The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	0	0	1	0	0	1	1	1	1	1
0	1	1	1	0	1	1	0	0	0	1	1
0	0	0	-1	1	0	0	0	-1	-1	-1	0
0	0	0	-2	0	0	1	0	1	0	-1	-1
0	0	0	0	0	1	0	0	-1	0	0	0
0	0	0	-1	0	0	0	1	0	0	0	0
0	0	1	-1	0	0	0	0	0	0	0	0 _

The Mori cone of the ambient space is generated by

This Mori cone is not simplicial. A positive basis for the generators of the Kähler cone is $K_2 = D_4 + D_5$, $K_1 = 1/2 D_5 + 1/2 D_8 + D_4 + 1/2 D_3 - 1/2 D_1$, $K_3 = 1/2 D_1 + 1/2 D_3 - 1/2 D_5 - 1/2 D_8 - D_4$, $K_4 = -1/2 D_3 + 1/2 D_5 + 1/2 D_8 + D_4 + 1/2 D_1$, $K_5 = 1/2 D_8 + D_4 + 3/2 D_5 + 1/2 D_3 - 1/2 D_1$. The Stanley Reisner ideal is

 $\begin{bmatrix} D_3 D_8, D_3 D_9, D_5 D_8, D_5 D_9, D_5 D_{10}, D_8 D_{10}, D_9 D_{10}, D_3 D_4 D_7, D_4 D_7 D_9, D_4 D_7 D_{10}, D_1 D_2 D_3 D_6, D_1 D_2 D_5 D_6, D_1 D_2 D_6 D_8, D_1 D_2 D_8, D_1 D_2 D_8, D_1 D_2 D_8, D_1 D_2 D_8, D_1 D_$

The Calabi-Yau space is defined by $4K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 44$. The divisors D_8 , D_9 , D_{10} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

-2 0
-2 -4

The dual basis of divisors is

$$J_1 = K_1 - 1/2 K_2 \qquad J_2 = 1/2 K_2 \tag{5}$$

Its second Chern class is

$$c_2(X) = 5 J_2 J_1 + 6 J_2^2 \tag{6}$$

The non-zero intersection numbers are

$$K_{1,2,2} = 4 K_{2,2,2} = 2 (7)$$

The linear forms are

$$c_2 \cdot J_1 = 24$$
 $c_2 \cdot J_2 = 32$ (8)

 ${\cal J}_1$ is a K3 surface with intersection form

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	832	9048	296256	10896200	496315712
1	32	3968	420544	43292416	4300353568	417443075200
2	4	5952	2556784	731520512	159613720920	29323275213056
3	0	3968	6550208	4550144640	1990567239584	649617659336064
4	0	832	8831008	14796791040	12407439429504	6902604520184960
5	0	0	6550208	28878680064	46220194846240	42948676303436416

 $\begin{bmatrix} 4 \end{bmatrix}$

This is triangulation 2. The Gorenstein cone after desingularization is

1	0	0	0	1	0	0	1	1	1	1	1
0	1	1	1	0	1	1	0	0	0	1	1
0	0	0	-1	1	0	0	0	-1	-1	-1	0
0	0	0	-2	0	0	1	0	1	0	-1	-1
0	0	0	0	0	1	0	0	-1	0	0	0
0	0	0	-1	0	0	0	1	0	0	0	0
0	0	1	-1	0	0	0	0	0	0	0	0

The Mori cone of the ambient space is generated by

-1	0	-1	-1	0	0	0	-1	0	0	1	1
0	-2	0	0	0	0	1	0	0	-1	1	0
0	0	1	1	1	0	0	1	0	0	0	-2
0	0	1	1	0	0	0	1	0	1	-2	0
0	0	0	0	0	1	-1	0	1	-1	0	0

