mσN and mσS depend on m2
0 + 3λ1φ

2
N + λ1φ

2
S and m2

0 + λ1φ
2
N +

3λ1φ
2
S, respectively, and thus cannot be calculated from the knowledge of the linear combination

m2
0 + λ1(φ

2
N + φ2S) in Table 10.2. Therefore, as in Fit I, we express the parameter λ1 in terms

of the mass parameter m2
0 using the mentioned linear combination. Additionally, the necessary

condition for the spontaneous breaking of the chiral symmetry suggests m2
0 < 0 [see inequality

(9.4)]. We note at this point that, due to the latter condition, the parameter λ1 obtained from

Fit II fulfills the constraint (9.15), as apparent from Fig. 11.1.

-1.4´106-1.2´106-1.0´106-800 000-600 000-400 000-200 000
m 0

2IMeV 2M

-20

-10

10

Λ 1

Figure 11.1: Dependence of parameter λ1 on m2
0 from Fit II. The condition (9.15), i.e., λ1 > −λ2/2, is

fulfilled for all values of m2
0 < 0, see Table 10.2.

Now we can turn to the calculation of mσ1,2 and σ1,2 decay widths.

11.1.1 Scalar Isosinglet Masses

As described at the beginning of this section, we substitute λ1 in Eqs. (9.19) and (9.20) by m2
0

[from the linear combination m2
0 + λ1(φ

2
N + φ2S) in Table 10.2]. The ensuing dependence of mσ1

and mσ2 on m2
0 is depicted in Fig. 11.2, with m2

0 ≤ 0 in accordance with Eq. (9.4).

As in Fit I, mσ1 and mσ2 vary over wide intervals. We note from Fig. 11.2 that mσN becomes
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Figure 11.2: Dependence of mσ1
(full lower curve), mσ2

(full upper curve), mσN
(dashed lower curve)

and mσS
(dashed upper curve) on m2

0 under the condition m2
0 < 0.

larger than mσS at m2
0 ≃ −2.179 · 106 MeV2 at which point there is a jump of ϕσ from −45◦ to

45◦ (see Fig. 11.3).
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Figure 11.3: Dependence of the σN -σS mixing angle ϕσ on m2
0, Eq. (9.23).

Therefore, σ1 and σ2 interchange places for m2
0 ≃ −2.179 · 106 MeV2; we use this value of m2

0 as

an upper boundary for this parameter. Thus, together with Eq. (9.4), we obtain

−2.179 · 106 MeV2 ≤ m2
0 ≤ 0. (11.1)

From the previous inequality we obtain the following boundaries for mσ1,2 :

450 MeV ≤ mσ1 ≤ 1561 MeV, (11.2)

1584 MeV ≤ mσ2 ≤ 2152 MeV. (11.3)

The inequalities (11.2) and (11.3) suggest that the mixed state σ1 may correspond to f0(600),

f0(980), f0(1370) or f0(1500) whereas the only confirmed resonance within the range of mσ2 is

f0(1710). [As in Fit I, we do not consider the states f0(1790), f0(2020), f0(2100) and f0(2200).]

A definitive assignment of σ1, and a confirmation whether σ2 corresponds to f0(1710), require
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a more detailed analysis of phenomenology in the scalar channel, performed in the following

sections.

Nonetheless, from the variation of the σN - σS mixing angle ϕσ we can conclude that σ1 is

predominantly a n̄n state and the σ2 field is predominantly composed of strange quarks, see Fig.

11.4. Note that, as in Fit I, we obtain the two diagrams in Fig. 11.4 from two implicit plots: of

ϕσ(λ1), Eq. (9.23), andmσ1,2 [ϕσ(λ1)], Eqs. (9.19) and (9.20), with m2
0+λ1(φ

2
N+φ2S) = −1044148

MeV2 from Table 10.2 and m2
0 from the inequality (9.24).
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Figure 11.4: The σN -σS mixing angle ϕσ as function of mσ1,2
.

Contribution of mσN to mσ1 and contribution of mσS to mσ2 are illustrated in Fig. 11.5.
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Figure 11.5: Contribution of the pure non-strange field σN to σ1 (left panel) and of the pure strange

field σS to σ2 (right panel), respectively in dependence on mσ1
and mσ2

.

Before we continue, let us make an important point: we observe from Fig. 11.2 that mσ1 and

mσ2 are not independent. Thus, in the following, any determination of either of these masses

(e.g., from a decay width) fixes the other mass to a certain value (and also determines values of

all decay widths depending on this mass). This is true because the two masses are connected via

the mass parameter m2
0 (as also apparent from Fig. 11.2). We will be making use of this feature

in the following sections.

11.1.2 Decay Width σ1,2 → ππ

In Sec. 9.1.4 we have already performed the calculation of the decay widths Γσ1→ππ, Eq. (9.39),

and Γσ2→ππ, Eq. (9.40), from the σππ interaction Lagrangian (9.27). We can therefore immedi-
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ately plot the two decay widths, see Fig. 11.6.
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Figure 11.6: Γσ1→ππ and Γσ2→ππ as functions of mσ1
and mσ2

, respectively.

From the left panel of Fig. 11.6 we can conclude that the state σ1 appears to possess the best

correspondence with the f0(1370) resonance. Clearly, Γσ1→ππ is too small in the mass region of

f0(600), i.e., mσ2 . 800 MeV. Therefore, an assignment of σ1 to f0(600) based on the 2π decay

channel is not possible. Additionally, σ1 cannot correspond to the f0(1500) resonance either:

we obtain Γσ1→ππ ≃ 400 MeV at mσ1 ≃ 1500 MeV, in stark contrast to experimental data [10]

reading Γf0(1500)→ππ ≃ 30 MeV.

Let us now ascertain whether there is indeed a good correspondence of our predominantly non-

strange state σ1 to f0(1370), and additionally of σ2 to f0(1710) as suggested bymσ2 , see discussion

of Fig. 11.2. There are two strategies to this end: we can first determinemσ1 necessary to describe

correctly Γf0(1370)→ππ from Ref. [40] (a comprehensive fit of several data sets used here because

the PDG data [10] are not conclusive), then calculate mσ2 and Γσ2→ππ and compare these results

with mf0(1710) and Γf0(1710)→ππ. Alternatively, we can first determine our result for mσ2 in such

a way that Γσ2→ππ describes Γf0(1710)→ππ correctly and then calculate mσ1 and Γσ1→ππ and

compare them with results for mf0(1370) and Γf0(1370)→ππ from Ref. [40].

• Reference [40] cites the value of Γf0(1370) = 325 MeV at mf0(1370) = (1309 ± 1 ± 15) MeV

from an f0(1370) Breit-Wigner fit and we obtain Γσ1→ππ = 325 MeV at mσ1 = 1376

MeV. Reference [40] also cites the value of 207 MeV for the full width at half maximum

(FWHM) with the peak in the decay channel f0(1370) → ππ at mf0(1370) = 1282 MeV

– we obtain Γσ1→ππ = 207 MeV at mσ1 = 1225 MeV. Our results are thus qualitatively

consistent with results from Ref. [40]. As already noted, assigning a value to mσ1 implies

also a certain value of mσ2 . Consequently, mσ1 = 1376 MeV leads to mσ2 = 1616 MeV

and to Γσ2→ππ = 22.6 MeV whereas mσ1 = 1225 MeV leads to mσ2 = 1599 MeV and to

Γσ2→ππ = 71.2 MeV (see the right panel of Fig. 11.6). Γσ2→ππ = 22.6 MeV is within the

PDG-preferred interval of Eq. (3.10) reading Γf0(1710)→ππ = 29.28+5.42
−7.69 MeV; it is outside

the BES II interval Γf0(1710)→ππ < 9.34 MeV, Eq. (3.25) and also above the WA102 range

Γf0(1710)→ππ = (16.1 ± 3.6) MeV, see Eq. (3.32). Γσ2→ππ = 71.2 MeV is outside all the

mentioned intervals.

• Enforcing Γσ2→ππ = 29.28+5.42
−7.69 MeV ≡ ΓPDG

f0(1710)→ππ leads to two sets of solutions for mσ2

due to the parabolic form of Γσ2→ππ, see Fig. 11.2. We obtain (i) mσ2 = (1613 ∓ 3) MeV

and (ii) mσ2 = 1677+4
−6 MeV. Both sets of results are below mf0(1710) = (1720±6) MeV [10].
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From results (i) we obtain mσ1 = 1360−15
+19 MeV and Γσ1→ππ = 309−13

+19 MeV. From results

(ii) we obtain mσ1 = 1497+3
−5 MeV and Γσ1→ππ = (415∓ 1) MeV. The second set of results

would imply a dominant 2π decay of f0(1370) at approximately 1.5 GeV, at odds with

experimental data [40] and therefore we will not consider it. The first set of results, however,

can accommodate Γf0(1370) = 325 MeV, although the corresponding mass mσ1 = 1360−15
+19

MeV is slightly larger than the one cited in Ref. [40]. Additionally, the first set of results

describes Γf0(1710)→ππ correctly although the obtained mass interval mσ2 = (1613∓3) MeV

is approximately 100 MeV smaller than the PDG result mf0(1710) = (1720 ± 6) MeV.

Constraining mσ2 via ΓBES II
f0(1710)→ππ < 9.34 MeV, Eq. (3.25), yields 1624 MeV ≤ mσ2 ≤ 1659

MeV, 1411 MeV ≤ mσ1 ≤ 1480 MeV and 359 MeV ≤ Γσ1→ππ ≤ 415 MeV. These results

imply a slightly too large value of mσ1 where the 2π channel is expected to be dominant for

f0(1370) – Ref. [40] suggests the mass of approximately 1300 MeV, not 1400 MeV, where

f0(1370) decays predominantly into 2π rather than 4π.

We can also utilise ΓWA102
f0(1710)→ππ = 16.1±3.6 MeV, Eq. (3.32), to constrain mσ2 . We obtain

(i) mσ2 = 1619−2
+3 MeV and (ii) mσ2 = (1666± 3) MeV. From results (i) we obtain mσ1 =

(1393∓9) MeV and Γσ1→ππ = (341∓9) MeV. From results (ii) we obtain mσ1 = (1487±3)

MeV and Γσ1→ππ = 416 MeV. Results (ii) would suggest a large contribution of the 2π

channel to f0(1370) at ≃ 1.49 MeV and we therefore disregard them; results (i) are then

more acceptable but still above the range of mσ1 = 1360−15
+19 MeV and Γσ1→ππ = 309−13

+19

MeV, obtained from ΓPDG
f0(1710)→ππ . We thus prefer the latter result.

We conclude that results regarding the 2π decay channel allow for a correct description of the

f0(1370) and f0(1710) decay widths, although the mass values could be improved. The latter

point emphasises the need to include a glueball state into our model [203] because, if it is found at

∼ 1.5 GeV, this state should induce a level repulsion shifting mσ1 downwards and mσ2 upwards

– i.e., both masses being shifted in the directions favoured by the experiment.

The best results suggested by comparing Γσ1→ππ to Γf0(1370)→ππ and Γσ2→ππ to Γf0(1710)→ππ read

mσ1 = 1360+16
−17 MeV, Γσ1→ππ = 309+16

−15 MeV, mσ2 = (1613± 3) MeV and Γσ2→ππ = (29.3± 6.5)

MeV. These results justify the assignments σ1 ≡ f0(1370) and σ2 ≡ f0(1710); the assignments

will also be confirmed in the subsequent sections (see below). The results also suggest that

f0(1370) is 94.6
−1.0
+1.4% a n̄n state and, conversely, that f0(1710) is 94.6

−1.0
+1.4% a s̄s state.

As apparent from Fig. 11.6, Γσ2→ππ = 0 for mσ2 = 1640 MeV, corresponding to m2
0 = −1044148

MeV2 and thus mσ1 = 1452 MeV (see Fig. 11.2). As already noted, the parameter λ1 in our fit

is determined only indirectly, from the linear combination m2
0 + λ1(φ

2
N + φ2S) = −1044148 MeV2

(see Table 10.2). Therefore, λ1 = 0 for m2
0 = −1044148 MeV2; consequently, according to Eq.

(9.23), one also obtains that the σN - σS mixing angle ϕσ = 0. Thus σN and σS decouple. As in

Fit I, Γσ2→ππ then vanishes identically because λ1 = 0 = h1 (and only these large-Nc suppressed

parameters could bring about Γσ2→ππ 6= 0). Setting h1 6= 0 would not alter Γσ2→ππ = 0 for a

certain value of mσ2 because of the relative minus sign of the two terms inMσ2→ππ, Eq. (9.38).

The relative sign difference still leads to a cancellation of the two terms inMσ2→ππ for a certain

value of ϕσ.

Thus our Fit II prefers f0(1370) rather than f0(600) to be the non-strange quarkonium, just as

Scenario II of the U(2)× U(2) version of our model.
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A note on σ1,2 → 4π decays. We have also considered the sequential decay σ1,2 → ρρ → 4π by

integrating over the spectral functions of the two intermediate ρ mesons, similarly to Sec. 5.4.2.

The following Lagrangian obtained from Eq. (6.1) has been utilised:

Lσρρ =
1

2
(h1 + h2 + h3)φNσN

[

(ρ0µ)
2 + 2ρ+µ ρ

−
µ

]

+
1

2
h1φSσS

[

(ρ0µ)
2 + 2ρ+µ ρ

−
µ

]

=
1

2
[(h1 + h2 + h3)φN cosϕσ + h1φS sinϕσ] σ1

[

(ρ0µ)
2 + 2ρ+µ ρ

−
µ

]

+
1

2
[h1φS cosϕσ − (h1 + h2 + h3)φN sinϕσ] σ2

[

(ρ0µ)
2 + 2ρ+µ ρ

−
µ

]

(11.4)

with the substitutions σN → cosϕσσ1 and σS → sinϕσσ1 that enable us to calculate decay width

of f0(1370) ≡ σ1 and the substitutions σN → − sinϕσσ2 and σS → cosϕσσ2 that enable us to

calculate decay width of f0(1710) ≡ σ2 [see Eq. (9.18)]. After the substitutions, the Lagrangian in

Eq. (11.4) obtains an analogous form as the one in Eq. (5.128). For this reason it is subsequently

possible to perform the mentioned integration over the ρ spectral functions.

We then observe that results obtained from our Nf = 3 fit are by at least a factor of ten smaller

than those obtained within the realm of Scenario II in the U(2) × U(2) version of the model.

The reason is the different value of h2: whereas in Scenario II of the two-flavour model this

parameter had the value ≃ 5, our Fit I in the three-flavour model prefers the value of h2 ≃ 0

scaling the 4π decay width of the scalar states downwards. We expect results in the 4π channel

to improve considerably upon inclusion of the scalar glueball field into the U(3) × U(3) version

of our model because we will see in Chapter 12 that the glueball-field coupling to the 4π channel

is significantly stronger than the corresponding coupling of the non-strange quarkonium. The

ensuing mixture of the pure glueball and the pure quarkonium should improve the decay width

of the predominantly n̄n state in the 4π channel.

A Putative Assignment of σ1 to f0(980)

Let us briefly discuss our σ1 state in terms of f0(980), another resonance within the mass range of

our σ1 state. We note that Γσ1→ππ = 97 MeV at mσ1 = 980 MeV and that 94 MeV ≤ Γσ1→ππ ≤
100 MeV for 970 MeV ≤ mσ1 ≤ 990 MeV, with the latter mass interval corresponding to the lower

and upper boundaries of mf0(980). Given that the full decay width Γf0(980) = (40 − 100) MeV

[10], there would appear to be some parallels between our σ1 state and the f0(980) resonance. As

noted in Sec. 3.2, this resonance is close to the kaon-kaon threshold; thus an experimental anal-

ysis is not always straightforward with different collaborations and reviews obtaining at times

very different results [67, 95, 96, 97, 98, 99, 101, 102, 105, 113, 114, 115, 118, 119, 124, 158, 253].

We thus note that there is no universally accepted value of Γf0(980) that ranges between ∼ 14

MeV [254] (T -matrix pole) and (201 ± 28) MeV [255], with the latter result model-dependent,

broad due to inclusion of KK-threshold effects and not considering possible interference with

the high-mass tail of f0(600). Additionally, even if the precise value of Γf0(980) were known, the

branching ratio Γf0(980)→ππ/Γf0(980) remains ambiguous.

The f0(980) resonance can actually also decay non-hadronically, into diphotons and dileptons;

however, these decays are known to be suppressed [10] and therefore we can set Γf0(980) =

Γf0(980)→ππ + Γf0(980)→KK – consequently, Γf0(980)→ππ/Γf0(980) ≡ Γf0(980)→ππ/[Γf0(980)→ππ +
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Γf0(980)→KK ]. There are not many publications discussing both Γf0(980) and Γf0(980)→ππ /

[Γf0(980)→ππ + Γf0(980)→KK ]. Recently, the BABAR Collaboration [256] has published results

regarding the f0(980) phenomenology from the B± → K±K±K∓ decay obtaining Γf0(980)→ππ

/ [Γf0(980)→ππ + Γf0(980)→KK ] = 0.52 ± 0.12. Using e+e− annihilation into kaons and pions

and isolating hadronic intermediate states, the same Collaboration also found [257] Γ
(1)
f0(980)

=

(65± 13) MeV from the ϕ(1020)π+π− intermediate state and Γ
(2)
f0(980)

= (81± 21) MeV from the

ϕ(1020)π0π0 intermediate state. The mentioned f0(980) → ππ branching ratio together with

Γ
(1)
f0(980)

suggests Γ
(1)
f0(980)→ππ ≃ (34 ± 15) MeV whereas from Γ

(2)
f0(980)

we obtain Γ
(2)
f0(980)→ππ ≃

(42 ± 21) MeV. Both results are by approximately a factor of two smaller than our result

Γσ1→ππ = 97 MeV.

Additionally, a review in Ref. [258] found Γf0(980) ∼ 25 MeV and Γf0(980)→ππ/[Γf0(980)→ππ +

Γf0(980)→KK ] = 0.68 from a lowest-order chiral Lagrangian and unitarity. These results suggest

Γf0(980)→ππ ∼ 17 MeV, substantially less than our results for Γσ1→ππ. Therefore, our analysis

does not favour f0(980) as a predominantly q̄q state. Note also that assigning mσ1 to the mass

range between 970 MeV and 990 MeV would imply mσ2 ≃ 1590 MeV (see Fig. 11.2) and thus

Γσ2→ππ ≃ 100 MeV (see the right panel of Fig. 11.6). Therefore, σ2 ≡ f0(1710) would have to

saturate in the 2π channel. This would clearly be at odds with data [10], and thus it represents an

additional argument against interpreting f0(980) as a predominantly q̄q state within our model.

Nonetheless, it is possible that f0(980) may contain a quarkonium component [77, 78, 79]. Al-

ternatively, this state can also be interpreted as a q̄2q2 state, as a glueball, KK bound state or

even as an ηη bound state (see Sec. 3.2).

11.1.3 Decay Width σ1,2 → KK

The interaction Lagrangian of the pure states σN,S with the kaons has already been stated in

Eq. (9.41). The corresponding decay widths Γσ1→KK and Γσ2→KK are given in Eqs. (9.53) and

(9.54), respectively.

We can therefore turn directly to a discussion of the decay widths, depicted in Fig. 11.7.
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Figure 11.7: Γσ1→KK and Γσ2→KK as functions of mσ1
and mσ2

, respectively.

From the left panel of Fig. 11.7 we observe that Γσ1→KK is within the experimental results of

Refs. [124, 170, 253, 259, 260, 261]. From the right panel of Fig. 11.7 we observe that Γσ2→KK

rises rapidly with mσ2 . The PDG data suggest ΓPDG
f0(1710)→KK = 71.44+23.18

−35.02 MeV, Eq. (3.15);
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note that this is the dominant decay channel of f0(1710) and thus the reason why, already from

the experimental point of view, this resonance is a s̄s candidate. Due to the rapid growth of

Γσ2→KK, an exact correspondence of our value with the central value of ΓPDG
f0(1710)→KK would

require mσ2 = 1578 MeV. However, mσ2 would then be outside the interval (11.3) determined

from the correct implementation of the spontaneous breaking of the chiral symmetry – we would

require m2
0 > 0 in contrast to condition (9.4). Due to condition (11.3), the lowest value of mσ2 =

1584 MeV, for which we obtain Γσ2→KK = 102.7 MeV, is above the interval for ΓPDG
f0(1710)→KK .

As in the 2π channel, our results again yield mσ2 that is by approximately 100 MeV smaller

than mf0(1710). Additionally, mσ2 = 1584 MeV implies mσ1 = 450 MeV (see Fig. 11.2), spoiling

the correspondence of Γσ1→ππ to experiment (see Fig. 11.6). Note, however, that our results

allow for the WA102 value ΓWA102
f0(1710)→KK = (80.5± 30.1) MeV to be described: considering 1584

MeV ≤ mσ2 ≤ 1586 MeV yields 103 MeV ≤ Γσ2→KK ≤ 110.6 MeV; the mσ2 interval is small

due to the steep rise of Γσ2→KK, see Fig. 11.7. The mentioned interval also implies 450 MeV ≤
mσ1 ≤ 688 MeV, again spoiling the correspondence of Γσ1→ππ to experiment as apparent from

Fig. 11.6. Thus using Γf0(1710)→KK does not allow us to constrain mσ1 and mσ2 very well.

Let us therefore look into the ratios Γσ1→KK/Γσ1→ππ and Γσ2→ππ/Γσ2→KK, depicted in Fig.

11.8.
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Figure 11.8: Left panel: ratio Γσ1→KK/Γσ1→ππ as function of mσ1
. Right panel: ratio Γσ2→ππ/Γσ2→KK

as function of mσ2
.

Let us first discuss results for Γσ1→KK/Γσ1→ππ (left panel in Fig. 11.8). We observe that the

ratio varies between 0.16 for mσ1 = 1500 MeV and 0.75 for mσ1 = 1200 MeV. Experimental data

regarding this ratio are unfortunately inconclusive [10].

• In 2005, the BESII Collaboration [140] noted the ratio value of 0.08±0.08 from the hadronic

decay of the J/ψ meson (J/ψ → ϕπ+π− and J/ψ → ϕK+K−).

• In 2003, the OBELIX Collaboration [262] published a coupled-channel analysis of p̄p anni-

hilation into light mesons with the result Γf0(1370)→KK/Γf0(1370)→ππ = 0.91 ± 0.20.

