1. Tutorium

für 18.03.2011

1.1 Legendretransformation

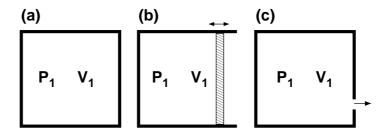
Gegeben sei folgende Entropie (Sackur-Tetrode-Gleichung):

$$S(E, V, N) = Nk_B \left\{ \ln \left[\frac{V}{N} \left(\frac{4\pi mE}{3Nh^2} \right)^{\frac{3}{2}} \right] + \frac{5}{2} \right\}$$

- a) Benutze die Legendretransformation, um aus der Funktion E zu eliminieren und durch $(\partial S/\partial E)_{V,N} = 1/T$ zu ersetzen.
- b) Berechne aus der angegebenen Entropie die (innere) Energie E(S, V, N) und die zugehörige freie Energie (Helmholtz-Energie) F(T, V, N). (Freiwillig: Zeige für (a) und (b) explizit, dass eine nochmalige Transformation wieder auf die ursprüngliche Funktion führt.)

1.2 Heißluftballon

Ein Heißluftballon schwebt aufgrund des Auftriebs in der Luft, wenn heiße, leichte Luft in den Ballon gefüllt wird. Die umgebende Luft sei ein ideales Gas mit Temperatur T_0 und (Massen-)Dichte ρ_0 . Die Luft im Heißluftballon hat ein Volumen V bei Temperatur T. Welche Gesamtmasse m kann der Heißluftballon maximal tragen? (Die Gesamtmasse umfasst den Korb und die Hülle des Ballons; Volumen von Korb und Hülle können dabei vernachlässigt werden.)


(Freiwillige Zusatzfrage: Der Heißluftballon sei unten offen. Befindet er sich im thermischen, chemischen, oder mechanischen Gleichgewicht mit seiner Umgebung?)

1.3 Wärmeverbrauch

Berechne, wie viel Wärme ΔQ gebraucht wird, wenn ein Zimmer unter folgenden 3 Bedingungen von der Temperatur T_1 auf T_2 erwärmt wird. Das Zimmer ist mit einem idealen Gas $(PV = Nk_BT)$ und $E = (3/2)Nk_BT$ ausgefüllt. Berechne auch die Veränderung der inneren Energie ΔE des Gases im Zimmer.

a) Das Zimmer mit Volumen V_1 hat starre und thermisch isolierende Wände. Am Anfang ist der Druck im Zimmer P_1 .

- b) Das Zimmer hat thermisch isolierende Wände. Eine Wand ist beweglich, so dass der Druck im Zimmer konstant auf P_1 gehalten wird. Am Anfang beträgt das Volumen des Zimmers V_1 .
- c) Das Zimmer mit Volumen V_1 hat starre und thermisch isolierende Wände. Eine Wand hat ein kleines Loch, durch welches das Gas langsam ausläuft. Der Druck im Zimmer bleibt konstant auf P_1 .

Ankreuzbar: 1a, 1b, 2, 3ab, 3c