A positive basis for the generators of the Kähler cone is $K_4 = D_8 + D_5 + 2D_4$, $K_1 = -D_1 + 2D_4 + D_3 + D_8 + D_5$, $K_3 = D_3$, $K_5 = D_4$, $K_2 = D_5 + D_4$. The Stanley Reisner ideal is

$$[D_3D_8, D_3D_9, D_4D_7, D_5D_9, D_5D_{10}, D_8D_{10}, D_9D_{10}, D_1D_2D_3D_6, D_1D_2D_5D_6, D_1D_2D_6D_8]$$
(13)

The Calabi-Yau space is defined by $2K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 44$. The divisors D_8 , D_9 , D_{10} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -4 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$
(14)

The dual basis of divisors is

$$J_1 = 1/2 K_2 \qquad J_2 = 1/2 K_1 - 1/2 K_2 \tag{15}$$

Its second Chern class is

$$c_2(X) = 6 J_1^2 + 5 J_2 J_1 \tag{16}$$

_

(9)

(10)

The non-zero intersection numbers are

The linear forms are

$$c_2 \cdot J_1 = 32$$
 $c_2 \cdot J_2 = 24$ (18)

 J_2 is a K3 surface with intersection form

$$\left[\begin{array}{c}4\end{array}\right] \tag{19}$$

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	32	4	0	0	0
1	832	3968	5952	3968	832	0
2	9048	420544	2556784	6550208	8831008	6550208
3	296256	43292416	731520512	4550144640	14796791040	28878680064
4	10896200	4300353568	159613720920	1990567239584	12407439429504	46220194846240
5	496315712	417443075200	29323275213056	649617659336064	6902604520184960	42948676303436416

2 Polyhedron 4

2.1 Partition 1 of model 4

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

1	0	1	0	1	0	1	0	0	0	1	1	1	1
0	1	0	1	0	1	0	1	1	1	1	1	1	1
0	0	0	-3	0	1	0	0	0	-1	-2	-2	-1	-1
0	0	0	-1	1	0	0	-1	0	0	-1	0	0	-1
0	0	0	-2	0	0	0	1	1	0	-1	-1	-1	0
0	0	0	0	0	0	1	-1	0	0	0	0	0	0
0	0	1	-1	0	0	0	0	0	0	0	0	0	0 _

(22)

The Mori cone of the ambient space is generated by

-1	0	0	0	0	0	0	0	1	-2	0	1	0	0
0	-2	0	0	0	1	-1	-1	1	0	0	0	0	1
0	-1	-1	-1	-1	0	0	0	0	0	0	1	1	0
0	0	1	1	0	0	0	0	0	0	-2	0	0	1
0	0	1	1	1	0	0	0	0	1	0	-2	0	0
0	0	-1	-1	0	0	0	0	-1	1	1	0	0	0
0	0	1	1	1	1	0	0	0	0	0	0	-2	0
0	0	0	0	0	0	1	1	0	0	1	0	0	-2

This Mori cone is not simplicial. A positive basis for the generators of the Kähler cone is $K_7 = D_5$, $K_6 = D_4$, $K_3 = -D_1 + D_3 - D_9 + D_5$, $K_1 = D_7 - D_9 - 2D_1 + 2D_3 + D_5$, $K_5 = -D_9 - 2D_1 + 2D_3 + D_5$, $K_2 = D_3 + D_8 + 2D_7 - D_9 - 2D_1 + D_5 + D_4$, $K_4 = D_8 + 2D_7 - D_9 - 2D_1 + 2D_3 + D_5$. The Stanley Reisner ideal is

 $\begin{bmatrix} D_3 D_9, D_3 D_{12}, D_4 D_8, D_4 D_{10}, D_7 D_{10}, D_7 D_{11}, D_8 D_9, D_8 D_{11}, D_8 D_{12}, D_9 D_{10}, D_9 D_{11}, D_{10} D_{11}, D_{10} D_{12}, D_{11} D_{12}, D_1 D_2 D_{12}, D_3 D_5 D_{10} D_{10} D_{11}, D_{10} D_{11}, D_{10} D_{12}, D_{11} D_{12}, D_{11} D_{2} D_{12}, D_{3} D_5 D_{12} D_{10} D_{10} D_{11} D_{10} D_{11} D_{10} D_{12} D_{11} D_{12} D_$