• A combined fit of Crystal Barrel, GAMS and BNL data performed by Anisovich, et al.,

from 2002 found Γf0(1370)→KK/Γf0(1370)→ππ = 0.12 ± 0.06 [188].

• The WA102 Collaboration found in 1999 the ratio Γf0(1370)→KK/Γf0(1370)→ππ = 0.46 ±
0.15 ± 0.11 [99].
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Thus, the data vary over a large range of values. If we assign our σ1 state to f0(1370) and vary

mσ1 from 1200 MeV to 1500 MeV, then our results can be accommodated within all data sets.

Clearly, more conclusive data would allow for more conclusive results regarding our theoretical

predictions.

Regarding the ratio Γf0(1710)→ππ/Γf0(1710)→KK , experimental results are rather ambiguous, as

discussed in Sections 3.7.1, 3.7.2 and 3.7.3.

• From the PDG-preferred ratio ΓPDG
f0(1710)→ππ/Γ

PDG
f0(1710)→KK = 0.41+0.11

−0.17 (see Sec. 3.7.1) we

obtain mσ2 = 1598+6
−3 MeV. This result implies Γσ2→ππ = 75−21

+11 MeV from Eq. (9.40), too

large when compared to data, see Eq. (3.10). Additionally, we obtain mσ1 = 1209+82
−56 MeV

and Γσ1→ππ = 197+55
−30 MeV from Eq. (9.39). These results are within the boundaries cited

in Ref. [40].

Thus using ΓPDG
f0(1710)→ππ/Γ

PDG
f0(1710)→KK constrains mσ2 in a way that does not allow us to

describe simultaneously Γf0(1710)→ππ as well as Γf0(1370)→ππ.

Note that ΓPDG
f0(1710)→ππ/Γ

PDG
f0(1710)→KK could also be described by the high-mass tail of

Γσ2→ππ / Γσ2→KK in Fig. 11.8; however, this would imply mσ2 & 1800 MeV leading

to unphysically large values of Γσ2→KK, see Fig. 11.7.

• From the BES II ratio ΓBES II
f0(1710)→ππ/Γ

BES II
f0(1710)→KK < 0.11, Eq. (3.21), we obtain 1612 MeV

≤ mσ2 ≤ 1712 MeV. Given the parabolic form of Γσ2→ππ/Γσ2→KK, let us separate the

mentioned interval into two subintervals: (i) 1612 MeV ≤ mσ2 ≤ 1640 MeV and (ii) 1640

MeV ≤ mσ2 ≤ 1712 MeV with mσ2 = 1640 MeV the point where the ratio vanishes (see

Fig. 11.8). Interval (i) yields 1356 MeV ≤ mσ1 ≤ 1452 MeV and 306 MeV ≤ Γσ1→ππ ≤ 398

MeV. Interval (ii) yields 1452 MeV ≤ mσ1 ≤ 1517 MeV and 397 MeV ≤ Γσ1→ππ ≤ 416

MeV, see Fig. 11.6. As noted in Sec. 3.7.2, it is not possible to calculate Γf0(1710)→KK from

these data.

• The WA102 ratio ΓWA102
f0(1710)→ππ/Γ

WA102
f0(1710)→KK = 0.2 ± 0.06, Eq. (3.27), also yields two in-

tervals for mσ2 : (i) mσ2 = 1606−3
+4 MeV and (ii) mσ2 = 1772+58

−42 MeV. We disregard the

interval (ii) because it leads to a very large value of Γσ2→KK , see Fig. 11.7. From interval

(i) we obtain mσ1 = 1310−29
+30 MeV and Γσ1→ππ = 267−50

+25 MeV. These results are consistent

with the experimental values of Ref. [40].

In summary: it is not possible to constrain mσ2 via Γf0(1710)→KK in a way that yields acceptable

values of Γf0(1710)→ππ (because our values Γσ2→KK increase rapidly withmσ2). However, utilising

the ratio Γf0(1710)→ππ/Γf0(1710)→KK allows us to constrain mσ2 such that both mσ1 and Γσ1→ππ

are within values published in Ref. [40]. This can be accomplished using either PDG-preferred

or WA102 values for the mentioned ratio. Given the issues regarding ΓPDG
f0(1710)→ππ/Γ

PDG
f0(1710)→KK

discussed in Sec. 3.7.1, we prefer results obtained from ΓWA102
f0(1710)→ππ/Γ

WA102
f0(1710)→KK , i.e., mσ1 =

1310−29
+30 MeV, mσ2 = 1606−3

+4 MeV, Γσ1→ππ = 267−50
+25 MeV. Note that these results yield

Γσ2→KK ∼ 200 MeV [larger than experimental results but consistent with the notion of a pre-

dominant 2K decay channel of f0(1710)] and also Γσ2→ππ = 47+9
−10 MeV [larger than the WA102

value of Eq. (3.32) but consistent with the notion of a subdominant 2π decay channel of f0(1710)].

These combined results from the 2π and 2K channels suggest that f0(1370) is (95.5 ± 1.0)% a

n̄n state and that, conversely, that f0(1710) is (95.5 ± 1.0)% a s̄s state.
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11.1.4 Decay Width σ1,2 → ηη

We have already discussed the σηη interaction Lagrangian in Sec. 9.1.6, formulas for the decay

widths Γσ1→ηη and Γσ2→ηη are stated in Eqs. (9.71) and (9.72), respectively.

The dependence of the decay widths on mσ1,2 is shown diagramatically in Fig. 11.9.
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Figure 11.9: Γσ1→ηη and Γσ2→ηη as functions of mσ1
and mσ2

in Fit II.

We observe from the left panel of Fig. 11.9 that Γσ1→ηη is suppressed over the entire mass range

of σ1. Contrarily, Γσ2→ηη rises rapidly over the mass range of σ2.

Experimental results regarding the decay f0(1370) → ηη are ambiguous; there are Crystal Barrel

p̄p data [125] and GAMS π−p [145] suggesting a decay width of ∼ (250−300) MeV in this decay

channel from Breit-Wigner fits. These are known, however, to be very sensitive to the opening

of new channels (such as 4π, see Sec. 3.3). For this reason, we will consider only the (more

unambiguously determined) values of Γf0(1710)→ηη from Sec. 3.7.

Our discussion of Γσ1,2→ηη will be constrained by the following entries: (i) the experimental

result for Γf0(1710)→ηη ; (ii) the condition m
2
0 ≤ 0 from formula (9.4), necessary to utilise because

the lower boundaries of Γf0(1710)→ηη from Sec. 3.7 may imply mσ2 < 1584 MeV and thus m2
0 > 0

[see condition (11.3)]; (iii) given that the ηη channel represents a confirmed decay mode of

f0(1370) [10] (although, as already mentioned, the corresponding decay width is by no means

unambiguous), we also require that mσ1 is above the ηη threshold, i.e., mσ1 ≥ 2mη = 1046 MeV

with mη from Table 10.3. [Remember that mσ1 determines uniquely the values of m2
0 and mσ2

from Fig. 11.2 or, equivalently, from Eqs. (9.19) - (9.23); mσ2 then allows for a determination

of Γσ2→ηη from the right panel of Fig. 11.9, or, equivalently, from Eqs. (9.71) and (9.72).] The

consequences of the stated three entries are as follows:

• The PDG-preferred result reads ΓPDG
f0(1710)→ηη = 34.26+15.42

−20.0 MeV, see Eq. (3.20). It is not

possible to accommodate the full experimental interval within our model as utilising the

lower boundary of ΓPDG
f0(1710)→ηη would violate the above condition (ii). Then combining

ΓPDG
f0(1710)→ηη = 34.26+15.42

−20.0 MeV with condition (ii) yields mσ2 = 1588+11
−4 MeV (the upper

boundary for mσ2 was determined from the upper boundary of ΓPDG
f0(1710)→ηη) and, in turn,

Γf0(1710)→ηη = 34.26+15.42
−4.41 MeV. However, condition (iii), i.e., mσ1 ≥ 1046 MeV, implies

m2
0 ≤ −457456 MeV2 and thus mσ2 ≥ 1591 MeV. Combining the latter inequality with

the interval mσ2 = 1588+11
−4 MeV yields 1591 MeV ≤ mσ2 ≤ 1599 MeV and, consequently,
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39.12 MeV ≤ Γf0(1710)→ηη ≤ 49.68 MeV. The latter two sets of inequalities also imply 1046

MeV ≤ mσ1 ≤ 1227 MeV (or 1200 MeV ≤ mσ1 ≤ 1227 MeV considering the PDG data

[10]) and 0 ≤ Γσ1≡f0(1370)→ηη ≤ 35.92 MeV. The ηη decay of f0(1370) is then suppressed

in comparison with the 2π decay, see Sec. 11.1.2.

• There is another set of experimental data discussed in Sec. 3.7: ΓWA102
f0(1710)→ηη = (38.6±18.8)

MeV from Eq. (3.34). As in the case of the PDG-preferred data, we combine ΓWA102
f0(1710)→ηη =

(38.6±18.8) MeV with the above condition (ii) and obtain mσ2 = 1591+13
−7 MeV. Note that

the lower boundary of mσ2 = 1594 MeV implies Γf0(1710)→ηη = 29.8 MeV hence modifying

the WA102 result to Γf0(1710)→ηη = 38.6+18.8
−8.8 MeV. As already mentioned, condition (iii)

implies mσ1 ≥ 1046 MeV, i.e., m2
0 ≤ −457456 MeV2 and thus also mσ2 ≥ 1591 MeV. The

latter inequality in conjunction with mσ2 = 1591+13
−7 MeV yields 1591 MeV ≤ mσ2 ≤ 1604

MeV and, consequently, 38.6 MeV ≤ Γσ2≡f0(1710)→ηη ≤ 56.6 MeV. The latter two sets of

inequalities also imply 1046 MeV ≤ mσ1 ≤ 1289 MeV (i.e., 1200 MeV ≤ mσ1 ≤ 1289

MeV considering the PDG data [10]) and 0 ≤ Γσ1≡f0(1370)→ηη ≤ 39.8 MeV. Therefore,

Γf0(1370)→ηη is in this case slightly larger than in the case of the PDG-preferred data but

still smaller than the 2π decay width discussed in Sec. 11.1.2.

Given the ambiguities in the BES II data utilised by the PDG (as discussed in Sec. 3.7.1), we

prefer the results obtained from the WA102 data.

Let us now consider the ratios of the decay widths discussed so far. A plot of Γσ1→ηη/Γσ1→ππ

and Γσ2→ηη/Γσ2→ππ is shown in Fig. 11.10.
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Figure 11.10: Ratios Γσ1→ηη/Γσ1→ππ as function of mσ1
and Γσ2→ηη/Γσ2→ππ as function of mσ2

in Fit

II.

Our results for Γσ1→ηη/Γσ1→ππ are within the ratio Γf0(1370)→ηη/Γf0(1370)→ππ = 0.19 ± 0.07 [40]

for a rather large mass interval: 1081 MeV ≤ mσ1 ≤ 1377 MeV. Due to the constraints regarding

mf0(1370) [10] we obtain 1200 MeV ≤ mσ1 ≤ 1377 MeV. Note that the largest value of the ratio

obtained (and shown in Fig. 11.10) is 0.174, for mσ1 = 1200 MeV.

Additionally, there are three sets of data regarding the ratio Γf0(1710)→ηη/Γf0(1710)→ππ that need

to be considered (see Sec. 3.7).
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• Data preferred by the PDG suggest ΓPDG
f0(1710)→ηη/Γ

PDG
f0(1710)→ππ = 1.17+0.48

−0.61, Eq. (3.6). As

apparent from Fig. 11.10, the stated ratio can be accommodated within our model for

two sets of mσ2 values. The higher of these two sets (mσ2 ∼ 1800 MeV) is not considered

because it would lead to very large values of the 2π and 2K decay widths for this resonance

(see Figures 11.6 and 11.7). For this reason, we consider the lower of the intervals reading

mσ2 = 1605+4
−9 MeV. This value implies mσ1 = 1302+32

−102 MeV by Fig. 11.2, with the lower

boundary limited to mσ1≡f0(1370) = 1200 MeV [10], and 0.14 ≤ Γσ1→ηη/Γσ1→ππ ≤ 0.17, see

Fig. 11.10.

• BES II data from condition (3.23) suggest ΓBES II
f0(1710)→ηη/Γ

BES II
f0(1710)→ππ > 4.36. This ratio

implies mσ2 > 1618 MeV, mσ1 > 1389 MeV (see Fig. 11.2) and Γσ1→ηη/Γσ1→ππ < 0.11,

see Fig. 11.10 (we again disregard the high-mass tail of mσ2 that would also fulfill the

stated ratio). The lower boundaries for mσ1,2 are incompatible with the best values in

the 2π and 2K decay channels of σ1,2, as discussed at the end of Sec. 11.1.3. The

obtained ratio for Γσ1→ηη/Γσ1→ππ is outside of the interval Γf0(1370)→ηη/Γf0(1370)→ππ =

0.19± 0.07 suggested by Ref. [40]. For this reason, the BES II result regarding the ratio of

Γf0(1710)→ηη/Γf0(1710)→ππ is not supported by our model.

• WA102 data from Eq. (3.31) suggest ΓWA102
f0(1710)→ηη/Γ

WA102
f0(1710)→ππ = 2.4 ± 1.04. As apparent

from Fig. 11.10, this ratio also implies two possiblemσ2 intervals, a relatively lower one and

a relatively higher one. The latter interval is disregarded because it would yield mσ2 ∼ 1700

MeV, a value that – although close to the experimental value of mf0(1710) = 1720 MeV –

nonetheless yields very large values of Γσ2→ππ and Γσ2→KK, see Figures 11.6 and 11.7.

We therefore consider only the lower set of mσ2 values reading mσ2 = 1613+3
−6 MeV. This

interval implies mσ1 = 1360+19
−43 MeV (see Fig. 11.2) and 0.12 ≤ Γσ1→ηη/Γσ1→ππ ≤ 0.15, see

Fig. 11.10. The latter ratio is within the interval Γf0(1370)→ηη/Γf0(1370)→ππ = 0.19 ± 0.07

suggested by Ref. [40].

Let us now consider the ratio Γσ1,2→ηη/Γσ1,2→KK shown in Fig. 11.11. The corresponding ratio
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Figure 11.11: Ratios Γσ1→ηη/Γσ1→KK as function of mσ1
and Γσ2→ηη/Γσ2→KK as function of mσ2

in

Fit II.

for f0(1710) has been determined by the WA102 Collaboration [153] with data from pp collisions

yielding Γf0(1710)→ηη/Γf0(1710)→KK = 0.48 ± 0.15 and in a combined-fit analysis of Ref. [188]

where Γf0(1710)→ηη/Γf0(1710)→KK = 0.46+0.70
−0.38 was obtained. The results are obviously mutually
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compatible; the PDG cites the WA102 result as the referential one. We observe, however, that

the WA102 interval is outside the ratio on the right panel of Fig. 11.11 and that the result from

Ref. [188] cannot be utilised to constrain mσ2 because the entire interval on the right panel of

Fig. 11.11 is within the result Γf0(1710)→ηη/Γf0(1710)→KK = 0.46+0.70
−0.38. It is therefore not possible

to utilise the ratio Γf0(1710)→ηη/Γf0(1710)→KK in order to constrain mσ2 .

Short Summary of Results

Let us now summarise results obtained so far. The ratio ΓWA102
f0(1710)→ππ/Γ

WA102
f0(1710)→KK = 0.2± 0.06

allows us to determine mσ2 and then observables for σ1. We obtain mσ1 = 1310−29
+30 MeV,

mσ2 = 1606−3
+4 MeV and Γσ1→ππ = 267−50

+25 MeV. The results for σ1 are consistent with interpre-

tation of this state as f0(1370). In particular mσ1 is consistent with the combined-fit value of

mf0(1370) = (1309±1±15) MeV from Ref. [40]; Γσ1→ππ is consistent with both the Breit-Wigner

decay width and the FWHM value of Ref. [40]. The value of mσ2 is approximately 100 MeV

smaller than mf0(1710); however, a pure glueball state [that would very probably shift mσ2 in

the direction of mf0(1710)] is not present in the U(3) × U(3) version of our model. Additionally,

we observe that our state σ2 possesses a strongly enhanced kaon decay, also consistent with the

corresponding feature of f0(1710) although the absolute value of the decay width in this chan-

nel is too large. Additionally, Γσ2→ππ = 47+9
−10 MeV is larger than the value expected for the

f0(1710) resonance; this may be a consequence of the missing glueball field that, if included,

could modify decay amplitudes in such a way that Γσ2→ππ and Γσ2→KK obtain values closer to

those of f0(1710).

Additionally, the decay channel σ1,2 → ηη is well accommodated within the model: our results

for Γσ2≡f0(1710)→ηη are within ΓWA102
f0(1710)→ηη = (38.6±18.8) MeV if we set 1591 MeV ≤ mσ2 ≤ 1604

MeV. Then we obtain simultaneously 1200 MeV ≤ mσ1 ≤ 1289 MeV, 0 ≤ Γσ1≡f0(1370)→ηη ≤ 39.8

MeV and 38.6 MeV ≤ Γσ2≡f0(1710)→ηη ≤ 56.6 MeV. [Γσ2≡f0(1710)→ηη does not correspond exactly

to ΓWA102
f0(1710)→ηη because we have required mσ1 ≥ 2mη hence constraining m2

0 and consequently

other observables as well.] Note, however, that the obtained mσ1 and mσ2 overlap with mσ1 and

mσ2 determined from ΓWA102
f0(1710)→ππ/Γ

WA102
f0(1710)→KK within errors.

Finally, it is not possible to constrainmσ1,2 and other observables from Γf0(1710)→ηη/Γf0(1710)→KK ;

however, the opposite is true for Γf0(1710)→ηη/Γf0(1710)→ππ. We prefer the result of the WA102

Collaboration ΓWA102
f0(1710)→ηη/Γ

WA102
f0(1710)→ππ = 2.4 ± 1.04 because of reliability issues of an alter-

native, PDG-preferred ratio value (discussed at the beginning of Sec. 3.7.1). Utilising the

stated WA102 interval we obtain mσ1 = 1360+19
−43 MeV, mσ2 = 1613+3

−6 MeV [suggesting that

f0(1370) is 94.7
+1.4
−3.0% a n̄n state and that, conversely, that f0(1710) is 94.7

+1.4
−3.0% a s̄s state] and

0.12 ≤ Γσ1→ηη/Γσ1→ππ ≤ 0.15. It is obvious that these results are also compatible with the

previous two (within errors).

11.1.5 Combined Results in the Pion, Kaon and Eta Channels

Until now we have considered experimental information regarding the ππ, KK and ηη channels

by exploring the possibility to describe each of these decay channels separately. However, the

already noted compatibility of thus obtained results (within errors) prompts us to investigate

whether similarly good results can be obtained considering a single observable. Let that observ-

able be the ratio Γf0(1710)→ππ/Γf0(1710)→KK due to the importance of pion and kaon decays in
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discriminating between predominantly non-strange and predominantly strange states. Utilising

the WA102 result ΓWA102
f0(1710)→ππ/Γ

WA102
f0(1710)→KK = 0.2±0.06 [99] allows us to exactly determine the

only parameter that we have varied until now: m2
0 = −791437+42287

−46053 MeV2. (Note that until now

the only conditions set upon m2
0 were m2

0

!
< 0 and that the values of this parameter must imply

mσN < mσS .) Then we obtain the following results [remember – our assignment is σ1 ≡ f0(1370)
and σ2 ≡ f0(1710)]:

• Masses: we obtain mσ1 = 1310−29
+30 MeV and mσ2 = 1606−3

+4 MeV. The former is vir-

tually the same as the combined-fit Breit-Wigner mass in Ref. [40] where mf0(1370) =

(1309 ± 1 ± 15) MeV was obtained (our error results are dictated by uncertainties in

ΓWA102
f0(1710)→ππ/Γ

WA102
f0(1710)→KK) and also very close to the f0(1370) peak mass in the 2π chan-

nel, found to be 1282 MeV in Ref. [40]. The latter is approximately 100 MeV smaller

than mf0(1710) = (1720 ± 6) MeV because the glueball field has not been included in the

current version of the model. This implies that f0(1370) is 91.2
−1.7
+2.0% a n̄n state and that,

conversely, f0(1710) is 91.2
−1.7
+2.0% a s̄s state.

• Pion decay channel: we obtain Γσ1→ππ = 267−50
+25 MeV and Γσ2→ππ = 47+9

−10 MeV. The

former is virtually a median of (and thus consistent with both) the Breit-Wigner decay

width Γf0(1370)→ππ = 325 MeV and the f0(1370) FWHM in the 2π channel, the value of

which was determined as 207 MeV in Ref. [40]. The latter is too large when compared

to the WA102 result in Eq. (3.32) but still demonstrates that the decay f0(1710) → ππ is

suppressed in comparison with other decay modes (see below) – a fact that is in accordance

with the data [10].

• Kaon decay channel: we obtain Γσ1→KK = 188−9
+6 MeV and Γσ2→KK = 237−20

+25 MeV.

The two-kaon decay width for f0(1370) has not been determined unambiguously, but our

result is consistent with experimental data in Refs. [124, 170, 253, 259, 260, 261]. We

find Γf0(1370)→KK < Γf0(1370)→ππ, consistent with the interpretation of f0(1370) as a pre-

dominantly non-strange q̄q state. Γσ2→KK is larger than the WA102 data presented in Eq.

(3.33); however, our results suggest nonetheless that f0(1710)→ KK is the most dominant

decay channel for this resonance – in accordance with the data (see Sec. 3.7.3).

• Eta decay channel: we obtain Γσ1→ηη = (40∓1) MeV and Γσ2→ηη = 60−4
+5 MeV. The former

is lower than the values cited in Refs. [125, 145] but note that the cited publications did

not consider in their Breit-Wigner fits that new decay channels may open over the broad

f0(1370) decay interval. The latter is marginally (within errors) consistent with the value

ΓWA102
f0(1710)→ηη = (38.6 ± 18.8) MeV from Eq. (3.33).

• Pion-kaon ratio: Γσ1→ππ/Γσ1→KK = 1.42−0.05
+0.09 is consistent with the WA102 result stating

Γf0(1370)→ππ/Γf0(1370)→KK = 2.17±1.23 obtained from Ref. [99] and also qualitatively con-

sistent with the result Γf0(1370)→ππ/Γf0(1370)→KK = 1.10±0.24 obtained from the OBELIX

data in Ref. [262].

