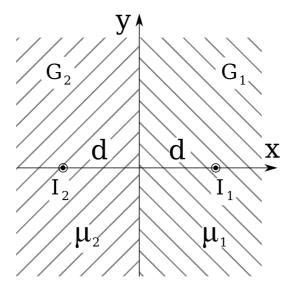
7. Tutorium für 25.05.2012

7.1 Permanent magnetisierter Zylinder

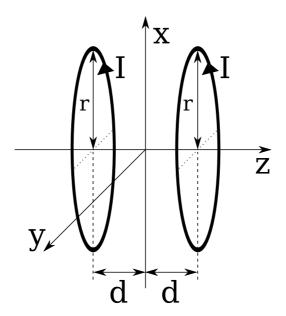
Ein unendlich langer permanent magnetisierter Zylinder mit dem Radius a und der z-Achse als Zylinderachse besitzt die Magnetisierung


$$\vec{M}(R,\varphi,z) = M_0 \frac{R}{a} \vec{e}_{\varphi}, \qquad M_0 > 0$$

 $(R, \varphi, z \text{ Zylinderkoordinaten}).$

- a) Berechne die Magnetisierungs-Volumsstromdichte \vec{j}_M im Inneren des Zylinders und die Magnetisierungs-Flächenstromdichte \vec{k}_M auf dem Zylindermantel sowie den in z-Richtung fließenden Gesamtstrom.
- b) Berechne im gesamten Raum das vom magnetisierten Zylinder verursachte \vec{B} -Feld. Gib ferner für den gesamten Raum das zugehörige \vec{H} -Feld an.

7.2 Halbräume mit unterschiedlichen Permeabilitäten


Zwei Dia- oder Paramagnetika mit den Permeabilitäten μ_1 , μ_2 ($\mu_1 > \mu_2$) grenzen mit einer ebenen Trennfläche aneinander. Im Medium 1 befindet sich im Abstand d von der Grenzfläche ein zu dieser paralleler unendlich dünner gerader Leiter, welcher von einem zeitlich konstanten Strom I_1 durchflossen wird, im Medium 2 befindet sich spiegelbildlich dazu ein unendlich dünner gerader Leiter, welcher in der gleichen Richtung von einem zeitlich konstanten Strom I_2 durchflossen wird (siehe Abbildung).

- a) Schreibe für die magnetische Feldstärke \vec{B} die Feldgleichungen in den Raumgebieten $G_1: x > 0$ und $G_2: x < 0$, die Anschlussbedingungen für x = 0 sowie die asymptotische Bedingung an.
- b) Löse die Aufgabenstellung von (a) mit Hilfe von Bildstromansätzen.

7.3 Helmholtz-Spule

Gegeben seien zwei eng gewickelte Spulen mit Radius r, welche im Abstand 2d voneinander entsprechend untenstehender Skizze angeordnet sind. Jede Spule hat N Windungen in welcher ein Strom der Stärke I fließt.

- a) Berechne das Magnetfeld $\vec{B}(0,0,z)$ entlang der z-Achse.
- b) Wie groß muss der Abstand d gewählt werden, damit das Magnetfeld um den Ursprung herum möglichst konstant bleibt, also die erste und zweite Ableitung von \vec{B} nach z verschwindet? Wie groß ist das Magnetfeld dann im Zentrum?

Ankreuzbar: 1ab, 2a, 2b, 3a, 3b