The Calabi-Yau space is defined by K_1K_2 . The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 44$. The divisors D_8 , D_9 , D_{10} , D_{11} , D_{12} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -6 & 1 & 1 & 1 & 3 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(24)

The dual basis of divisors is

$$J_1 = 1/6 K_2 \qquad J_2 = -1/6 K_2 + 1/2 K_1 \tag{25}$$

Its second Chern class is

$$c_2(X) = 5 J_2 J_1 + 12 J_1^2 \tag{26}$$

The non-zero intersection numbers are

$$K_{1,1,1} = 1 K_{1,1,2} = 2 (27)$$

The linear forms are

$$c_2 \cdot J_1 = 22 \qquad \qquad c_2 \cdot J_2 = 24 \tag{28}$$

 J_2 is a K3 surface with intersection form

$$\left[\begin{array}{c}2\end{array}\right] \tag{29}$$

The genus zero instanton numbers up to degree 5 are

_						
	0	1	2	3	4	
0	0	16	2	0	0	
1	3648	17088	25632	17088	3648	
2	178680	12354912	77133912	199319904	269313408	
3	42027072	8285397376	150296908544	957565747776	3149354922240	618
4	8753885256	5317807400976	221053760557740	2877572824780752	18316074821801472	6904383
5	2599593660480	3310249645037376	270328097125865088	6392393185512636864	70206444552330709632	44527592502
						(30)

This is triangulation 2. The Gorenstein cone after desingularization is

$\begin{bmatrix} 1 \end{bmatrix}$	0	1	0	1	0	1	0	0	0	1	1	1	1
0	1	0	1	0	1	0	1	1	1	1	1	1	1
0	0	0	-3	0	1	0	0	0	-1	-2	-2	-1	-1
0	0	0	-1	1	0	0	-1	0	0	-1	0	0	-1
0	0	0	-2	0	0	0	1	1	0	-1	-1	-1	0
0	0	0	0	0	0	1	-1	0	0	0	0	0	0
0	0	1	-1	0	0	0	0	0	0	0	0	0	0

-2	0	0	0	1	0	1	1	-1	0	0	0	0	0
-1	0	-1	-1	0	0	0	0	0	-1	1	1	0	0
0	-1	-1	-1	-1	0	0	0	0	0	0	1	1	0
0	0	1	1	0	0	0	0	0	0	-2	0	0	1
0	0	1	1	1	0	0	0	0	1	0	-2	0	0
0	0	1	1	1	1	0	0	0	0	0	0	-2	0
0	0	0	0	0	0	1	1	0	0	1	0	0	-2
0	0	0	0	0	0	-1	-1	1	-1	0	0	0	1

This Mori cone is not simplicial. A positive basis for the generators of the Kähler cone is $K_7 = D_7$, $K_1 = -D_9 - 2D_1 + D_7 + 2D_3 + D_5$, $K_2 = D_3 - D_9 + D_8 - 2D_1 + 2D_7 + D_5 + D_4$, $K_4 = -D_9 + D_8 - 2D_1 + 2D_7 + 2D_3 + D_5$, $K_3 = -D_1 + D_7 + D_3 - D_9 + D_5$, $K_6 = D_5 + D_7$, $K_5 = D_4$. The Stanley Reisner ideal is

 $\begin{bmatrix} D_3 D_9, D_3 D_{12}, D_4 D_8, D_4 D_{10}, D_7 D_9, D_7 D_{10}, D_7 D_{11}, D_7 D_{12}, D_8 D_{11}, D_9 D_{10}, D_9 D_{11}, D_{10} D_{11}, D_{10} D_{12}, D_{11} D_{12}, D_1 D_2 D_7, D_2 D_7, D_2 D_7, D_2 D_7, D_2 D_7, D_2 D$

