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Abstract

Measurements of the cosmic microwave background radiation show
a primary inhomogeneity in the temperature distribution of the order
of §T/T ~ 10~°. The inflationary theory explains this inhomogeneity
to be primeval quantum fluctuations expanded to galactic scales. Infla-
tion is driven by the phase transition of a scalar field. In this work we
analyze the non-equilibrium evolution of the effective scalar field mass
through a phase transition in an expanding space-time background
starting from an initial thermal equilibrium. The real-time formalism
for a curved background metric is used to express the propagator in
terms of mode functions. The one-loop mass correction is calculated
from the Green function. A WKB-like approximation is applied to the
resulting system of differential equations and an analytical expression
for the scalar field mass is found in the high-temperature limit. Com-
paring this result to numerical calculations, we find that the analytical
expression describes the scalar field mass pretty accurately far beyond
the first classical turning point of the lowest mode function.



“And can all the flowers talk?”
“As well as you can,” said the Tiger-lily. “And a great deal louder.”
“It isn’t manners for us to begin, you know,” said the Rose,

“and I really was wondering when you’d speak!”

from Lewis Carroll, “Through the Looking-Glass”
(Alice in Wonderland II)
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1 Introduction

Imagine that somebody grips you and blows you up to 10*? times your size
within 10732 seconds. Independently of how you looked like before, you
would not only become really fat, but theory of inflation predicts that you
would also appear to be locally flat. As incredible as it may sound, the very
same thing happened to our universe right after the big bang according to
the inflationary universe scenario that is being supported by more and more
recent observational facts.

The COBE (Cosmic Background Explorer) satellite measured the temper-
ature of the cosmic microwave background radiation (CMBR) to be 2.7277 +
0.002K with a deviation from a perfect black-body radiation of less than
0.03% [1, 2]. Apart from a dipolar anisotropy of about 3mK that accounts
for a relative velocity of our solar system of 370 km/s with respect to the
cosmic rest frame, COBE found a primordial anisotropy in the CMBR at the
level of 30uK (or 07/T ~ 107°) on angular scales of 10°. The photons of
the CMBR last scattered when the universe was about 300,000 years old and
had cooled down to a temperature of about 3000K [3]. Therefore the CMBR
is a snapshot of the universe at that time.

From these data we can draw two essential conclusions: First, we have ev-
idence that the universe was extremely smooth when the CMBR originated,
since density variations imply proportional temperature variations. Second,
the inhomogeneities in the CMBR of 6p/p ~ 107> are of the right magnitude
to explain the structures that we observe today, like stars, galaxies, or clus-
ters, by gravitational action mainly of dark matter over the past 14 billion
years. Dark matter is invisible matter of presently unknown nature whose
presence is only known through its gravitational effects. Structure forma-
tion is in perfect accordance with the standard big bang cosmology, but new
questions about why the universe was that flat in the beginning and where
the small primeval inhomogeneity came from are raised. Several ideas were
proposed to overcome problems about the initial state of the universe, from
special initial singularities [4] to a quantum cosmological wavefunction of the
universe [5] to the anthropic principle, but the inflationary solution appears
to be the most promising.

The inflationary universe scenario states that our universe was inflated
exponentially fast during the first 1073 seconds after the big bang. The
possibility of such an exponential expansion was found in the General Theory
of Relativity by de Sitter [6] already in 1917, but it was not until the 1980’s
that Guth [7] described the basic principles of inflation: A small region of the
universe is expanded exponentially to a size much bigger than the universe
we can observe today. This explains the smoothness of the universe because



1 INTRODUCTION 4

everything stems from a tiny part of the original region. Inhomogeneities are
explained by quantum fluctuations that are frozen in later as the universe
continues to expand. Also, due to the increase in size, any curvature of the
initial region would become small and the universe would appear to be flat.
The original model was soon enhanced by other models like new inflation,
chaotic inflation, hybrid inflation [8]. These models require the knowledge of
elementary particle theory at very high energies.

Early stages of the evolution of the universe involve enormous energy den-
sities and temperatures. They provide an indirect testing ground for theories
that can hardly be studied in a laboratory. The Glashow-Weinberg-Salam
theory of weak and electromagnetic interactions [9] proposes a phase transi-
tion at temperatures of the order of 10'°K corresponding to an energy density
of 102GeV at which the symmetry of weak and electromagnetic interactions
is restored to a single electroweak interaction. Grand unified theories (GUT)
have even higher critical temperatures of T, ~ 102K ~ 10°GeV at which
the symmetry between the strong and electroweak interactions is restored
[8]. These are impressive energy scales, even compared to the highest tem-
peratures attained in a supernova explosion of about 10!'K. Starting from a
density of at least 10'°GeV in the standard version of the hot universe theory
[10, 11], the universe cooled off, going through a number of phase transitions
and breaking the symmetry between different interactions.

In most models of unified gauge theories, the symmetry between different
types of interactions is broken in a phase transition due to the appearance
of a constant classical scalar field ¢ over all space, called Higgs field. This
field acquires a non-zero vacuum expectation value below a critical tempera-
ture and generates masses for gauge bosons. Since interactions with massive
particles become short-range, the symmetry between various interactions is
broken [12|. The process of inflation couples to the slow-rollover of a scalar
field ¢ from a false-vacuum state to a symmetry-broken state. Knowledge
about the behavior of the scalar field during the phase transition [13| can
help to sort out different inflationary models.

The new satellites MAP (to be launched in 2000) and Planck (2007) [14]
will improve our knowledge of the CMBR anisotropy in the near future.
Comparisons of more accurate measurements of the multipole moments of
the CMBR to theoretical predictions from different inflationary models will
enable us to favor one of the current inflationary and cold dark matter models
in the near future [1, 15].

In the following chapters we will analyze a scalar field phase transition
in an expanding background based on the work of Cooper and Mottola [16].
We will try to explain the behavior of the scalar field mass analytically and
compare our approximations to numerical calculations.
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Chapter 2 gives a short overview of standard big bang cosmology. In
its success, this model raised new questions that led to the introduction of
inflation. We will see that inflation solves several shortcomings of standard
cosmology at once by an enormous exponential expansion of the universe
during the first 10732 seconds.

The evolution of quantum fields during such an expansion can be practi-
cally described in the real-time formalism. In chapter 3 we will show how to
calculate the Green function in the real-time formalism in a flat Minkowski
space-time. We will express the Green function in terms of mode functions
and discuss its matrix structure.

Starting from these results, we will extend the formalism to a curved
space-time background in chapter 4. We will calculate the one-loop mass
correction for a scalar field theory with a \p? interaction term and see how
to renormalize it.

Chapter 5 is dedicated to the WKB approximation. It was originally
invented to solve quantum mechanical problems with an arbitrary potential,
but it can be applied to any second-order differential equation, hence to mode
functions. Different WKB regions are linked together by so-called connection
formulae.

In Chapter 6 we will demonstrate how to calculate the one-loop resummed
mass, at least in principle. We will show how to analytically approximate this
complex problem of a coupled system of infinitely many differential equations
under certain conditions using WKB. In particular, we will find nice results
in the high-temperature limit.

Finally, chapter 7 gives a summary of numerical results obtained from
computer simulations using the Mathematica computer program. We will
compare them to the analytical approximations from the previous chapter
and find that a simple formula describes the behavior of the scalar field mass
pretty accurately until far beyond the first classical turning point.

Recent improvements in observational instruments allow us to gain more
and more data from the far end of our universe. We can take a closer look at
the big bang event than ever before, but nevertheless we need new physical
models to interpret the flow of observational data. And who knows what our
universe still has to tell us if we just ask the right questions?



2 The inflationary universe scenario

2.1 Standard cosmology overview and its shortcomings

Hot big bang cosmology describes our universe from a fraction of a second
after the beginning, when it was a hot, smooth soup of quarks, leptons, and
gauge bosons, to the present, some 14 billion years later. The big bang model
has its roots in the work of Gamow and his collaborators in the 1940s, but
it didn’t come to broad attention until 1964 with the discovery of the cosmic
microwave background radiation (CMBR). With the verification of other
predictions of the hot big bang model in the 1970s it became the universally
accepted standard cosmology [1, 3, 8, 17].

Standard big bang cosmology is based on a homogeneous and isotropic
expanding universe. The effects of this model are confirmed by three well-
established observations: The first one is the red shift of distant objects that
forms the basis for Hubble’s law of expansion. Since the discovery of the
red shift in the 1920’s, thousands of distant galaxies have been observed to
obey this universal law. Secondly, there is the cosmic microwave background
radiation which has been measured to be an almost perfect black body with
temperature 7' = 2.728 + 0.002K. It is a remnant of the early hot and
dense stages of evolution after the big bang. Finally, the third observation is
the abundance pattern of the light elements, D, 3He, He, and "Li, which is
consistent with the production process in the seconds after the big bang as
predicted by primordial nucleosynthesis. (All other elements in the periodic
table were created in stars and stellar explosions billions of years later.)

Being such a successful theory, standard big bang cosmology also raised
a bunch of new, more profound questions: Why do we observe more matter
than antimatter? Why is the universe observed isotropic and homogeneous
on large scales? If the universe was smooth in the beginning as suggested by
the CMBR, what caused all the structure in the universe? How much dark
matter is there to hold the universe together and what is it made of? What
is the big bang event itself?

Questions like these motivated the search for new fundamental concepts
in cosmology that go beyond the standard big bang theory. One of these
ideas that is able to explain some of the questions raised above is the theory
of inflation. According to this theory, our universe is flat because of an
enormous expansion during the first 10732 seconds after the big bang that
increased the size of the universe by a factor of 10%° to 10%°. Quantum-
mechanical fluctuations on scales of 10723 cm or smaller are responsible for
density perturbations that caused all the structure that we observe today
[3]. To see how the necessity for inflation arises, let us start by studying a
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description of a homogeneous and isotropic universe.

A description like this first came up in the 1920’s when Friedmann,
Robertson and Walker found an expanding solution of the universe for the
General Theory of Relativity [8, 18, 19]. Setting ¢ = 1, the maximally sym-
metric metric can be written in the form

dr?
1 —kr?

ds® = dt* — a*(t) + 72(d6? + sin’ 0 d?) (1)
where a(t) is the cosmic scale factor and the constant £ can be chosen to be
k = +1,—1, or 0 for space-times of constant positive, negative, or zero spatial
curvature, resulting in a closed, open, or flat Friedmann universe respectively.

The fact that we observe a homogeneous and isotropic matter and radia-
tion distribution in our universe does by no means guarantee that the entire
universe is smooth, but we can say that a region at least as large as our
present Hubble volume (which is the volume that is in principle observable
by us) is smooth. Even if our observable smooth part of the universe was
surrounded by an inhomogeneous and anisotropic universe, we could deduce
from causality that our region would stay smooth for a time comparable
to the light-crossing time of the Hubble volume, the Hubble time, which is
about 10 billion years. We can thus safely describe our local Hubble volume
by the FRW-metric above.

Immediately the question arises what fraction of the universe is in causally
connected. That is, for what values of (7,6, @) would a light signal emitted
at t = 0 reach a comoving observer with coordinates (7o, 6y, o) at, or before,
time ¢? Since a light signal satisfies the geodesic equation ds? = 0, we can
use equation (1) to calculate this. If we put the observer in the origin 7o =0
then, due to the spherical symmetry of the problem, df and dyp are irrelevant
and we can determine ¢ by

[aw=1 75 @

The proper distance to the horizon measured at time ¢ is given by

dg(t) = /OTH VGrrdr = /OTH \/%dr (3)

which is simply the scale factor a(t) at time ¢ times equation (2)

di () = a(t) /O % (4)
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If dg(t) is finite then our past light cone is limited by a particle horizon at
the distance dy. The particle horizon separates the part of the universe that
can have any causal effect on us from the part from which light signals can
not reach us. It turns out that in standard cosmology the proper distance
is finite and proportional to the time dy () x ¢ if £ = 0 marks the initial
singularity of the big bang event.

Let us consider a physical distance d(t) ~ 100 Mpc. Below this size,
galaxies are organized in clusters with large voids between them, but on
scales bigger than this size galaxies appear to be spread uniformly in the
universe and we know from measurements that the universe is uniform to
about a part in 10° on such a scale [20, 21|. Let us see how a region with the
radius d(t) evolved from earlier times. At times ¢’ < ¢, the size of this patch
is given by

a(#y = "D g (5)

For a matter dominated universe the scale factor a(t) is proportional to
t?/3 whereas for a radiation dominated universe we have a(t) o< t'/2. Since
the horizon size is given by dy(t) o< ¢/, we see that the ratio d(t')/dy(t')
increases as we evolve back in time. Thus at some time in the far past, the
scale d(t') will become larger than the horizon dg(t') at that time. This is
already the case at the time of the decoupling of matter and radiation, that
is when the CMBR originated some 300,000 years after the big bang. It is
difficult to explain how a region that was larger than the horizon and therefore
causally disconnected at the time of decoupling can be as homogeneous and
isotropic as we observe it today. One can show that the present Hubble
volume consisted of no less than 10° causally disconnected regions at the
time of recombination, which spans an angle of about 0.8° on the sky today.
Furthermore, at the time of primordial nucleosynthesis, a minute after the big
bang, today’s Hubble volume consisted of about 10%° causally independent
regions, yet the synthesis of the light elements seems to have been nearly
identical in all of those regions |3, 22|. This high degree of homogeneity and
isotropy on large scales represents one of the important puzzles of standard
big bang cosmology and is known as the horizon problem. We believe that
the solution to this problem is inflation. Before we dive into the theory of
inflation, let us see where the scale factors for a matter or radiation dominated
universe that we just used come from.

In the FRW-metric in eq. (1) we have not made any restrictions on the
scale factor a(t) yet, but its evolution is actually determined by the Einstein
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equations
47
G =——5G(p+3p)a (6)
k a\> k 8«
H*+ —=|(= —=—
+ (a) + 3 3 Gp (7)

where p is the energy density of matter, pisits pressure, G is the gravitational
constant and H = ¢ is the Hubble parameter [8]. These equations imply an
energy conservation law, given by

pa® + 3(p + p)a*a =0 (8)

We now have to assume a so-called equation of state, relating the energy
density p to the pressure p in order to find out how the universe will evolve.
Choosing p = ap we find from the energy conservation law that

p ~ g=301F) (9)
Particularly, for non-relativistic cold matter o« = 0 and p ~ a3, and for a
hot ultra-relativistic gas of noninteracting particles @ = 1/3 and the energy
density evolves according to p ~ a~%. For small a we can therefore neglect
the k/a? term compared to 87Gp/3 in equation (7) and the scale factor is
given by

@ ~ 305 (10)

Thus we see that in a matter dominated universe we obtain for non-relativistic
cold matter an expansion of
a~ t*? (11)

whereas in a radiation dominated universe that can be described by an ultra-
relativistic gas the scale factor behaves like

a~ /2 (12)

Regardless of the model used (k = =£1,0), the scale factor vanishes at
some time ¢t = 0, and the energy density of matter becomes infinitely large.
This space-time singularity that represents the creation of matter, space and
time was appropriately named “big bang” by Hoyle [1]. Standard big bang
cosmology really is a theory about the events following this singularity up
to now, but the physics near this singularity is not really addressed. A
new quantum theory of gravity might enable us to ask questions about the
universe “before the big bang” and inflation might shed some new light on
the big bang.
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2.2 Inflation

In the 1980’s the standard big bang cosmology had to face many open ques-
tions: We already discussed the large scale smoothness of the universe and
the horizon problem. On the other hand there is the question about the
small-scale inhomogeneity: We observe stars, galaxies, clusters, voids (large
regions containing almost no galaxies), and superclusters. Of course, stan-
dard cosmology can explain them by the growth of small, initial distortions
in a matter-dominated universe by Jeans (or gravitational) instability. But
where did these initial seeds come from? There is also a question of flatness:
Today the radius of curvature for our universe is of the order of R, ~ Hj L
since the energy density appears to be close to the critical energy density.
The radius decreases relative to the Hubble radius in a matter or radiation
dominated universe and therefore at an earlier time it must have been much
bigger. At the Planck time about 10™*® seconds after the big bang, the ra-
dius of the curvature must have been at least as huge as Reyp ~ 103°H ™!
[3] which is a severe restriction on the initial conditions. Standard cosmol-
ogy leaves unanswered questions about unwanted relics, superheavy particles
produced in the early universe, that should dominate the universe, or domain
walls that should be observable between different parts of the universe with
independently broken symmetry [1, 3, 8]. Surprisingly, a single theory could
possibly be able to answer all of these questions and that is inflation + cold
dark matter [17].

