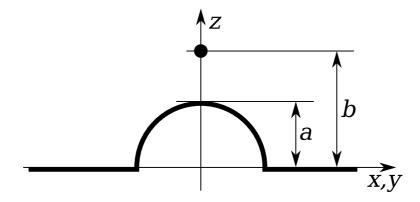
Aufgabenblatt 4

für 16.04.2010

4.1¹ Kräfte zwischen Kreis- und Linienstrom

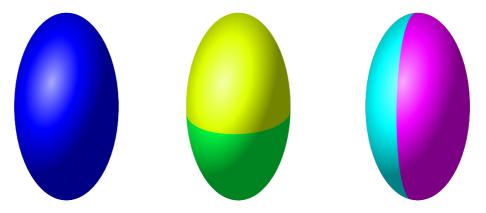

Gegeben sei ein unendlich langer dünner Leiter L_1 , der im Abstand x = d parallel zur y-Achse verläuft und von einem zeitlich konstanten Strom I_1 durchflossen wird.

- a) Berechne das Magnetfeld und daraus ein Vektorpotential.
- b) Betrachte zusätzlich einen dünnen Leiter L_2 , welcher einen Kreis mit Radius a < d und Mittelpunkt im Ursprung bildet und ebenfalls in der x-y-Ebene liegt. Dieser werde von einem konstanten Strom I_2 durchflossen. Berechne die auf den Leiter L_2 wirkende Kraft \vec{F} .

die auf den Leiter
$$L_2$$
 wirkende Kraft \vec{F} .
Hinweis: $\int_0^{\pi} \frac{\cos(x) dx}{1 + \alpha \cos(x)} = \frac{\pi}{\sqrt{1 - \alpha^2}} \frac{\sqrt{1 - \alpha^2} - 1}{\alpha}$ für $|\alpha| < 1$.

4.2¹ Leitende Ebene mit kugelförmiger Ausbuchtung

Eine unendlich ausgedehnte geerdete leitende Platte habe eine Ausbuchtung in Form einer Halbkugel mit Radius a. Eine Punktladung q werde auf die Symmetrieachse des Systems im Abstand b>a vom Mittelpunkt der Halbkugel angebracht. Berechne mit Hilfe der Methode der Bildladungen das Potential ϕ sowie die auf der Halbkugel influenzierte Gesamtladung.



4.3 Multipolmomente homogen geladener Ostereier

Gegeben seien drei bezüglich der z-Achse rotationssymmetrische Ellipsoide mit Hauptachen $a=b,\,c.$

¹Früheres Testbeispiel.

- a) Das erste Ellipsoid sei homogen mit Raumladungsdichte ρ_0 geladen. Berechne hierfür die elektrostatischen sphärischen Multipolmomente q_{lm} mit $l \leq 2$ und schreibe das elektrostatische Potential in der entsprechenden Näherung für $r > \max(a,c)$ an.
- b) Das zweite Ellipsoid von der selben Form sei für z > 0 positiv und für z < 0 negativ mit Raumladungsdichte $\pm \rho_0$ geladen. Wie sehen die entsprechenden Multipolmomente und Potentiale für $l \leq 2$ aus (wieder bezüglich des Zentrums des Ellipsoids)?
- c) In welche Richtung wirkt die Kraft auf das erste Ei, wenn es sehr weit weg vom zweiten Ei platziert wird (in Abhängigkeit von ϑ und φ)? (Es braucht nur der führende nicht-verschwindende Term der Entwicklung angegeben werden).
- d) Freiwillige Fleißaufgabe: Das dritte Ellipsoid sei für x > 0 positiv und für x < 0 negativ geladen. Welche Multipolmomente q_{lm} für $l \le 2$ verschwinden nicht?

Hinweis zu 4.2: Versuche einen Ansatz mit 3 Bildladungen. Hinweis zu 4.3: Es ist zweckmäßig, wenn man für die Berechnungen zu Koordinaten $\tilde{x} = x/a$, $\tilde{y} = y/a$, $\tilde{z} = z/c$ übergeht, und im $\tilde{x}\tilde{y}\tilde{z}$ -Raum Kugelkoordinaten $\tilde{r}, \tilde{\vartheta}, \tilde{\varphi}$ einführt. Beachte dabei, dass die Winkel in den Kugelflächenfunktionen $Y_{lm}(\vartheta, \varphi)$ aber im xyz Raum definiert sind.

Ankreuzbar: 1a, 1b, 2, 3a, 3bc