• The eta-pion ratios read Γσ1→ηη/Γσ1→ππ = 0.15 ± 0.01 and Γσ2→ηη/Γσ2→ππ = 1.26−0.27
+0.52.

The former is within the ratio Γf0(1370)→ηη/Γf0(1370)→ππ = 0.19±0.07 of Ref. [40]. The latter
is corresponds almost completely to the WA102 ratio ΓWA102

f0(1710)→ηη/Γ
WA102
f0(1710)→ππ = 2.4±1.04

from Eq. (3.31).

198



• The eta-kaon ratios read Γσ1→ηη/Γσ1→KK = 0.22 ± 0.01 and Γσ2→ηη/Γσ2→KK = 0.25 ±
0.004. To our knowledge, there are no experimental results for the ratio Γf0(1370)→ηη

/Γf0(1370)→KK . Our result for Γσ1≡f0(1370)→ηη/Γσ1≡f0(1370)→KK is hence a prediction. Our

value of the ratio Γσ2→ηη/Γσ2→KK is completely within the combined-fit result of Ref. [188]

reading Γf0(1710)→ηη/Γf0(1710)→KK = 0.46+0.70
−0.38 and within 2σ of the WA102 result where

Γf0(1710)→ηη/Γf0(1710)→KK = 0.48± 0.15 was obtained [153].

For these reasons, the assumption of scalar q̄q states above 1 GeV is strongly preferred over the

assumption that the same states are present below 1 GeV. Fit II describes non-strange scalars

decisively better than Fit I (see Sec. 9.6). Additionally, results obtained in this section will allow

us to explore three more decay channels of our σ1 ≡ f0(1370) state: into ηη′, a1(1260)π, and
2ω(782). Experimental information regarding these decays is scarce [10]; thus our results will

have strong predictive power.

11.1.6 Decay Width σ1,2 → ηη′

The interaction Lagrangian for this decay has already been presented in Eq. (9.57). The La-

grangian contains the pure states σN,S and ηN,S and, as in Sec. 9.1.6, we will first introduce the

fields η and η′ in accordance with Eqs. (7.17) and (7.18). The Lagrangian in Eq. (9.57) then

obtains the following form:

Substituting Eqs. (9.58) and (9.59) into Eq. (9.57) and additionally substituting ηN and ηS by

η and η′ according to Eqs. (7.17) and (7.18), we obtain the following form of the interaction

Lagrangian:

Lσηη′ = AσNηη′σNηη
′ +BσNηη′σN (∂µη)(∂

µη′) + CσNηη′∂µσN (η∂
µη′ + η′∂µη)

+AσSηη′σSηη
′ +BσSηη′σS(∂µη)(∂

µη′) + CσSηη′∂µσS(η∂
µη′ + η′∂µη) (11.5)

with

AσN ηη′ = Z2
πφN

(

λ1 +
λ2
2

+ c1φ
2
S

)

sin(2ϕη)− Z2
ηSφN

(

λ1 +
c1
2
φ2N

)

sin(2ϕη)

− 3

2
c1ZπZηSφ

2
NφS cos(2ϕη)

= φN

{

λ1(Z
2
π − Z2

ηS ) sin(2ϕη) +
λ2
2
Z2
π sin(2ϕη)

+c1

[(

Z2
πφ

2
S −

Z2
ηS

2
φ2N

)

sin(2ϕη)−
3

2
ZπZηSφNφS cos(2ϕη)

]}

, (11.6)

BσNηη′ =

[

Z2
π

w2
a1

φN

(

m2
1 +

h1
2
φ2S + 2δN

)

+
h1
2
Z2
ηS
w2
f1S
φN

]

sin(2ϕη), (11.7)
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CσNηη′ = −
g1
2
wa1Z

2
π sin(2ϕη), (11.8)

AσSηη′ = −(λ1 + λ2)Z
2
ηSφS sin(2ϕη) + Z2

πφS(λ1 + c1φ
2
N ) sin(2ϕη)−

1

2
c1ZπZηSφ

3
N cos(2ϕη)

= φS

{

[

λ1(Z
2
π − Z2

ηS
)− λ2Z2

ηS

]

sin(2ϕη) + c1Zπφ
2
N

[

Zπ sin(2ϕη)−
ZηS
2φS

φN cos(2ϕη)

]}

,

(11.9)

BσSηη′ =

[

−Z2
ηS

w2
f1S

φS

(

m2
1 +

h1
2
φ2N + 2δS

)

− h1
2
Z2
πw

2
a1φS

]

sin(2ϕη), (11.10)

CσSηη′ =

√
2

2
Z2
ηSg1wf1S sin(2ϕη). (11.11)

As in Eq. (9.34) we obtain from Eqs. (9.17) and (11.5)

Lσηη′, full = LσNσS , full + Lσηη′

=
1

2
(∂µσN )

2 +
1

2
(∂µσS)

2 − 1

2
m2
σN
− 1

2
m2
σS

+ zσσNσS

+AσN ηη′σNηη
′ +BσNηη′σN (∂µη)(∂

µη′) + CσNηη′∂µσN (η∂
µη′ + η′∂µη)

+AσSηη′σSηη
′ +BσSηη′σS(∂µη)(∂

µη′) + CσSηη′∂µσS(η∂
µη′ + η′∂µη). (11.12)

Lσηη′, full can be transformed in the following way:

Lσηη, full =
1

2
(∂µσ1)

2 − 1

2
m2
σ1σ

2
1

+ (AσN ηη′ cosϕσ +AσSηη′ sinϕσ)σ1ηη
′

+ (BσN ηη′ cosϕσ +BσSηη′ sinϕσ)σ1(∂µη)(∂
µη′)

+ (CσN ηη′ cosϕσ + CσSηη′ sinϕσ)∂µσ1(η∂
µη′ + η′∂µη)

+
1

2
(∂µσ2)

2 − 1

2
m2
σ2σ

2
2

+ (AσSηη′ cosϕσ −AσN ηη′ sinϕσ)σ2ηη′

+ (BσSηη′ cosϕσ −BσNηη′ sinϕσ)σ2(∂µη)(∂µη′)
+ (CσSηη′ cosϕσ − CσNηη′ sinϕσ)∂µσ2(η∂µη′ + η′∂µη). (11.13)

Let us set P as the momentum of σ1 or σ2 (depending on the decaying particle) and P1 and P2 as

the momenta of the η and η′ fields, respectively. Upon substituting ∂µ → −iPµ for the decaying

particles and ∂µ → iPµ1,2 for the decay products, the decay amplitudes of the mixed states σ1,2
read

−iMσ1→ηη′(mσ1) = i
{

cosϕσ(AσN ηη′ −BσNηη′P1 · P2 + CσNηη′P · (P1 + P2)

+ sinϕσ
[

AσSηη′ −BσSηη′P1 · P2 + CσSηη′P · (P1 + P2)
]}

= i

{

cosϕσ

[

AσNηη′ −BσNηη′
m2
σ1 −m2

η −m2
η′

2
+ CσNηη′m

2
σ1

]

+sinϕσ

[

AσSηη′ −BσSηη′
m2
σ1 −m2

η −m2
η′

2
+ CσSηη′m

2
σ1

]}

, (11.14)
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−iMσ2→ηη′(mσ2) = i

{

cosϕσ

[

AσSηη′ −BσSηη′
m2
σ2 −m2

η −m2
η′

2
+ CσSηη′m

2
σ2

]

− sinϕσ

[

AσNηη′ −BσNηη′
m2
σ2 −m2

η −m2
η′

2
+ CσNηη′m

2
σ2

]}

. (11.15)

Note that we have used the identity P 2 = (P1 + P2)
2 ⇔ P1 · P2 = (P 2 − P 2

1 − P 2
2 )/2 =

(m2
σ1 −m2

η −m2
η′)/2 in Eqs. (11.14) and (11.15).

Finally, we obtain the following decay widths formulas:

Γσ1→ηη′ =
k(mσ1 ,mη,mη′)

8πm2
σ1

| − iMσ1→ηη′(mσ1)|2, (11.16)

Γσ2→ηη′ =
k(mσ2 ,mη,mη′)

8πm2
σ2

| − iMσ2→ηη′(mσ2)|2. (11.17)

Note that the ηη′ threshold in our model lies at 1481 MeV according to Table 10.3. For this

reason, a non-vanishing value Γσ1→ηη′ could only be obtained for correspondingly large mσ1 (that

can actually be smaller than the threshold value if the state is sufficiently broad). Our model

yields mσ1 = 1310−29
+30 MeV, see Sec. 11.1.5, and thus a value that does not allow for a tree-level

σ1 → ηη′ decay and renders an off-shell-σ1 decay extremely suppressed.

The situation is quite different for σ2. Constraining Γσ2→ηη′ in Eq. (11.17) via mσ2 = 1606−3
+4

MeV (determined in Sec. 11.1.5) and using the parameters in Table 10.2 and masses in Table

10.3, we obtain

Γσ2→ηη′ = 41+4
−5 MeV. (11.18)

This result is a prediction because the PDG does not report an ηη′ channel for f0(1710) ≡ σ2.

Note, however, that results for the absolute values of the partial f0(1710) decay widths tend to

be larger than experimental data (as discussed in Sec. 11.1.5); nonetheless, they also have correct

relative magnitudes and for this reason we conclude that a non-vanishing value of Γf0(1710)→ηη′ is

expected, suppressed when compared to f0(1710) → KK but of approximately equal magnitude

as f0(1710) → ππ and f0(1710) → ηη. Indeed using Eqs. (11.17) and (9.53) as well as mσ2 =

1606−3
+4 MeV we obtain

Γσ2→ηη′/Γσ2→KK = 0.17+0.04
−0.03, (11.19)

using Eqs. (11.17) and (9.40) we obtain

Γσ2→ηη′/Γσ2→ππ = 0.86−0.06
+0.11, (11.20)

using Eqs. (11.17) and (9.72) we obtain

Γσ2→ηη′/Γσ2→ηη = 0.68 ± 0.13. (11.21)

There are no experimental results for these ratios – the results are pure predictions. We know

from Sec. 11.1.5 that experimental ratios of scalar decay widths are better described in our model

than absolute values of decay widths. For this reason, experimental measurements regarding

f0(1710)→ ηη′ would be strongly appreciated and would represent a valuable test for our results

in Eqs. (11.19) - (11.21).
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11.1.7 Decay Width σ1,2 → a1(1260)π → ρππ

This decay width can be calculated from the same Lagrangian as the one stated in Eq. (9.94).

However, the calculation of the decay width is in this case slightly different than the one presented

in Sec. 2.6.3 because the a1(1260) spectral function has to be considered. Additionally, a1 is no

longer at rest (unlike the decaying axial-vector in Sec. 2.6.3). This has to be considered while

the decay amplitude is calculated (see below).

The decay width is determined as follows. The pure states σN,S in Eq. (9.94) need to be replaced

by the physical states σ1,2 according to the inverted Eq. (9.18):

Lσa1π = Aa1σNπa
µ0
1 (cosϕσσ1 − sinϕσσ2)∂µπ

0 +Ba1σNπa
µ0
1 π

0∂µ(cosϕσσ1 − sinϕσσ2)

+Aa1σSπa
µ0
1 (sinϕσσ1 + cosϕσσ2)∂µπ

0

= (Aa1σNπ cosϕσ +Aa1σSπ sinϕσ)σ1a
µ0
1 ∂µπ

0 +Ba1σNπ cosϕσa
µ0
1 π

0∂µσ1

+ (Aa1σSπ cosϕσ −Aa1σNπ sinϕσ)σ2a
µ0
1 ∂µπ

0 −Ba1σNπ sinϕσa
µ0
1 π

0∂µσ2

= Aa1σ1πσ1a
µ0
1 ∂µπ

0 +Ba1σ1πa
µ0
1 π

0∂µσ1

+Aa1σ2πσ2a
µ0
1 ∂µπ

0 +Ba1σ2πa
µ0
1 π

0∂µσ2 (11.22)

with Aa1σNπ, Ba1σNπ andAa1σSπ from Eqs. (9.95) - (9.97), Aa1σ1π = Aa1σNπ cosϕσ+Aa1σSπ sinϕσ ,

Ba1σ1π = Ba1σNπ cosϕσ, Aa1σ2π = Aa1σSπ cosϕσ −Aa1σNπ sinϕσ and Ba1σ2π = −Ba1σNπ sinϕσ .
Let us consider only the decay σ1 → a1π in the following; the calculation of Γσ2→a1π is analogous.

We denote the momenta of σ1, a1 and π as P , P1 and P2, respectively. Then, upon substituting

∂µ → −iPµ for the decaying particle and ∂µ → iPµ1,2 for the decay products, we obtain the

following Lorentz-invariant σ1a1π scattering amplitude −iM(α)
σ1→a1π:

−iM(α)
σ1→a1π = ε(α)µ (P1)h

µ
σ1a1π = −ε(α)µ (P1) (Aσ1a1πP

µ
2 −Bσ1a1πPµ) , (11.23)

where ε
(α)
µ (P1) denotes the polarisation tensor of a1 and

hµσ1a1π = − (Aσ1a1πP
µ
2 −Bσ1a1πPµ) (11.24)

denotes the σ1a1π vertex.

It is now necessary to calculate the square of the averaged decay amplitude. This is performed

analogously to Sec. 2.6.3:

−iM(α)
σ1→a1π = ε(α)µ (P1)h

µ
σ1a1π ⇒

∣

∣−iM̄σ1→a1π

∣

∣

2
=

1

3

3
∑

α=1

∣

∣

∣−iM(α)
σ1→a1π

∣

∣

∣

2

=
1

3

3
∑

α,β=1

ε(α)µ (P1)h
µ
σ1a1πε

(α)
ν (P1)h

∗ν
σ1a1π

Eq. (2.196)
=

1

3

[

−
∣

∣hµσ1a1π
∣

∣

2
+
|hµσ1a1πP1µ|2

m2
a1

]

. (11.25)

Let us determine the two contributions to
∣

∣−iM̄σ1→a1π

∣

∣

2
in Eq. (11.25). The square of the vertex

reads
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∣

∣hµσ1a1π
∣

∣

2
= A2

σ1a1πm
2
π +B2

σ1a1πm
2
σ1 − 2Aσ1a1πBσ1a1πP · P2

= A2
σ1a1πm

2
π +B2

σ1a1πm
2
σ1 − 2Aσ1a1πBσ1a1πmσ1E2(xa1). (11.26)

In the second line of Eq. (11.26) we have used P · P2 = mσ1E2(xa1) with the pion energy

E2(xa1) =
√

k2(mσ1 , xa1 ,mπ) +m2
π, k(mσ1 , xa1 ,mπ) from Eq. (2.191) and xa1 the running mass

of the a1 state.

The second term from Eq. (11.25) is calculated from

∣

∣hµσ1a1πP1µ

∣

∣

2
= (Aσ1a1πP1 · P2 −Bσ1a1πP · P1)

2 (11.27)

and the equalities P1 · P2 = (m2
σ1 − x2a1 −m2

π)/2 and P · P1 = mσ1E1(xa1) with the a1 energy

E1(xa1) =
√

k2(mσ1 , xa1 ,mπ) + x2a1 . Then we obtain

∣

∣hµσ1a1πP1µ

∣

∣

2
= A2

σ1a1π

(m2
σ1 − x2a1 −m2

π)
2

4
+B2

σ1a1πm
2
σ1E

2
1(xa1)

−Aσ1a1πBσ1a1πmσ1E1(xa1)(m
2
σ1 − x

2
a1 −m

2
π). (11.28)

Inserting Eqs. (11.26) and (11.28) into Eqs. (11.25) we obtain

∣

∣−iM̄σ1→a1π(xa1)
∣

∣

2
=

1

3

{

A2
σ1a1π

(m2
σ1 − x2a1 −m2

π)
2 − 4m2

a1m
2
π

4m2
a1

+B2
σ1a1πm

2
σ1

[

E2
1(xa1)

m2
a1

− 1

]

−Aσ1a1πBσ1a1πmσ1

[

E1(xa1)(m
2
σ1 − x2a1 −m2

π)

m2
a1

− 2E2(xa1)

]}

. (11.29)

The decay width needs to consider three possible decay channels: σ1 → a01π
0 and σ1 → a±1 π

∓.
Then we obtain

Γσ1→a1π(xa1) =
3k(mσ1 , xa1 ,mπ)

8πm2
σ1

∣

∣−iM̄σ1→a1π(xa1)
∣

∣

2
. (11.30)

Additionally, we introduce the a1 spectral function da1(xa1) as in Sec. 2.6.2 assuming the decay

width of Γexp
a1→ρπ = 425 MeV for a1(1260) – this is the mean value of the corresponding PDG

interval reading (250 − 600) MeV. Then we can determine the decay width Γσ1→a1π→ρππ:

Γσ1→a1π→ρππ =

∞
∫

0

dxa1Γσ1→a1π(xa1)da1(xa1), (11.31)

where the spectral function reads

da1(xa1) = Na1

x2a1Γ
exp
a1→ρπ

(x2a1 −m2
a1)

2 + (xa1Γ
exp
a1→ρπ)

2 θ(xa1 −mρ −mπ) (11.32)

with the constant Na1 determined such that
∫∞
0 dxa1 da1(xa1) = 1. [We are using Γexp

a1→ρπ in

da1(xa1) as a first approximation although in principle the fully parametrised Γa1→ρπ from our

model should be used. The ensuing results are thus more of qualitative nature.]

203



Analogously, we obtain

Γσ2→a1π(xa1) =
3k(mσ2 , xa1 ,mπ)

8πm2
σ2

∣

∣−iM̄σ2→a1π(xa1)
∣

∣

2
. (11.33)

and

Γσ2→a1π→ρππ =

∞
∫

0

dxa1Γσ2→a1π(xa1)da1(xa1). (11.34)

We use the parameter values stated in Table 10.2 to determine the coefficients in Eq. (11.22).

Mass values can be found in Table 10.2, except for mσ1 = 1310−29
+30 MeV and mσ2 = 1606−3

+4 MeV

determined in Sec. 11.1.5. Then Eq. (11.31) yields

Γσ1→a1π→ρππ = 12.7+5.8
−4.2 MeV. (11.35)

Consequently, the decay channel f0(1370) → a1(1260)π → ρππ is strongly suppressed in our

model. The PDG does not state a value for this decay width but rather notes the Crystal Barrel

ratio Γf0(1370)→a1(1260)π/Γf0(1370)→4π = 0.06±0.02 [239]. Our results do not reproduce the stated

ratio because the absence of the glueball field in our U(3) × U(3) model implies a very small

Γf0(1370)→4π (see the note on σ1,2 → 4π decays in Sec. 11.1.2). Nonetheless, the results of Ref.

[239] imply a suppressed decay of f0(1370) into a1(1260) and this is consistent with our finding.

Additionally, from Eq. (11.34) we obtain

Γσ2→a1π→ρππ = 15.2+2.6
−3.1 MeV. (11.36)

Current PDG data do not suggest the existence of the decay channel f0(1710) → a1(1260)π →
ρππ [10]; indeed we find it to be strongly suppressed in comparison to pion, kaon and eta decays

of f0(1710). Nonetheless, our results imply that a small but definite signal should be observed

for this resonance as well.

11.1.8 Decay Width σ2 → ωω

The σωNωN interaction Lagrangian reads

Lσωω =
1

2
(h1 + h2 + h3)φNσN (ω

µ
N )

2 +
1

2
h1φSσS(ω

µ
N )

2

=
1

2
[(h1 + h2 + h3)φN cosϕσ + h1φS sinϕσ ]σ1(ω

µ
N )

2

+
1

2
[h1φSσS cosϕσ − (h1 + h2 + h3)φN sinϕσ] σ2(ω

µ
N )

2 (11.37)

with the substitutions σN → cosϕσσ1 − sinϕσσ2 and σS → sinϕσσ1 + cosϕσσ2. Let us

remind ourselves of the assignment of the relevant fields: σ1 ≡ f0(1370), σ2 ≡ f0(1710),

ωN ≡ ω(782) = ω. The state σ1 is below the ωω threshold and, for that reason, we do not

consider the corresponding decay. Conversely, the state σ2 is above, but not far away from, the

ωω threshold: mσ2 = 1606−3
+4 MeV (see Sec. 11.1.5). Nonetheless, the decay is kinematically

possible. We have already considered the decay of a scalar state into two vectors in Sec. 2.6.4.

We can modify the formula for the decay width obtained there for the purposes of this section:
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Γσ2→ωNωN
(xωN

) =
k(mσ2 , xωN

, xωN
)

16πm2
σ2

[(h1 + h2 + h3)φN sinϕσ − h1φS cosϕσ ]2

×
[

1 +
(m2

σ2 − 2x2ωN
)2

8m4
ωN

]

(11.38)

with xωN
denoting the running ω mass and k(mσ1 , xa1 ,mπ) from Eq. (2.191). There are two ways

to proceed with Eq. (11.38). It is possible to evaluate Γσ2→ωω at the point xωN
= mωN

= 775.49

MeV [= mρ according to Eq. (6.42)]. The mass value stems from Table 10.3. Then using the

parameter values from Table 10.2 we obtain the following result from Eq. (11.38):

Γσ2→ωNωN
(mωN

) ≃ 0.02 MeV. (11.39)

Therefore the value is extremely small. The experimental situation regarding the decay σ2 ≡
f0(1710) → ωω is uncertain: the existence of a weak signal was claimed only by the BES II

Collaboration in J/ψ → γωω decays but no values were cited for the partial decay width [186].

Our results are in qualitative agreement with the BES II result, and our model does not suggest

a strong enhancement of f0(1710) in the ωω channel.

Equation (11.38) can also be used to consider the sequential decay σ2 ≡ f0(1710)→ ωω → 6π:

Γσ2→ωω→6π =

∞
∫

0

dxωN
Γσ2→ωNωN

(xωN
)dωN

(xωN
), (11.40)

where dωN
(xωN

) denotes the spectral function of the ωN state:

dωN
(xωN

) = NωN

x2ωN
Γexp
ωN→3π

(x2ωN
−m2

ωN
)2 +

(

xωN
Γexp
ωN→3π

)2 θ(xωN
− 3mπ) (11.41)

with Γexp
ωN→3π = 8.49 MeV assuming, in excellent approximation, that ω(782) decays only into

3π [10] and NωN
determined such that

∫∞
0 dxωN

dωN
(xωN

) = 1. The ω(782) resonance is very

narrow and therefore utilisation of Γexp
ωN→3π (rather than a formula parametrised in our model) in

dωN
(xωN

) is fully justified. Nonetheless, the result obtained is the same as the one in Eq. (11.39)

Γσ2→ωω→6π ≃ 0.02 MeV. (11.42)

The reason is the narrowness of the ω(782) resonance. This result indicates that the 6π decay

channel of f0(1710) is strongly suppressed if virtual ω states are considered. Note, however, that

this decay channel might still arise from the more prominent f0(1710) decays into KK and ηη.