The basic idea of inflation is a brief period of tremendous expansion of
the scale factor by a factor of at least 10%” during the first 10732 seconds.
We do not know the precise details of this inflationary phase yet, but in
most models the exponential expansion is coupled to the potential energy
of a scalar field going through a phase transition. In this nflationary phase
the universe is in an unstable vacuum-like state with high energy density. In
such a state, the vacuum pressure and energy density are related by p = —p.
From equation (8) we see that the vacuum energy is constant during such
an inflationary expansion. A constant energy density of matter also implies
according to equation (7) that the scale factor grows exponentially with

H~'cosh Ht fork = +1 (closed)
a(t) = H= et fork = 0 (flat) (13)
H 'sinh Ht fork = —1 (open)

where H = %’er. Actually, H(t) also changes with time, but during a
characteristic period of time At = H ! there is little change in H so that
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one can speak of a quasi-exponential expansion of the universe
a(t) ~ age™™ (14)

This is also known as the de Sitter expansion and was first described in 1917
by de Sitter |6], well before Friedmann developed his theory of the expanding
universe. However its physical meaning as an exponentially expanding uni-
verse filled with superdense matter was not discovered until 1960’s. The first
truly inflationary model was developed in 1981 by Guth [7] who could solve
the flatness problem, the horizon problem, and the primordial monopole
problem with his theory. Based on this model, many improvements have
been introduced and the “old” inflationary scenario was replaced by new con-
cepts like the “new ”, “chaotic”, “natural”, or “hybrid” inflationary scenario.
Although these models address different technical problems regarding the
scalar field and its potential, they are all motivated by the following basic
ideas:

A small, subhorizon-sized region of the universe is expanded to a size much
greater than the universe we can observe today. Since this region was causally
connected before inflation, it is likely to be smooth in the present, and so is
the small portion of it that became our observable part of the universe. This
explains the smoothness of our universe and the homogeneous and isotropic
nature of the CMBR. It also solves the flatness problem, because due to
inflation any curvature in the original region would become small. After
inflation the observable universe would appear to be flat, independent of the
initial curvature.

All inflationary models state that a scalar field is responsible for this
exponential expansion. It takes place during a symmetry breaking phase
transition. A scalar potential is assumed that changes its minimum from
(¢) = 0 at high temperatures to (@) = £0 # 0 at lower temperatures. In the
simplest case the system is 1-dimensional and the scalar field has to choose
between +o0 or —o. The initial symmetry around 0 is broken. In the 2-
dimensional case there is an additional degree of freedom for the scalar field
in the broken phase. The potential takes the form of a “Mexican hat”.

In the old inflationary scenario, expansion occurs while the scalar field is
trapped in a (@) = 0 false-vacuum state. There is a symmetry-broken global
minimum of the potential at (¢) = o, but the scalar field first has to get there
by tunneling. Inflation ends when the scalar field tunnels through the bar-
rier. A successful inflation requires a small tunneling rate, thus true vacuum
bubbles are rarely produced. On the other hand, energy for reheating at the
end of the inflationary phase could only come from bubble collisions, that
are rare due to rare bubble nucleation. The criticism about this scenario is
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Figure 1: Schematic illustration of an inflationary potential in the new infla-
tionary scenario.

that the phase transition would never be completed and most of the universe
would continue to inflate forever |3, 23].

The new inflationary scenario improves the situation significantly. It is
also called “slow-rollover” inflation. As this name suggests, a key feature of
this theory is the slow evolution of the scalar field from the false-vacuum state
to the symmetry-broken minimum of the potential as shown in Figure 1. It
is during this slow rollover phase that the universe expands exponentially.
This process can be compared to a ball rolling down a hill with friction,
where the friction is provided here by the expansion of the universe. During
the slow transition of the scalar field, the vacuum energy will dominate the
energy density of the universe as soon as the temperature falls below the
critical temperature of the phase transition, resulting in the de Sitter phase.
When the scalar field finally arrives at the new minimum, it overshoots and
begins to oscillate about the new point (@) = o. These oscillations contain
an enormous amount of vacuum energy and are damped by producing other,
lighter fields or particles to which they couple. These newly created particles
thermalize, a process at the end of inflation called reheating. It explains the
tremendous heat content of the universe and finally leads to the photons in
the CMBR that we can observe today. This scenario can successfully explain
the cosmological problems stated above and all models of inflation today are
based on the slow-rollover mechanism.



3 Real-time formalism

We want to study dynamical properties of a system at 7" # 0. This combines
two different basic difficulties in one question: First, we want to study a finite
temperature problem. For static, equilibrium systems this can be done in the
imaginary-time formalism where the thermal factor e ## is reinterpreted as
a time evolution in an imaginary time direction § = —it. But second, we
want to study dynamical, time-dependent questions like the behavior during
a phase transition in our model. The imaginary-time formalism is not readily
capable of answering such questions. Therefore a new formalism, the real-
time formalism, is necessary to tackle this problem.

The real-time formalism answers questions about dynamical problems
naturally, but it is technically far more complicated than the imaginary-time
formalism. Let us therefore begin with a brief review of the imaginary-time
formalism.

3.1 Imaginary-time formalism

The imaginary-time formalism basically trades time for temperature. Gen-
eral concepts from equilibrium statistical thermodynamics can be woven into
quantum field theory in a straightforward way by the concept of analytic con-
tinuation where an imaginary time takes the role of the temperature. One
can easily grasp this idea by regarding the general definition of a density
matrix for a thermal equilibrium system

p(B) =e P (15)
and compare it to the time evolution of an operator, given by
A(t) = e A(0)e ! (16)

One sees that both, time evolution and density matrix, contain an exponen-
tial of the Hamiltonian H and the idea of likening 5 to +it seems obvious.
Historically it was first noticed by F. Bloch [24].

In order to see the combination of these two concepts in detail, let us first
recall how the ensemble average of an observable A is defined. The partition
function of a system with the density matrix (15) is given by

Z(B8) =Tr p(B) = Tr e (17)

where “Tr ” denotes the trace or the sum over the expectation values in any
complete basis of the physical Hilbert space. The thermal average of an

13
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observable is defined as

Tr p(B)A _ Tr (e P2 A)
Z(9) =

(A)s = (18)

so that a general thermal correlation function of two operators A(t) and B(t)
can be rewritten in the following way (using the time evolution property of
an operator eq. (16) and the cyclicity of the trace)

(AW)B(t)s = Z '(B)Tx p(B)A(t)B(t)
= Z(B)Tr e PMA() e P B(t)
= Z7(B)Tx A(t +ip)e " B(t))
= (B()A(t+if)), (19)

Note that this relation holds for both, bosonic as well as fermionic operators.
Relations of this type are known as the Kubo-Martin-Schwinger (KMS) rela-
tions [25]. In particular for the correlation function of an operator with itself
we get, the relation

(AMA(E))5 = (A A(t +18))4 (20)

This will be an important result for two-point Green function G(¢,t') =
(p(t)p(t')), at finite temperature.

Without going too much into detail, the usual course in the imaginary-
time formalism is as follows: Using an operational method or the path in-
tegral, one can derive cyclicity conditions for propagators from the KMS
relation. Fourier transformation of the finite imaginary time interval leads
to discrete frequencies, the so-called Matsubara frequencies w, that are given

by
2"7" for bosons o1
Wn = w for fermions (21)
The momentum space Green function then becomes
- 1
Gplwn, k) = ——=—— (22)

w%-f—/;Q—l-mQ

It turns out that the only difference between the zero temperature and the
finite temperature field theories lies in the restriction to discrete frequencies.
All Feynman diagrams for calculating higher order corrections of a theory
are the same in the finite as well as in the zero temperature case. In the
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imaginary-time formalism the complete temperature dependence is contained
in the propagator, so that calculations from the zero temperature case can
be easily transfered to the finite temperature case.

The drawback of this formalism is that it is difficult to apply its results
to dynamical questions. That is, questions about the system out of equilib-
rium where the explicit time-dependence of the system should be studied, for
example when going through a phase transition. Here another formalism is
more readily apt to study non-equilibrium properties - the real-time formal-
ism. One formulation of it is the closed-time-path formalism which we now
want to introduce.

3.2 Closed-time-path formalism

The closed-time-path formalism provides an integration path for the system
that contains both components of interest, namely time dependence and tem-
perature. Technically, this path in the complex time plane can be described
by going from minus infinity to plus infinity being infinitesimally above the
real axis and going back infinitesimally below it. To see how this path arises,
we start with the Schrédinger picture description of a general quantum me-
chanical system in a mixed state described by a density matrix p. For a
general system where we do not demand that it is in thermal equilibrium,
the density matrix is given by

pt) =D P [¥n(D)) (¥ ()] (23)

where p,, describes the probability of finding the quantum mechanical system
in the state |1, (t)). Being a probability, it satisfies

> =1 (24)

The average of an operator in this mixed state can be calculated from the
trace of the density matrix and the operator and can be written as

(A) (1) = Tx p()A =Y p (en(t)] Altha(t)) (25)

Note that the time dependence of the operator is entirely determined by the
time evolution of the density matrix, and this itself is determined by the time
evolution of the states of the system.
With an Hamiltonian H the states of the system satisfy
0 [¢n (1))

IS H g (t) (26)
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Using this equation and its hermitian conjugate, we see that the density
matrix satisfies the differential equation

P50 = o (2 )+ Sty (250)
= anH |¢n(t)> <wn(t)| - an an(t)) <wn(t)| H

= [H,p(t)] (27)

We have assumed here that the probabilities p, are time-independent. This
actually means that we regard systems with a constant entropy

S=- (lnp) = - an In py, (28)

We just have to be aware of this restriction when we interpret results. Since
adiabatic evolutions arise frequently in the study of physical systems we
will continue with this assumption. This means that the properties of the
system should change slowly enough so that they correspond to an adiabatic
evolution.

For a time-independent Hamiltonian H, the differential equation (27) can
be solved for p(t) to give

p(t) = e p(0)e™ (29)

We also see from eq. (27) that if the Hamiltonian commutes with the den-
sity matrix, then p(t) = p(0) is constant in time and describes a system in
equilibrium.

In general the system is not in equilibrium and we are interested in sys-
tems where the Hamiltonian carries an explicit time dependence. In this case
we can express the density matrix through the time evolution operator

p(t) = U(t,0)p(0)U(¢,0) = U(t,0)p(0)U (0, 1) (30)
where the operator U(t,t') is defined as

ULt

S = HOUt,?) (31)

with the condition that
U(t,t)=1 (32)
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Formally the solution to this differential equation (31) can be written as a
time ordered exponential

U(t, t/) -7 (e—i ftt, dtl:H(tu)) (33)

which is merely a short-hand notation of Dyson’s equation, an iterative so-
lution to the corresponding integral equation (see for example Ref. [26]):

(=2)"
!

n

Ut ) =1+ i /It dty .. dt, T (H(ty)...H(t,)  (34)

The time evolution operator satisfies the following relations

U(tl,tQ)U(tQ,tl) =1
U(tl,tQ)U(tQ,tg) = U(tl,tg) for t1 > 19 > 13 (35)

We assume that the quantum system is in thermal equilibrium for neg-
ative times so that the Hamiltonian H(¢) may only be time dependent for

t> 0.
Hi for RetSO

H(t):{ H(t) for Ret>0

For negative times, the system is described by a thermal density matrix with
the inverse temperature S (compare with eq. (15))

(36)

pt < 0) = (37)

Using the fact that the Hamiltonian is time independent for negative ¢, one
can use the definition of the evolution operator (31) to rewrite the density
matrix in another way:

p(T) =U(T —if,T) (38)

where T denotes a large negative time. This already describes the last ele-
ment of the closed-time-path going down in the complex time plane by i at
a large negative time 7'. Starting with the density matrix at a large negative
time, we can determine the density matrix for an arbitrary time by applying
the evolution operator U as we did in equation (30)

p(t) = U@ T)p(T)U(T,1)
— U(t,T)U(T —iB, T)U(T, 1) (39)
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We can now calculate the expectation value of any operator. With the defi-
nition of the average of an operator (18) we can write:

_ Trpt)A
W0 =
Te U(t, T)U(T —i8,T)U(T,t)A
T U, TU(T —iB, T)U(T,t)
Tr U(T — i3, T)U(T,t)AU(t,T)
Tr U(T —iB,T)
This expression describes a path starting at a large negative time 7T and
going up to the time where the operator is to be evaluated, then returning
and going down by 8. To bring this expression into the standard form we

have to insert yet another time point, represented by 7’, a large positive
time. Using the property of the evolution operator in eq. (35) we can write

1  TrUT -8, T)UT, ) U THU(T', t)AU (2, T)
A = Tr U(T —iB,T)
Tr U(T —iB, T)U(T, TU(T', t)AU (¢, T)
Tr U(T —iB, T)U(T, T")U(T",T)

Now this is the standard form of the closed-time-path: The path in the
complex time plane starts (reading the evolution operators in eq. (41) from
right to left) at a large negative time 7', then goes to the time ¢ where the
operator A is to be evaluated and continues to the large positive time 7”.
Here the path turns around and goes back to the negative time 7”. The two
paths are usually displaced infinitesimally from the real-time axis. Finally
the last part of the path consists of going down to 7' — ¢3. In the complex
time plane the path has the form

(40)

(41)

Imt
A

T-ip
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Eventually we would like to take the limits T — —oo and T — oo. It
turns out that this limit can be taken in the path integral representation of
the partition function by defining a generating functional as we will see in
the following section.

3.3 Path integral formulation

We would like to rewrite the partition function (17) in the path integral
representation. Path integrals were introduced by Feynman [27, 28] as a new
way of describing quantum physics. Starting from probability amplitudes
of particles and describing their propagation over all possible paths between
the two endpoints, Feynman invented the formalism that leads to Feynman
diagrams which play an important role in today’s perturbation theory. This
section might get a little bit technical, but the aim is to show how path
integrals are introduced for the partition function in a clear way.

The trace of the partition function from equation (17) can be written by
using a complete set of eigenvectors of the position operator

Z(B) = Trp(B)
= D P ()] e (1))

= [datale g
= / dgF(q,—ip;,0) (42)
In the last step we made use of the evolution operator

F(¢,t;q,t) = (¢, ¥|g,t) = (¢'| e ¥~V |g) (43)

that describes the probability amplitude that a particle initially at position ¢
at a time ¢ can be found at ¢’ at a time ¢'. In our case it makes sense to intro-
duce an imaginary time 7 = it and write F(¢',t';q,t) = F(q', —it’;q, —iT).
We will show how one can find the path integral representation for the evo-
lution operator F'(q¢', —it';q,—iT) and thus also see how to write the path
integral for the partition function.

In a first step we divide the interval [, 7'] into n+ 1 subintervals of equal
length
T =T
°= n+1

and m=7+Il¢ (44)
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from 70 = 7,71, To, ..., Tn, Tne1 = 7 with € — 0. The exponential in (43) can
be split up in a product of exponentials

(r'-T)H _ He (y1—m)H _ Heng (45)

We can now insert complete sets of eigenstates [ dg; |¢) (| of the position
operator () at times 7y, 7o, ..., T, and get

n
F(q,—ir';q,—iT) = (q’|He‘5H l9)

= /qulH (q1] e q) (46)

In order to calculate the matrix element in equation (46), we split up the
Hamiltonian H = P?/(2m) + V(Q) in the exponential by using Trotter’s (or
the Lie product) theorem [29, 30]

lim (eA/”eB/”)n = AT (47)

n—oo

and write

(sl la) = {aualexp (25 ) exp (-eV(@) I

2

= exp (=eV(@)) (| exp (—QP—) W (@)

Here we have evaluated the potential V(@) operating on a position eigenstate
|g;) which simply gives the value of the potential at the position ¢. To
calculate the last matrix element we now insert a complete set of eigenstates
J dpi|p) (pu| of the momentum operator P so that we get

(G| P?la) = / dp (g | P2 1p) (oela)

dpl i _
— /%p%e (@r+1—a)m (49)

Now we can write F'(¢’, —i7’; ¢, —i7) in the form of a path integral:

o
F(¢,—ir';q,—ir) = lim / HdQI (pl e (mw(mo) (50)
=1
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Here p, and ¢; are classical variables (numbers). Since V' is a function only
of ¢, it is possible to perform the p-integral: We first complete the square in
the exponent in equation (50):

2 2
: _ _. b _ € ( m _ ) _m —q)? (51
i (g1 — @) €om ol Vs Z(Clz+1 a) o (@+1 —aq)” (51)

The integral over p; over the first part gives a translated Gaussian integral

that is equivalent to 5= [dpexp (—55p7) = s=+/7 (2m/e) = /m/ (2me).

Equation (50) now becomes

A R _
F(d,—ir";q, lli%\/m/n[\/m Ql]

(g1 — ql -
X exp [—5 Z +2152 —€ Z V (q)

=0

(52)

Here we also put the product into the exponential to form sums. These
Riemann sums can be converted to integrals in the limit ¢ — 0:

‘EZ Ql—|—1 - QI - /T, m dQ(’f) ? dr"
2¢e? s 2 a7 |-_.u
SV - / V(q(r")dr" (53)
=0 T

If we now introduce the symbol Dgq for integration over the ¢; with the inte-

gration measure
\/ 5= e H [\ | — dql] — Dg (54)

then we can write the path 1ntegral in a compact way:

P(d,=iriq.-ir) = [ Dgew (— / ar (% 2(T>—v<q<f">>))

_ / Dyexp (—Su(r' — 7)) (55)

with the boundary conditions ¢(7) = ¢, ¢(7') = ¢'. Sg(7'—7) is the Euclidean
action

7

Sep(t'—71) = /T L(q,q)dr" (56)
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with the Lagrangian L of the particle

Lg,d) = ymd’ ~ V(a) 67)

Note that the symbol Dg means nothing more than is implied by equations
(52) and (54).

Using this result, we can express the partition function as a path integral.
Inserting equation (55) into the definition of the partition function (42) we
get

2(8) = / dgF (g, —if; q,0)
q(B)=q
= da Dae=525) 58
/ q /q qe (58)

(0)=q

The first integral states that we have periodic boundary conditions for ¢(7).
We can finally present the usual form of the path integral for the partition
function

20 = [pawew (- [ ar (jmire) - viae) )

with the boundary condition ¢(5) = ¢(0).