The Calabi-Yau space is defined by K_1K_2 . The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 44$. The divisors D_8 , D_9 , D_{10} , D_{11} , D_{12} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -2 & -6 & 1 & 1 & 1 & 3 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(34)

The dual basis of divisors is

$$J_1 = -1/6 K_2 + 1/2 K_1 \qquad J_2 = 1/6 K_2 \tag{35}$$

Its second Chern class is

$$c_2(X) = 5 J_2 J_1 + 12 J_2^2 \tag{36}$$

The non-zero intersection numbers are

The linear forms are

$$c_2 \cdot J_1 = 24$$
 $c_2 \cdot J_2 = 22$ (38)

 J_1 is a K3 surface with intersection form

$$\left[\begin{array}{c}2\end{array}\right] \tag{39}$$

(40)

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	3648	178680	42027072	8753885256	2599593660480
1	16	17088	12354912	8285397376	5317807400976	3310249645037376
2	2	25632	77133912	150296908544	221053760557740	270328097125865088
3	0	17088	199319904	957565747776	2877572824780752	6392393185512636864
4	0	3648	269313408	3149354922240	18316074821801472	70206444552330709632
5	0	0	199319904	6180131665920	69043832283835152	445275925022544774720

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

1	0	0	0	0	1	1	1	0
0	1	1	1	1	0	0	0	1
0	0	0	0	1	0	0	0	-1
0	0	-1	0	0	0	0	1	0
0	0	-1	0	0	1	0	0	0
0	0	-1	0	0	0	1	0	0
0	0	-1	1	0	0	0	0	0 _

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -3 & -2 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(42)

A positive basis for the generators of the Kähler cone is $K_1 = D_1$, $K_2 = D_3$. The Stanley Reisner ideal is

$$[D_3 D_7, D_1 D_2 D_4 D_5 D_6] \tag{43}$$

The Calabi-Yau space is defined by $6K_2K_1 + 6K_1^2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 56$. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -3 & -2 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(44)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = K_2 \tag{45}$$

Its second Chern class is

$$c_2(X) = 4J_1^2 + J_2^2 + 4J_2J_1 \tag{46}$$

(49)

The non-zero intersection numbers are

$$K_{1,1,1} = 6 K_{1,1,2} = 6 (47)$$

The linear forms are

 $c_2 \cdot J_1 = 48 \qquad \qquad c_2 \cdot J_2 = 24 \tag{48}$

 J_2 is a K3 surface with intersection form

Γ	0	1	2	3	4	5	
() 0	24	0	0	0	0	
	396	1152	396	0	0	0	
4	2 2610	53136	112068	53136	2610	0	(50)
,	35640	2377728	15951564	28024704	15951564	2377728	
4	605844	103323672	1602730872	6746381496	10576809936	6746381496	
ļ	5 12212172	4400303616	132192153792	1084701369600	3472953972948	5042951797248	

6

The genus zero instanton numbers up to degree 5 are

4.1 Partition 1 of model 2

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

1	0	0	0	1	1	0	0	1	0
0	1	1	1	0	0	1	1	0	2
0	0	0	0	1	0	0	0	-1	0
0	0	0	-2	0	1	0	0	0	-1
0	0	0	-1	0	0	0	1	0	0
0	0	0	-1	0	0	1	0	0	0
0	0	1	-1	0	0	0	0	0	0

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -2 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & -2 \end{bmatrix}$$
(52)

A positive basis for the generators of the Kähler cone is $K_2 = D_4$, $K_1 = D_3$, $K_3 = D_1$. The Stanley Reisner ideal is

$$[D_3D_7, D_4D_8, D_1D_2D_5D_6] (53)$$

The Calabi-Yau space is defined by $2K_2^2 + 4K_2K_1$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 58$. The divisors D_8 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = 1/2 \, K_2 \tag{55}$$