11.2 Decay Width K⋆
0
(1430) → Kπ

The KSKπ interaction Lagrangian, Eq. (9.84), has already been discussed in Sec. 9.3. The scalar

kaon field KS is reassigned to K⋆
0 (1430) in Fit II but the decay width formula for the process

K0
S → Kπ, presented in Eq. (9.92), is of course valid nonetheless. There are no free parame-

ters – utilising parameter values from Table 10.2 and mass values from Table 10.3, ΓK0
S→Kπ is

determined uniquely as

ΓK0
S→Kπ = 263 MeV. (11.43)
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The result is within the PDG value Γexp
K⋆

0 (1430)
= (270 ± 80) MeV [10]. The stated PDG value

actually depicts the full decay width of K⋆
0 (1430) but the resonance is known to decay almost

exclusively to Kπ [263]. Our result is therefore in excellent correspondence with experimental

data and it justifies the assignment of KS to K⋆
0 (1430).

Let us, as in Sec. 9.3, point out the influence of the diagonalisation shift, Eqs. (6.19) and

(6.21) - (6.25), on this decay width: omitting the shift (wa1 = wK⋆ = wK1 = 0) would yield

ΓK⋆
0 (1430)→Kπ ≃ 12 GeV. We thus conclude again that the coefficients arising from the shift

[Eqs. (9.86) - (9.88)] induce a destructive interference in the Lagrangian (9.84) decreasing the

decay width by two orders of magnitude. The necessity to perform the shift arises from the

inclusion of vectors and axial-vectors into our model. Therefore ΓKS→Kπ demonstrates that a

reasonable description of scalars requires that the (axial-)vectors be included into the model. We

can note, of course, that decoupling of (axial-)vectors from our model would spoil the result for

the decay width of the low-lying scalar kaon κ as well (as described in Sec. 9.3) whereas, e.g.,

nonstrange-scalar decay widths would still be fine in this case. Nonetheless, it is clear that our

scalar kaon (how ever it may be assigned) is only described properly if the (axial-)vectors are

present in the model as well. We will discuss the phenomenology of the vectors and axial-vectors

in the subsequent sections.

11.3 Phenomenology of Vector and Axial-Vector Mesons in Fit II

Vector and axial-vector states are extremely important for our model. They are known to decay

into scalar and pseudoscalar states discussed so far [10] and their mixing with scalar and pseu-

doscalar degrees of freedom observed in Eq. (6.17) yields the diagonalisation shift of Eqs. (6.19)

and (6.21) - (6.25) originating in new terms in our Lagrangian (6.1) that in turn influence the

phenomenology of other states (but also of vectors and axial-vectors themselves).

Fit I showed considerable tension between the decay widths of a1(1260), f1(1285), f1(1420)

and K1(1400) on the one side and Γρ→ππ on the other: either the axial-vectors were too broad

[∼ (1 − 10) GeV] or the ρ meson was too narrow (. 40 MeV), see Sec. 9.6. Therefore, a major

task in the following sections will be to ascertain whether this state of affairs is changed in Fit

II where a fundamentally different assumption is implemented – that the scalar quarkonia are

above 1 GeV.

In the vector channel, the exact value of Γρ→ππ = 149.1 MeV has already been implemented to

determine the parameter g2 (see Table 10.2). Our model also allows for a calculation of the 2K

decay width of the strange isosinglet vector state ωS ≡ ϕ(1020). It was not possible to calculate

ΓωS→KK because our Fit I implied mFIT I
ωS

= 870.35 MeV – a value below the 2K threshold.

Therefore, ϕ(1020) was not well described within Fit I. This is not the case in Fit II that yields

mωS
= 1036.90 MeV > 2mK , see Table 10.3. We will calculate ΓωS→KK in Sec. 11.3.3. We will

also consider the phenomenology of the K⋆ meson in Sec. 11.3.4.

In the axial-vector channel, we will consider the phenomenology of both non-strange and strange

isosinglets, f1N ≡ f1(1285) in Sec. 11.3.5 and f1S ≡ f1(1420) in Sec. 11.3.6 (only K⋆K decay

channel can be considered in our model for both resonances). Important considerations will

regard the a1(1260) resonance, the putative chiral partner of the ρ meson, in Sec. 11.3.1. Note

that Fit II does not allow for Γa1(1260)→f0(600)π to be calculated because our σ1 field has now been

reassigned to f0(1370) whereas we determine the width for the sequential decay a1 → K̄⋆K →
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K̄Kπ in Sec. 11.3.2. Note also that our K1 field (the phenomenology of which is discussed in

Sec. 11.3.7) no longer corresponds to K1(1400) as in Fit I because, in Fit II, it is found to be

a member of an axial-vector nonet that in principle requires consideration of the mixing with

the corresponding pseudovector nonet before phenomenology statements can be made [see Sec.

10.3 and Eq. (10.26)]. For this reason, our calculations in Sec. 11.3.7 will be more of informative

nature.

11.3.1 Decay Width a1(1260) → ρπ in Fit II

The interaction Lagrangian for the decay a1(1260)→ ρπ has the same form as in the U(2)×U(2)

version of the model. We have considered the decay of an axial-vector state into a vector and a

pseudoscalar in Sec. 2.6.2; utilising parameters in Table 10.2 allows us to calculate Γa1→ρπ from

Eq. (2.188) with I = 2:

Γa1→ρπ = 861 MeV. (11.44)

The result is outside the PDG value for the full width Γa1(1260) = (200 − 600) MeV but it is by

more than an order of magnitude smaller than the corresponding result ΓFIT I
a1(1260)→ρπ ≃ 13 GeV

obtained from Fit I in Sec. 9.4.1. The decisive difference is the value of g2: Fit II yields g2 = 3.07

(Table 10.2) whereas Fit I implied g2 = −11.2 (Table 8.4). Γa1→ρπ < 600 MeV would actually

require g2 & 4 in Fit II, see Fig. 11.12, but the difference to g2 = 3.07 is obviously not as large

as in the case of Fit I where g2 & 10 was necessary but g2 = −11.2 was obtained.

6 8 10 12 14
g 2
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G a1®ΡΠHMeVL

Figure 11.12: Γa1→ρπ as a function of the parameter g2 in Fit II.

Let us also consider, as in Sec. 9.4.1, how far Γρ→ππ (the decay width that determines g2) would

have to be changed to enable us to obtain reasonable values of Γa1→ρπ. The result is shown in

Fig. 11.13.

We observe a1(1260) as a very broad resonance. We can see from Fig. 11.13 that values of

Γa1→ρπ within the PDG range are obtained if we set Γρ→ππ approximately 20 MeV lower than

the PDG value. Smaller values of Γa1→ρπ follow if Γρ→ππ is decreased further. We thus require

Γρ→ππ . 130 MeV for Γa1→ρπ < 600 MeV. The value of Γρ→ππ is somewhat smaller than

ΓPDG
ρ→ππ = 149.1 MeV [10]; nonetheless, this result is a strong improvement in comparison with

Γρ→ππ . 38 MeV in Fit I.
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However, decreasing Γρ→ππ may not be the only possibility to decrease Γa1→ρπ. We could, for

example, take into account the spectral function of the ρ meson in order to obtain the decay

width a1 → ρπ → 3π. Note that, in this case, g2 is not varied but rather fixed via on-shell values

of Γρ→ππ, ma1 and mρ (i.e., g2 = 3.07 as in Table 10.2). Integration over the ρ spectral function,

analogously to Sec. 2.6.2, yields

Γa1→ρπ→3π = 706 MeV. (11.45)

Γa1→ρπ is thus decreased by approximately 160 MeV once an off-shell ρ meson is considered.

Note that decreasing Γρ→ππ by only 10 MeV and re-integrating over the ρ spectral function with

the thus obtained g2 = 3.65 leads to Γa1→ρπ = 600 MeV, corresponding to the upper boundary

of the a1(1260) decay width as stated by the PDG.

Another possibility to decrease Γa1→ρπ in Eq. (11.44) would be to introduce a form factor such

as exp[−k2(xa1 ,mρ,mπ)/Λ
2] to account for the finite range of strong interactions; xa1 denotes

the off-shell mass of a1(1260) and Λ is a cut-off with values between, e.g., 0.5 GeV and 1 GeV.

However, introduction of form factors would need to be performed consistently throughout the

model rather than ad hoc for a single decay width. For this reason, we will not utilise a form

factor here, although we note that the trial value of Λ ∼ 0.5 GeV allows for Γa1→ρπ ∼ 400 MeV

to be obtained once the decay width of Eq. (2.188) is modulated by the stated exponential and

the a1(1260) spectral function. Modulating Eq. (2.188) with the spectral functions of both ρ and

a1(1260) as well as the stated form factor decreases the decay width Γa1→ρπ→3π even further, to

∼ 300 MeV, for Λ ∼ 0.5 GeV – to less than one half of the value presented in Eq. (11.45).

For these reasons, the value of the decay width in Eq. (11.44) is not too problematic not only

because it is close the PDG decay width interval but also because, as we have seen, there exist

means of decreasing it to the values preferred by the PDG.

A Remark on the Decay Width a1(1260) → f0(1370)π

It is not possible to calculate the decay width for the process a1(1260) → f0(600)π within Fit

II. This was performed in Sec. 9.4.2, i.e., within Fit I, where our predominantly non-strange

scalar σ1 was assigned to the f0(600) resonance. This assignment is different in Fit II: σ1 is

identified with f0(1370). This allows us in principle to calculate Γa1(1260)→f0(1370)π . However,

this decay is forbidden for on-shell masses: utilising mσ1 = 1310−29
+30 MeV from Sec. 11.1.5 and

110 120 130 140 150
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Figure 11.13: Γa1(1260)→ρπ as function of Γρ→ππ in Fit II.

208



mπ = 138.65 MeV requires ma1 > 1419.65 MeV. We obtained ma1 = 1219 MeV in Table 10.3.

Therefore, a non-vanishing value of Γa1→σ1π could only be obtained if a large a1(1260) decay

width were considered in this decay channel such that the high-mass tail of a1 would allow for

the decay a1(1260) → f0(1370)π to occur. Performing a calculation analogous to the one in

Sec. 2.6.3 to obtain the tree-level width for a1(1260) → f0(1370)π and integrating over the a1
spectral function in Eq. (11.32) yields Γa1(1260)→f0(1370)π ≃ 0. For this reason, we cannot confirm

the existence of the a1(1260) → f0(1370)π decay mode. Indeed the only piece of experimental

data asserting the existence of this decay channel [264] assumed the f0(1370) mass and width

of 1186 and 350 MeV respectively. The assumed mass value is too small according to the PDG

and also according to the review in Ref. [40]. Consequently, even experimental data regarding

this decay seem to be uncertain. We thus conclude that the contribution of this decay channel

to the f0(1370) width is negligible (if not zero).

11.3.2 Decay Width a1(1260) → K⋆K → KKπ in Fit II

The corresponding interaction Lagrangian has already been stated in Eq. (9.99). As in Sec.

9.4.3, the decay a1 → K̄⋆K is tree-level forbidden because a1 is below the K⋆K threshold (see

Table 10.3). However, if we consider an off-shell K⋆ state (just as in Sec. 2.6.2) then the ensuing

decay a1 → K̄⋆K → K̄Kπ can be studied. We use Eq. (2.190) with an isospin factor I = 4 and

integrate over the K⋆ spectral function in Eq. (2.189). The value of the K⋆ decay width is given

further below, in Eq. (11.55). Equation (2.190) yields

Γa1→K̄⋆K→K̄Kπ = 0.55 MeV. (11.46)

The above result is four orders of magnitude smaller than the one in Eq. (9.103) because of the

different value of the parameter g2 (as discussed in the previous sections) and also becauseK⋆ is a

rather narrow resonance. We thus find that the kaon decay of the a1(1260) resonance is strongly

suppressed. The value is below the branching ratio Γa1(1260)→K̄⋆K/Γa1(1260) . 0.04 (our estimate

from Refs. [14, 264, 265]) and also below the result Γa1(1260)→K̄⋆K/Γa1(1260) . (0.08 − 0.15)

[266]. The reason is that we have actually considered a sequential decay (a1 → K̄⋆K → K̄Kπ)

rather than merely the tree-level decay a1 → K̄⋆K (although this decay will inevitably lead to

K̄Kπ upon K̄⋆ decay). Additionally, the full decay width of the a1(1260) state is ambiguous,

Γa1(1260) = (250 − 600) MeV [10], and therefore an exact experimental value for a decay width

such as Γa1→K̄⋆K→K̄Kπ cannot be trivially determined.

11.3.3 Decay Width ϕ(1020) → K+K− in Fit II

The KK decay width of the ωS ≡ ϕ(1020) state is specific within our model because it can

only be calculated from Fit II. It was not possible to determine ΓωS→KK in the case of Fit I

because, as apparent from Table 8.5, this fit yielded mFIT I
ωS

= 870.35 MeV – a value below the 2K

threshold. Contrarily, Fit II yields mωS
= 1036.90 MeV > 2mK , see Table 10.3. The tree-level

decay is therefore possible and the ωSKK interaction Lagrangian reads

LωSKK = AωSKKω
µ
S(K̄

0∂µK
0 −K0∂µK̄

0 +K−∂µK
+ −K+∂µK

−)

+BωSKK∂
νωµS(∂νK̄

0∂µK
0 − ∂νK0∂µK̄

0 + ∂νK
−∂µK

+ − ∂νK+∂µK
−) (11.47)
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with

AωSKK =
i

2
√
2
Z2
K

{

−2g1 + wK1

[

g21(φN +
√
2φS) + h2(φN −

√
2φS)− 2

√
2h3φS

]}

, (11.48)

BωSKK =
i√
2
Z2
Kg2w

2
K1

. (11.49)

Note that the PDG data [10] cite the ϕ(1020) decay width into charged as well as neutral kaon

modes. They are not the same due to isospin violation [whereas our model is isospin-symmetric,

as apparent, e.g., from Eq. (11.47)]. Our Fit II implemented mK± [see Eq. (10.12)] and therefore

we will in the following, for consistency, focus on the decay ϕ(1020) → K+K−.

The calculation of Γϕ(1020)→K+K− is analogous to the generic calculation described in Sec. 2.6.3.

Equation (11.47) yields the following decay amplitude upon substituting ∂µ → −iPµ for the

decaying particle and ∂µ → iPµ1,2 for the decay products:

−iM(α)
ωS→K+K− = ε(α)µ (P )hµωSKK

= −ε(α)µ (P ) [(AωSKK +BωSKKP · P1)(P
µ
1 − P

µ
2 )] , (11.50)

where the momenta of ωS, K
+ and K− are denoted as P , P1 and P2, respectively; ε

(α)
µ (P )

represents the polarisation vector of ωS and the vertex hµωSKK
reads

hµωSKK
= −(AωSKK +BωSKKP · P1)(P

µ
1 − P

µ
2 ). (11.51)

According to Eq. (2.196), there are two contributions to the averaged squared amplitude | −
iM̄ωS→K+K−|2 that involves a vector state: the first one is the squared vertex

∣

∣

∣
hµωSKK

∣

∣

∣

2
and the

second one,
∣

∣

∣h
µ
ωSKK

Pµ

∣

∣

∣

2
, contains the vertex hµωSKK

contracted with the vector-state momentum

Pµ = (mA,0). Consequently, hµωSKK
Pµ ≡ h0ωSKK

P0 = 0 because h0ωSKK
= 0, see Eq. (11.51).

Therefore, only
∣

∣

∣
hµωSKK

∣

∣

∣

2
contributes to | − iM̄ωS→K+K−|2:

∣

∣−iM̄ωS→K+K−
∣

∣

2
= −1

3

∣

∣

∣h
µ
ωSKK

∣

∣

∣

2
= −1

3
(AωSKK +BωSKKP · P1)

2(Pµ1 − P
µ
2 )

2

= −2

3

(

AωSKK +BωSKK
m2
ωS

2

)2

(m2
K − P1 · P2)

=
1

3

(

AωSKK +BωSKK

m2
ωS

2

)2

(m2
ωS
− 4m2

K). (11.52)

Then the decay width reads

ΓωS→K+K− =
k(mωS

,mK ,mK)

8πm2
ωS

| − iM̄ωS→K+K− |2

=
k(mωS

,mK ,mK)

24πm2
ωS

(

AωSKK +BωSKK
m2
ωS

2

)2

(m2
ωS
− 4m2

K) (11.53)
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with k(mωS
,mK ,mK) from Eq. (2.191). Using the parameter values from Table 10.2 to determine

the coefficients in Eqs. (11.48) and (11.49) and the mass values from Table 10.3, Eq. (11.53) yields

ΓωS→K+K− = 2.33 MeV. (11.54)

This value is slightly larger than the one suggested by the PDG data reading Γexp
ϕ(1020)→K+K− =

(2.08 ± 0.04) MeV. The reason is that our mωS
= 1036.90 MeV is by approximately 20 MeV

larger than mϕ(1020) = 1019.46 MeV [10]. Nonetheless, our chiral-model result is remarkably

close to the experimental value; it represents an additional statement in favour of Fit II when

compared to Fit I (with the latter not permitting for this decay width to be calculated at all,

see introductory remarks in Sec. 9.4).

11.3.4 Decay Width K⋆
→ Kπ in Fit II

Phenomenology of the vector kaon K⋆ ≡ K⋆(892) has already been discussed within Fit I in Sec.

9.4.5. The value ΓFIT I
K⋆0→Kπ = 32.8 MeV was obtained, see Eq. (9.124). The experimental value

reads Γexp
K⋆→Kπ = 46.2 MeV and the resonance decays to ≃ 100% into Kπ [10]. Thus the value

obtained in Fit I was by approximately 13 MeV (or 30%) smaller than the experimental result.

The K⋆0Kπ interaction Lagrangian has been presented in Eq. (9.111). Repeating the calculation

performed in Sec. 9.4.5 with the set of parameters from Table 10.2 and masses in Table 10.3 we

obtain the following value in Fit II:

ΓK⋆0→Kπ = 44.2 MeV. (11.55)

This result is only 2 MeV smaller than the stated experimental result. Correspondence with

experiment is hence excellent: the assumption of scalar q̄q states above 1 GeV and the ensuing

Fit II shift the value obtained in Fit I in the correct direction and allow us to describe the

vector-kaon decay width almost exactly. This is a strong indication in favour of Fit II.

11.3.5 Decay Width f1(1285) → K⋆K in Fit II

As stated in Sec. 9.4.4, there are two decay widths of the f1N ≡ f1(1285) state that can be

calculated from our model: f1N → a0π and f1N → K̄⋆K. The former can only be considered

within Fit I where the scalar states were assumed to be below 1 GeV [a0 ≡ a0(980)]. In Fit II, the

correspondence a0 ≡ a0(1450) holds and thus the decay width for the process f1N → a0π cannot

be calculated (as it is kinematically forbidden). Note also that the decay a0(1450) → f1(1285)π

has not been observed [10].

We then only need to consider the decay f1(1285) → K̄⋆K, analogously to the calculations

performed in Sec. 9.4.4. Let us again note that the PDG lists the f1(1285) → K̄⋆K process

as ”not seen” although the three-body decay f1(1285) → K̄Kπ possesses a branching ratio of

(9.0 ± 0.4)% whereas the full decay width of the resonance is Γf1(1285) = (24.3 ± 1.1) MeV [10].

The f1(1285) decay into K̄⋆ and K is forbidden for the on-shell masses of the three particles

considered, as apparent from experimental data and also from our mass values in Table 10.3.

However, the three-body K̄Kπ decay can, within our model, arise from the sequential decay

f1(1285) → K̄⋆K → K̄Kπ. The latter decay was discussed in Sec. 9.4.4 within Fit I and the

value Γf1N→K̄⋆K→K̄Kπ = 1.98 GeV was obtained – three order of magnitude larger than the

experimental limit Γf1N→K̄⋆K→K̄Kπ ≤ (2.2 ± 0.1) MeV expected from the mentioned branching
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ratio for f1(1285) → K̄Kπ and the full f1(1285) decay width. In this section we discuss whether

Γf1N→K̄⋆K→K̄Kπ is improved in Fit II.

To this end we need to repeat the calculations from Sec. 9.4.4 utilising the parameter set stated

in Table 10.2. The f1NK
⋆K interaction Lagrangian is stated in Eq. (9.104). We need to consider

the K⋆ spectral function (because the decay is enabled by an off-shell K⋆ state), as described in

Sec. 9.4.4. Consequently, we obtain

Γf1N→K̄⋆K→K̄Kπ = 0.9 MeV. (11.56)

The value in Eq. (11.56) represents an improvement by three orders of magnitude compared to

Γf1N→K̄⋆K→K̄Kπ = 1.98 GeV obtained in Fit I. It is smaller than the PDG value Γf1(1285)→K̄Kπ =

(2.2± 0.1) MeV. Thus, at this point, we do not expect Γf1N→K̄⋆K→K̄Kπ to be the only contribu-

tion to Γf1N→K̄Kπ – for example, a direct three-body decay into K̄Kπ might also contribute to

the total decay width in this channel. Nonetheless, from results presented until now we conclude

that approximately 40% of the decay f1(1285) → K̄Kπ is generated via the sequential process

f1(1285)→ K̄⋆K → K̄Kπ. This is contrary to the PDG conclusion stating that no such contri-

bution exists. Note that the PDG conclusion is based on p̄p annihilation data from Ref. [267];

there are, however, newer data (but with limited statistics) from the L3 Collaboration [268] that

suggest a non-vanishing contribution of f1(1285) → K̄⋆K → K̄Kπ to f1(1285) → K̄Kπ. Our

results seem to corroborate those of the L3 Collaboration.

Γf1N→K̄⋆K→K̄Kπ in Eq. (11.56) was obtained assuming mf1N = 1219 MeV ≡ ma1 , see Eq.

(6.43). Considering finite-width effects for the rather broad a1(1260) resonance (analogously to

calculations in Ref. [46]) might, however, induce a mass splitting of f1N and a1. Thenmf1N = ma1

would no longer hold and Fig. 11.14 demonstrates the change of Γf1N→K̄⋆K→K̄Kπ if mf1N is

increased, e.g., to the experimental value mf1(1285) = 1281.8 MeV.
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Figure 11.14: Γf1N→K̄⋆K→K̄Kπ as function of mf1N .