3.4 Propagators in the real-time formalism

The propagator Geo(x — 2') = (T. (p(x)e(2'))) is an interesting quantity,
because as a two-point correlation function it gives basic information about
a particle or field theory. We will use the path integral formulation of the
partition function Z(8) adapted for a Klein-Gordon theory as a basis and
we would like to construct a generating functional Zz[j ] that generates the
two-point correlation function by means of functional derivatives with re-
spect to the added sources j.(z). We will see how this approach naturally
links the Green function of the Klein-Gordon operator to the two-point cor-
relation function. Due to our closed-time-path contour C' with two branches
infinitesimally above and below the real axis we will see that the propagator
can be naturally written as a 2 X 2 matrix and we will see how to write the
Green functions in this matrix.
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Let us start with the partition function in equation (59). Adding an
external source to a real Klein-Gordon theory, we get the following generating
functional:

Zsljdl = / Dipe' fet] 2(E41e0) (60)
with the Lagrangian density
1 m?
L =50,p0" — —¢’ (61)

For simplicity we use a Lagrangian density for a flat background metric to
derive the structure of the propagator in this section. We will see in the next
chapter how this formalism can be extended to allow a curved space-time.

As we saw in the derivation above in equation (58), the field ¢ has to
satisfy periodic boundary conditions. The integration path along the time-
contour C' is the closed-time-path described in equation (41). We will call
the first part of this contour going from —oo to +oo infinitesimally above
the real axis C';, the second part of this contour returning to —oo below the
real axis C'_ and the final part parallel to the imaginary axis Cj.

Taking functional derivatives of the generating functional (60) automat-
ically gives the two-point correlation function. The functional derivative is
the natural generalization to continuous functions of the rule for derivatives
of discrete vectors 0z;/0x; = d;;. For a path along the contour C it is defined
as:

)
7'015'“’ = 6 (t—t)® (@ -1

/ d / B Dot F) = ot D) (62)
5.7c

Every functional derivative with respect to a function j.(¢, ¥) brings down a
factor ip(t, ¥) from the exponential in equation (60) and we get

(LGt DN = (0 5o (63

=0

Since we integrate over the contour C in the exponential in (60) and use
sources j. defined on this contour, we naturally get a contour-ordered prop-
agator. This propagator can be expressed as

(T ol 20 = 0t =) (6 (6,0 00 =0 (8,56 2)
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where the theta function on the contour C is defined as

O(t—t) t,t'onC,

O(t' —t) t,t'onC_
0 tonCy, t'onC_
1 t'onCy, tonC_

ec(t - tl) = (65)

Here we ignore the case of a time ¢ sitting on the third part of the contour,
(3, for reasons we will show at the end of this section. We will see that this
third part C3 only contributes to an unimportant normalization factor and
can be ignored. Technically, we can think of the contour C' as consisting only
of the branches C; and C'_. As this path describes a closed contour in the
complex plane, the formalism is commonly known as the closed-time-path
formalism.

The definition of the theta function (65) immediately leads to the defini-
tion of the delta function on this contour:

o o(t—1t) t,t'onCy
S.(t —1') = % =< —§(t—t) t,t'onC_ (66)
0 otherwise

Writing the integral over the closed-time-path contour as

/cdt:/_:dt+—/_idt_ (67)

we see that the delta function on the contour (66) satisfies

[avse-orre) = £ (68)

We can evaluate the generating functional in equation (60) in a free field
theory in a way that leads to Green functions. Integrating the exponent of
(60) by parts we obtain

/cdt/d% (Lo + Jeip) = /cdt/d3x (%gp(—y —m® +ie) g0+jc90) (69)

The additional term i¢ is a convergence factor for the functional integral. It
justifies the use of Gaussian integration formulae when the exponent appears
to be purely imaginary. We can complete the square by introducing a shifted
field

o' (2) = p(x) —i/dt’/da}”Gc(t—t’,f—:z”)jc(t’,f’) (70)
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where G, is a Green function of the Klein-Gordon operator, satisfying the
equation

(0,0 + m?) Go(t — ¢, & — &) = —6.(t — t')6*(Z — &) (71)

Substituting ¢ by the shifted field ¢’ + [ G.j. from eq. (70) in eq. (69) and
applying the fact that G, is a Green function, we get

/ dt / d*z (Lo + jep)
= /dt/d?’w%@’ (=0* —m*+ig) ¢’

1
- / dtdt’ / Prd®a' ot 7) (~)Gelt — 1,7~ #)jeld, #) (72)

In the same manner we now change the variables in the generating functional
of equation (60) from ¢ to ¢'. As this is just a shift, the Jacobian of the
transformation is 1. The result of the change of variables is

Z3lid = [ De'exo [z / a | df‘:vﬁo(so')]

1
X exp [— / dtd / @’ Lji(t, ) [-iCe(t — 1,7~ 7] jc(t’,f')]
(73)

We see that the second exponential is independent of the field ¢'. Therefore
we can calculate the first path integral, which is just Zg[0]. The generating
functional of the free Klein-Gordon theory is therefore simply

Zolie] = Z5[0] exp [-— / dtdr’ / Bad®s ju(t, )Gt — .7 — F)ju(t' f')]
(74)
Here it makes sense to introduce a shorthand notation combining the

three spatial coordinates with the time coordinate along a contour C'. We
define

X

/cd4x = /dt/d3

e —2) = s(t—1t)*xF -1 (75)

c
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Equation (74) can now be written as
1
Zglj) = Zg|0] exp [—5 /d4xd4x'jc(x)Gc(x — x')jc(x')} (76)

Using this form of the generating functional for calculating the two-point
function in equation (63), we get

(Te (p(z1)p(22)))
- _(5jc((5x1) 5jc((5$2) o [_% /cd4xd4x'jc($)Gc($ R x’)jC(xl)} Je=0
_ _% [_% / d*'2'G . (zy — 2")je(2)
- [ttt o 25|
— %Gc($2 —x) + %Gc(fm )
= Gc(z1 — 72) (77)

From the first derivative we get two identical terms. Taking the second
derivative gives six terms, but only those terms survive that get rid of the
Je(x) term as a factor and contain such source terms only in the exponent
when we set j. = 0. Obviously, the two-point correlation function is given
directly by the Green function.
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3.5 Calculating the real-time propagator

We just saw that the propagator, the Green function, and the two-point
correlation function are in direct relationship to each other. Now we want to
rewrite this quantity using mode functions so that it becomes more accessible
computationally.

We start by taking the Fourier transform of the spatial coordinates of the
Green function in equation (71). Inserting the spatial Fourier transforms of
the Green function and the delta function, given by

Glt—t.72—7) = &k iE(i‘:%’)G —’E
(t=t,2—-3") = (2@36 (t—1,k)

N\ S3 (2 A — o ik(ZT—T
Oc(t —1")0°(% — ') de(t t)/(2ﬁ)3e (78)
into equation (71), we get

(8_2 +w? ) Go(t —t', k) = —68.(t — 1) (79)

ar?
wi = \/ k2 + m? (80)

To distinguish functions and their Fourier transforms, we use the convention
of calling functions in coordinate space by the arguments z and z’, and their
Fourier transforms in momentum space by the arguments k£ and &’.

Taking the same Fourier transform of equation (77) we get

where we use

Gc(t - t,’ k) = < ch(t k)gD(t,, k)>
Go(t—t,k) (p(t k)p(t', k)
Go(t—t k) = (ot k)e(t, k) (81)

Here G7 and G5 have been defined in such a way that the propagator can
according to equation (64) be expressed as

G(t—1t,k)=0.t—-1)G;(t =1t k)+0.(' —t)Gs(t =1, k) (82)
We also see the basic property that directly follows from the definition above:

Go(t—t,k)=Gs(t' —t,k) (83)
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Since the real fields ¢(t, k) propagate according to the Klein-Gordon equation

(5 +t) oty =0 (54)

we see that the Green functions G2< also vanish when we apply the Klein-
Gordon operator to them:

2
<% + w,%) Go<(t—1t,k)=0 (85)
Inserting (82) into (79) using the property of the derivative of the delta-
function §'(t — ') = =¢'(t' — t) we get:
0.t — 1) (87 +w’(t)) G +0.(t' —t) (8] + w’(t)) Gs+ (86)
+26.(t — ') (0,G7 — OGS)+ 0.t —t) (G —GS) = 6.(t—1t)

Here we omitted the arguments (¢ — ¢', k) which are the same for all Green
functions in eq. (86). The first two terms in this equation that contain the
Klein-Gordon operator applied to the Green functions G.°< vanish as we
already saw in equation (85). The other terms only give contributions for
t = t' and lead to the conditions

(0,GZ(t =1, k) —0,GZ(t — 1K),y

O N =

of which the latter turns out to be just a special case of eq. (83).

The solution of equation (85) for the functions G2°< can be expressed as
a linear combination of mode functions ug(t). These mode functions appear
in the Fourier decomposition of the quantum field ¢ at a time ¢

o(t,7) = / % (akuk(t)e“;f + a,‘;u}';(t)e*“;f) (89)

with the ladder operators a; and a,t. They obey the canonical commutation
relations

[ak,a,t,] — 2n)R (k- F)
et D600 = -itE-a) (00)

From equations (84) and (89) we see that the mode functions uy are homo-
geneous solutions to the Klein-Gordon operator

(3—; + w,z) up(t) =0 (91)
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In flat space-time the mode functions are simply given by

1 .
ug(t) = ———e W 92
Here we do not use this expression but we retain the general form wu(t) so
that we can adapt our results more easily to the case of a curved space-time
later.
Inserting (89) into equation (81) we get

G250~ t.7 ) = ( [ Gsse™ ) i) F u)i(0) ) (99)

where we still need to calculate the trace of the thermal average. But instead
of calculating the trace directly, we will use a similar ansatz and determine
the coefficients using the KMS-condition. A general ansatz for the Green
function can be written as

G2t —t,k) = A> up(t)u;(t') + By “ug (¢ )ui(t) (94)

where Ay = B and A = By are constant coefficients which we now want
to determine. Inserting this ansatz (94) into equation (87) we get

(Bi — AQ)W [ug, ui] = (95)

N | —

with the Wronskian Wu,u*] = wu(t)d*(t) — @(t)u*(t). The Wronskian is
constant over time and for all modes w as can be easily seen by calculating
its derivative O,W [u, u*] = ui* + vii* — iu* — ui* = —w?(uu* — uu*) = 0
using equation (91). The value of the Wronskian can be determined by using
the canonical commutation relations (90)

| elt.).6(0,)

3k /. « [\ ARG . —ik(Z—'
= [ e (0™ ) — iy 7))

= — [ GVl i
= —id* (% — 1) (96)

This equation is only valid if the Wronskian satisfies the normalization con-
dition
Wiu,u*] =1 (97)
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Immediately equation (95) gives
;
Ap =B =3 (98)
According to our derivation of the real-time formalism, wy(t < 0) = wy is
constant for large negative times. Therefore the mode functions at small
times are plane wave solutions to the differential equation (91). The most
general solution of this kind satisfying the Wronskian condition (97) is given
by
sinh¢ . coshé .
up(t < 0) = == e tilwott0) 4 T2 5 p=ilwottb2) 99
where the parameter ¢ and the phases 6; and 6, are three arbitrary real
constants. Setting & = 0, the product uu* is independent of the phases 6,

and 6,: .
up(D)up (') = s—e ") (100)

and the Green function in equation (94) can be written as

1 ) p L
G><(t —t' k) = — (A;Ke—zwo(t—t) i Bk>,<€—zw0(t —t)) (101)
Wo

From the KMS condition (20) we directly obtain the periodicity condition
G, (t—1t' k) =Gs((t+1i8) — t', k) (102)

Inserting the Green function (101) into the periodicity condition (102) and
setting t' =t < 0, we get

A7 + By = BpePvo + A7 e Pwo (103)
or Ay = By ePo. Together with equation (98) we finally get
=t
2(e~Bwo — 1)
v
2(efwo — 1)

A =
B> = (104)

These parameters from the ansatz in equation (94) determine the full prop-
agator from equation (82) to be

Gt =1, k) = %[ec(t—t’) (—i’“(ﬁifz_(tll) + uz,gi) ﬁ;(lt))

ot (B0 _mE0)) g
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One can further simplify this expression by using 6.(¢t —t') =1 — 0.(t' — t)
and by introducing the bosonic number density

1

n(wy) = e

(106)

and obtain an equation for the propagator where wy is entirely contained in
the bosonic number density:

Gut—t.k) = %[HC(t—t’)uk(t)u,’;(t')+90(t'—t)uk(t')u2(t) o
10
+n(wo) (ur(t)up(t') + ur(t)ug(t))]

Note the occurrence of two different w in this equation when we will ex-
press the mode functions ug(t) by their WKB-approximation (164): In a
curved space-time w = w;(t) from the mode functions will be time-dependent
and will change for a specific wave vector k with the mass m(t), whereas
wo = wg(t < 0) from the number density will be a k-dependent but time-
independent constant that will represent the initial conditions. In a flat
space-time however, both, w and wy, are the same.

Let us finally note how the Green function vanishes if one of the times
t or t' lies on Cj3 of the real-time path and the other on C, or C_. Using
equation (100) for large negative times ¢ and ¢’ and with ¢ = T — io lying
on (3 we effectively get

lim G.(t—T +io,w)

T——00
i ) e—iwo(t—T+ia) eiwo(th—l—z'a)
— " lim ( G~ e_/m_1>—>0 (108)

by virtue of the Riemann-Lebesgue lemma [31]. We see that the propagator
cannot connect a point on C'3 with a point on C'y or C_. This means that the
generating functional in equation (76) cannot have mixed terms combining
Js with J; or J_. The contribution to the path integral from the branch
C5 can be factorized and sources on this branch can safely be set to zero.
The remaining contour which consists of the parts C'; and C_ is really the
relevant part and represents a closed path in the complex t-plane. In the next
section we will see how these two branches of the closed contour naturally
lead to a doubling of the degrees of freedom and to a propagator matrix.

4(4)0 T——o0
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3.6 Matrix structure for propagators

We just saw that a description of the propagator can be reduced to the two
branches of the closed-time-path, namely C'; and C'_. The resulting Green
function (107) now has four possible propagator structures that depend on
how the fields of the propagator are distributed to the two branches. Using
the definition of the contour-theta-function (65) we can denote them as

Gii(t—t k) = % [0t — ¢ ug (£)ul (¢') + Ot — t)ug(t)up(t)

- Anlwo) (uk (B)ui () + un(t)ui (1))
Gy (t—tk) = %[n(wo)uk(t)u}i(t')+(1+n(wo))uk(t')u;$(t)]
G_(t -1, k) % [(1 + n(wo)) we(H)up(t') + nlwo)un(t)uj (t)]
G _(t—tk) = %[O(t’ — () () + 0t — )ug ()u), (t)

+n(wo) (ur (B)uk(t') + un () ui (t))] (109)

The subscripts for the Green functions + and — denote the branches of
the contour on which the respective time coordinates reside. In terms of
ensemble averages of the scalar field ¢ according to equations (81) and (82),
the propagators take the form

Gt =t k) = (To@t, k)t k) ¢t eCy
G (t—t k) = (ot k)p(t ) teCot el
Gi(t—t.k) = (p(t Wl h) el teC,
G (t—t.k) = (Tt K)ot k) L eC.

(110)

where 7™ denotes anti-time ordering.
Writing the propagator this way suggests that we can similarly define a
doublet of field variables and sources as

= ()
W= (1) ()

where ¢ = +,—; ¢1,j+ € Cy and ¢_,j_ € C_. If we furthermore assume
that the metric in this two-dimensional space is (1, —1), then we can write
the generating functional for the free theory in equation (76) as

Zolisrj ] = Zs[0] exp [—% / dzde' (@) Gl — )P ()| (112)
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This would represent the generating functional corresponding to an action

S = S(§0+:j+)_s(ﬁp—:j—)
- / 44z (L(p4r 1) — Llp—, 1)) (113)

and the components of the propagator could be simply written as

1 0*Zglj]
Zg[0] 85 (x)d5%(x")

Gap(z,2') = (—1)*

(114)

J=0

In this case we integrate time over the usual interval —oco < ¢ < oo instead
of using the contour C'. The need for a second branch C_ of the closed-time-
path contour became obsolete by doubling the degrees of freedom. We can
write the Green function as a 2 x 2 matrix

G = ( Gy Gi ) (115)

One can think of this as describing the two branches of the closed-time-path
contour, or, alternatively, as a matrix in the space of the doubled degrees of
freedom. Not all of these components are independent of each other. In fact,
from equations (109) one can see that they obey the constraint relation

G+_|_ + G__ = G+_ + G__|_ (116)



4 Scalar field theory in curved space-time

4.1 Scalar field theory with a \p?* self interaction

Scalar field theory in a background geometry with a Ap?* self interaction
is a simple model of a renormalizable quantum field theory in curved space-
time. It can be used for describing phase transitions characterized by a scalar
order parameter like the one for the Higgs particle of the standard model of
electroweak interactions. Its Lagrangian density takes the form [16]

1. 1

Llel = 59"0updp — §m2tp2 — V¢ (117)
1 A

Vig] = -5 (0 +m?) o> + ago‘l (118)

where the difference to the Lagrangian in equation (61) lies in the background
metric, represented by the metric tensor g**. The thermal mass term —m?y?
is included in these equations so that we can describe the classical propagator
of the theory. The action of this Lagrangian is given by

Sle] = / Clolv—gd's (119)

where g = det g is defined as the determinant of the metric. The square root
of (—g) is included in order to make the action relativistically invariant. We
use the variational principle §S§/d¢ = 0 to obtain the equation of motion for
the quantum field . Integration by parts of the first term in (117) yields an
expression that contains a derivative of the metric:

A
—0, (V=99"0,¢) =vV=gm’e + V=g (¥’ +m*)p+v-g5¢" =0

[ J/

free part perturbation

(120)
The free part of this equation defines the propagator G.(z, z') = (T.p(z)p(z")).
The other two terms are treated as a perturbation and will be taken into
consideration later in the mass correction by a one-loop resummation. Let
us just mention here that one-loop corrections will give an additional term
—/—gdm?yp in the perturbation. The parameter m? will be chosen in the
resummation such that the three mass terms cancel in the perturbation, that
is m?+pu? —dm? = 0, and the remaining part of the perturbation \/—gAp3/3!
will be proportional to A.

34
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The defining equation for the free propagator is:

(0 (V=99"0,) + V=gm?) G(2,2) = =6 (z — =) (121)

Note how this equation trivially reduces to equation (71) for the metric
g = (+,—,—,—). The delta function represents a short-hand version of
the contour delta of the real time formalism defined in equation (75).

In the following we will assume a spatially flat universe. The metric g(x)
should only depend on time and not on space:

g(z) = g(z°) (122)

In this metric it is useful to apply a Fourier transformation only to the spatial
part of the four-vector in order to calculate the propagator. Inserting the
Fourier transformation expressions defined in the equations (78) into equation
(121) and taking derivatives of the spatial part, assuming that ¢ = g™ = (
for m =1, 2, 3, we finally get to the defining equation for G.(t — ¢, l;)

( (‘/_900 )*\/_gm"(’k ) (ik )+\/—_ng> Ge(t —t', F)
=0t =) (123)

The homogeneous solutions to this equation describe the mode functions
uz(t) and can be used to calculate the propagator.

(8950 (\/_900 > — =99k ky, + \/—_gm2> up(t) =0 (124)

For a time-independent metric these equations would reduce to the equations
(79) and (91) that we already used in the last chapter.

4.2 Metric and Scale Factor
4.2.1 Comoving metric

The cooling of the quantum system in our model will be driven by an ex-
pansion of the whole system. There are different ways for describing an
expansion. For example, one could choose a static background metric and
let the particles fly apart from each other. Although this approach seems
conceptually easy, the processes during the phase transitions of the early
universe is far better described by an expanding metric. That means that
the background itself expands according to a scale factor a(t) which basically
describes the large scale properties of the expanding system.
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A description like this first came up in the 1920’s with the solution to
a homogeneous and isotropic expanding universe by Friedmann, Robertson
and Walker. We already presented the Friedmann-Robertson-Walker metric
in equation (1). This is an example of a comoving metric, because particles at
rest with dZ = 0 have ds* = dt* meaning that the time coordinate ¢ in eq. (1)
is the proper time measured by an observer at rest in the comoving frame.
Observers at rest in the comoving frame remain at rest and its comoving
coordinates remain unchanged.

Inflation makes any universe flat, regardless of its initial properties. There-
fore we can safely assume the metric of a flat universe:

ds® = g dztdz” = dt* — a*(t)dz? (125)

One can easily read off the components of the metric tensor that only has
entries in the diagonal g, (t) = diag(1, —a®(t), —a®(t), —a?(t)) using dz® =
dt. In the differential equation for the mode functions (124) we also need the
square root of the determinant of the metric \/—g = a® and the metric with
upper indices g"* = diag(l, —a™?, —a?, —a~?) which satisfies g,,9"" = 6,7,
so that we finally obtain

(5 (¢05) +a0F + 0m?) -0 ()

Denoting the shorthand versions of k2, a(t), and ug(t) as k%, a, and u respec-
tively and the derivation with respect to time by a dot, we find 3a2au +
a®ii + ak’u + a®*m?u = 0. We can get rid of the u-term in this equation by
the transformation u(t) = a"(t)a(t) where n = —3/2. Dividing the resulting
equation by a=3/2(t) we get:

. (k2 3 /(a\® 3
7 - ~2Z) 22 )a= 12
u+(a2—|—m 4(a> 2a>u 0 (127)

Defining the expression in the bracket to be w]%(t), we get a simple wave

equation with k- and time-dependent dispersion i + w%(t)ﬂ = 0. Unless
w%(t) changes too quickly, one can use the WKB-approximation to describe
the behavior of the mode functions @z (t) = a2 (t)ug(t).
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4.2.2 Conformal time metric

For certain kinds of calculations it turns out that another form of the metric
is more easy to handle. That is, also the time dimension will be scaled
according to the scale factor. Introducing such a conformal time, we obtain a
line element of the space-time that is conformal to Minkowski space-time. As
a result one can treat space-time like an ordinary Minkowski space-time and
equations get more elegant in this metric. Of course there is some additional
complication when one wants to convert the results back to a metric with a
non-conformal time. The line element of the conformal time metric is given

by
ds? = g daxtds” = a?(n) (d772 — de) with dt = a(n)dz® = a(n)dn (128)

The scale factor a(n) is now a function of  and not of . One can use the rela-
tionship between the two time-coordinates n(t) = fti a~t(t")dt" and use its in-
verse function ¢(n) to finally obtain a(n) = a(t(n)). Also the metric is a func-
tion of the conformal time so that g, (n) = diag(b*(n), —b*(n), —b*(n), —b*(n));
V=g = b* and g" = diag(b %, —b 2, —b "%, —b 2). In this metric equation
(124) takes the form:

(5 (005 ) + 00 + ) g =0 (129

Defining the dot now as a derivative with respect to 7, this equation becomes
2aau+a?ii+a?k?u+a*m?u = 0. Again, we can get rid of the term containing
the first derivative @ by the transformation u(n) = a™(n)i(n), now with
n = —1. Dividing this equation by a(n) we get:

i+ (k2 +m2a? — 9) =0 (130)

4.3 Calculating the propagator

In the following we want to calculate the propagator G.(t —t/, l;) and express
it in terms of the mode functions ug(¢). The steps are quite similar to the
derivation of the propagator in a static background, therefore we will con-
centrate on the differences in the case of an expanding system. For now, we
assume the comoving metric of equation (125), but the calculation is com-
pletely analogous in the case of the conformal time metric (128). Using the
comoving metric (125) in (123), we get:

2
<3a2a% + a3% + ak? + a3m2> Go(t —t' k) = =d.(t — 1) (131)
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Similarly as in the calculation of the mode functions, one can get rid of the
first-derivative term by the transformation

Go(t =t k) = a"(t)a"(t")Go(t — t', k) (132)

where n = —3/2. The a™(t')-term in this transformation rule ensures that
éc(t —t, l;) is symmetric in ¢ and ¢'. Bringing overall a-factors to the r.h.s.
where a=%/2(t) and a®/?(#') cancel because of the §(¢ — t')-function, we finally
get:

0 2 a 1 !
(@ + wE(t)) Ge(t—1t k) = —0.(t—1")

k2 3 (a\® 3i

ith w2(t) = m*+——->(-) —== (133

with - w(?) m+a2 4(@) 2a (133)

This is almost the same equation as (79). The difference lies in the fact

that wz(t) is time-dependent now and that the propagator G, is replaced by

the rescaled propagator G.. Just as in equation (81) we define the rescaled
propagator as

C?c(t - tl’ ];) = <Tc(/~7(t’ E)@(t,’ E)> (134)

where the rescaled fields @(t,k) = a®2(t)(t, k) satisfy the homogeneous
Klein-Gordon equation

(g—; + wg(t)> @t k) =0 (135)

Rescaling is also necessary for the Fourier decomposition of the quantum field
¢ as in equation (89). Here we find that the mode functions u; also have to
be changed by the scale factor a(t) according to

g (t) = a®’® (t)uz(t) (136)

if they should be homogeneous solutions to the Klein-Gordon equation. We
already anticipated this result in the Klein Gordon equation (127) for the
rescaled mode functions ;. Also the canonical commutation relations (90)
should be applied to the rescaled field ¢

9 (1.7, 60 1)| = ~id*(@ ~ 7) (137
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Following the steps from equation (94) to equation (107) in exactly the same
manner, only replacing the quantities G, ¢, and u by their rescaled counter-
parts G, ©, and u, we finally get to the expression of the rescaled propagator.
Literally going through the very same steps, writing an ansatz for G><, find-
ing the same Wronskian Wi, %*] from the canonical commutation relations,
setting up plane wave solutions for the mode functions % at large negative
times and applying the KMS condition to the propagator we finally get

Gt =t k) = % Oc(t — t)ug(t)az(t") + 0c(t — t)ug(t")uz(t)

Golt—tF) = m%[ﬁ(t—t')a(tm*(t’)+0(t’—t)ﬂ(t’)ﬂ*(t)

In the case of a propagator with ¢ = ¢’ this equation simplifies to

G.(t—t, k) = (1+ 2ng) (1) ] (140)

2a3(t)

where n; = W is the thermal bosonic distribution factor.
e _

4.4 One-loop mass correction

The mass correction to the lowest order in the A¢*-theory is given by the
one-loop term. The squared mass can be expressed as m? = —pu?+dm? where

dm? = —i)| |- This graph can be calculated using usual Feynman rules
and gives om?(t) = —i) [ d®kG.(t — t,k)/(27)®. Inserting the result from
equation (140), the equation for dm? is given by

5 (1) = 2@?@) / (321;3(1—%271,;) iz (1) (141)

The self-consistency relation for m? thus reads:

sn o A d*k Y
m*(t) = —p” + 205 1) / (27?)3(1 + 2ng) |az ()] (142)
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4.5 Mass renormalization

The integral for the mass correction in equation (141) turns out to be di-
vergent. At a first glance, it does not make sense that a mass correction
should be larger than the unperturbed mass itself, let alone infinitely large.
Nevertheless useful information can be extracted from this equation with an
appropriate renormalization scheme. Such a renormalization is mandatory
to specify the meaning of the masses from the Lagrangian. It defines a new
renormalized mass g or a renormalized coupling constant Ar which now ap-
pears in the equation of the Lagrangian density instead of the original bare
parameters.

o= phr+6,

A = Z(Or)Ar (143)

These renormalized quantities represent the physically measured mass and
the physically measured coupling constant. Infinities are incorporated in
0-terms and thus hidden from physical measurements. Nevertheless renor-
malization must be a consistent and well-defined procedure that ensures that
one can extract physically relevant results from a theory containing unphys-
ical divergences.

There are several techniques to regularize and renormalize a theory. For
example one could introduce a cut-off Aj for the wave vector k that cuts off
the ultraviolet part of the integral, a regime we do not have any physical
knowledge about anyway [12]. In this sense the theory is renormalizable if it
gives physical results that are independent of the choice of A;. The arbitrarily
introduced cut-off constant cancels out at the end of the calculation.

Another renormalization procedure is dimensional regularization . Here
one tries to find a generalization of the divergent integral from 3 spatial
dimensions to d-dimensions. In certain cases this leads to a finite expression
that can be calculated for a real d where an analytic continuation for d = 3
exists.

In the following, a way of renormalizing the mass correction integral (141)
is presented that absorbs all divergences in the mass and coupling constant
parameters. In the end we will get the same equations but with renormalized
parameters that are finite and contain the relevant information that can be
observed physically. The bare parameters are infinite and physically not
accessible.

In order to handle the divergences analytically, we approximate the mode
functions 4 (t) by a WKB-approximation. We will discuss the WKB approx-
imation in detail in the next chapter, but let us anticipate some of the results.
In the first region before the phase transition the WKB-approximation is
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given by equation (164). We already know from the discussion before equa-
tion (99) that the canonical commutation relations determine the sign in the
exponent to be negative so that the mode functions in this approximation

are given by
~ 1 —i [} dt'we(t)
Up(t) = —==——==€ T "F (144)
2wi (1)

and the absolute square of this expression simply becomes

|ﬂ’l_c'(t)‘2 = 2&),—5(15) (145)

Approximating wg(¢) from equation (133) by \/m?(t) + k?/a?(t) we can write
the squared mass including the one-loop correction from equation (142) as

0 ) A / &k 1 2 !
m =—u + 3 3 ; k2
2a3(t) J (2m) S m(0)+ 1) 2 mE) + 2

(146)
The integral turns out to have quadratic and logarithmic divergences which
we will see in a moment.

Let us now introduce a change of variables for the wave vector k which
does not have to do anything with the renormalization, but just makes the
a(t)-dependence of the integral more transparent. Since the integral is spher-
ically symmetric in &, we can replace d3k/(2r)3 by dnk2dk /(273 = k2dk /27>
and k by k = |l;| Introducing a physical wave vector

k(t) = — (147)

we note that the integration boundaries 0 and oo do not change so that we
safely can omit the ¢-dependence from k() and write:

) o A [ k2dk 2 1
m (t) = —Uu + — o3 1+ > —
2 /o 27 B4 /m2(0)+k2 228 . 2/m2(t) + k?
e —_

(148)

Obviously the first term in the brackets contributes to the quadratically
divergent part of the integral. The second term in the brackets, the distribu-
tion factor, ensures that this part of the integral falls off exponentially fast for
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k — oo so that there is no ultraviolet problem here. It is not uncommon that
the divergence in the expression for the mass correction is entirely contained
in the zero temperature part and that the temperature dependent part is free
from ultraviolet divergences [32]. That means that zero temperature counter
terms are sufficient to renormalize the theory.

We want m?(t) to be our finite renormalized mass for which the equation
above is valid. To compensate the divergent integral, its constant divergent
part is included in p? and the resulting finite mass is defined to be p% as in
equation (143). Given a finite m?(0), we can try to get rid of the quadratic
divergence by subtracting it from the time-dependent m?(¢). In order to give
sense to the subtraction of two infinite quantities, we now introduce a cut-off
Az as the upper limit of the integrals. In the end when we have calculated the
renormalized mass, we should be able to take the limit A — oo and obtain
a finite result that is independent of this cut-off. The difference between the
masses thus reads

Az 1.2 91 1 1
m?(t) — m?(0) = é/ i ko — — =
2Jo 21 \2y/m2(t) + k2 24/m2(0) + k2

= () (g @)

Note that the second integral is exponentially damped because of the n(k)-
term and is already finite without the need of regularization by a cut-off.

By forming the difference we got rid of the quadratic divergence in the
first integral of equation (149), but it left over a logarithmic divergence!. To
handle this divergence, we also need to renormalize the coupling constant A.
The theory behind the following renormalization scheme is a sum of bubbles
in the scattering amplitude at large N [16, 33|. It turns out that the coupling
constant can be renormalized by

A AR
AR= T PYR A= T PPN (150)
where Ch
1 1 1
- -%(0) = - 151
n=320=3 / 13(0) (2r)? (151)

"Using [ kdk Lo = Lky/m2(8) + K2 — Sm?(t) log (k +/m2) 1 k2) ‘k:o the first

quadratic divergent term gives a finite contribution % (m?(t) —m?(0)) in the subtraction
m?2(t) —m?2(0), but the second term gives an undetermined contribution that diverges like
m?2(t)/m?2(0) x limg_, log(2k).
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is the divergent part of A that comes from the sum of bubbles at large N.
Multiplying the whole equation (149) by a factor (1 — Agd,) and adding the
term (m?(t) — m?(0)) Agdy on both sides of the equation we get:

m?(t) —m*(0) = _/Ak k;:k <2w: t) 2w;(0))

FAr (m2(t) = m2(0)) 65
AR © k24 1 1
5 ) o Qn(k)<2w,;(t) _Qw,-c(O)) (152)

Now we can integrate the formerly divergent part?:

. g /Ak k*dk 1 1 m?(t) — m?(0)
lim — — +
Ag—oo 2 [, 272\ 2wy, (t) QWIE(O) 4(,01%(0)

_Ar 1l <m2(t) (log ;’f(t) - 1) + m2(0)> (153)

2 2728
so that we finally get

) =) = 25 (o) (10g T~ 1)+ w(0))

S5m0 (o - ) 09

The logarithmic term on the r.h.s. of this equation is of the order of
m?(t), yet it is multiplied by \/3272%, a small number® that makes the whole
term negligible. Introducing pg as the initial time part of this equation we
can write:

m?(t) = —,ufzﬁ— o2 . 2w(h) k*dk (155)
A * nk) - -
2 2 R 2
1
15 m((])-l—2 2/0 2 ,;(O)k dk (156)

Inserting the definitions of n(k) and wg(t) we get the formula for the renor-
malized mass

Ar [ 1 U
2 2
m*(t) = —ph + —= = k*dk  (157)
o 2w+ pfwore i
e a0 —1
2Here we use fOAdekw:(t) = %kwk(ii\)—%m2(t)log (k+wk(t))|::0 and
fo kzdkm (t) = QWS(%’; + tm?(t) log (k+wk(0))| _ so that two of the logarithmic

divergent terms cancel.

3Tn our numeric simulations we used A\g <
/\R ~ 10~ 12

100, an inflationary model would suggest
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It is this equation that we want to analyze and try to understand analytically
as much as possible.

In this section we showed how to renormalize the one-loop mass correction
for a WKB-approximation before the phase transition ¢ < typ. The same
result also holds for times ¢ > ¢pp after the phase transition, because the
ultraviolet divergence stems from the zero temperature part which is the
same in both cases. For a general mode function the squared mass can
therefore be written as

AR o 1
200\ — _,2 4 ‘R = 2_ L1 g2
m*(t) = —pug + 92 3(t)/0 |t ()] o (0) 1k dk (158)

where we obtained the factor a(¢) in the denominator by changing from
physical wave vectors k(t) back to time-independent wave vectors k.