We observe that Γf1N→K̄⋆K→K̄Kπ is strongly dependent on mf1N and increases by almost three

times in the mass region of interest: from 0.9 MeV for mf1N = 1219 MeV to 2.6 MeV for mf1N =

mf1(1285) = 1281.8 MeV. Therefore, varying mf1N implies that the decay f1(1285) → K̄Kπ is

completely saturated by the sequential decay f1(1285) → K̄⋆K → K̄Kπ. It is actually possible

to determinemf1N such that Γf1N→K̄Kπ corresponds exactly to Γf1(1285)→K̄Kπ = (2.2±0.1) MeV.
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As apparent from Fig. 11.14, this is realised for mf1N = 1271+6
−7 MeV, in a very good agreement

with mf1(1285) = (1281.8 ± 0.6) MeV.

We thus conclude that the f1(1285) phenomenology is decisively better described in Fit II than

in Fit I.

11.3.6 Decay Width f1(1420) → K⋆K in Fit II

Let us remind ourselves that the f1(1420) decays predominantly into K⋆K; the resonance pos-

sesses a mass of mexp
f1(1420)

= (1426.4 ± 0.9) MeV and width Γexp
f1(1420)

= (54.9 ± 2.6) MeV [10].

We have seen in Sec. 9.4.6 that Fit I implies the f1S ≡ f1(1420) resonance to be 17.6 GeV

broad. Clearly, this result cannot be regarded as physical and in this section we discuss whether

the stated large value of the decay width is decreased in Fit II. Additionally, we obtained

mf1(1420) = 1643.4 MeV in Fit I (see Table 8.5). As apparent from Table 10.3, this value is

decreased substantially to 1457 MeV within Fit II – the correspondence with the mentioned

experimental value mexp
f1(1420)

is therefore much better than in Fit I. In this section we discuss

the phenomenology of f1(1420) within Fit II. Given the predominance of the decay into K⋆K,

it suffices to discuss this decay channel only.

The calculation of the decay width is performed analogously to the one in Sec. 2.6.2. The

f1SK
⋆0K̄0 interaction Lagrangian presented in Eq. (9.125) is analogous to the one presented in

Eq. (2.181); the same is true for the vertices in Eqs. (2.183) and (9.130). Consequently, we can

utilise the generic formula for an axial-vector decay width presented in Eq. (2.188). Setting I = 4

to consider the decays f1S → K̄⋆0K0, K̄0K⋆0, K⋆+K− and K⋆−K+ we obtain

Γf1S→K̄⋆K = 274 MeV. (11.57)

This value improves the Fit I value ΓFIT I
f1S→K̄⋆K

= 17.6 GeV by two orders of magnitude. Nonethe-

less, it is still larger than the one reported by the PDG: Γexp
f1(1420)

= (54.9± 2.6) MeV. Therefore

Fit II, where scalar meson states are assumed to be above 1 GeV, shifts Γf1S→K̄⋆K in the cor-

rect direction but does not yield the experimental result. We will see in the next section that

the analogous problem persists in the K1 phenomenology as well. The reason may be that the

current form of our model does not implement mixing of our 1++ field [≡ f1N,A in Eq. (10.26)]

with the C-conjugated 1+− partner [≡ f1N,B in Eq. (10.26)]. Note that the value in Eq. (11.57)

is decreased by approximately 40 MeV upon integration over the K⋆ spectral function. Thus the

sequential decay f1(1420) → K̄⋆K → K̄Kπ appears to be dominant in the f1(1420) → K̄Kπ

decay channel, just as in the case of the f1(1285) resonance.

Let us also note that the correct value of Γf1S→K̄⋆K can be obtained by decreasing Γρ→ππ to

approximately 96 MeV (Fig. 11.15). However, this statement must be viewed with caution

because, as already mentioned, the current form of the model lacks f1N,A-f1N,B mixing upon

which no decreasing of Γρ→ππ may be needed to obtain the correct value of Γf1S→K̄⋆K .

11.3.7 K1 Decays in Fit II

There are two important remarks regarding the K1 phenomenology in Fit II. Firstly, our K1

field can no longer a priori be assigned to a physical resonance because Fit II yields mK1 = 1343

MeV, a value that is virtually the mass median of K1(1270) with mK1(1270) = (1272±7) MeV and

K1(1400) with mK1(1400) = (1403±7) MeV. Indeed our discussion in Sec. 10.3 has suggested that

the stated value of mK1 is an indication that a 1+− nonet needs to be considered in our model
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Figure 11.15: Γf1S≡f1(1420)→K̄⋆K as function of Γρ→ππ in Fit II.

together with the (already present) 1++ nonet. The second remark is about results obtained in

Fit I, Sec. 9.4.7. Three decay channels were considered: K1(1400) → K⋆π, ρK and ωK. Each

one of them was found to be more than 1 GeV broad; in fact, the sum of all partial decay widths

in Eqs. (9.143), (9.144) and (9.145) suggests ΓK1(1400) ∼ 10 GeV – a value that is two orders of

magnitude larger than ΓK1(1400) = (174± 13) MeV [10].

In this section we discuss whether it is possible to amend the unphysically large values of the

decay widths obtained in Sec. 9.4.7. A word of caution is nonetheless necessary: given the absence

of the 1+− nonet from the model and the consequent mass value of the 1++ field mK1 = 1343

MeV corresponding to neither K1(1270) nor K1(1400), it cannot be expected that our results

in this section will yield exact experimental values. However, we can still observe whether the

results from Fit I are shifted in the correct direction by Fit II.

The interaction Lagrangian of the K1 state with the already mentioned decay products has been

presented in Eq. (9.132). The calculation of the decay widths proceeds exactly as described in

Sec. 9.4.7; in this section we utilise parameter values from Table 10.2 and mass values from Table

10.3.

ΓK1→K⋆π = 307 MeV, ΓK1→ρK = 128 MeV, ΓK1→ωNK = 41 MeV. (11.58)

For comparison, Fit I yielded

ΓFIT I
K1→K⋆π = 6.73 GeV, ΓFIT I

K1→ρK = 4.77 GeV, ΓFIT I
K1→ωNK = 1.59 GeV. (11.59)

The sum of the decay widths in Eq. (11.58) suggests a full K1 decay width of ∼ 480 MeV,

larger than both ΓK1(1400) = (174 ± 13) MeV and ΓK1(1270) = (90 ± 20) MeV but two orders

of magnitude less than the value ∼ 10 GeV obtained in Fit I. We observe that ΓK1→K⋆π and

ΓK1→ρK have been improved by an order of magnitude in comparison with Fit I; ΓK1→ωNK has

been improved by two orders of magnitude. Thus we conclude that the values of the stated K1

decay widths, while still not satisfactory, are nonetheless strongly improved in comparison with

Fit I.

Note that all the mentioned decay widths could be improved if Γρ→ππ were decreased by ∼ 100

MeV thus implying g2 ∼ 10. However, it is not necessary to include the corresponding diagrams
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into this work because, as already stated, it is not possible to assign our K1 field to a physical

resonance. Nonetheless, we find Fit II to be favoured over Fit I.

A Note on Decay K1 → Kf0(1370)

The decay into K and f0(1370) has been observed for both K1(1270) and K1(1400); it can, in

principle, be calculated from our model as the K1KσN,S interaction Lagrangian obtained from

Eq. (6.1) reads

LK1Kσ = AK1KσNK
µ0
1 σN∂µK̄

0 +BK1KσNK
µ0
1 ∂µσNK̄

0

+AK1KσSK
µ0
1 σS∂µK̄

0 +BK1KσSK
µ0
1 ∂µσSK̄

0 (11.60)

with

AK1KσN =
ZK
2

{

g1

(

−1 + g1wK1φN +
√
2g1wK1φS

)

+ wK1

[

(2h1 + h2)φN −
√
2h3φS

]}

,

(11.61)

BK1KσN =
g1
2
ZK , (11.62)

AK1KσS =
ZK√
2

{

g1

(

−1 + g1wK1φN +
√
2g1wK1φS

)

+ wK1

[√
2 (h1 + h2)φS − h3φN

]}

,

(11.63)

BK1KσS =
g1√
2
ZK . (11.64)

Inserting the inverted Eq. (9.18) into Eq. (11.60) would allow us to determine the interaction

Lagrangians for the processes K1 → Kσ1 and also K1 → Kσ2. However, the decay K1 → Kσ2 is

kinematically forbidden due to the assignment of the fields σ1 and σ2 to f0(1370) and f0(1710),

respectively. For this reason we only consider the part of the Lagrangian in Eq. (11.60) containing

σ1:

LK1Kσ1 = (AK1KσN cosϕσ +AK1KσS sinϕσ)K
µ0
1 σ1∂µK̄

0

+ (BK1KσN cosϕσ +BK1KσS sinϕσ)K
µ0
1 K̄0∂µσ1

≡ AK1Kσ1K
µ0
1 σ1∂µK̄

0 +BK1Kσ1K
µ0
1 K̄0∂µσ1 (11.65)

with AK1Kσ1 = AK1KσN cosϕσ +AK1KσS sinϕσ and BK1Kσ1 = BK1KσN cosϕσ +BK1KσS sinϕσ .

We note that the Lagrangian in Eq. (11.65) possesses the same form as the generic Lagrangian

presented Sec. 2.6.3, Eq. (2.192). This allows us in principle to calculate the decay width ΓK1→Kσ1

from Eq. (2.201). However, such a calculation would only be possible for an off-shell K1 state,

i.e., an integration over the K1 spectral function would be required. This is not feasible in the

current form of the model because the absence of the 1+− nonet still yields too large values of

the K1 decay width [see Eq. (11.58)]. Nonetheless, a discussion of the decay K1 → Kσ1 upon

inclusion of the pseudovector nonet into our model would represent a valuable extension of this

work.
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11.4 Conclusions from Fit with Scalars above 1 GeV

The previous sections have addressed the question whether it is possible to obtain a reasonable

phenomenology of mesons in vacuum under the assumption that scalar q̄q states possess energies

above 1 GeV. This is the cardinal difference between the consequent fit (labelled as Fit II) and

Fit I from Chapters 8 and 9 where, conversely, scalar q̄q states were assumed to be below 1 GeV.

The parameters in Fit II were determined from the masses of π, K, η, η′,ρ, K⋆, ωS ≡ ϕ(1020),

a1, K1, f1S ≡ f1(1420), decay widths Γa1→πγ and Γa0(1450) as well as the masses of the scalar

states a0 and KS assigned to a0(1450) and K⋆
0 (1430), respectively. We have not included any

scalar isosinglet masses into the fit in order to let these masses remain a prediction of the fit.

We summarise the main conclusions of Fit II as follows:

• It is possible to find a fit; unlike Fit I, all masses obtained from Fit II are within 3% of the

respective experimental values except

• mη = 523.20 MeV, approximately 25 MeV (≃ 4.5%) smaller than mexp
η = 547.85

MeV due to the condition mηN

!
< mηS (ηN,S are, respectively, pure-nonstrange and

pure-strange contributions to the η wave function),

• mK⋆
0 (1430)

= 1550 MeV, a value that is 125 MeV (≃ 8.8%) larger than the corre-

sponding PDG value mexp
K⋆

0 (1430)
= 1425 MeV due to the pattern of explicit symmetry

breaking in our model that always renders strange states approximately 100 MeV (≃
strange-quark mass) heavier than their corresponding non-strange counterparts [note,

for example, that Fit II also yields ma0(1450) = 1452 MeV, approximately 100 MeV

less than mK⋆
0 (1430)

= 1550 MeV].

In particular the narrow resonances ϕ(1020) and f1(1420) are decisively better described

in Fit II than in Fit I. They exhibited strong deviations from the experimental results

in Fit I [(150 − 200) MeV mass difference]. However, in Fit II, their masses differ by

only ≃ 2% from the experimental values. Additionally, Γa1→πγ = 0.622 MeV is within

the experimental interval Γexp
a1→πγ = 0.640 ± 0.246 MeV [10] and Γa0(1450) = 265 MeV

corresponds exactly to the experimental result.

• Fit II yields a somewhat unexpected result for the mass of the axial-vector kaon: mK1 =

1343 MeV, a value representing virtually a mass-median of the two experimentally estab-

lished axial-vector kaons, K1(1270) and K1(1400). Consequently, Fit II does not allow

for the K1 state in our model to be assigned to either of the two physical fields. This

statement is compatible with our explanation of the stated value of mK1 : our K1 field is a

member of a 1++ nonet that first mixes with a 1+− (pseudovector) nonet and then leads

to the physical fields K1(1270) and K1(1400). The 1+− nonet is absent from the model

presented in this work; however, inclusion of the nonet into the model is clearly demanded

by our results, also because the full decay width ΓK1 corresponds to neither ΓK1(1270) nor

ΓK1(1400). (See Sec. 10.3 for more details.)

• It is not possible to assign the two mixed isoscalar singlets σ1,2 if one varies m2
0 < 0 and

requiresmσN < mσS because the ensuing intervals are rather large: 450 MeV ≤ mσ1 ≤ 1561
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MeV and 1584 MeV ≤ mσ2 ≤ 2152 MeV. Note, however, that f0(1710) is the only resonance

confirmed by the PDG in the mass range of the predominantly strange field σ2. Nonetheless,

mσ2 varies too strongly for a definitive assignment of σ2 to f0(1710) to be performed.

Consequently, the assignment of the predominantly non-strange field σ1 is, at this point,

also uncertain.

• As indicated above, the ambiguity in the determination of mσ1,2 is caused by uncertainty

in the determination of m2
0 < 0. The mσ2 interval seems to suggest the correspondence

σ2 ≡ f0(1710). We therefore determine m2
0 (with corresponding errors) from the experi-

mentally known ratio Γf0(1710)→ππ(m
2
0)/Γf0(1710)→KK(m2

0) = 0.2±0.06 and test the ensuing

phenomenology. [Note that the stated ratio did not enter Fit II because otherwise our re-

sults would have been inclined to a certain assignment of our scalar states. Note also that

the stated ratio was obtained by the WA102 Collaboration and that it does not correspond

to the one preferred by the PDG because the latter suffers from a large background and

possible interference of f0(1710) with f0(1790), see Sections 3.6 and 3.7.1.] A large number

of scalar-meson observables can consequently be determined using only the experimental

ratio Γf0(1710)→ππ/Γf0(1710)→KK = 0.2 ± 0.06 as input:

• Masses: we obtain mσ1 = 1310−29
+30 MeV and mσ2 = 1606−3

+4 MeV. The central value

of mσ1 corresponds almost exactly to the combined-fit Breit-Wigner mass of Ref. [40]

where mf0(1370) = (1309 ± 1 ± 15) MeV was obtained and also to the f0(1370) peak

mass in the 2π channel, found to be 1282 MeV in Ref. [40]. Additionally, we observe

that mσ2 is ∼ 100 MeV smaller than mf0(1710) = (1720± 6) MeV because the glueball

field has not been included in the current version of the model. The mass values imply

that f0(1370) is 91.2
−1.7
+2.0% a n̄n state and that, conversely, f0(1710) is 91.2

−1.7
+2.0% a s̄s

state.

• Two-pion decays: we obtain Γσ1→ππ = 267−50
+25 MeV and Γσ2→ππ = 47+9

−10 MeV. The

former is consistent with the Breit-Wigner decay width Γf0(1370)→ππ = 325 MeV and

the f0(1370) full width at half-maximum in the 2π channel, the value of which was

determined as 207 MeV in Ref. [40]. The latter is too large (see Sec. 3.7.3) but nonethe-

less demonstrates that Γf0(1710)→ππ is suppressed in comparison with Γf0(1710)→KK ,

in accordance with the PDG data [10].

• Two-kaon decays: we obtain Γσ1→KK = 188−9
+6 MeV and Γσ2→KK = 237−20

+25 MeV.

The former is consistent with results in Refs. [124, 170, 253, 259, 260, 261] and im-

plies Γf0(1370)→KK < Γf0(1370)→ππ , consistent with interpretation of f0(1370) as a

predominantly n̄n state. Γσ2→KK is larger than the corresponding experimental re-

sult ∼ 80 MeV (see Sec. 3.7.3); however, it is also dominant in comparison with decay

widths in other channels – consistent with the data [10].

• Two-eta decays: we obtain Γσ1→ηη = (40 ∓ 1) MeV and Γσ2→ηη = 60−4
+5 MeV. The

former is lower than the values from Refs. [125, 145] that, however, did not consider

the opening of new channels over the broad f0(1370) decay interval. The latter is

marginally (within errors) consistent with the experimental result presented in Sec.

3.7.3. We also obtain Γσ2→ηη′ = 41+4
−5 MeV; this result is a prediction.

• Decays with a1: we predict Γf0(1370)→a1(1260)π→ρππ = 12.7+5.8
−4.2 MeV and additionally

Γf0(1710)→a1(1260)π→ρππ = 15.2+2.6
−3.1 MeV (strongly suppressed in comparison with other
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decay channels of the two resonances).

• The pion-kaon ratio Γσ1→ππ/Γσ1→KK = 1.42−0.05
+0.09 is consistent with the WA102 result

Γf0(1370)→ππ/Γf0(1370)→KK = 2.17 ± 1.23 [99].

• The eta-pion ratios read Γσ1→ηη/Γσ1→ππ = 0.15±0.01 and Γσ2→ηη/Γσ2→ππ = 1.26−0.27
+0.52.

The former is within the ratio Γf0(1370)→ηη/Γf0(1370)→ππ = 0.19±0.07 of Ref. [40]. The

latter corresponds almost completely to the WA102 ratio ΓWA102
f0(1710)→ηη/Γ

WA102
f0(1710)→ππ =

2.4± 1.04, see Sec. 3.7.3.

• The eta-kaon ratios read Γσ1→ηη/Γσ1→KK = 0.22 ± 0.01 and Γσ2→ηη/Γσ2→KK =

0.25 ± 0.004. The former is purely a prediction. The latter is completely within the

combined-fit result Γf0(1710)→ηη/Γf0(1710)→KK = 0.46+0.70
−0.38 [188] and within 2σ of the

WA102 result Γf0(1710)→ηη/Γf0(1710)→KK = 0.48 ± 0.15 [153].

• Ratios with η′: our model predicts the values Γf0(1710)→ηη′/Γf0(1710)→KK = 0.17+0.04
−0.03,

Γf0(1710)→ηη′/Γf0(1710)→ππ = 0.86−0.06
+0.11 and Γf0(1710)→ηη′/Γf0(1710)→ηη = 0.68 ± 0.13.

• Decays with ω(782): we predict Γf0(1710)→ωω ≃ 0.02 MeV and Γf0(1710)→ωω→6π ≃ 0.02

MeV, thus virtually no f0(1710) decay in the ωω channel.

• We obtain ΓK⋆
0 (1430)→Kπ = 263 MeV, within the PDG interval Γexp

K⋆
0 (1430)

= (270±80) MeV

[10].

• The scattering lengths a0,20 are saturated to their Weinberg limits a00 ≃ 0.158, a20 ≃ −0.0448
(see the end of Sec. 9.5) in Fit II. This implies the necessity to include the scalars below 1

GeV into our model – but they cannot be of q̄q structure.

• Additionally, the phenomenology in the vector and axial-vector channels is extremely im-

proved in comparison with Fit I.

• We obtain ΓK⋆→Kπ = 44.2 MeV, only 2 MeV less than the PDG result Γexp
K⋆→Kπ = 46.2

MeV [10]. Note that Fit I implied ΓFIT I
K⋆→Kπ = 32.8 MeV. Note that the PDG mass

and decay width of the non-strange vector state ρ(770) are implemented exactly in

our model.

• We obtain Γϕ(1020)→K+K− = 2.33 MeV whereas the PDG suggests Γexp
ϕ(1020)→K+K− =

(2.08± 0.04) MeV [10]. Our result is slightly larger because mϕ(1020) from our model

is ∼ 20 MeV heavier than the experimental value inducing an increase in phase space.

It was not possible to calculate this decay width from Fit I because ϕ(1020) was well

below the KK threshold.

• The decay width Γa1(1260)→ρπ is improved by two orders of magnitude and now has the

value 861 MeV whereas Fit I yielded ≃ 13 GeV. The decay width is decreased once

the ρ meson is considered an off-shell state: Γa1→ρπ→3π = 706 MeV. Nonetheless,

it is still somewhat above the PDG interval Γa1(1260)→ρπ = (250 − 600) MeV [10].

This may imply (i) that one needs to consider the finiteness of the strong interaction

using a suitable form factor or (ii) that a1(1260) is not predominantly a quarkonium

(although the overlap with the q̄q wave function is large, as suggested by our results).

Alternatively, decreasing Γρ→ππ (the decay width determining the parameter g2 that in

turn decisively influences Γa1(1260)→ρπ) by ∼ 20 MeV yields Γa1(1260)→ρπ < 600 MeV.

Note that Fit I required decreasing Γρ→ππ by ∼ 100 MeV for Γa1(1260)→ρπ < 600
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MeV to be obtained. We also obtain Γa1(1260)→K̄⋆K→K̄Kπ = 0.55 MeV and find

Γa1(1260)→f0(1370)π ≃ 0. Fit I implied ΓFIT I
a1(1260)→K̄⋆K→K̄Kπ

= 1.97 GeV.

• Only one partial decay width of the f1(1285) resonance can be calculated within our

model: f1(1285) → K̄⋆K → K̄Kπ. The PDG does not cite a value for the decay

width of the sequential decay but rather Γf1(1285)→K̄Kπ = (2.2 ± 0.1) MeV, stating

that no there is no contribution to this decay width from the stated sequential de-

cay. Contrarily, we find Γf1(1285)→K̄⋆K→K̄Kπ = 0.9 MeV, implying a 40% contribution

to Γf1(1285)→K̄Kπ. The result is obtained for mf1(1285)≡f1N = ma1 = 1219 MeV; in-

creasing mf1(1285)≡f1N to the PDG value of 1281.8 MeV yields Γf1(1285)→K̄⋆K→K̄Kπ =

Γf1(1285)→K̄Kπ. Note that Fit I yielded ΓFIT I
f1(1285)→K̄⋆K

≃ 2.15 GeV and thus Fit II

represents a strong improvement of the results from Fit I.