The mass in equation (158) can be calculated if we know the mode func-
tions @ (t). They are determined by the differential equation (127). For each
mode k£ € (0,00) we get such a differential equation, which gives infinitely
many of these equations that we have to solve simultaneously. One way to
tackle this seemingly hopeless situation is by using the WKB approximation
of the mode functions. The WKB approximation is given by a simple ex-
ponential function that can be inserted into equation (158) to give a more
manageable integral.



5 WKB approximation

5.1 WKB solution and its restrictions

The WKB approximation [34] is a method for approximating the solutions
to a second-order differential equation with an arbitrary potential. The basic
idea behind the method is to separate the sinusoidal solution into its ampli-
tude, its frequency and its phase. Under certain conditions these quantities
can be approximated independently from the given potential and easily put
together to form the solution.

WKB was first used to approximate the one-dimensional Schrodinger
equation for an arbitrary potential V'(z) [34, 35]

(-2o7"+ V() ) vle) = BV(e) (159)

2m

This is basically the same type of equation as (127), the defining differential
equation for the mode functions that are needed to calculate the propagator.
Here we want to solve with respect to time instead of space and the potential
becomes w%(t) ~ —22 (V(z) — E). In the following we will not worry about
the exact form of wg(t), but try to solve the equation for a general time-
dependent wg(t)*:

(07 + w2(1) ug(t) = 0 (160)

If wg(t) = wp was constant in time, there would be plane wave solutions
of the form ug(t) = e*@*. If wy(t) is only slowly varying there should be
solutions with a similar form (where we yet have to find out what slowly
means). Therefore it is reasonable to try the following ansatz with real R(t)
and S(t):

up(t) = R(t)eS® (161)

Inserting this in equation (160) gives:

d?R(t) N QidR(t) dsS(t)

dt? dt dt

HiR() di}i g (%ﬁt)) (DR = 0 (162)

This equation can be separated into an imaginary part 2RS + RS = 0 and
a real part R — RS? + w?R = 0. Solving the first equation gives a condition

4In this chapter u takes the role of the scaled mode function @ of the previous chapters.

45
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for R and S: Integrating R/R = —%S/S and exponentiating it gives R =
c/ V/$. Inserting this result and its derivatives Rjc=—187%25 and R/c =
3575/282 — 1573/2G into the real part of equation (162) gives a differential
equation for S(t) (the following equation is already divided by R(t)):

ZSQS2 — 55*15 ~S?+Wr=0 (163)

Up to now everything has been exact, but this equation is really difficult
to solve if we want to consider a general w(t)-function. Since we want to
consider slowly varying functions w(t), it is reasonable to assume that also
the parameters R(t) and S(t) vary slowly, meaning that we neglect the second
and third derivatives of S(¢) in equation (163). The resulting equation is
simply solved by S = +w or S(t) = + ft'; dt'w(t"). Therefore we get the
following solution in the WKB approximation:

7 St g /
UE(‘[;) _ Ck e:l:’t ftO dt w,—c-(t ) (164)
wi(t)
When is this approximation valid? A criterion would be to demand that
the terms in (163) containing the second and third derivatives of S(t) are
much smaller than w?:

‘23*25’2 <w? = |wAW<w = |julgw?
%S*l's"‘ <? = |wldl<e? = 8] <w? (165)
Using 4 (1) = -% and &, (L) = 25 +6 (%)2 we may rewrite these two

conditions as

<1 (166)

L ! <1 and d—2 L
dt \wg(?) dt? \ wi(t)

The way the WKB approximation has been derived here, there are no further
restrictions on any higher derivatives of w than its second derivative. That
means that W and higher derivatives of w may have any value as long as the
conditions (166) are met®.

5Strictly speaking, the conditions (166) are sufficient, but not necessary for the WKB
approximation to be valid. From equation (163) it follows that it is sufficient to demand
that ‘25_25’2 - %S_IS‘ < w? or ‘3(%)2 —2%‘ &« 1. This gives somewhat milder
restrictions on w(t). In particular, one can find a solution for w(t) where the Lh.s. of
this inequality vanishes, thereby making the WKB approximation exact: Integrating the
condition & = %fand exponentiating it results in w™3/2% = ¢ that can be integrated
again to give the solution w(t) = (it + ¢z) 2. Using such an w(t), WKB is no longer an
approximation, but the solution (164) solves the differential equation (160) exactly.
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5.2 WKB in comoving metric

Let us apply the results of the previous section to the differential equations
of the mode functions in a comoving metric without or with conformal time.
The solution to these equations in the WKB approximation is easily obtained,
but it is the range of validity that has to be checked carefully and thoroughly.

5.2.1 Comoving metric

In the case of a comoving metric, the equation of interest is (compare to eq.
(127))

k2 3 (al)\”  3ilt)
ie(t) + | = +m2(t) - S [ 52 ) =252 | uz(t) =0 167
fgt) + (aQ(t) ) = (a(t)) 2ar) ) "5 (167)
which is of the form of equation (160). Its solution is given by (164) and its
restrictions are stated in (166).

It is interesting to see if we can convert these restrictions to somewhat
more useful and manageable inequalities. Obviously if we try to apply the

. 2
i ()| < 10wt = Fram®(0)-2 (53) -
%% for the comoving metric, we will definitely not obtain inequalities that
allow a simple interpretation. Let us tackle this problem step by step. As-

suming that a/a and d/a are sufficiently small (which we yet have to check),
we first want to derive the conditions for the simpler problem:

restrictions |% (5)‘ < 1and

. k?
u(t) + &*(t)a(t) =0 with ©(t) =/ 0 +m2(t) (168)
a
The first relation |0, ' (t)] < 1 gives:
a1 mm
7w | < (169

This inequality is satisfied if we demand that the absolute value of each of
its terms is much smaller than 1. We can therefore split up this equation to
obtain:

L (3)2 (170)

a
a m

_ [aw\? m
< (—) and |—
k m

These are restrictions comparing the Hubble constant H = a/a and the

relative change in the mass® m/m to @ for a certain wave vector k. Here we

6The relative change in the squared mass can be easily expressed by this, too:
dm ) 1m2(t) = 212
m
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made use of the dimensionless terms aiw/k and @/m that are both > 1:

_ 2
%E%: (%) +1>1 (171)

The definitions of o and S will help to write the following formulae in a
compact way. They are in relation to each other by o? + 32 = 1 which
also shows that each of these real variables is < 1. We see that essentially
the Hubble constant and the relative change in the mass should be small
compared to @, a characteristic time-scale in the WKB approximation. The
second WKB restriction |02072(t)| < 1 gives:

H 2 H 2 H . . 2
8 (—) ol =6 (—) o —162a2 52 4 8 (ﬂ> e
w w w mw mw

. 2
—2(m> 52+2—a —2—52

mw

< 1(172)

In this sum we demand that each of the seven terms is < 1. This is au-
tomatically satisfied for the first term, using the condition of eq. (170)
Ho?w~! < 1. Unfortunately, using this condition we can not conclude that
the second term also satisfies (Ha/@)? < 1. Squaring eq. (170), we only
get (Ha/w)? < a2 > 1. Therefore we have to demand a stricter condition
for the Hubble constant: |H| < wa ' < wa 2. This stricter condition is
sufficient that the first two terms in eq. (172) are < 1. The last but one
term in eq. (172) finally gives a new restriction for d/a.

In a similar manner one can set up restrictions for the derivatives of the
mass. One can see that the following restrictions have to be demanded” so
that each term in eq. (172) is < 1:

2

a w
H| = <<— <53
H<<_ H<<2—ﬁz 1)

These are the loosest possible restrictions on the scale factor a(¢) and on the
mass m(t) so that the WKB approximation for (168) is valid. Again, there
are no restrictions on third or higher order derivatives of a(t) or m(t).

"Strictly speaking it is only necessary to demand |H| < @/(v6a), |rh/m| < @/(v/83)
and |Hm/m| < @%/(16a8), but this is a playful subtlety since the Lh.s. should be much
smaller than the r.h.s. anyway. =)
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Now, let us take a look at the initial eq. (167) again. The condition
that the terms containing derivatives of a(¢) should be small compared to
@ = k*/a® + m? is simply written as |a/a| < © and |d/a| < @?*. Since o > 1
this imposes even tighter restrictions on a(t) than the equations in (173).
Thus we have proven that by restricting the evolution of the scale factor a(t)
and the mass m(t) to k

. - -2
a @ a w
H|l=|- — - —
| | ‘a < 4 < 2
(174)
@ < E UL < w?
m 453 m 232

the WKB restrictions are met automatically.

This result shows that the WKB approximation is essentially valid if the
second and third logarithmic derivatives of the variables involved are much
smaller than @ and ©? respectively. That is |9;loga| < @, |0loga| <
@?, |0 logm| < @ and |0 logm| < @?. The WKB approximation in this
region breaks down if w = /k2/a? + m? gets too small when both m and
k approach 0. One consequence is that even near the turning point, where
m? =~ 0, there are still mode-functions with high momentum k that can still
be described very well by the WKB approximation. WKB first breaks down
for low momentum mode functions. We will see that these mode functions
give up their sinusoidal character and start to grow exponentially. Their
behavior can still be described by making use of the connection formulae
and exponentially growing WKB solutions.

5.2.2 Conformal time metric

The equations for the comoving metric with conformal time are very similar
to the equations for the comoving metric without conformal time. The cal-
culations are basically the same as in the last section. The mode-functions
are defined by the differential equation given in (130):

ii(n) + (k T m?(n)a*(n) — %) u(n) = 0 (175)

Again we define a simpler differential equation by

i(t) +@*(na(n) =0 with  ©(n) = /k? +m2(n)a®(n) (176)
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and we can find conditions for m(n) and a(n) from the first and second
derivatives of inverse powers of w(n). Introducing « and g as

1 a;( ) k> 1 w(n) ma 2
- = = — 1>1 d —=—="=4/1 — >1
B (am) Th=boan ! k +( k ) -
(177)
we find from the restriction |9,0'(n)| < 1 that
o :
‘——52 - <l (178)
W o,
and from |9207%(n)| < 1 that
H\ H\" 4 2
8l =) B —2(—= ﬂ - 16 —5 —_5
@ @ & Mm@
+8( ) 54—2( ) B-22p 2" g <« 1 (179)
m aw m

These two restrictions for the simplified conformal differential equation are
met if we demand

il @
H dl e 2
[H = <<4ﬁ o S2p
.. _2
m m w
@ M« 2 !
Hes Bl

which are the same equations as in the conformal case. Taking a look at the
full conformal differential equation (175) again, we find that we only get a
tighter restriction on d, not on a. Therefore we get the following restrictions
for the full conformal differential equation:

AR
H - et
|H| = <<4ﬁ a<<2
.. _2
m w

T2 T 2 181

‘ ‘<< ‘m<<252 (181)

Note that § appears in three of the four inequalities on the r.h.s. whereas
for the comoving metric in (174) it only appeared twice.
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5.3 Special scale factors a(t)

The scale factor takes simple analytical forms in various theories. Here we
want to apply them to the WKB conditions. From equations (11) and (12) we
know that the expansion of the universe behaves like a(t) ~ t'/? during the
radiation dominated era, and like t/? in a matter dominated universe. We
will treat these two cases together in the power law a(t) ~ t? with p = %, %
During the inflationary phase of an expanding de Sitter universe the scale
factor grows exponentially like a(t) ~ efI' with a given inflation parameter
or the Hubble parameter H as we saw in equation (14).

For an exponential expansion a(t) ~ ef in a comoving metric, the con-
ditions (174) for which the WKB approximation (164) for the differential

equation (167) is valid, simply become

- -2
@ w
H| < — H| <« —
s <
.. _2
m @
— — 182
< (152)
If all mode functions should be describable by the WKB approximation at
the beginning of the inflationary phase, then these equations constrain the
Hubble parameter H to
m(0
H<« —{fl (183)
In the case of a radiation or matter dominated universe with the power
law a(t) ~ (t + tp)? in a comoving metric, we get the same restrictions for
derivatives of the mass and we can calculate the restrictions on the scale
factor in the following way:

p(p—1)
t+ 1,

‘p

-2

w

— 184
t+ 1 < 2 (184)

<<(IJ
4

If we want to be able to describe all mode functions by a WKB approx-
imation, at least at the beginning, then this equation puts restrictions to
the choice of tg: From |t 4 to| > 4p/w we see that restrictions come from
low momentum modes k in @* = m? + k?/a? at early times ¢. The tightest
restriction® on t, therefore reads:
ty> 2P
m

(0)
Nerrey o=y

8The second restriction gives ¢y > m(0) which is less tight since % > )

(185)

for p > %
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To calculate the effects of the WKB restrictions in the case of a conformal
time metric, we first have to transform the scale-factor dependencies from
a(t) to a(n), n being the time coordinate for conformal coordinates. The
transformation between ¢ and 7 is given by an integration. From its definition
dt = a(n)dn or dn = a~'(t)dt we get a relationship between these two time

coordinates:
0=/ (156)
=, al)

Inverting this relation, we can obtain an expression for ¢(n) and thus for

a(n) = a(t(n)).

For the de Sitter universe with an expansion a(t) = e”! we get:

t , e Hto _ o~H? log (e — nH)
= [ e"dtl =——— = tn=-
= e - ) =
(187)
a(n) = ") = ! = ! (188)
e"ffo —nH 11— H(n— o)
using no = n(t = 0) = (e7% —1) /H. We also see that there is a maxi-
mal N = % + 1o. Inserting the n-dependent scale factor into the WKB
restrictions (181) we get:

H o o W2

T H ()| = el )< 35 43 pH] <5
Hes e

In the conformal time metric we have @? = m2a? + k2, so on the r.h.s. of

these inequalities we can replace w by w & ma for small k. Therefore for low
momentum modes these inequalities reduce to
m(0
H < # (190)
just like in the case for the comoving metric.
Finally, let us analyze the WKB restrictions for a power law a(t) = ¢? in
a conformal time metric:

t t*p+1 _ t—p—|—1 . 1
n(t) = / tPd = 2———— =t = YT = - 1)
to

p—1
(191)
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a(n) =1"(n) = (t,"" —nlp - 1)) "+ (192)
The WKB restrictions on the scale factor (181) become:

@2

w _2
< = ‘p(?p—l)a2 <

46

Using @ > ma again, we find a > (4p/m)” and a® > (2p(2p — 1)/m?)".
Initially a(n = 0) = ¢} so that we get a restriction? on t:

(193)

11
na r

4p
to > m(0) (194)
It is the same restriction that we also got from the calculation in the comoving
metric in eq. (185).

Comparing the results from eq. (183) and (185) to (190) and (194), we see
that the WKB approximation is applicable to the same extent in the case of
a comoving metric without conformal time as it is in the case of a metric with
conformal time. If we want all mode functions to be describable by a WKB
approximation initially, there are certain restrictions to initial parameters of
the scale factor: In a de Sitter universe H has to be < m(0)/4, in a matter or
radiation dominated universe ¢, has to be > 4p/m(0). Also, |n/m| should
be < @/(4B) and |m/m/| should be < ©?/ (253?) in both cases.

54 WKB for w? <0

The WKB approximation that is used to solve eq. (160) with w? > 0 can also
be applied to the case of w? < 0 in a modified version. The mode functions
are no longer quasi-periodic functions, but grow or decay exponentially. The
derivation in this range is similar to the case for w? > 0: We assume the
following ansatz for u(t), which differs from the original ansatz (161) only by
omitting a factor ¢ in the exponential:

uz(t) = R(t)e5® (195)

Inserting this into eq. (160), we get R + 2RS + RS + RS? — (—w?)R = 0.
This equation does not really allow the easy separation in an imaginary and
a real part. Nevertheless, we assume 2RS + RS = 0 to get R = ¢S /2.
Using this result, we get the equation:

25—252 - 55—15 +5%—(-w?) =0 (196)

v/ 2p(2p—1|

9The second condition gives o > =

which is less tight for p > %.
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Again, assuming S and § to be small quantities in this equation com-
pared to w? we get the approximate result S = +v/—w? = + |w| or S(t) =
iftz dt' |w(t')|. Inserting the results of S and R into eq. (195) we get the
final result: - G

up(t) = ——E* i [z (197)

The assumption above that the terms containing S and § in eq. (196) are
small quantities compared to |w|? translates accordingly to

o ()| =2 = o ()
dt \ |wi(t)] dt? \ |w(t)|”

5.5 Connection formulae

Can one find a connection between the WKB approximation region for w? > 0
and w? < 0?7 WKB has to fail in the vicinity of the classical turning point, at
which w?(t) changes its sign. This can be seen if we rewrite the conditions
(166) and (198) for the validity of the WKB approximation:

<1 <1 (198)

d d?
\@\wg(tn\«\w,;(tn? and \—\w,;(t>|\<<|w,;<t>|3 (199)

dt?
Since w vanishes at the turning point, these inequalities can not be satis-
fied anymore for non-vanishing derivatives of w. But we can try a different
approach near the turning point. We will see that there is an approximate
solution near the turning point that links together the periodic part and the
exponentially growing part of the WKB solutions.

Let us assume a turning point at ¢ = ¢; such that w?(¢) > 0 for ¢t < #;
and w?(t) < 0 for ¢ > t;. This resembles the situation of approaching a
phase transition from the symmetric phase with m? > 0 before approaching
it and m? < 0 upon entering further into the symmetry-broken region. At
the turning point we can approximate w?(t) by:

>0 (200)

t=t1

where the signs were chosen such that the constant A is positive. Using this
approximation we rewrite the differential equation for the mode functions
(160) as

(0 —A(t—t1)) u(t) =0 (201)
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Figure 2: Airy function Ai(g) (solid line) and its asymptotic forms for ¢ —
+oo (dashed line). Note that both asymptotic forms diverge at ¢ = 0.

The general solution to this equation is a linear combination of Airy functions
Ai(g) and Bi(g) that are solutions to the differential equation y"(¢)—qy(q) =0
[36].

u(t) = AAi (\?/Z(t - tl)) + uBi (\S/Z(t - t1)> (202)

Figure 2 shows the function Ai(g). It is bounded and has the asymptotic
forms

) 1 1 2 3 7

Al(q)'q—)—oo — ﬁ |CZ| 4 COS (g |Q|2 - Z) (203)
. 11 _1 2 3

Al(q)\q_H_Oo — §ﬁq 1 exp (—ng) (204)

Its linearly independent function Bi(g), plotted in Figure 3, is unbounded
as ¢ — oo and has the asymptotic forms:

. 1 _1 2, 3 7

Bl(q)\q_)_oo — _\/—7_r lg| % cos (g lq|2 — Z) (205)
. 1 2 3

B1(q)|q_H_oo — ﬁq 1 exp §q2 (206)

Equation (202) is an accurate solution to the differential equation (160)
near the turning point ¢ = ¢;. However, if we want to match this solution
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Figure 3: Airy function Bi(g) (solid line) and its asymptotic forms for ¢ —
+oo (dashed line).

to the WKB solutions for ¢ < ¢; and t > t; we have to try to transform
the differential equation (160) into a differential equation of the form (201)
over the whole interval —oo < ¢t < oo, so that a solution of the form (202)
becomes an approximate solution for all values of ¢. We do this by regarding
a similar differential equation with the variable ¢ instead of ¢
d2

(45— ) v =0 (207)
where we still have to find the dependence of ¢ = ¢(¢) on ¢ so that this
equation is approximately the transformed equation of (160) for all ¢. The
WKB solutions for this equation with w?(¢) = —¢q can be given for ¢ <

0 an ¢ > 0, provided that the conditions ‘d% w(g) ™| = |¢7%] < 1 and

% |w(q)\_2‘ = |6¢~*| < 1 are met, which is satisfied for |[+q| > V6 ~ 1.
Using equations (164) and (197), the solutions in the WKB approximation
are given by

_1 .

y(q) = clg|™* exp (j:zfoq\/|q’|dq’) for ¢ < —1 (208)
cq 1 exp (+ 7 Vd'dd') for ¢ > +1

The inner integral can be evaluated to give

c|q|7% exp (iz%\qﬁ) for ¢ < —1

. 5 (209)
cq~ 1 exp (:l:%qi) for ¢ > +1

y(q) =
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A comparison with the solutions (164) and (197) for a general w(?) replacing
to in the integrals by the turning point ¢; suggests that u(¢) can be approxi-
mated by a function 4(t) with

alt) = ( a(?) '2) () (210)

. (=3 i weydr)® for g(t) <0, t <, and w*(t) > 0 o1
(% Ji lw(®)] dt’) ° forg(t)>0, t>t, and w2(t) < 0

Near t ~ ¢; we find that ¢(¢) is given by ¢(t) = (—%wZ(t))l/?" (t—t) =
t=t1

A'3(t — 1), transforming the differential equation (207) into (201). So we
see that (210) is indeed an accurate solution in the vicinity of the turning
point. To see how accurately 4(t) approximates u(t) in general, we insert
(210) and (211) into the differential equation (207) to get the following exact
differential equation for 4(t) (see [35]):

(% +w(t) + e(t)) a(t) =0 (212)

S 2 (1dal
2 q 2
— | | = 21
i) s
Now we can say that 4(t) is a good approximation of u(t) if |e()/w?(t)] < 1
which, according to [35], is a weaker condition than (166) or (198) far from
the turning point.

Finally, we can join these results to get the connection formulae. Writing
the general solution to the differential equation (207) as

y(t) = y(q(t)) = MAi(q(?)) + uBi(q(?)) (214)

we can use the results for y(¢) and ¢(t) given by (210) and (211) and the
asymptotic forms of the Airy functions (203)-(206) to connect the WKB
approximations for ¢t < t; and ¢ > ;. Setting the overall normalization
constant equal to unity, we get the following asymptotic solutions for w(t).
When connecting the asymptotic solutions of the Airy function Ai(q) we get

\/ﬁ Cos (/tltw(t')dt' + %)

where
dq
H=—|—

1 1 ’
> — exp (— |w(t')|dt'>
2 /o) s

(215)

A

t<Lty
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and for the Airy function Bi(g) we get
>t

\/:)(T) . ( /tltw(t’)dt’ + %) — \/ﬁ exp ( /t : () dt')
(216)

These are the so-called WKB connection formulae, connecting two WKB
solutions in the uniform approximation [35]. Note that there is an additional
factor 7 in the case of the Ai(g)-function that is not there for the Bi(g)-
function.

It is important to know that usually in quantum mechanical problems
the WKB connection formulae can only be applied in one direction. That is,
assuming a decaying exponential in a region with a high potential, one can
conclude that the phase of the wave-function on the other side of the turning
point is determined by the connection formula for Ai(g), a cosine with a phase
7. However, knowing that the solution is given by an increasing exponential
on one side, one can not deduce that the sine-solution should be used on the
other side of the turning point. It is not possible to imply this, because a small
admixture of the exponentially decreasing solution to the increasing solution
would be negligible, but that could result in an appreciable admixture of the
cosine solution to the sine solution. Similarly, coming from the cosine or sine
side of the turning point, one can not clearly decide between the increasing
or the decreasing form of the exponential.

<ty

5.6 WKB through phase transition

With the help of the WKB connection formulae it should be possible to
describe mode functions before and after a turning point. Starting from a
thermal equilibrium, the turning point is being approached from a sine/cosine
solution region. But in the last section we just saw that without the knowl-
edge of the exact phase information of the incoming wave one is not able to
determine whether the solution on the other side of the turning point will
be exponentially increasing or decreasing or any other linear combination of
these two solutions. Since WKB is only an approximation scheme, we could
never determine the exact phase of the incoming solution and would never
know if we had exponentially growing or decaying modes on the other side
of the phase transition. To calculate the mass correction, these mode func-
tions are summed up finally, and exponentially growing or decaying solutions
would make a huge difference.

However, we are not really interested in any phase information. On a
statistical basis one would assume that the solution would be exponentially
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growing in general if we assume an arbitrary linear combination of growing
and decaying solutions. But still every exponential behavior between the two
extremes seems to be possible a priori.

Yet the situation is not completely hopeless. We are really interested in
expressions like the absolute square of the mode functions u(t)u*(¢) and it
turns out that this expression is independent of the initial phase, even after a
first turning point, for complex conjugate, linearly independent, orthogonal
solutions u(t) and u*(t).

To see this in detail, we combine the two connection formulae (215) and
(216), using sin(€ + 0) = cosdsiné + sindcosé where £ = [w+ T to one
connection formula with an arbitrary incoming phase 9¢:

—

;(t) sin (/t:w(t')dt' + % + 5)
\/Wi) o [ )]+ \/Wi)p (- o))
217)

Here we assumed a turning point at ¢ = ¢; such that w?(¢) > 0 for ¢ < ¢; and
w?(t) < 0 for t > t;. For a second turning point at ¢ = ¢, with w?(t) < 0 for
t <ty and w?(t) > 0 for ¢ > ¢, one just needs to flip the connection formulae
(215) and (216) so that one gets for the Airy function Ai(q)

1 exp ( t|w(t')| dt') j}(t) cos (/t:w(t')dt' — %)

jw(t)] ta

t>h

— 2

t<to t>10

(218)

and for the Airy function Bi(q)
1 t
— — sin (/ w(tdt' — z)
w(t) to 4
t>t2

mexp (— /t: |w(t’)|dt’>
(219)

The integrations on the l.h.s. of the last couple of equations might also
be rewritten as ftt” = — fttm since ¢ < t19, but we adopt the convention
that the upper intégration limit represents the variable whereas the lower
integration limit is a constant. The changes in the signs from the r.h.s. of
equations (215) and (216) to the Lh.s. of equations (218) and (219) are due
to the fact that the integral [ |w|dt’ which has been negative for ¢; <t < &y
is now positive.

(242}
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Note that the connection formulae require the exact knowledge of the
turning point position since the integrals on the 1.h.s. and on the r.h.s. of the
formulae contain the turning point as one of their integration limits. This is of
no concern in quantum mechanical applications of the WKB approximation
as the turning point is explicitly given by the form of the potential. But it will
pose a certain problem in our case since the quantum mechanical potential
corresponds to w(t) which in turn is calculated by a mass correction where
all mode functions are summed up. So our turning point is the result of
a calculation that has to use a WKB approximation in a region where this
technique fails - that is in the vicinity of the turning point. Through the
connection formulae we could make pretty good approximations to the left
and to the right of a turning point without actually knowing what really lies
in between. We just would have to know the exact position of the turning
point, which we don’t since WKB fails there. Yet, in the following we assume
that we know w(t) over the whole region and the positions of the two turning
points and we will try to calculate how the mode functions will look after
one and after two turning points without caring how they behave in between.
Later we will think about how to approximate the positions of the turning
points.

5.6.1 First turning point

The first turning point separates a region with positive w(t) from a region

k
with negative w%(t). In our model of an expanding system w%

for all wave vectors k at the beginning. The mode functions are given by
oscillating WKB solutions in this region. Canonical commutation relations
enforce that the Wronskian Wu,u*] = ud* — du* of the mode function
uj(t) and its complex conjugate u7(t) is constant. This allows only “circular
polarized”!? solutions of the form

urlt) = :,z(t) exp {:I:z' ( /t : wp(f)dt! + (p) }

— %COS</IW+¢>i%sin</lw+<p) (220)

The index “1” at the integral [, means that the integration starts at the first

(t) is positive

turning point ([, = fti) The most general solution in region I to the left of

10Naming the solutions “circular polarized” should not imply any physical meaning, but
refers to the two possible solutions for the complex mode function ug(t). Note that the
scalar field ¢ from equation (89) is real.
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the first turning point is therefore

Qe+z(fl UJ+§01) + Qeiz(‘fl UJ+(,02)

v v

_ \i/ [rlcos (/lw—i-gol) + rpcos (/1w+902)}
R

with real constants r1, 79, ¢1, and 9. Any complex part of r; or r5 could be
easily transfered into the phases (; and (5. The Wronskian and the absolute
square of u are given by

U(I) = Uf(t<<t1) =

Wiy, ua)] = —2i(r? —r3) (222)

1
u(I)uZ‘I) = r2 4 12 4 27179 COS (gol + 9 +2 /w)] (223)
1

We see that the Wronskian is actually independent of the integral [, w and
the phases ¢, and 5. If we also want uu* to be independent of the choice of
initial phases and the integral, we see that either r; or r5 has to vanish. That
means the system starts in a purely right circular polarized or left circular
polarized mode function u. The choice between left or right is fixed by the
canonical commutation relations. Nevertheless, for the sake of completeness
in the following all formulae are calculated for general real constants r; and
ro without the constraint that one of them has to vanish.

Note that we already separated the general solution (221) into its real
and its imaginary part. This allows us to independently apply the WKB
connection formulae (217) to get the WKB solution in region II between the
first and the second turning point. Using equation (217) with ¢ = § 44 and
cos p = sin(p + 5) we get:
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1 T 1o ™ _
UIn) = U <ity) = \—/ [7’1 cos (901 + Z) ehlv 4 51 sin (gol + Z) e il

+79 COS ((pg + z) ef1|w| —+ T2 sin ((pQ + z) e~ f1|°~’\i|
4 2 4

+i [7‘1 cos (901 - z) elilvl 4 ™ gin (901 - E) e hill
Vv 4 2 4

T ( Sl _ 8 —f1|w|) i(o1+3)
e e e
V|wl 2

LT (em N %eflwi) ¢-iler+3) (224)

Vel

This solution gives the following Wronskian and uu* in the second region
h <Lt L Lo

Wlugr, UZFH)] = —2i(r{ —13) (225)
1 :
U(H)UZ}I) = m {62““" (rf + r§ — 2ry7resin (o1 + @2))

1 .
-I—Ze*? Jill (77 + 75 + 2ri7asin (o1 + @2)
+2’f’17‘2 COS (901 + (,02)]}

- = [(rf +73) <62f1“| + %e‘”l'“")

|w|
1
27179 <62f1‘” — Ze‘”l"”') sin (o1 + 9)
+2r179 cos (1 + p2)] (226)

We get the same Wronskian as in region I, which is very nice. If we choose
r1 = 0 or r9 = 0 initially then the absolute square of u becomes

2
wu* = L (erl + iezf1> (227)

]

which is independent of the initial phases.
A remark about the use of the connection formulae is probably necessary
at this point. Usually it is assumed that the exponentially decaying solution
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is negligible compared to the exponentially growing solution since WKB is
just an approximation anyway. We could have followed the same tactics in
equation (224) and omitted all exponentially decaying factors. But then, for
a merely exponentially growing solution, the Wronskian would have vanished
and would no longer be the same as in region I. In order to fix that, we would
have had to add a small counter-term, perpendicular to the direction of the
exponentially growing mode in the complex plane. This counter-term must
be proportional to an exponentially decaying mode if we want the Wronskian
to be independent of the phases and of the integral over |w|. But this would
just have been the exponential solution that we got from the WKB connection
formulae automatically with the right factor. Therefore we can keep track of
the exponentially decaying solutions as well, in order to keep the Wronskian
constant over all regions.

5.6.2 Second turning point

Now we want to describe the transition through a second turning point ¢,
where w%(t) changes from being negative to positive. We assume that we are
far enough away from the first turning point ¢, > ¢;, such that the asymptotic
solutions of the first and the second turning point overlap. We can match
those solutions and use the connection formulae for the second turning point
to get the WKB solution for ¢ > t5. Assuming that the mode functions in a
region t; < t <K tp can be written as in equation (224), we find the following
mode function for region III, using the connection formulae (218) and (219).
First we have to rewrite equation (224) such that integrations start at the
second turning point, using

/lz/;:/:+/t:5p+/2 (228)

where we defined

to
P= / |wp(t)| dt’ >0 (229)
t1
as the area of |w| between the two turning points, and we obtain
_ (bl _ i |w|> i(e1+5)
U = e e’2 — —e e J2 e 4
(11) o] ( 5
+% (ePef2|“’ + %e‘Pe_f2|“’|> e i(#2+3) (230)
V|w
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Now we apply the connection formulae (218) and (219) to this equation, ba-
sically converting exp ([) into 2cos ([ —%) and exp (— [) into —sin ([ —%):

Urrry = % [ZGP cos (/2w - Z) + %e‘P sin (/2(,0 — %)] ei(“’1+§)
+% [ZeP cos </2w - %) - %e—P sin (/2w — %)] o i(e2+7)

= % [cosh Qei(f2 w=%) + sinh Qe_i(fzw_g)] ei(“’1+§)

+% [COSh Qe~(4=%) _ ginh Qe"(fzw_%)] (et 3) (231)

with Q = P + log 2. This solution gives the following Wronskian and uu* in
the third region with ¢ > t,:

W[u(lll)a“znl)] = —21'(7“% - 7“%) (232)

Ui Uy = é {(7‘% + 7“%) [cosh (2Q)) + sinh (2Q) cos (292(t))]

n iT;TZ ei(cp1+<p2) (COSh Qeiﬂ(t) + sinh Qefm(t))2

iT1T2 .

L #17¢2) (cosh Qe ") + sinh Q') 2} (233)

with
t2
Q = P+10g2:/ |wi(t')| dt’ +1og 2
t1
¢
Q) = / w— T = / wp(t)dt — = (234)
2 4 t2 4

Again we find a solution with the right Wronskian. If we start with
ro = 0, the expression uu* is independent of the initial phase ;. Compared
to region I, uu* is basically scaled by a factor cosh (2P + log4) where P is the
integral over |w| between the two turning points, wiggling with an amplitude
of a sinh (2P + log4).

Equation (231) suggests that u(;;) can be written in the general form for
u(ry in equation (221), consisting of a general superposition of a left and a
right circular polarized function, where now both r; and r, are nonzero with
nontrivial phases ¢; and ,. After a third and a fourth turning point we can
use the same formulae that we derived above, now for general real r{, 9, 1,
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and ¢o. This is as difficult as it can get, because the formulae don’t get more
complicated for a fifth or higher turning point.

In our derivation of the solutions of the mode functions through turning
points we assumed that t; < t, < t3 < ... so that the asymptotic solutions
that we want to link together are valid in the WKB approximation. If two
turning points are too close to each other then the results above are not
accurate and the growing of a mode function does not simply depend on the
area of w(t) between the two turning points. Also the connection formulae
before and after a turning point do not really match in the vicinity of the
turning point. At the turning point these solutions even diverge with 1/4/w
as w — 0. There the solutions have to be expressed in terms of the Airy-
functions as in eq. (202) so that the absolute square of the mode function is
given by

w(t)u*(t) ~ A2 (\S/Z(t . t1)> + B ({“/Z(t - t1)> (235)

Unfortunately, the Wronskian W/{u, u*] ~ AiAi’ + BiBi’ is no longer constant,
because equation (202) is only an approximation in the vicinity of the turn-
ing point. Trying to link this Airy-solution together with the trigonometric
asymptotic solutions might involve even more effort than linking together
two asymptotic solutions as we did so far in the connection formulae. For
now, the connection formulae through two turning points should give enough
possibilities to try to understand our differential equation system with the
evolution of the mode functions and the mass correction with the one-loop
resummation in an analytical way as far as possible.