• We also obtain Γf1(1420)→K̄⋆K = 274 MeV. This result is two orders of magnitude

smaller than the (unphysically large) value ΓFIT I
f1S→K̄⋆K

= 17.6 GeV. Nonetheless, it is

larger than the one reported by the PDG: Γexp
f1(1420)

= (54.9 ± 2.6) MeV. The reason

is assumed to be the absence of the 1+− nonet from our model expected to mix with

the 1++ nonet already present in the model [and containing f1(1420)].

• The full K1 decay width is still larger than those of the two physical states: we

obtain ΓK1 ∼ 480 MeV whereas the data suggest ΓK1(1400) = (174 ± 13) MeV and

ΓK1(1270) = (90±20) MeV. The reason has already been discussed: mixing of our 1++

nonet with the partner 1+− nonet has to be implemented in the model. Nonetheless,

Fit II improves not only the full decay widths but also the partial ones: we obtain

ΓK1→K⋆π = 307 MeV, ΓK1→ρK = 128 MeV, ΓK1→ωNK = 41 MeV whereas Fit I

yielded ΓFIT I
K1→K⋆π = 6.73 GeV, ΓFIT I

K1→ρK = 4.77 GeV, ΓFIT I
K1→ωNK

= 1.59 GeV. Thus the

full and partial K1 decay widths, although still too large, have strongly improved in

Fit II.

Thus Fit II accommodates the correct (axial-)vector phenomenology into the model [ρ,

K⋆, ϕ(1020), f1(1285)], yields qualitative consistence [a1(1260)] or suggests the necessity

to include further states into the model [f1(1420), K1].

Fit II yields a decisively better description of the overall phenomenology: meson masses and

decay widths are either described correctly or stand closer to the data than in Fit I. For these

reasons, the assumption of scalar q̄q states above 1 GeV is strongly preferred over the assumption

that the same states are present below 1 GeV.

A comparison of results from the two fits is presented in Table 11.1; experimental uncertainties are

omitted. Table 11.1 contains all the masses exceptmσ1,2 because of the experimental uncertainties

(the σ1,2 results are discussed above in this section).
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Observable Fit I [MeV] Fit II [MeV] Experiment [MeV]

mπ 138.04 138.65 139.57

mK 490.84 497.96 493.68

mη 517.13 523.20 547.85

mKS
1128.7 1550 676 (FitI)/1425 (FitII)

mη′ 957.78 957.78 957.78

mρ 775.49 775.49 775.49

mK⋆ 832.53 916.52 891.66

ma0 978 1452 980 (Fit I)/1474 (FitII)

mϕ(1020) 870.35 1036.90 1019.46

ma1(1260) 1396 1219 1230

mK1 1520 1343 1272 or 1403

mf1(1420) 1643.4 1457.0 1426.4

Γa1(1260)→πγ 0.369 0.622 0.640

Γρ→ππ 149.1 149.1 149.1

ΓK⋆→Kπ 32.8 44.2 46.2

Γϕ(1020)→K+K− 0 2.33 2.08

Γa1(1260)→ρπ ∼ 13000 861 < 600

Γa1(1260)→ρπ→3π ∼ 11000 706 < 600

Γa1(1260)→K̄⋆K→K̄Kπ 1970 0.55 small

Γf1(1285)→K̄⋆K→K̄Kπ 1980 0.9 < 2.2

Γf1(1420)→K̄⋆K→K̄Kπ 17600 274 ∼ 54.9

ΓK1 ∼ 13000 ∼ 480 . 170

a00 0.165 MeV−1 0.158 MeV−1 0.218 MeV−1

a20 −0.0442 MeV−1 −0.0448 MeV−1 −0.0457 MeV−1

Table 11.1: Results from Fit I and Fit II compared with experiment.
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12. Incorporating the Glueball into the Model

In the previous chapters we have discussed the phenomenology of states containing an antiquark

and a quark. However, gluons – the gauge bosons of QCD – can also build composite states of

their own: the so-called glueballs. Thus we expect in particular a scalar glueball to exist; if it

does, then it could mix with the scalar q̄q states already presented in this work. The mixing is

discussed in this chapter.

12.1 Introduction

Glueballs, bound states of gluons, are naturally expected in QCD due to the non-Abelian nature

of the theory: gluons interact strongly with themselves and thus they can bind and form colorless

states, analogously to what occurs in the quark sector. The existence of glueballs has been studied

in the framework of the effective bag model for QCD already four decades ago [269] and it has

been further investigated in a variety of approaches [142, 160, 270]. Numerical calculations of

the Yang-Mills sector of QCD also find a full glueball spectrum in which the scalar glueball is

the lightest state [271].

Glueballs can mix with quarkonium (q̄q) states with the same quantum numbers. This makes

the experimental search for glueballs more complicated, because physical resonances emerge as

mixed states. The scalar sector JPC = 0++ has been investigated in many works in the past. The

resonance f0(1500) is relatively narrow when compared to other scalar-isoscalar states: for this

reason it has been considered as a convincing candidate for a glueball state. Mixing scenarios

in which two quark-antiquark isoscalar states n̄n and s̄s and one scalar glueball gg mix and

generate the physical resonances f0(1370), f0(1500), and f0(1710) have been discussed in Refs.

[206, 207].

In this chapter we discuss how to extend the calculations presented in this work to include a

glueball field. The discussion will regard the U(2) × U(2) version of the model from Chapter 5

only; a corresponding extension of the U(3) × U(3) model is a very interesting project in itself

that will be treated in a separate work [193].

The first attempt to incorporate a glueball into a linear sigma model was performed long ago in

Ref. [272]. The novel features of the study in this chapter are the following: (i) The glueball

is introduced as a dilaton field within a theoretical framework where not only scalar and pseu-

doscalar mesons, but also vector and axial-vector mesons are present from the very beginning.

This fact allows also for a calculation of decays into vector mesons. As already indicated, the

model is explicitly evaluated for the case of Nf = 2, for which only one scalar-isoscalar quarko-

nium state exists: σN ≡ n̄n which mixes with the glueball. The two emerging mixed states are

assigned to the resonances f0(1370) which is, in accordance with Sec. 11.1.5, predominantly a

n̄n state, and with f0(1500) which is predominantly a glueball state. (ii) We consequently test

– to our knowledge for the first time – this mixing scenario above 1 GeV in the framework of a

chiral model.

Let us emphasise again that our model is built in accordance with the symmetries of the QCD

Lagrangian. It possesses the known degrees of freedom of low-energy QCD [(pseudo)scalar and

(axial-)vector mesons] as well as the same global chiral invariance. In this chapter, we model
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another feature of the QCD Lagrangian: the scale (or dilatation) invariance xµ → λ−1xµ (where

xµ is a Minkowski-space coordinate and λ the scale parameter of the conformal group), see Eq.

(2.74) and the discussion thereafter. The scale invariance is realised at the classical level but

broken at the quantum level due to the loop corrections in the Yang-Mills sector (scale anomaly).

In this chapter the breaking of scale invariance is implemented at tree-level by means of a dilaton

field (representing a glueball) with the usual logarithmic dilaton potential [272]. However, all

the other interaction terms (with the exception of the chiral anomaly) are dilatation-invariant in

the chiral limit.

Having constructed the Lagrangian of the effective model, we calculate the masses of the pure n̄n

and glueball states in the JPC = 0++ channel, study their mixing and calculate the decay widths

of the mixed states. Although we work with Nf = 2 in this chapter, the use of flavour symmetry

enables us to calculate the decay widths of the scalar resonances into kaons and into both the

η and η′ mesons which contain the s-quark in their flavour wave functions. After the study

of the already mentioned scenario where f0(1370) and f0(1500) are predominantly quarkonium

and glueball, respectively, we also test the alternative scenario in which the resonance f0(1710)

is predominantly glueball and scenarios in which f0(600) is predominantly quarkonium. They,

however, lead to inconsistencies when compared to the present data and are therefore regarded

as less favourable. Additionally, our results discussed in Sec. 11.4 also favour f0(1710) to be a

predominantly s̄s state rather than a glueball.

12.2 The Model

The Yang-Mills (YM) sector of QCD (QCD without quarks) is classically invariant under dilata-

tions [see Eqs. (2.74) – (2.80)]. This symmetry is, however, broken at the quantum level. The

divergence of the corresponding current is the trace of the energy-momentum tensor T µνYM of the

YM Lagrangian

(TYM)µµ =
β(g)

4g
GaµνG

a,µν 6= 0, (12.1)

where Gaµν is the field-strength tensor of the gluon fields, g = g(µ) is the renormalised coupling

constant at the scale µ, and the β-function is given by β(g) = ∂g/∂ lnµ. At the one-loop level

β(g) = −bg3 with b = 11Nc/(48π
2). This implies g2(µ) = [2b ln(µ/ΛYM)]−1, where ΛYM ≃ 200

MeV is the Yang-Mills scale. A finite energy scale thus emerges in a theory which is classically

invariant under dilatation (dimensional transmutation). The expectation value of the trace

anomaly does not vanish and represents the so-called gluon condensate:

〈

T µYM,µ

〉

= −11Nc

48

〈αs
π
GaµνG

a,µν
〉

= −11Nc

48
C4, (12.2)

where [31, 32]

C4 ≃ (300 − 600 MeV)4. (12.3)

At the composite level one can build an effective theory of the YM sector of QCD by introducing

a scalar dilaton field G which describes the trace anomaly. The dilaton Lagrangian reads [272]

Ldil =
1

2
(∂µG)

2 − 1

4

m2
G

Λ2

(

G4 ln

∣

∣

∣

∣

G

Λ

∣

∣

∣

∣

− G4

4

)

. (12.4)

The minimum G0 of the dilaton potential is realised for G0 = Λ. Upon shifting G→ G0 +G, a

particle with mass mG emerges, which is interpreted as the scalar glueball. The numerical value
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has been determined in Lattice QCD and reads mG ∼ 1.5 GeV [271]. The logarithmic term of

the potential explicitly breaks the invariance under a dilatation transformation. The divergence

of the corresponding current reads ∂µJ
µ
dil = T µ

dil, µ = −1
4m

2
GΛ

2. This can be compared with the

analogous quantity in Eq. (12.2) which implies Λ =
√
11C2/(2mG).

As demonstrated in Sec. 2.4, QCD with quarks is also classically invariant under dilatation trans-

formations in the limit of zero quark masses (chiral limit). The scale of all hadronic phenomena

is given by the previously introduced energy scale ΛYM. This fact holds true also when the small

but nonzero values of the quark masses are considered. In order to describe these properties in

a hadronic model we now extend the linear sigma model of the previous chapters by including

the dilaton. To this end, the following criteria are applied [202]: (i) With the exception of the

chiral anomaly, the parameter Λ from Eq. (12.4), which comes from the Yang-Mills sector of

the theory in accordance with QCD, is the only dimensionful parameter of the Lagrangian in

the chiral limit. (ii) The Lagrangian is required to be finite for every finite value of the gluon

condensate G0. This, in turn, also assures that no singular terms arise in the limit G0 → 0. In

accordance with the requirements (i) and (ii) only terms with dimension exactly equal to 4 are

allowed in the chiral limit.

The hadronic Lagrangian obeying these requirements reads

L = Ldil +Tr

[

(DµΦ)†(DµΦ)−m2
0

(

G

G0

)2

Φ†Φ− λ2(Φ†Φ)2
]

− λ1(Tr
[

Φ†Φ
]

)2

+ c[det(Φ†) + det(Φ)] + Tr
[

H
(

Φ† +Φ
)]

− 1

4
Tr
[

(Lµν)2 + (Rµν)2
]

+Tr

{[

m2
1

2

(

G

G0

)2

+∆

]

(L2
µ +R2

µ)

}

+
h1
2
Tr[Φ†Φ]Tr[LµL

µ +RµR
µ]

+ h2Tr[Φ
†LµL

µΦ+ ΦRµR
µΦ†] + 2h3Tr[ΦRµΦ

†Lµ] + . . . , (12.5)

where Φ denotes the Nf ×Nf (pseudo)scalar multiplet and Lµ and Rµ the left- and right-handed

vector multiplets, respectively. The dots represent further terms which do not affect the processes

studied in this work.

The Lagrangian presented in Eq. (12.5) possesses the generic form for any number of flavours

Nf . It is a generalisation of the Lagrangian (4.42) constructed in Chapter 4. In this chapter,

the Lagrangian is evaluated for two flavours only. Consequently, as in Chapter 5, we define

Φ = (σN + iηN ) t
0 + (a0 + iπ) · t (ηN contains only non-strange degrees of freedom), Lµ =

(ωµ + fµ1 ) t
0 + (ρµ + a

µ
1 ) · t and Rµ = (ωµN − f

µ
1N ) t

0 + (ρµ − a
µ
1 ) · t ; t0, t are the generators of

U(2). Moreover, DµΦ = ∂µΦ− ig1(LµΦ− ΦRµ), Lµν = ∂µLν − ∂νLµ, Rµν = ∂µRν − ∂νRµ.
The explicit breaking of the global chiral symmetry is described by the term Tr[H(Φ+Φ†)] ≡ hσ
(h = const. ∼ m2

u,d), which allows us to take into account the non-vanishing value mu.d of the

non-strange quark mass. This term contains the dimensionful parameter h with [h] = [energy3]

and also explicitly breaks the dilatation invariance, just as the quark masses do in the underlying

QCD Lagrangian. Finally, the chiral anomaly is described by the term c (det Φ + detΦ†). This

term corresponds to the one utilised in the model containing quarkonia only, see Chapter 5

(and also Sec. 6.4). For Nf = 2 the parameter c carries the dimension [energy2] and represents

a further breaking of dilatation invariance. This term arises from instantons which are also a

property of the Yang-Mills sector of QCD.

The identification of the fields of the model with the resonances listed by the PDG [10] is the
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same as in Chapter 5. We assign the fields π and ηN to the pion and the SU(2) counterpart of

the η meson, respectively, ηN ≡ (ūu+ d̄d)/
√
2, with a mass of about 700 MeV. This value can be

obtained by ‘unmixing’ the physical η and η′ mesons which also contain s̄s contributions. The

fields ωµN and ρ µ represent the ω(782) and ρ(770) vector mesons, respectively, while the fields

fµ1N and a
µ
1 represent the f1(1285) and a1(1260) axial-vector mesons, respectively. [In principle,

the physical ω(782) and f1(1285) states also contain s̄s contributions but their admixture is

small.] As shown in Sec. 5.2.3, the σN field should be interpreted as a n̄n state because its decay

width decreases as 1/Nc in the limit of a large number of colors. The σN and G fields mix:

the physical fields σ′ and G′ are obtained through an SO(2) rotation, as we shall show in the

following. Then the first and most natural assignment is {σ′, G′} = {f0(1370), f0(1500)}, see Sec.
6.7. Note that the a0 state is assigned to the physical a0(1450) resonance in accordance with

results of Sec. 5.4.1, confirmed by results from the U(3)×U(3) version of our model in Chapter

10. Other assignments for {σ′, G′} will be also tested in Sections 12.3.2 and 12.3.3 and turn out

to be less favourable.

In order to study the non-vanishing vacuum expectation values (vev’s) of the two JPC = 0++

scalar-isoscalar fields of the model σN and G, we set all the other fields in Eq. (12.5) to zero and

obtain:

LσG = Ldil +
1

2
(∂µσN )

2 − 1

2

[

m2
0

(

G

G0

)2

− c
]

σ2N −
1

4

(

λ1 +
λ2
2

)

σ4N + hσN . (12.6)

Upon shifting the fields by their vacuum expectation values, σN → σN + φN and G→ G +G0,

we obtain the masses of the states σN = (ūu+ d̄d)/
√
2 and G = gg,

M2
σN

= m2
0 − c+ 3

(

λ1 +
λ2
2

)

φ2N , M2
G = m2

0

φ2N
G2

0

+m2
G

G2
0

Λ2

(

1 + 3 ln

∣

∣

∣

∣

G0

Λ

∣

∣

∣

∣

)

. (12.7)

Note that the pure glueball mass MG depends also on the quark condensate φN , but correctly

reduces to mG in the limit m2
0 = 0 (decoupling of quarkonia and glueball). In the presence of

quarkonia, m2
0 6= 0, the vev G0 is given by the equation

−m
2
0φ

2
NΛ

2

m2
G

= G4
0 ln

∣

∣

∣

∣

G0

Λ

∣

∣

∣

∣

. (12.8)

The shift of the fields by their vev’s introduces a bilinear mixing term ∼ σNG in the Lagrangian

(12.6). The physical fields σ′ and G′ can be obtained through an SO(2) rotation,

(

σ′

G′

)

=

(

cosϕG sinϕG
− sinϕG cosϕG

)(

σN
G

)

, (12.9)

with

M2
σ′ =M2

σN cos2 ϕG +M2
G sin2 ϕG + 2m2

0

φN
G0

sin(2ϕG), (12.10)

M2
G′ =M2

G cos2 ϕG +M2
σN sin2 ϕG − 2m2

0

φN
G0

sin(2ϕG), (12.11)

where the mixing angle θG reads

ϕG =
1

2
arctan

[

−4 φN
G0

m2
0

M2
G −M2

σN

]

. (12.12)
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The quantity m2
0 can be calculated from the masses of the pion, ηN , and the bare σN mass [Eqs.

(5.14), (5.15) and (5.17)]:

m2
0 =

(

mπ

Zπ

)2

+
1

2

[

(

mηN

Zπ

)2

−M2
σN

]

. (12.13)

If m2
0 − c < 0, spontaneous breaking of chiral symmetry is realised.

12.3 Results and Discussion

The Lagrangian (12.5) contains the following twelve free parameters: m0, λ1, λ2, m1, g1, c, h,

h1, h2, h3, mG, Λ =
√
11C2/(2mG). The processes that we shall consider depend only on the

combination h1 + h2 + h3, thus reducing the number of parameters to ten. We replace the set of

ten parameters by the following equivalent set: mπ, mηN , mρ, ma1 , φN , Zπ, MσN , mG, m1, C.

The masses mπ (= 139.57 MeV) and mρ (= 775.49 MeV) are fixed to their PDG values [10].

As outlined in Sec. 7.1, the mass of the ηN meson can be calculated using the mixing of strange

and non-strange contributions in the physical fields η and η′:

η = ηN cosϕη + ηS sinϕη ,

η′ = −ηN sinϕη + ηS cosϕη , (12.14)

where ηS denotes a pure s̄s state and ϕη ≃ −36◦ [227]. In this way, we obtain the valuemηN = 716

MeV. [Given the well-known uncertainty of the value of the angle ϕη, one could also consider

other values, e.g., our result ϕη = −43.9◦ from Chapter 10 (see discussion of Table 10.3), which

corresponds to mηN = 764 MeV, or the value ϕη = −41.4◦ from the KLOE Collaboration [228],

which corresponds to mηN = 755 MeV. Variations of the pseudoscalar mixing angle affect the

results presented in this chapter only slightly.]

The value of ma1 is fixed to 1050 MeV according to the study of Ref. [47]. (We note that

taking the value 1219 MeV from Chapter 10 or the present PDG estimate of 1230 MeV does not

change the conclusions of this chapter.) The chiral condensate is fixed as φN = Zπfπ and the

renormalization constant Zπ is determined by the study of the process a1 → πγ: Zπ = 1.67±0.2

in Sec. 5.2.5.

12.3.1 Assigning σ′ and G′ to f0(1370) and f0(1500)

The σ′ field denotes an isoscalar JPC = 0++ state and its assignment to a physical state is a

long-debated problem of low-energy QCD [58, 84, 142, 160, 206, 208, 210, 211, 270, 271]. The

two major candidates are the f0(600) and f0(1370) resonances, see Sections 9.6 and 11.4. We

have concluded in Sec. 11.4 that f0(1370) is favoured to be predominantly a n̄n state. As already

stated, the resonance f0(1500) is a convincing glueball candidate. For these reasons we first test

the scenario in which {σ′, G′} = {f0(1370), f0(1500)}, which turns out to be phenomenologically

successful, see below.

We are left with the following four free parameters: C,MσN , mG, m1. They can be obtained by a

fit to the five experimental quantities of Table 12.1: the masses of the resonances f0(1500) [MG′ ≡
Mf0(1500) = 1505 MeV [10]] and f0(1370), for which we use the mean value M exp

σ′N
= (1350± 150)

MeV taking into account the PDG mass range between 1200 MeV and 1500 MeV [10]), and
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Quantity Our Value [MeV] Experiment [MeV]

Mσ′ 1191 ± 26 1200-1500

MG′ 1505 ± 6 1505 ± 6

G′ → ππ 38± 5 38.04 ± 4.95

G′ → ηη 5.3± 1.3 5.56 ± 1.34

G′ → KK̄ 9.3± 1.7 9.37 ± 1.69

Table 12.1: Fit in the scenario {σ′, G′} = {f0(1370), f0(1500)}. Note that the f0(1370) mass ranges

between 1200 MeV and 1500 MeV [10] and therefore, as an estimate, we are using the value mσ′ =

(1350± 150) MeV in the fit.

the three well-known decay widths of the well-measured resonance f0(1500): f0(1500) → ππ,

f0(1500)→ ηη, and f0(1500)→ KK̄.

Using the Lagrangian (12.5), these observables can be expressed as functions of the parameters

listed above. Note that, although our framework is based on Nf = 2, we can calculate the

amplitudes for the decays into mesons containing strange quarks by making use of the flavour

symmetry SU(Nf = 3) [207]. It is then possible to calculate the following f0(1500) decay

widths into pseudoscalar mesons containing s quarks: f0(1500) → KK̄, f0(1500) → ηη, and

f0(1500)→ ηη′.

The χ2 method yields χ2/d.o.f. = 0.29 (thus very small), C = (699±40) MeV,MσN = (1275±30)
MeV, mG = (1369± 26) MeV and m1 = (809± 18) MeV. We have also examined the uniqueness

of our fit. To this end, we have considered χ2 fixing three of four parameters entering the fit

at their best values and varying the remaining fourth parameter. In each of the four cases we

observe only one minimum of the χ2 function; each minimum leads exactly to the parameter

values stated in Table 12.1. We also observe no changes of the results for the errors of the

parameters. These findings give us confidence that the obtained minimum corresponds to the

absolute minimum of the χ2 function.

The consequences of this fit are the following:

(i) The quarkonium-glueball mixing angle reads θG = (29.7 ± 3.6) ◦. This, in turn, implies that

the resonance f0(1500) consists to 76% of a glueball and to the remaining 24% of a quark-

antiquark state. An inverted situation holds for f0(1370). Given our results discussed in Sec.