6 Analytical description of the scalar field mass

So far we have gathered various aspects of calculating the evolution of the
scalar field mass of a Ap*-theory in an expanding background: We saw how
to calculate the propagator in a curved space-time, how to express it by mode
functions, how to calculate the 1-loop resummed mass, how to renormalize
it, and finally how to write the mode functions in the WKB approximation.
In this chapter we will show how to combine these results to calculate the
mass in principle as it may be done in a numerical simulation. We will also
try to explain the resulting mass curve analytically by calculating low order
terms of a Taylor series. A successful analytical approach might give valuable
physical insight into the problem and might result in simple formulae that
are easier and quicker to apply than extensive numerical simulations.

There are two important equations that define the core of the problem:
One is the 1-loop resummed mass that we calculated in equation (158). The
other is the differential equation (127) that determines @ (¢) that is needed
in the first equation. Emphasizing all time dependent variables rigorously,
these two equations are given by

* 1
_— i (1)]> ————k2dk 2
+ 2m2a3(t) /0 (1)l efur(0) — 1 (236)

Gin(t) + ( K 2 — % (@) _ g%) ig(t) = 0 (237)

a?(t) a(t)

We assume our system to start in a thermal equilibrium which constrains
the initial conditions of our variables: Before the expansion starts at tg = 0
the mode functions are given by equation (144). In the flat space-time for
t < 0 they reduce to plain wave solutions of the form (92). Immediately we
get the initial conditions for the mode functions by

1
ka

ix(0) = —i % (238)

In our model the scale factor a(t) is arbitrary and we are free to choose any
scale factor. We merely demand that the system does not expand during the
thermal equilibrium stage:

a(t) =1 fort <0 (239)

66
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Finally, we also set m?(t) = 1 for ¢ < 0 and determine ug by the choice of
the coupling constant \g. We reduced our physical question about the scalar
field mass to the mathematical problem of solving this system of differential
equations with well-defined initial conditions.

If the equations (236) and (237) were two simple, separate differential
equations then we could regard the problem as solved. Unfortunately they
are coupled in a non-trivial way: First, to calculate the mass, one has to solve
the differential equation (237) for each mode k. Since we integrate over all
modes k from 0 to oo, we have to solve this equation for every possible wave
vector k£ from 0 to oo, giving an infinite magnitude of differential equations
that we would have to calculate. Secondly, as if this was not enough misery,
these differential equations contain the mass that we just want to calculate!
We would have to know the mode functions to calculate the mass, and we
would have to know the mass to solve the differential equations for the mode
functions! It’s like two snakes swallowing each other’s tails (of which one
snake has infinitely many heads!).

Luckily, there are ways out of this problem: Numerically one can intro-
duce finite time steps and calculate the system of equations step by step.
Another approach is to write down analytical solutions of the mode func-
tions. Since the equation (237) can not be solved exactly, we will use the
WKB approximation of the mode functions, paying attention to when this
approximation is valid.

6.1 WKB approximation of the scalar field mass

The solution to the differential equation for the mode functions (237) can be
nicely approximated by the WKB approximation. Depending on the sign of

k? a\® 3i
we either get sinusoidal solutions or exponentially growing solutions. In the
last chapter we denoted the region between the thermal equilibrium starting
point and the first turning point by WKB 1, the subsequent region with
a negative w? by WKB II, and the region after a second turning point by
WKB III. The respective WKB solutions for the mode functions u(t) and
their absolute square are given in Table 1 and 2. They are essentially a
summary of the results of the last chapter (equations 221, 224, and 231) for
the initial conditions given in equation (238).

From Table 1 we see that both WKB I and WKB III are sinusoidal
solutions, in contrary to the WKB II region which has exponentially growing
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| Region | ur(t) |
WKB 1 L =i fowi(t)dt’
ka(t)
WKB II L__ (M) — fe=n(t) ¢i®
2|wi (t)| 2
1 iQa(t) 4 g —iQ(t)] i@
WKB III Jon® [cosh Qe"?"Y 4 sinh Qe } e

Table 1: The mode functions u(t) in different WKB approximation regions
where we used Q4 (t) = qum lwe ()] dt', Qa(t) = =5 + thPka(t’)dt’, o =
T [TPLk()dt', and Q = Oy (TP2) + log 2.

4 0
| Region | we () () |
WKB I 2wi(t)
WKB II m (6291(15) + ie—Qﬂl(t))
WKB III | 5 [cosh (2Q) + sinh (2Q) cos (292(t))]

Table 2: Same as Table 1 for the absolute square of the mode functions.

solutions. Yet they differ in their absolute square as we can see in Table 2:
In the WKB I region |uy(¢)|* changes only slowly with wy(¢), meaning that it
stays constant for a constant wy(¢). In WKB III we basically have the same
result, enlarged by the factor cosh(2@Q)) that represents the behavior of the
mode function between two turning points, but an additional wiggling with
the angular frequency 2wy () is superposed. Although it is not clear at this
point how this wiggling will effect the mass after integrating over all wave
vectors, we can already say that any wiggling in the resulting mass stems
from mode functions that started wiggling in the WKB III region, meaning
that these mode functions had been enlarged between two turning points.

The mode functions u(t) go through the two turning points at different
times for different k. From equation (240) we see that even if the mass m?(t)
is negative, w?(t) can still be positive for big wave modes k. Hence, at the
same time ¢t some mode functions are described by a WKB I solution while
others are described by a WKB II solution. How are the different WKB
regions spread upon the mode functions? Figure 4 gives a schematic view on
a possible scenario:

Up to the first turning point TP1 all mode functions can be described
by WKB I solutions. They all start from the plain wave solutions of the
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Figure 4: Schematic description of the different WKB approximation regions
for the mode functions u(t). The squared mass m?(¢) becomes negative at
the first turning point TP1 and gets positive at the second turning point TP2
again.

thermal equilibrium region. As the scale factor a(t) grows, the mass m?(t)
becomes smaller as we will see later, until it vanishes. This is where the
mode function with the smallest wave vector reaches the first turning point.
For k£ = 0 we already have to switch to the WKB II solution whereas modes
with k£ > 0 still can be described by the WKB I solution. As m?(t) keeps
falling, more and more mode functions u(t) go through a turning point and
have to be described by WKB II. If k7p(t) is the solution to wy,.,(t) = 0 at
some time ¢, then all ug(¢) with £ < krp(t) are described by WKB II and
all uy(t) with £ > krp(t) are described by WKB I. From equation (240) we
see that the boundary krp(t) between the two regions is given by kZp(t) =
—a®(t)m?(t) + 2a2(t) + Sa(t)a(t).

Mode functions that enter the WKB II region start growing exponentially.
They soon become the dominating contribution to the integral in equation
(236) and m?2(t) soon starts growing, too. As an effect, no more mode func-
tions enter the WKB II region, but some of the mode functions go through
another turning point and are now described by WKB III solutions. As the
mass keeps growing with time, more and more mode functions are described
by WKB III solutions, until only mode functions of type WKB I and WKB
IIT are left.

In Figure 4 we can clearly see how the range of mode functions is split
in WKB I and WKB III solutions after the phase transition. As we already
noticed, only the low-momentum mode functions are responsible for any wig-
gling. High-momentum mode functions can be described by WKB I solutions
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through the whole process.

Of course this was just one possible scenario, and there could be different
pictures of WKB regions, too: The mass could fall again, giving rise to
entering another WKB region after the WKB III region that we would have
to call WKB IV. WKB V can follow, too, but we saw in the previous chapter
that yet another region WKB VI would essentially be WKB IV again. In the
following, we will concentrate on the scenario as sketched above.

Let us also note that the nicely drawn boundaries in Figure 4 are far from
being fine lines: Actually the regions near turning points can analytically only
be described by Airy functions properly, and only under the assumption that
we know the position of the turning point. We avoid Airy functions by using
the connection formulae to link together different WKB regions as we did
in the previous WKB chapter. But we do not really know the position of
the turning point, since it would only follow from the knowledge of m?(t).
On the contrary we can not calculate m?(t) near the turning point unless we
know the position of the turning point. The situation is not really hopeless
though, because we will see that we can approximate the position of the
turning point pretty accurately. Using this approximated turning point, we
can calculate the mode functions in adjacent WKB-regions and thus calculate
the mass m?(t).

6.2 Taylor expansion of m?(t)

One way to find an approximate solution to a complicated function is by
calculating its Taylor expansion. In a Taylor expansion all variables are
evaluated at the expansion point. This is an advantage because we would
have to deal with two different masses m?(t) and m?(0) in equation (157),
but with an series expansion about ¢ = 0 we only need to know m?(0) and
its derivatives at the origin. We won’t be able to get rid of the integral, but
by performing the series expansion, this integral can be expressed in terms
of Debye functions, that only have one parameter - the temperature scaled
mass fm.

Starting point for the expansion is the renormalized mass from equation
(157)

1

21 2 AR /oo 1
ml) = —Hr T 55 k
B on [/, Vm2(t) + k2 eﬂ\/m2(0)+'_“2:;§8 -1

k*dk  (241)

which we derived from the 1-loop-correction of a scalar ¢*-theory in the
WKB approximation. In this form the equation is at most valid up to the
first turning point. After the first turning point, the mode functions with



6 ANALYTICAL DESCRIPTION OF THE SCALAR FIELD MASS 71

long wavelengths start to grow exponentially, which would have to be taken
into account by an exponentially growing term in uu* like the one derived
from the WKB connection formulae in eq. (224). We will see that the
first couple of terms in the Taylor series expansion can describe the function
m?2(t) fairly well. Surprisingly, we will find that there is a simple analytical
expression for the high-temperature limit for certain cases of scale factors
a(t) that describe the evolution of the squared mass quite well even beyond
the first turning point to a certain extent. This method fails as soon as the
exponential growth of long wavelength mode functions begins to dominate
the integral. We would have to take the exponential growth into account to
further improve the results.

Equation (241) is already expressed in terms of physical wave vectors
k(t) = ﬁ We can further simplify the series expansion by introducing
temperature scaled masses and wave vectors:

mi(t) = BPm*(t)
Bk
A= Bu (242)

so that we get a temperature independent, equation for m?(t):

>
Il

1

2 AR /Oo 1
= it 5 A :
27 Jo \/rh2(t) + k2 e\/m2(0)+k22§%8 1

m2(t) k2dk  (243)

The inverse temperature § = % that we used for rescaling the equation is
the initial temperature from the thermal equilibrium that our system starts
from. Since the mass 7?(¢) and the scale factor a?(t) are both evaluated at
0 in this equation already, we will also expand our Taylor series about the
point ¢t = O:

dim?(t) 2 d?m?(t) 3 d®m?(t)
~ 92 t — A~ 2 0 t _ R
) = Ot =g e | s ae |
t2 t3
= m*(0) + tm*(0) + 5m2"(0) + 5frﬂ'"(O) + ... (244)

It turns out that the squared mass and its derivatives at the origin can be
conveniently expressed using Debye functions of the form

[
o (Vierae) (Vi )

D, 5.4(12) sktdk > 0 (245)
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with positive integers r, s, and t. Note that there is no more dependence
on the inverse temperature § or on the scale factor a(t) in this function. It
only depends on the initial mass m?(0) and no longer on both, m?(0) and
the time dependent mass 7?2(t). By construction, the Debye functions are
always positive for all combinations r, s, ¢, and a positive initial mass M.
This will enable us to give rough estimates on some expressions.

For ease of notation we will use a generalization of the Hubble parameter

H = 'Z((g)) and define

(246)

We can also omit the argument in the Debye functions since it is always 17(0)
and define
Di,st = Drys,i (112(0)) = Dys,0 (Bm(0)) (247)

and since all derivatives of the squared mass are evaluated at t = 0, we also
define
ma = m?(0), ma' = m*(0), m3" = m*(0), ... (248)

Using these definitions, the squared mass and its derivatives about 0 can be
expressed entirely by the Debye functions and Hubble parameters evaluated
at the origin. There is no other integral to be solved except for the one in
the Debye functions. The first three terms of this kind that we need for the
series expansion (244) are given by

. A
my = —u%+2—:2'p1,1,2

. A 1
mg' = 2—; <—HD2,2,4 — 5m31D3,1,2>

N A
me" = 2—:2 [HQ (Dy26+2D336 — D36 — Dooa) — HyDooa
~ 21 3. 212 1. 2n
+Hmy Daoa + 1 (mo ) D519 — §m0 D319 (249)

We see that higher derivatives of the squared mass also appear on the r.h.s.
of these equations. Starting with the first derivative, terms with the same
derivative order as on the Lh.s. come with a factor J2%Dj5; 5 on the r.h.s. in
all subsequent derivatives. Bringing these terms to the L.h.s. and dividing by



6 ANALYTICAL DESCRIPTION OF THE SCALAR FIELD MASS 73

1+ % ;\T%Dg,l,g where necessary, we finally obtain for the original mass without
temperature rescaling

1 Ar
my = —pp+ Bogz b2
m2 — 1 AR D24
° B or? 14 Dy,
1 A 1
2n __ R 2
my = @Q—W—l n %Q)\TR?D3,1,2 H* (Dyos +2D336 — D326 — Dana)
3 2
—HyDopu+ HB*mi' Dapa+ ~ (67m)')" Ds0 (250)

4

Obviously higher order derivatives give rise to even longer expressions. Com-
paring these results to numerical results, we find that the derivatives can be
described pretty accurately by these formulae.

This result also enables us to give general statements. For example, using
the fact that the Debye functions are always positive, we see that the expres-
sion for the first derivative m3' is always negative for a positive expansion
parameter H > 0. One can show that the term Dy 6+2D3 36— D326 — D224

in the expression for the second derivative m3" is also always positive. There-

fore m3" is positive if Hy = a”(0)/a(0) is small enough. This is still the case
in an exponentially expanding de Sitter universe where Hy = H? as we will

see in the high-temperature limit.

6.2.1 High-temperature limit

The expressions for the derivatives of the squared mass (250) can be simplified
by regarding the high-temperature limit 7" > m, or m = fm = 2 < 1. It
turns out that the Debye functions in this limit D, (7 — 0) are finite if
r+s < t and that they diverge like 1/m/ '~ for r+s > t+1. For example
the following high-temperature limits are finite and can be calculated giving
nice analytical expressions:

2

Vs
Dl,l,?(o) == E
7T2
D2,2,4(0) - D4,2,6(0) - DT,Q,T—I—?(O) - ?
D36(0) = —6((3)
7T2
336(0) = 3C(3)+§
Dy s1(0) = Drjyst+0(0) = Doss—r(0) forr+s<t (251)
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The last relation shows that the finite result basically depends only on two
parameters, s and (¢ — 7). Also the Debye function combination appearing
in the second derivative in eq. (250) has a simple high-temperature limit:

Dy2,6(0) + 2D336(0) — D32,6(0) — D224(0) = 7 (252)

The following high-temperature limits diverge, but one can calculate with
which power of m they diverge and even give a general formula for these cases:

. T
Dg,l’g(m—)O) — ey
3T
D T 0
124(m = 0) = oo
m
D n—0) —
r(=s=)r(s) 1

Dysi(m —0) —

199

o (52) e forr+s>t+1 (253)

Using these limits we can calculate the high-temperature limit of the
derivatives of the squared mass in equation (250) and get

AR
my = —pp+ 1252
1252 1 + 167?;77&0
2 2
an 1 Ar H?r? — Hy% + H52m%’16%7;zo + % (B°mg) 16(ﬂ7rrno)'3 254

167w Bmg

We can further simplify the last expression by omitting small terms: The
two terms containing m2’ are small compared to the other two terms in the
numerator under certain conditions (e.g. A% < 768w (8my)? or fmg > =)
that are likely in our application. These conditions also imply Az < Bmy
which means that we can also omit the denominator 1 + 16?§m0 ~ 1 in this
approximation. Neglecting such terms for the first and second derivative as

well as for higher derivatives or m?(¢), we can continue the results of the
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high-temperature limit:

AR
my = —pp+ 12532
A
2 _ R
my = 1252
AR
m2 = 155 (6H? — 2H,)
2 _ AR (24H® — 18HH, + 2H,)
0 12ﬁ2
A
m" = 1222 (120H* — 144H*H, + 18H} + 24H H; — 2H,)  (255)

We see that the scale factor a(t) and its derivatives play an important role in
determining the high-temperature limit: Higher order derivatives of the scale
factor seem to equally well determine the derivatives of m3 as lower order
derivatives. It might be interesting to see whether one can find analytical
expressions that represent the whole Taylor series for certain choices of the
scale factor a(t). Two commonly used scale factors, the de Sitter universe
and the power law universe, shall be discussed in the following.

6.2.2 Analytical expression for the high-temperature limit

There might be an analytical expression for the high-temperature limit (255),
but since it is not obvious to me, we first take a look at the special case of a
de Sitter universe. The scale factor a(t) = et gives:

H,=H? Hy=H3 .. H,=H" .. (256)

Inserting this into equations (255) we find an astonishingly easy geometric
series as a result for the mass derivatives:

AR
mg = —/ﬁz + 123
A
2 _ R
my = — 1252 2H
A
o _ AR o
mg" = 12524H
A
2 R 3
= —2Rgg
mg 1257
m2" = AR 6y (257)
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With these derivatives a suitable analytical expression is given by an expo-
nential function with the argument —2H¢. The following formula gives the
same four derivatives about ¢t = 0:

AR
m?(t) = —uy + 12526 2Ht (258)

This simple equation shows that in principle the squared mass starts at —u%+
Ar/126% at t = 0 and falls off to —u% for t — oo. There is no growing of
the mass in this simple model since we have not regarded the exponential
growth of long wavelength modes yet.