11.4, we conclude that f0(1370) possesses admixtures from both n̄n and glueball; a detailed

discussion will be presented in Ref. [193].

(ii) Our fit allows us to determine the gluon condensate: C = (699±40) MeV. This result implies

that the upper value in Eq. (12.2) is favoured by our analysis. It is remarkable that insights into

this basic quantity of QCD can be obtained from the PDG data on mesons.

(iii) Further results for the f0(1500) meson are reported in the first two entries of Table 12.2.

The decay into 4π is calculated as a product of an intermediate ρρ decay. To this end the usual

integration over the ρ spectral function is performed. Our result yields 30 MeV in the 4π decay

channel and is about half of the experimental value Γf0(1500)→4π = (54.0 ± 7.1) MeV. However,

it should be noted that an intermediate state consisting of two f0(600) mesons (which is also

expected to contribute in this decay channel) is not included in the present model. The decay

into the ηη′ channel is also evaluated; this channel is subtle because it is exactly on the threshold

of the f0(1500) mass. Therefore, an integration over the spectral function of the decaying meson

f0(1500) is necessary. The result is in a qualitative agreement with the experiment. Note also
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that the enhanced value of the 4π decay width is a consequence of the inclusion of the glueball

field into the model [identified predominantly with f0(1500)] as otherwise the 4π decay channel

is known to be suppressed [see the note on σ1,2 → 4π decays in Sec. 11.1.2 for the case of our

non-strange and strange quarkonia].

(iv) The results for the f0(1370) meson are reported in the last four rows of Table 12.2. They are

in agreement with the experimental data regarding the full width: Γf0(1370) = (200 – 500) MeV

[10]. Unfortunately, the experimental results in the different channels are not yet conclusive.

Our theoretical results point towards a dominant direct ππ and a non-negligible ηη contribution;

these results correspond well to the experimental analysis of Ref. [40] where Γf0(1370)→ππ = 325

MeV and Γf0(1370)→ηη/Γf0(1370)→ππ = 0.19 ± 0.07 are obtained. [Note that Ref. [40] also cites

the Breit-Wigner mass of 1309 MeV whereas our result Mσ′≡f0(1370) = (1191±26) MeV is ∼ 100

MeV smaller.] We find that the four-pion decay of f0(1370) → ρρ → 4π is strongly suppressed

(as was also determined in Sec. 11.1.2). As stated in Sec. 3.3, the values of the f0(1370) decay

widths are strongly mass-dependent with Ref. [40] citing the value of Γf0(1370)→ππ ∼ 50 MeV

for mf0(1370) ∼ 1309 MeV. The 4π phase space decreases rapidly with a decreasing resonance

mass and is virtually negligible for our result Mσ′≡f0(1370) = (1191 ± 26) MeV. For this reason,

our results are qualitatively consistent with statements in Ref. [40]. Additionally, it should be

noted that due to interference effects our result for this decay channel varies strongly when the

parameters are even slightly modified.

(v) The mass of the ρ meson can be expressed as m2
ρ = m2

1+φ
2 (h1 + h2 + h3) /2, see Eq. (6.42).

In order that the contribution of the chiral condensate is not negative, the condition m1 ≤ mρ

should hold. In the framework of our fit this condition is fulfilled at the two-sigma level. This

result points towards a dominant m1 contribution to the ρ mass. This property, in turn, means

that the ρ mass is predominantly generated from the gluon condensate and not from the chiral

condensate, as confirmed by our resultm1 = 762 MeV in the U(3)×U(3) version of the model, see

Table 10.3. It is therefore expected that the ρ mass in the medium scales as the gluon condensate

rather than as the chiral condensate. In view of the fact that m1 is slightly larger than mρ we

have also repeated the fit by fixing m1 = mρ: the minimum has a χ2/d.o.f. ≃ 1 and the results

are very similar to the previous case. The corresponding discussion about the phenomenology is

unchanged.

(vi) As already stressed in Refs. [52, 55], the inclusion of (axial-)vector mesons plays a central

role to obtain the present results. The artificial decoupling of (axial-)vector states would generate

a by far too wide f0(1370) state. For this reason the glueball-quarkonium mixing scenario above

1 GeV has been previously studied only in phenomenological models with flavour symmetry

[142, 160, 207, 270] but not in the context of chirally invariant models.

Quantity Our Value [MeV] Experiment [MeV]

G′ → ρρ→ 4π 30 54.0 ± 7.1

G′ → ηη′ 0.6 2.1 ± 1.0

σ′N → ππ 284 ± 43 -

σ′N → ηη 72± 6 -

σ′N → KK̄ 4.6± 2.1 -

σ′N → ρρ→ 4π 0.09 -

Table 12.2: Further results regarding the σ′ ≡ f0(1370) and G′ ≡ f0(1500) decays.
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Given that the resonance f0(1370) has a large mass uncertainty, we have also examined the

behaviour of the fit at different points of the PDG mass interval. Considering the minimal value

mmin
f0(1370)

= (1220 ± 20) MeV we obtain χ2 = 0.2/d.o.f. The resulting value of the mixing angle

θG = (30.3 ± 3.4)◦ is practically the same as the value θG = (29.7 ± 3.6)◦ obtained in the case

where mf0(1370) = (1350± 150) MeV was considered. Other results are also qualitatively similar

to the case of mf0(1370) = (1350 ± 150) MeV.

For the upper boundary of the f0(1370) mass, the error interval of ±20 MeV turns out to be too

restrictive as it leads to unacceptably large χ2 values. Consequently, increasing the error interval

decreases the χ2 values – we observe that mmax
f0(1370)

= (1480 ± 120) MeV leads to an acceptable

χ2 value of 1.14/d.o.f. Then we obtain θG = (30.0 ± 3.5)◦, practically unchanged in comparison

with the value θG = (29.7 ± 3.6)◦ in the case where mf0(1370) = (1350 ± 150) MeV. Also other

quantities remain basically the same as in the case of mf0(1370) = (1350 ± 150) MeV.

We have also considered the fit at several points between the lower and upper boundaries of the

mf0(1370) mass range. We have chosen points of 50 MeV difference starting at mf0(1370) = 1250

MeV (i.e., we have considered mf0(1370) ∈ {1250, 1300, 1350, 1400, 1450} MeV) with errors chosen

such that the χ2/d.o.f. becomes minimal (error values are between ±30 MeV for mf0(1370) = 1250

MeV and ±100 MeV for mf0(1370) = 1450 MeV). We observe that the previous results presented

in this section do not change significantly; most notably, the mixing angle θG attains values

between 30.2◦ and 30.7◦, with an average error value of ±3.4◦.
We therefore conclude that considering different values of mf0(1370) within the (1200−1500) MeV

interval does not change the results significantly. In particular, the quarkonium-glueball mixing

angle θG changes only slightly (by approximately 1◦) and thus we confirm our conclusion that

f0(1370) is predominantly a quarkonium and f0(1500) is predominantly a glueball.

12.3.2 Assigning σ′

N and G′ to f0(1370) and f0(1710)

Although the resonance f0(1710) has also been regarded as a glueball candidate in a variety of

works [205], its enhanced decay into kaons and its rather small decay width make it compatible

with a dominant s̄s contribution in its wave function. This was also confirmed by our results

from the U(3) × U(3) version of the model, see Sec. 11.4. Nonetheless, we have also tested the

assumption that the pure quarkonium and glueball states mix to produce the resonances f0(1370)

and f0(1710).

Some experimental results regarding the resonance f0(1710) suffer from uncertainties stemming

from the overlap with the nearby state f0(1790), see Sections 3.6 and 3.7. Decays of f0(1710)

into ππ, K̄K, and ηη have been seen while no decays into ηη′ and into 4π have been detected;

partial decay widths of this resonance based on PDG-preferred results as well as those of the

WA102 Collaboration have already been presented in Sections 3.7.1 and 3.7.3. The values of

decay widths into ππ, K̄K, and ηη obtained in Sec. 3.7.3 are stated in Table 12.3.

A fit analogous to the one in Table 12.1 yields too large errors for the decay width σ′N ≡
f0(1370)→ ππ. For this reason we repeat our fit by adding the following constraint: Γσ′

N
→ππ =

(250± 150) MeV. The large error assures that this value is in agreement with experimental data

on this decay width. The results of the fit are reported in Table 12.3.

We obtain C = (1070 ± 65) MeV, MσN = (1483 ± 47) MeV, mG = (1670 ± 20) MeV and

m1 = (817 ± 16) MeV; Eq. (12.12) yields the mixing angle between the pure quarkonium and

the pure glueball θG = (19.6± 5.8)◦. Note that the gluon condensate is in this case much larger

228



Quantity Our Value [MeV] Experiment (G′ Decays from WA102 data, Sec. 3.7.3) [MeV]

Mσ′
N

1450 ± 34 1350 ± 150

MG′ 1720 ± 6 1720 ± 6

G′ → ππ 16.0 ± 3.6 16.1 ± 3.6

G′ → ηη 4.1± 1.0 38.6 ± 18.8

G′ → KK̄ 5.1± 2.7 80.5 ± 30.1

σ′N → ππ 313 ± 49 250± 150

Table 12.3: Fit in the scenario {σ′, G′} = {f0(1370), f0(1710)}. Experimental data for G′ decays are

from Sec. 3.7.3, other data from the PDG [10].

than what would be expected from the QCD sum rules or the lattice, see Eq. (12.3). The χ2

is worse than in the previous case: χ2/d.o.f. = 2.5. Additionally, Γσ′N→ππ is too large for the

mass value Mσ′N
≃ 1450 MeV, see Sec. 3.3 – the data suggest that the decay into 4π (and not

into 2π) is dominant at such large values of the f0(1370) mass. We also observe that both

ΓG′→ηη and ΓG′→KK̄ are by an order of magnitude smaller than their respective experimental

values. Thus the WA102 data do not seem to favour a fit where f0(1370) and f0(1710) are,

respectively, predominantly quarkonium and glueball. This statement is confirmed if further

decays are considered: as evident from Table 12.4, G′ ≡ f0(1710) → 4π should be the largest

contribution to the full f0(1710) decay width (branching ratio ∼ 2/3) while experimentally it

has not been seen.

Decay Width Our Value [MeV] Experimental value [MeV]

G′ → 4π 41 -

G′ → ηη′ 4.3 -

σ′ → ηη 100 ± 8 -

σ′ → KK̄ 18.7 ± 5.3 -

Table 12.4: Further results from the fit with {σ′, G’} = {f0(1370), f0(1710)}.

Note that a virtually unchanged picture emerges if the fit utilises the PDG-preferred data for

the decays of G′ = f0(1710), see Sec. 3.7.1. We then obtain χ2/d.o.f. = 1.7, C = (764 ± 256)

MeV (now within expectations), MσN = (1516 ± 80) MeV, mG = (1531 ± 233) MeV and m1 =

(827± 36) MeV [203]. The mixing angle calculated from Eq. (12.12) is θG = (37.2± 21.4)◦. The
mixing angle is large and could also overshoot the value of 45◦, which would imply a somewhat

unexpected and unnatural reversed ordering, in which f0(1370) is predominantly glueball and

f0(1710) predominantly quarkonium. Additionally, we still obtain ΓG′→ηη = (6.9±5.8) MeV, five

times smaller than ΓPDG
f0(1710)→ηη = 34.26+15.4

−20.0 MeV in Eq. (3.20), and also ΓG′→KK̄ = (16 ± 14)

MeV, again strongly suppressed in comparison with ΓPDG
f0(1710)→KK = 71.44+23.18

−35.02 MeV, Eq. (3.15).

Finally, the 4π decay of f0(1710) should again be dominant (∼ 115 MeV), clearly at odds with

the data.

Therefore, we conclude that this scenario is not favoured. Moreover, in this scenario the remain-

ing resonance f0(1500) should then be interpreted as a predominantly s̄s state, contrary to what

its experimentally dominant ππ decay pattern suggests. Consequently, f0(1710) is unlikely to

be predominantly a glueball state; this is also in accordance with the results from the ZEUS

Collaboration [182].
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12.3.3 Scenarios with σ′
≡ f0(600)

The scenarios {σ′, G′} = {f0(600), f0(1500)} and {σ′, G′} = {f0(600), f0(1710)} have also been

tested. In both cases the mixing angle turns out to be small (. 15◦), thus the state f0(600) is

predominantly quarkonium. Then, in these cases the analysis of Chapter 5 applies: a simultane-

ous description of the ππ scattering lengths and the σ′ → ππ decay width cannot be achieved.

For these reasons the mixing scenarios with the resonance f0(600) as a quarkonium state are not

favoured.

12.4 Summary of the Results with the Dilaton Field

Once a dilaton field is included into the chirally invariant linear sigma model with (axial-)vectors,

a favoured scenario emerges: the resonance f0(1500) is predominantly a glueball with a subdom-

inant n̄n component and, conversely, f0(1370) is predominantly a quark-antiquark (ūu+ d̄d)/
√
2

state with a subdominant glueball contribution. It is interesting to observe that the success

of the phenomenological description of these scalar resonances is due to the inclusion of the

(axial-)vector mesons in the model. The gluon condensate is also an outcome of our study and

turns out to be in agreement with lattice QCD results. Different scenarios in which f0(1710)

is predominantly glueball and/or f0(600) is predominantly quarkonium do not seem to be in

agreement with the present experimental data.
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13. Conclusions

In this thesis we have presented an effective model of Quantum Chromodynamics (QCD), the

theory of strong interactions. The model was utilised to study all experimentally observed two-

body decays of mesons for which there exist vertices in the model under the assumption that the

said experimental states are of q̄q nature. In addition, three-body and four-body decay widths

have also been calculated utilising sequential decays; ππ scattering lengths have been calculated

as well. Particular attention was devoted to the question whether scalar q̄q states are located

below or above 1 GeV in the physical spectrum. Our results clearly favour the scalar q̄q states

to be above 1 GeV.

A realistic model of QCD with Nf quark flavours should possess at least two features. Firstly, the

model has to implement the symmetries present in QCD and described in Chapter 2, most notably

the local SU(3)c colour symmetry, the discrete CPT symmetry, the global U(Nf )L × U(Nf )R
chiral symmetry and the breaking mechanisms of the latter symmetry: spontaneous (due to the

chiral condensate), explicit (due to non-vanishing quark masses) as well as at the quantum level

[the U(1)A anomaly]. Secondly, the model has to incorporate as many degrees of freedom as

possible, within the energy interval of interest (typically determined by the mass of the highest

resonance in the model, in our case ∼ 1.8 GeV).

This also implies that the resonances should not be considered independently of each other –

they may mix (if they possess the same quantum numbers) or stand connected via decay modes.

For this reason, in the concrete case of our meson model, we have considered not only scalar and

pseudoscalar but also vector and axial-vector mesons as well.

The model has implemented the linear realisation of the chiral symmetry of QCD [48] with two

(u, d) and three flavours (u, d, s) – linear sigma model. The symmetry-breaking mechanisms have

also been considered: the explicit symmetry breaking was modelled with terms proportional to

(non-degenerate) quark masses, the chiral anomaly by a determinant term and the spontaneous

symmetry breaking by means of condensation of the scalar isosinglet states: σN ≡ (ūu+ d̄d)/
√
2

in the Nf = 2 case and σN as well as σS ≡ s̄s in the Nf = 3 case. Thus combining our meson

states from constituent quarks and antiquarks we are able to construct two scalar isosinglet states

σN,S. (Note that all the states present in our model are of q̄q structure, as we demonstrate in

Sec. 4.3.)

However, as we have discussed in Chapter 3, current experimental data suggest that there are

actually six non-strange scalar isosinglets: f0(600) or σ, f0(980), f0(1370), f0(1500), f0(1710)

and f0(1790). At most two of them can be q̄q states – and the thesis has addressed the question

which two. To this end, we have constructed three versions of the sigma model: in two flavours

(Chapter 5), three flavours (Chapters 6 – 11) and two flavours + a scalar glueball state in Chap-

ter 12.

In Chapter 5, the two-flavour version of the linear sigma model with vector and axial-vector

mesons was discussed in two scenarios. In Scenario I, Sec. 5.3, we assigned our σN state to

the f0(600) resonance [or, in other words, f0(600) was assumed to be a q̄q state]. However, the
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ensuing f0(600) decay width was several times smaller than the result suggested by the data

[10, 41, 42]. For this reason we have considered an alternative scenario where f0(1370) was

assumed to be of q̄q structure obtaining Γf0(1370)→ππ ≃ (300-500) MeV for mf0(1370) = (1200-

1400) MeV. Thus, already in the two-flavour model, the scenario in which the scalar states above

1 GeV, f0(1370) and a0(1450), are considered to be (predominantly) q̄q states appears to be

favoured over the assignment in which f0(600) and a0(980) are considered (predominantly) q̄q

states. It is important to stress that the role of the (axial-)vector states was crucial in obtaining

these results because, in the (unrealistic) limit where the (axial-)vectors are removed from the

model, we observed that the f0(600) decay width was within the data. Note also that we have

calculated a range of other decay widths, in particular Γa1(1260)→ρπ , found to be consistent with

experiment if ma1(1260) ≃ 1130 MeV.

In Chapters 6 – 11 we have addressed the question whether the conclusions from the two-flavour

model remain the same once the model is generalised by inclusion of strange mesons (kaons).

Thus, upon inclusion of the strange degrees of freedom we have again considered two possibilities:

(i) that the scalar q̄q states are below 1 GeV and (ii) that the scalar q̄q states are above 1 GeV.

We refer to these two possibilities as Fits I and II, respectively.

Although the phenomenology of scalar states is found to be acceptable, Fit I is nonetheless found

to be strongly disfavoured for two reasons (see Sec. 9.6). Firstly, the obtained mass values deviate

by up to ∼ 200 MeV (for the κ meson: ∼ 600 MeV) from the experimental results (see Table

8.5). This is in particular problematic for the very narrow resonances ϕ(1020) and f1(1420).

Secondly, the axial-vector states are found to be extremely broad: a1(1260), f1(1285), f1(1420)

and K1(1400) possess decay widths ∼ (1 − 10) GeV. These values are unphysically large. The

only possibility to remedy these large decay widths would be to work with the ρ meson that has

a decay width . 40 MeV. However, then the ρ meson would be too narrow.

We thus consider possibility (ii): scalar q̄q states above 1 GeV. All masses obtained from Fit

II are within 3% of their respective experimental values with the exception of mη (≃ 4.5% too

small) and mK⋆
0 (1430)

, found to be ≃ 8.8% too large because the pattern of explicit symmetry

breaking in our model sets masses of strange states approximately 100 MeV (≃ strange-quark

mass) heavier than their corresponding non-strange counterparts. Nonetheless, the phenomenol-

ogy is massively improved in comparison with Fit I (see Sec. 11.4 and in particular Table 11.1).

For example, our results for the (axial-)vector states are either within the data [ρ, K⋆, ϕ(1020),

f1(1285)] or qualitatively consistent with the data [a1(1260)]. The mixing of the pure-nonstrange

and the pure-strange scalar isosinglet states allows us to determine f0(1370) as 91.2−1.7
+2.0% a n̄n

state and f0(1710) as 91.2
−1.7
+2.0% a s̄s state. Utilising only the ratio Γf0(1710)→ππ/Γf0(1710)→KK =

0.2 ± 0.06 [99] enables us to determine a large range of other observables with no free pa-

rameters. We calculate Γf0(1370)→ππ, Γf0(1370)→KK , Γf0(1710)→ηη , Γf0(1370)→ππ/Γf0(1370)→KK ,

Γf0(1370)→ηη/Γf0(1370)→ππ , Γf0(1710)→ηη/Γf0(1710)→ππ , Γf0(1710)→ηη/Γf0(1710)→KK and ΓK⋆
0 (1430)→Kπ

and their values are all within the data. We can even predict Γf0(1370)→ηη/Γf0(1370)→KK =

0.22 ± 0.01, Γf0(1710)→ηη′/Γf0(1710)→KK = 0.17+0.04
−0.03, Γf0(1710)→ηη′ /Γf0(1710)→ππ = 0.86−0.06

+0.11,

Γf0(1710)→ηη′/Γf0(1710)→ηη = 0.68 ± 0.13, Γf0(1710)→ηη′ = 41+4
−5 MeV, Γf0(1370)→a1(1260)π→ρππ =

12.7+5.8
−4.2 MeV, Γf0(1710)→a1(1260)π→ρππ = 15.2+2.6

−3.1 MeV, Γf0(1710)→ωω ≃ 0.02 MeV and also

Γf0(1710)→ωω→6π ≃ 0.02 MeV (the latter four strongly suppressed). Note, however, that the

model also obtains too large absolute values of the f0(1710) decay widths (although, as already
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mentioned, the ratios of the decay widths are correct).

A reason for this may be the missing glueball field as all the calculations described so far have

only been performed with q̄q states. There are three nearby isoscalar singlet states above 1

GeV: f0(1370), f0(1500) and f0(1710). The f0(1500) state has long been discussed as a possible

glueball candidate. In Chapter 12 we discuss the sigma model in two flavours + glueball to

test this hypothesis. Indeed we find f0(1500) to be predominantly a glueball and f0(1370) to

be predominantly a non-strange q̄q state. The study in Chapter 12 has been performed in the

light-quark sector only and thus an extension of the study to Nf = 3 + glueball would represent

a valuable continuation of the work presented in this thesis. Nonetheless, the scenario where

f0(1710) is predominantly a glueball was also tested by a corresponding redefinition of our scalar

states; the scenario was found to be not favoured.

Therefore, the main conclusion of this thesis is that the scalar q̄q states are strongly favoured to

be above 1 GeV because then the description of the scalar but also of the vector and axial-vector

phenomenology is decisively better than under the assumption that the scalar quarkonia are

below 1 GeV.

We note that the work can be extended in many directions.

• An obvious point is to extend the U(3) × U(3) model of Chapter 10 to include the pure

glueball field and implement the mixing of this field with the pure n̄n and s̄s to study the

quarkonium/glueball content of f0(1370), f0(1500) and f0(1710).

• This work finds the scalars above 1 GeV to be predominantly quarkonia. This implies

that the model can make no statement regarding the nature of the scalar states below 1

GeV [f0(600), a0(980), κ]. They may be interpreted as tetraquark states [58, 194]. Thus

a further extension of the model would entail scalar n̄n, s̄s, glueball and tetraquark states

(the latter with and without the s quark) – six scalar states the mixing of which would be

extremely interesting to study within a chiral model that contains vectors and axial-vectors

as well.