Let us see whether there is such a nice analytical expression also for the
case of a radiation or matter dominated universe. The scale factor is given by
a(t) = c(t + to)? with p = £ for the radiation dominated universe and p = 2
for the matter dominated universe. We shifted the scale factor compared to
equations (11) and (12) by ¢, which is the time span between the big bang
singularity and the beginning of our simulation. The derivatives of the scale

factors are given by

F(p+1)
C(p—n+1)t3" "
(259)
Inserting them into equations (255) yields the derivatives of the squared mass
for a power law scale factor. We can factor the resulting polynomials in p in
such a way that it will be obvious how to continue the series of derivatives:

H:£ HQ—M ngp(p_l)(p_2)

to R 3 a

. H, =

AR
mg = _N%+12ﬂ2
A 1
21 R
- _ 2p—
Mo 1262 “P1,
A 1
2n R
= (2p + 1) =
mg o5 p(2p + )tg
m2 = AR 2p(2p+1)(2p+2)l
0 1232 t3
A 1
2mm R
= 2(2p + 1)(2p + 2)(2p + 3) = 260
my 1257 p(2p+1)(2p+2)(2p + )té (260)

Guessing higher order derivative terms and putting them together in a Taylor
series, the proper analytical expression is given by the —2p power of ¢. The
following formula gives the same four derivatives about ¢t = 0:

A rd
m(t) = —pht S

Rt 1262 (t + to)* (261)
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Again we find that the squared mass starts at —u%+ Ag/123? and falls off to
—u% for large t. In the case of a radiation dominated universe with p = 1/2
we see that m?(t) falls off like 1/t.

It attracts the attention that in both cases, in equations (258) and (261),
the squared mass basically falls off with the squared inverse scale factor. Can
one combine these two formulae in a natural way? Coming this long way, it
seems ridiculously easy to write:

200\ 2 Ar [ a(0) ?
)~ =iy + 155 (50 (262)

This result can even be improved by noting that m?(0) is actually determined
by a Debye function Dy 15 (m(0)) so that the expression (262) is not really
exact for £ = 0. We can easily fix this by replacing the approximate term by
u% +m?(0), two variables that we know from initially setting up the system,
and write

2
m0) ~ i+ (o + m(0) (40 (263)
Comparisons to numerical simulations show that this is a surprisingly good
approximation for the squared mass up to the first turning point where m?(t)
changes its sign and even beyond this point.

Can one verify this result directly by inserting it in the WKB solution in
equation (241)? For the case that u% = 0 it is easy to show that the relation

- 2
(263) is exact: Using k = k% = ﬁwe insert m?(t) = m?(0) (%) on the

r.h.s. of equation (241) and find that this relation is self-consistent:

AR 1 1

F/ £2a2(t)
- \/[W(O) (@ﬂ +Ree moREG

m2(f) — R dk

a(t)

(%) 2/\—7:; /0°° \/mQ(:]) LR 6/3\/m2(01)+1c2 —1
(%) 2 m?*(0) (264)

Also in the case of u? # 0 the analytical results are very close to the numerical
results, but the reason seems to be more subtle.

]?2

0
=l
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6.2.3 Calculation of the turning point in the high-temperature
limit

Equation (263) is a pretty good description of the time evolution of the
squared mass up to the turning point. Beyond the turning point this ap-
proximation does not regard exponentially growing long wavelength modes.
Yet, comparisons to numerical simulations suggest that this formula is a good
approximation even after the turning point. Therefore we can get a pretty
good estimation of the actual turning point by calculating the turning point
of the approximation (263).

The first turning point is characterized by m?(t7p) = 0. Inverting the
relation for the squared mass, we get:

trp = alV | a(0)4/1+ (%)2 (265)

where a{~1 denotes the inverse of the scale factor. For the de Sitter universe
with a(t) = ef!* this relation becomes

1 m(0)\”
trp = —1 1 2
TP = I 0g +< n ) (266)

In the case of a power law scale factor a(t) = (¢ + tp)? the turning point can
be approximately calculated by

trp = 1o 1+ @ 2 5—1 267
(%) o)



7 Numerical calculations

Numerical calculations are necessary whenever no analytical formulae can
be found to a problem. Calculations of a scalar field theory in a curved
space-time have been performed before by Boyanovsky, Cooper, Mottola,
and others [16, 37, 38|. Basically they solve the pair of differential equations
(236) and (237) by introducing finite time steps At. Using well-known inte-
gration algorithms, very accurate results can be obtained this way, but the
computational effort is immense: An equation for the mode functions like eq.
(237) has to be solved for every wave vector k € (0,00) which in principle
are infinitely many differential equations, and in every time step the absolute
square values of the mode functions at a time ¢ are integrated to give the
mass m(t) which is used as the input mass m(t + At) for the next time step.
The drawback of this procedure is that one has to specify at the beginning
which discrete vectors k are being used during the numerical calculation. A
different approach is to use numerical integration algorithms that indepen-
dently choose how many and which discrete wave vectors have to be regarded
in order to gain a certain accuracy-goal. Such algorithms are implemented in
Mathematica, but require a slightly different approach to our problem: The
differential equations (237) for mode functions ug(t) are solved adaptively
in the k/t-plane for a given function myy(¢). Using these mode functions, a
new mass function my,;1)(t) is calculated from equation (236) that in turn is
used to solve for new mode functions again. This procedure is conveniently
implemented in Mathematica and quickly converges for small times t.

7.1 Mathematica program code

A Mathematica program, written by Carl Woll from the University of Wash-
ington, was used in order to test analytical approximations. We pursued an
iterative approach in calculating the pair of equations (236) and (237): In a
first step the mass m?(t) is set constant m#;(¢) = 1 for all ¢ and the differen-
tial equations for the mode functions are calculated. Integrating over these
mode functions, we obtain a new function m[21] (t) that is the first iteration.
Using this function we can calculate new mode functions that produce a new
mass function m[22] (t). At small times ¢ this procedure converges quickly to
the desired function m?(t) ~ m[Qn] (t).

We relied on Mathematica’s internal numerical calculation procedures
to minimize the error. We let Mathematica choose the modes k£ and time
steps At adaptively through its internal numeric differential equation solver.
For high momentum modes, the mode functions u(t) oscillate with a high
frequency that makes numerical calculations hard. But we know from the
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Figure 5: Numerical result (dotted line) compared to the analytical result
(dashed line) for m?2(t) in a de Sitter universe with the parameters Az = 0.01,
B =10.02, a(t) = ', H = 0.1, and m(0) = 1.

discussion about Figure 4 that high momentum modes can entirely be de-
scribed by WKB I solutions. Therefore we introduced a cut-off to solve the
mode functions for low and high momenta separately.

7.2 Numerical results

To test the quality of the analytical expressions from the last chapter we used
toy models with simple parameters. Figure 5 shows the evolution of the mass
m?2(t) over time for a de Sitter universe. In our calculations the scale factor
is given by an exponential expansion a(t) = ef!' with the Hubble constant
H = 0.1 in arbitrary units. The renormalized coupling constant is assumed
to be Ag = 0.01 and the initial inverse temperature is given by 5 = 0.02.
Initially we set our mass to be m(0) = 1. We can calculate the renormalized
mass parameter yp from equation (250) and obtain u% = 1.044 for our initial
set of parameters.

From Figure 5 we see that the mass m(t¢) decreases as soon as the expan-
sion starts, as we already predicted from the first derivative of m?(t) which is
always negative in equation (250) for a positive Hubble parameter. The dot-
ted line shows the numerical result from the Mathematica program. It crosses
the t-axis at t = TP1 = 3.388. This marks the classical turning point for the
lowest mode function. The schematic Figure 4 shows how more and more
mode functions with small k£ start to grow exponentially for ¢ > TP1. This
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Figure 6: Numerical result (dotted line) compared to the analytical result
(dashed line) for m?(t) in a radiation dominated universe with the parameters
Ar =0.01, 8 =10.02, a(t) = vVt + 1, and m(0) = 1.

contributes to the squared mass until it starts growing again after ¢ ~ 8.4.

The dashed line in Figure 5 shows the high-temperature limit from equa-
tion (263). This function falls exponentially from m?(0) = 1 to its asymptotic
value —p%. Since this analytical result does not consider the exponentially
growing modes from the WKB II region in Figure 4, we find that it keeps
falling even if the numerical result starts to grow again. This is no calcula-
tion error, but merely represents the fact that we have not regarded growing
modes in the Taylor expansion yet.

From equation (266) we see that we can calculate the position of the first
classical turning point by

2

1 m?(0)
TPl ~ —1 1 268
2H og( * KR ) (268)

With our initial values this gives TP1 a 3.358 which is pretty close to the
numerical result TP1 = 3.388. The ability to calculate an approximate
position of the turning point without knowing the exact behavior of m?(t)
is necessary for implementing approximations of the growing mode functions
in the WKB II region: Any application of the connection formulae depends
on the knowledge of the position of the turning point.

Figure 6 shows the evolution of the mass m?(t) in the case of a radiation
dominated universe with the scale factor a(t) = v/t + 1. The other parame-
ters are the same as for Figure 5 with a coupling constant Az = 0.01 and the
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inverse temperature 5 = 0.02. Again, for the initial mass m(0) = 1 we ob-
tain the same parameter p% = 1.044. From the high-temperature limit (261)
with p = 1/2 we know that the mass falls off like m?(t) + p% oc 1/(t + 1),
According to equation (267) the position of the classical turning point can
be approximated in the high-temperature limit as

2

TP1 ~ 1Y) (269)
R

This simple equation gives TP1 ~ 0.958 while from the numeric calculation
we obtain TP1 = 0.964. In both models, the de Sitter universe and the
radiation dominated universe, the turning points could be approximated for
our choice of initial values by simple high-temperature limit formulae with
an error of less than 1%. The accuracy of an approximate turning point is
crucial for further analytical descriptions of the mass through WKB II and
WKB III regions.



8 Summary and outlook

In this work we presented a way of describing the time evolution of a scalar
field mass in an expanding background. Two approaches, an analytical ap-
proximation and a numerical calculation, were compared to each other and
the limits for each approach were discussed. Scalar field systems in a curved
space-time play an important role in the physical processes at the very be-
ginning of our universe.

Studying dynamical properties of a system at finite temperature requires
a special formalism. While static, equilibrium systems at finite temperature
can be described in the imaginary-time formalism, it is not straightforward
to answer questions about a time-dependent behavior of such a system. A
new formalism, called real time formalism, can overcome this difficulty.

Starting from the Keldysh-Schwinger closed-time-path formalism in a flat
space-time [32|, we enhanced the real time formalism by the notion of a
curved space-time. We found that the mode functions, which are solutions
to the Klein-Gordon operator, are no longer simple plane wave solutions, but
they depend on the time-dependent background metric in a non-trivial way.
With this in mind, we showed how to derive the closed-time-path formalism
for general mode functions. We calculated the Green function of the Klein-
Gordon operator using canonical commutation relations for the scalar field
¢ and the KMS-conditions for the initial temperature of the system and we
expressed the full propagator in terms of general mode functions.

This general result was applied to the metric of a Friedmann-Robertson-
Walker universe with a flat space-time. This metric contains one scale fac-
tor a(t) that describes the expansion of the universe. Technically it makes
sense to describe the system in comoving coordinates where particles at rest
expanding with the metric keep their coordinates. We also studied the con-
sequences of introducing a conformal time dn = dt/a(t) which makes certain
equations easier as space-time is conformal to Minkowski space-time.

Using a generic scale factor a(t), we rescaled quantities like the propa-
gator, the scalar field, or the mode functions for this metric. The canonical
commutation relations for the scalar field are _now written in terms of the
rescaled field ¢, and the propagator G.(t — t', k) in the Fourier transformed
space can be expressed using scaled mode functions ig(t).

We calculated the mass of the scalar field to the lowest order of per-
turbation theory for a scalar field theory with a A¢*-interaction term. The
first-order mass correction is given by the one-loop Feynman diagram which
basically is an integration of the equal time propagator over all modes k.
The resulting equation for the mass turns out to be divergent and has to be
renormalized in order to give reasonable physical results.
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In essence, we followed the renormalization scheme of Cooper and Mottola
|16] and introduced a renormalized mass pr and coupling constant Ag. A
quadratic divergence can be removed by shifting the original bare mass. An
additional logarithmic divergence requires a summation of bubbles in the
scattering amplitude [33]. For regularizing the integrals we introduced the
cut-off A; for the wave vector. The resulting equation for the mass is given
by

m2(t) = — + L/OO () —— = k2dk
EToradt) J, F efur(0) — 1

This equation was the starting point for further investigations. Calculat-
ing this equation numerically means quite some effort: Each mode function
Ty (t) for different & is determined by its own second-order differential equa-
tion. To make things worse, these differential equations contain the mass
m(t) as an argument. We would have to know u(t) to calculate m(t) and,
vice versa, the knowledge of m(t) is required to be able to calculate u/(t).
There is no simple solution to this system of infinitely many coupled differ-
ential equations.

Therefore we asked the question whether it is possible to gain any useful
information from this equation by regarding certain approximations to this
system. The differential equations of the mode functions turned out to be well
described in the WKB approximation. Having its roots in simple quantum
mechanical applications [35], the basic idea of the WKB approximation is
a separation of the sinusoidal solution into its frequency and its amplitude.
The strength of this approximation lies in the fact that it generates a solution
for a second-order differential equation with an arbitrary potential that only
depends analytically on this potential and on the integral thereof.

The ability to apply the WKB approximation is restricted by the form of
the potential. Therefore, for the comoving metric we found that WKB can
only be applied to regions where

k2
=z +m? > 16H>

Similar restrictions on H, 7, and 77 have to be met. These are severe
constraints since the interesting part of the physics happens when @? =
k%/a% + m? becomes negative due to a negative squared mass m? < 0 in a
false-vacuum state! Luckily, in the opposite case, k%/a? + m? < —16H? the
system can be described in the WKB approximation again. The solutions
loose their sinusoidal character and are given by exponentially growing or
decaying functions.
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The time ¢ at which @?(¢) changes from being positive to negative marks
the first classical turning point. The WKB approximations are not valid in
the vicinity of the turning point. Yet, WKB solutions to the left and to the
right of a turning point can be linked to each other by so-called connection
formulae. We derived these formulae using Airy functions that describe the
linearly approximated solution near a turning point.

By repeated application of these connection formulae we showed how to
trace the time evolution of the mode functions through a first and a second
classical turning point. For an initially solely circular polarized state, we
denoted WKB regions separated by turning points by WKB I, WKB II, and
WKB III. We found that the absolute square of the mode function that we
needed in order to calculate the mass integral is given in the WKB III region
by

g (£)[2 ~ —— [cosh (20) + sinh (2Q) cos (202(¢)]
2wk(t)

We saw that the solution in the WKB T region |u|> ~ (2w)~! is not only
enhanced in the WKB III region by a factor cosh 2¢) that essentially depends
on the area of w in the WKB II region between the two turning points;
the formerly constant solution also starts to wiggle with an w-dependent
frequency. Thus we could demonstrate that any wiggling in the resulting
mass after going through a phase transition stems from low momentum modes
with small £.

We then calculated the Taylor expansion of the mass integral for the WKB
I region. The main difficulty was the appearance of two different masses m(t)
and m(0) in the integral that prohibited the use of a Mellin transform. Using
generalized Debye functions, we calculated the first couple of terms of the
Taylor series for the mass. Especially we saw that the first derivative of the
mass has the opposite sign of the Hubble parameter which proves that the
mass starts decreasing in an expanding universe.

In the high-temperature limit fm < 1 we found an analytical expression
representing the terms of a Taylor series. For an arbitrary scale factor we

found that
2 2 2 2 a(0) ’
m*(t) & —pg + (up +m*(0)) { —<
a(t)
Although this approximation is only valid in the WKB 1 region, compar-
isons to numerical calculations show that it is astonishingly accurate even

far beyond the first turning point in the WKB II region. This enables us
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to approximate the position of the first turning point TP1 by inverting the
relation m?(TP1) = 0.

Extensions to the work presented here could include regarding the expo-
nential growth of low momentum mode functions in an analytical approxima-
tion. This problem involves finding a suitable approximation to how different
mode functions pass the turning point at different times.

Another interesting idea would be to study the next order of the mass
perturbation. Once the mode functions are calculated for a one-loop mass
correction, this information could be used to calculate the next order Feyn-
man diagram, the so-called sunset diagram, and to see whether the first-order
approximation is a good one.

Our methods of finding analytical expressions that describe the mass evo-
lution of scalar fields might help to deepen the understanding of the process
of phase transitions. A deeper knowledge of the underlying physics could
complement existing results from numerical calculations. It could ultimately
lead to valuable criteria that might be able to differentiate between current
theories of inflation.

We are lucky that we will not be blown up to ultra galactic scales within
hyper-short times because we do not have the necessary super-high energy
density. But who knows what other strange concepts wait hidden in the uni-
verse just to be explored by creatures that formerly originated from quantum
fluctuations of a tiny, tiny patch.
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