• We have seen in Sec. 10.3 that the mass of theK1 state obtained from our model corresponds

neither to the mass of K1(1270) nor to that of K1(1400). The K1 phenomenology is also

not well described (see Sec. 11.4). The reason is that our model currently contains only an

axial-vector nonet of states that is, however, expected to mix with a pseudovector nonet

yielding the physical K1(1270) and K1(1400) states [247]. Building on this point, one can

study the mixing of the pseudovector and axial-vector nonets within an extended version of

the model in this thesis to determine the features of theK1(1270) andK1(1400) resonances.

• The model can be extended to the charm mesons [191].

• The hadronic decays of the τ lepton can also be studied within a version of the model

incorporating the weak interaction (building on work in Ref. [245]).

• Further studies of the nucleon and its chiral partner (as well as, e.g., hyperons) can be

performed on the line of Ref. [59].

An important remark is in order about nucleon-nucleon scattering in the context of results
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presented in this work. Baryon-baryon interaction is usually mediated by the exchange

of scalar [f0(600)] and vector [ω(782), ρ(770)] mesons [273]. Usually the f0(600) state is

considered to be of q̄q structure. However, our results suggest the opposite: that the scalar

q̄q state is actually in the region above 1 GeV. For this reason, nucleon-nucleon scattering

does not appear to be performed by exchange of a quark and an antiquark; indeed if

the states below 1 GeV are interpreted as tetraquarks then, consequently, exchange of a

tetraquark state would occur [197].

• Finally, the issue of restoration of chiral symmetry at nonzero temperature and density

is one of the fundamental questions of modern hadron and nuclear physics. Linear sigma

models constitute an effective approach to study chiral symmetry restoration because they

contain from the onset not only pseudoscalar and vector mesons, but also their chiral

partners with which they become degenerate once the chiral symmetry has been restored.

Given that the vacuum phenomenology is reasonably well reproduced within our model,

then the model can also be applied to studies of chiral symmetry restoration at nonzero

temperatures (similarly to Refs. [37, 194]) and densities (similarly to Ref. [274]).

And let us end this thesis along the line of Ref. [275]: ”It took mankind only about one century

to resolve the mystery of the spectral lines in visible light reported by Joseph Fraunhofer in 1814

[276]. The collection of sufficient data lasted several decades, during which some progress was

made by the discovery of striking patterns in the spectra. An important step that provided the

key to the analysis of spectra was the classification of hydrogen lines made by Johann Balmer

in 1885 [277]. This allowed Niels Bohr [278] later on to account for those lines, resulting in a

spectacular advance in our understanding of Nature.” Nowadays the mysteries are related to

far more miniature objects but they are nonetheless a large inspiration for anyone interested in

understanding the way how nature functions.
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14. Zusammenfassung

Die vorliegende Dissertation behandelt eine der grundlegenden Fragen der menschlichen Exis-

tenz: den Zustand der Materie im Universum kurz nach dem Urknall. Damals (vor ungefähr

13 Milliarden Jahren) war die Materie in ihre mikroskopischen Bauteile zerlegt: beispielsweise

waren die Elektronen nicht an Atomkerne gebunden – es existierten keine Atome, sondern die

Elektronenn stellten freie Teilchen dar. Die Elektronen waren indes nicht die einzigen freien

Teilchen – auch andere so genannte Leptonen (mit den Elektronen verwandte Teilchen) bildeten

keinerlei gebundene Zustände.

Der Materieaufbau im Universum in der jetzigen Zeit ist anders: beispielsweise sind Elektro-

nen in einem Atom an den Atomkern gebunden (die entprechende elektrische Wechselwirkung

wird als Coulomb-Kraft bezeichnet, nach dem französischen Physiker Charles Coulomb, der im

18. Jahrhundert lebte). Der Atomkern ist aber keine kompakte Einheit - er besitzt selbst eine

innere Struktur, da er aus Protonen (positive eletrische Ladung) und Neutronen (keine elek-

trische Ladung) aufgebaut ist. Die Anzahl der Protonen im Atomkern ist für die Klassifikation

der Atome von grundlegender Bedeutung: jedes Atom eines Naturelements besitzt eine genau

festgelegte Anzahl von Protonen in seinem Kern (Wasserstoff: 1, Helium: 2, Lithium: 3, ..., Un-

unoctium: 118). Da die Protonen, wie erwähnt, elektrisch positiv geladen sind, müssen sie sich

auch im Atomkern abstoßen; der Atomkern müsste folglich instabil sein, wodurch Atome (und

Moleküle) ebenfalls instabil sein müssten. Dies ist natürlich nicht der Fall – stabile Materie ist

auf der Erde (und, nach unserem Verständnis, auch im Universum) in der Tat vorhanden. Fol-

glich ist also zu diskutieren, warum sich die Protonen in der Summe aller Kräfte doch anziehen

(und stabile Atomkerne bilden können), obwohl sie sich elektrisch abstoßen.

Die Antwort liegt in der Betrachtung einer neuen Wechselwirkung: der so genannten starken

Kraft. Diese ist nur auf den Atomkern beschränkt (also extrem kurzreichweitig), aber innerhalb

des Kerns ist sie dominanter als die elektrische Abstoßung der Protonen. In der Summe ziehen

sich also die Protonen in Atomkernen an und Atomkerne und Atome sind folglich stabil.

Die Protonen sind aber nicht die einzigen Teilchen, die der starken Wechselwirkung unterliegen.

Schon die Neutronen, die anderen in Atomkernen präsenten Teilchen, sind ebenfalls stark wech-

selwirkend; dies ist auch der Fall für Hyperonen, Pionen, Kaonen und mehrere Hundert anderer

Teilchen. Daher stellt es einen natürlichen Schritt dar, nach einem Klassifikationsschema für all

diese Teilchen zu suchen. Dieses Klassifikationsschema erfordert die Annahme, dass die Proto-

nen, Neutronen, Pionen, Kaonen, ..., eine innere Struktur besitzen - und aus noch elementareren

Teilchen, den so genannteb Quarks, aufgebaut sind. Unterschiedliche Quark-Kombinationen

ergeben dann unterschiedliche Teilchen, so wie unterschiedliche Quantitäten von Protonen un-

terschiedliche Atomkerne (und Atome) ergeben.

Die aus Quarks aufgebauten Teilchen werden als Hadronen bezeichnet. Die Hadronen unterteilen

sich in zwei große Gruppen in Abhängigkeit von ihrem Spin: jene mitganzzahligem Spin (0, 1,

2, ...) werden als Mesonen bezeichnet (Pionen, Kaonen, ...), während die Hadronen mit hal-

bzahligem Spin (1/2, 3/2, ...) als Baryonen bezeichnet werden (Protonen, Neutronen, ...). Die
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Quarks kommen in der Natur nicht als freie Teilchen vor – sie sind immer in den Hadronen

eigenschlossen. Diese experimentelle Beobachtung wird als Quark-Confinement bezeichnet; die

Quarks können nur in hochenergetischen Protonen- oder Schwerionen-Stößen (wie gegenwärtig

bei dem Large Hadron Collider am CERN in Genf oder bald bei der Facility for Antiproton and

Ion Research bei der Gesellschaft für Schwerionenforschung in Darmstadt) erforscht werden.

Die Quarks waren nicht immer in den komplexeren Teilchen eingeschlossen: kurz nach dem Urk-

nall waren die Quarks freie Teilchen, genau wie die Leptonen (wie schon erwähnt). Die Expansion

des frühen Universums führte zu seiner Abkühlung; so konnte die gegenwärtig bekannte Materie

nach ungefähr 10−10 Sekunden anfangen zu kondensieren. Mit anderen Worten: es entstanden

Teilchen, die aus Quarks aufgebaut sind. Es ist klar, dass das einfachste aus Quarks aufgebaute

Teilchen zwei Quarks besitzen musste - dies ist nach der obigen Definition ein Meson, und daher

ist die Erforschung der Mesonen für die Erforschung des frühen Universums von außerordentlicher

Bedeutung: sie ermöglicht uns, Kenntnisse über das Universum kurz nach dem Urknall zu er-

langen.

Lassen Sie uns eine kurze Anmerkung einfügen. Mesonische Teilchen bestehen eigentlich nicht aus

zwei Quarks, sondern aus einem Quark und einem Antiquark. Der Grund hierfür besteht in der

Tatsache, dass die Quarks neben der elektrischen auch eine zusätzliche Ladungsform tragen: die

Farbladung. (Dies ist nicht die Farbe im herkömmlichen Sinne, sondern eine Quanteneigenschaft

der Quarks; die Farben werden trotzdem als rot, grün und blau bezeichnet und die Experimental-

daten deuten darauf hin, dass genau drei Quarkfarben existieren.) Die Quarks sind die einzigen

bekannten Teilchen in der Natur, welche diese Farbladung besitzen; alle anderen Teilchen sind

farbneutral und folglich ordnen sich die Quarks so an, dass das entstehende komposite Teilchen

farbneutral ist. Konkret impliziert dies, dass ein Meson (wie zum Beispiel das Pion) aus einem

Quark (mit Farbe) und einem Antiquark (mit Antifarbe) bestehen muss, damit sich die Farbe

und die Antifarbe aufheben und das Meson, wie vom Experiment verlangt, keine Farbladung

trägt. (Es kann im Rahmen der Gruppentheorie gezeigt werden, dass beispielsweise Protonen

und Neutronen drei Quarks besitzen müssen, um farbneutral zu sein.)

Die Spins des Quarks und des Antiquarks in einem Meson können auf unterschiedliche Arten

kombiniert werden. Die Quarks selbst sind Spin-1/2-Teilchen. Im Prinzip können sie also zu

einem Spin-1-Teilchen (ein so genanntes Vektor-Meson) und zu einem Spin-0-Teilchen (skalares

Meson) kombiniert werden. Die genaue Anzahl von so entstehenden Teilchen hängt von der An-

zahl der Quarks ab, die in Betracht gezogen wurden. Gegenwärtige Experimentaldaten deuten

darauf hin, dass es sechs Quarks in der Natur gibt: Up (u), Down (d), Strange (s), Charm (c),

Bottom (b) und Top (t). Das u-Quark besitzt die kleinste Masse, während die Masse des schw-

ersten Top-Quarks etwa 57000 Mal größer ist. Die Massen der Up- und Down-Quarks sind fast

gleich (diese Quarks entarten also) und daher kann man sie als gleiche Teilchen betrachten. Das

Strange-Quark unterscheidet sich in der Masse vom Up-Down-Paar um etwa Faktor 30. Die Up-

und Down-Quarks werden oftmals als nichtseltsame Quarks bezeichnet (und die Mesonen, welche

die Up- und Down-Quarks enthalten, als nichtseltsame Mesonen). Da die c-, b- und t-Quarks

um eine bis drei Größenordnungen schwerer als das s-Quark sind, kann man diese als praktisch

entkoppelt von den u-, d- und s-Quarks betrachten. Betrachten wir also die nichtseltsamen u-

und d-Quarks sowie das seltsame s-Quark.
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Wegen der erwähnten Massenentartung bei den nichtseltsamen Quarks werden nichtseltsame

Mesonen immer sowohl aus u- als auch aus d-Quars gebildet. Für den konkreten Fall der skalaren

Mesonen wird die Wellenfunktion wie folgt konstruiert:

σN ≡ (ūu+ d̄d)/
√
2,

wo σN das nichtseltsame skalare Meson und ū und d̄ respektive das Anti-Up- und das Anti-

Down-Quarks kennzeichnen, und für ein seltsames

skalares Meson σS:

σS ≡ s̄s,
wo s̄ das seltsame Antiquark kennzeichnet.

Also würden wir nach einem Vergleich der oben genannten beiden Wellenfunktionen mit dem

Experiment erwarten, dass die Experimentaldaten genau zwei nichtseltsame skalare Mesonen

aufweisen. Tatsächlich sind es sechs. – Und die Suche nach den Antiquark-Quark-

Teilchen unter diesen sechs ist einer der Hauptarbeitspunkte der vorliegenden Dis-

sertation.

Die allgemein anerkannte physikalische Theorie, welche die Quarks und die aus den Quarks

gebildeten Teilchen beschreibt, heißt

Quantenchromodynamik (QCD).

Die Quantenchromodynamik legt eine grundlegende Gleichung fest, den so genannten QCD-

Lagrangian [siehe Gl. (2.18)]. Der QCD-Lagrangian zeigt gewisse Eigenschaften auf, die nicht

nur eine elegante mathematische Konstruktion darstellen, sondern auch die tatsächlichen EIgen-

schaften physikalischer (aus Quarks gebildeter) Zustände widerspiegeln. Dies wurde durch viele

Experimente bestätigt [10].

Falls man aber beabsichtigt, diese Zustände der Natur theoretisch näher zu behandeln, so bedient

man sich der so genannten durch die QCD erlaubten Modelle. Diese Modelle müssen die erwähn-

ten Eigenschaften (die Symmetrien der QCD, siehe Kapitel 2) erfüllen; alle Modelle der QCD

erfüllen die QCD-Symmetrien, aber auf unterschiedliche Arten – dies stellt den Hauptunterschied

zwischen ihnen dar.

Das in dieser Doktorarbeit vorgestellte Modell wird als das Lineare Sigma-Modell bezeichnet

und es beinhaltet die in der Natur beobachteten mesonischen Teilchen. Wir beschreiben in

Kapitel 4 die Konstruktion eines solchen Sigma-Modells. Die Implikationen des Modells werden

in den Kapiteln 5 – 11 diskutiert. Insbesondere wird die Frage erforscht, wo sich die skalaren

Antiquark-Quark-Teilchen σN und σS sich im physikalischen Spektrum befinden. Diese Frage ist

aus mindestens zwei Gründen interessant:

• Da die experimentellen Messungen (wie erwähnt) mehr skalare Teilchen nachgewiesen

haben als von der theoretischen Seite erwartet, stellt sich die Frage der Klassifikation

solcher Teilchen, oder in anderen Worten derer Struktur: da höchstens zwei von diesen

Teilchen von Antiquark-Quark-Struktur (q̄q) sein können, stellt sich die Frage, welche von

den gemessenen Teilchen tatsächlich die q̄q-Teilchen sind und welche Struktur die übrig

gebliebenen Teilchen besitzen.
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• Das Pion ist ein wohlbekanntes q̄q-Teilchen (dies ist seit langer Zeit sowohl theoretisch

als auch experimentell bestätigt); die QCD sagt vorher, dass das Pion unter gewissen

Bedingungen (sehr hohe Temperaturen von ungefähr einer Billion Grad Celsius) dieselbe

Masse wie σN besitzen muss – wir können aber zwischen sechs skalaren Teilchen wählen,

die allesamt unserem σN -Teilchen entsprechen können. Die Frage ist also: Welches von

den skalaren Teilchen ist es?

Allerdings wäre eine theoretische Betrachtung von nur Pionen und skalaren Teilchen nicht gerecht-

fertigt, da die experimentellen Daten eindeutig die Existenz anderer Teilchen nachweisen. Zum

Beispiel ist experimentell wohlbekannt, dass auch Teilchen mit Spin 1 existieren (die so genan-

nten Vektoren), welche mit den Pionen und den skalaren Teilchen wechselwirken. Aus diesem

Grunde beinhaltet das in dieser Dissertation disktierte Modell sowohl die Skalaren als auch die

Vektoren; ein Modell mit all diesen Teilchen muss mathematisch konsistent konstruiert werden,

was im Kapitel 4 beschrieben wird.

Die skalaren Mesonen werden in zwei Gruppen geteilt: auf jene mit Ruheenergie unterhalb 1

GeV und auf jene mit Ruheenergie oberhalb 1 GeV (die Bezeichnung GeV bedeutet Gigaelek-

tronvolt, also eine Milliarde Elektronvolt, wobei ein Elektronvolt der Energie eines Elektrons im

elektrischen Feld von einem Volt Stärke entspricht). Im Kapitel 5 wird mittels Vergleich der

theoretischen Ergebnissen mit Experimentaldaten diskutiert, ob sich unser skalares q̄q-Teilchen

unterhalb oder oberhalb 1 GeV befindet – und es scheint die Ruheenergie mehr als 1 GeV zu

besitzen.

Dies ist eigentlich etwas überraschend. Üblich ist die Erwartung, dass ein Teilchen mit bloß

einem Quark und einem Antiquark eher eine relativ kleine Ruheenergie besitzt (in unserem Fall

also weniger als 1 GeV). Der Grund hierfür ist, dass alle anderen skalaren Teilchen, die keine

Antiquark-Quark-Struktur besitzen, aus mehr als zwei Quarks bestehen und deren Ruheenergie

folglich relativ größer ist. Die Ergebnisse des Kapitels 5 (und letztendlich dieser Dissertation)

deuten auf ein umgekehrtes Bild hin.

Die Ergebnisse im Kapitel 5 sind aber nur unter Betrachtung der Mesonen zustande gekommen,

die nur das Up- und das Down-Quark besitzen. Es ist folglich eine wohldefinierte Frage, ob sich

die Ergebnisse womöglich ändern, wenn auch Teilchen mit seltsamen Quarks (die so genannten

Kaonen) in das Modell hunzugefügt werden.

Aus diesem Grunde wird in den Kapiteln 6 – 11 eine ausführliche Diskussion des Linearen Sigma-

Modells mit skalaren und vektoriellen Mesonen sowohl im nichtseltsamen als auch im seltsamen

Sektor durchgeführt. Die Erörterungen über die skalaren Mesonen sind hierbei nicht die einzigen,

welche behandelt werden – in den genannten Kapiteln werde alle hadronischen Zerfälle der Meso-

nen betrachtet, die aus dem Modell ausgerechnet werden können. Auf diese Weise entsteht eine

breite phänomenologische Abhandlung der experimentell bekannten mesonischen Teilchen, die

uns eine Klassifikation der Teilchen nach ihrer Quark-Struktur (ob q̄q oder nicht) durchzuführen,

aber auch Einblicke in das Verhalten der Teilchen bei sehr hohen Temperaturen ermöglicht.

Die in den Kapiteln 6 – 11 durchgeführten Berechnungen bestätigen das (wie erwähnt) überraschende

Ergebnis aus Kapitel 5: dass die skalaren q̄q-Teilchen σN und σS eine Ruheenergie von mehr als

1 GeV besitzen. Diese Aussage hat mindestens zwei Implikationen:
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• Das skalare Teilchen, welches bei sehr hohen Temperaturen (∼ 1012 Grad Kelvin) die

gleiche Masse wie das Pion besitzt, hat eine viel größere Ruheenergie als das Pion. Dies

hat Konsequenzen für andere Signaturen des so genannten Quark-Gluon-Plasmas, eine

Materieform, deren Entstehung bei den erwähnten sehr hohen Tenperaturen erwartet wird

und die aus Quarks, aber auch Gluonen besteht – dabei sind die Gluonen Teilchen, welche

die Wechselwirkung zwischen den Quarks übertragen (die Botenteilchen).

• Falls (nur) die skalaren Teilchen über 1 GeV die q̄q-Struktur besitzen, dann bleibt die Frage

offen, welche Struktur die (ebenfalls bekannten) Teilchen unter 1 GeV haben könnten.

Dazu ist immer noch keine definitive Antwort vorhanden (auch nicht im Rahmen anderer

Studien), es wird aber schon seit Langem darüber diskutiert, ob die Teilchen unterhalb 1

GeV aus zwei Quarks und zwei Antiquarks (statt wie bisher diskutiert aus einem Quark

und einem Antiquark) bestehen könnten.

In der vorliegenden Dissertation wird aber noch eine zusätzliche Mesonenart diskutiert: die

Gluebälle. Diese Mesonen bestehen nicht aus Quarks, sondern ausschließlich aus Gluonen, den

(schon erwähnten) Botenteilchen, über welche die Quarks ihre Wechselwirkungen ausführen.

In Kapitel 12 wird das skalare (also spinlose) Glueball-Teilchen in das Modell eingeführt und

dessen Wechselwirkungen mit dem Antiquark-Quark-Teilchen σN diskutiert. Es wird wiederum

die Aussage bestätigt, das die Ruheenergie von σN über 1 GeV liegt und zusätzlich die Folgerung

diskutiert, dass die Ruheenergie des Glueball-Teilchens ebenfalls über 1 GeV ist.

Die Hauptaussage dieser Dissertation ist aber, dass die Spin-0-Teilchen aus einem Antiquark und

einem Quark (die skalaren Mesonen) eine höhere Ruheenergie besitzen als gewöhnlich angenom-

men. Dies hat viele Implikationen für die weitere Mesonen- und, allgemeiner, Hadronener-

forschung: die Frage nach der Struktur der skalaren Mesonen im Energiebereich unter 1 GeV

bleibt offen genau so wie die Frage nach dem Materiezustand und -verhalten bei sehr hohen Tem-

peraturen (also jenen wie kurz nach dem Urknall). Die Erforschung der Materie bei sehr hohen

Temperaturen ist seit langer Zeit das hauptsächliche Thema vieler Projekte sowohl in der theo-

retischen als auch in der experimentellen Hadronenphysik, aber eine definitive Aussage über das

Materieverhalten unter den extremen Bedingungen und bei einer großen Anzahl der mikroskopis-

chen Teilchen (und folglich einer fast unendlichen Anzahl möglicher Wechselwirkungswege der

betreffenden Teilchen und der Zerfallswege der instabilen Teilchen) kann noch nicht erfolgen. Aus

diesem Grunde ist die theoretische und die experimentelle Erforschung der Elementarteilchen-

physik bei sehr hohen Energien ein sehr spannendes Feld der Physik – mit vielfältigen An-

wendungsmöglichkeiten der hier prsentierten Dissertation. Die vorliegende Dissertation bildet

daher durch ihre Untersuchungen der Antiquark-Quark-Zustände genau die notwendige Basis

für weitere Projekte bezüglich des Materiezustands bei sehr hohen Temperaturen und folglich

für die Erforschung der Materie kurz nach dem Urknall und dem Anfang der noch unvollständig

erforschten Phänomene der modernen Wissenschaft.
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Meine besondere Dankbarkeit gebührt der Stiftung Polytechnische Gesellschaft, die mein Doktoranden-

studium per Stipendium und durch viele interessante Seminare unterstützt hat. Ich danke insbesondere

Herrn Dr. Roland Kaehlbrandt, Herrn Dr. Wolfgang Eimer und Herrn Tobias Ullrich für sehr gute Zusam-

menarbeit im Rahmen des MainCampus-Projektes der Stiftung Polytechnische Gesellschaft.
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