Its second Chern class is

$$c_2(X) = J_1^2 + 6 J_2^2 + 4 J_2 J_1 \tag{56}$$

The non-zero intersection numbers are

The linear forms are

$$c_2 \cdot J_1 = 24$$
 $c_2 \cdot J_2 = 40$ (58)

 J_1 is a K3 surface with intersection form

 $\left[\begin{array}{c}4\end{array}\right] \tag{59}$

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	768	9376	293632	10924128	495966976
1	16	2176	234176	24185856	2411703648	234707597824
2	0	768	495360	168619008	40145749504	7766302256640
3	0	0	234176	297281152	172102715744	66068613443584
4	0	0	9376	168619008	270657325696	214069150771200
5	0	0	0	24185856	172102715744	311660717547904

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

Γ	1	0	0	0	1	0	0	1	1	1	1	1 -	
	0	1	1	1	0	1	1	0	0	0	1	1	
	0	0	0	1	1	0	0	0	1	-1	0	1	
	0	0	0	-2	0	0	1	0	0	0	-1	-1	(61)
	0	0	0	0	0	1	0	0	-1	0	0	0	
	0	0	0	-1	0	0	0	1	0	0	0	0	
L	0	0	1	-1	0	0	0	0	0	0	0	0	

The Mori cone of the ambient space is generated by

A positive basis for the generators of the Kähler cone is $K_5 = D_8$, $K_3 = D_5$, $K_2 = D_4$, $K_4 = D_3 + D_4 + D_5$, $K_1 = D_3 + D_4 + D_5 - D_1 + D_8$. The Stanley Reisner ideal is

$$[D_3D_8, D_3D_9, D_4D_7, D_5D_9, D_5D_{10}, D_8D_{10}, D_9D_{10}, D_1D_2D_3D_6, D_1D_2D_5D_6, D_1D_2D_6D_8]$$
(63)

The Calabi-Yau space is defined by $K_2K_1 + 2K_3K_1$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 58$. The divisors D_3 , D_9 , D_{10} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

The dual basis of divisors is

$$J_1 = K_2 \qquad J_2 = 1/2 K_1 - K_2 \tag{65}$$

Its second Chern class is

$$c_2(X) = 6 J_2^2 + 7 J_2 J_1 + {J_1}^2$$
(66)

(60)

The non-zero intersection numbers are

$$K_{1,2,2} = 4 K_{2,2,2} = 1 (67)$$

The linear forms are

$$c_2 \cdot J_1 = 24$$
 $c_2 \cdot J_2 = 34$ (68)

 J_1 is a K3 surface with intersection form

$$\left[\begin{array}{c}4\end{array}\right] \tag{69}$$

(70)

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	768	9376	293632	10924128	495966976
1	64	7040	748608	76702592	7591063808	735153731328
2	24	24960	10131280	2746039040	576628466328	103124584231552
3	0	51072	66239296	40452980224	16240157919808	4984227552464768
4	0	63520	267646080	344221451008	247778295207936	124048877725156992
5	0	51072	741806144	1962255923584	2443092985545600	1928383581765485696

6 Polyhedron 1 in the list

6.1 Partition 1 of model 1

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

1	0	0	0	0	1	1	1	0
0	1	1	1	1	0	0	0	1
0	0	1	0	0	-1	0	0	1
0	0	1	0	1	-1	0	0	0
0	0	-1	0	0	0	1	0	0
0	0	-1	0	0	0	0	1	0
0	0	-1	1	0	0	0	0	0

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -1 & -2 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ -2 & 0 & 1 & 1 & -1 & 0 & 1 & 1 & -1 \end{bmatrix}$$
(72)

A positive basis for the generators of the Kähler cone is $K_2 = D_1$, $K_1 = D_1 + D_3$. The Stanley Reisner ideal is

$$[D_3 D_4 D_7, D_1 D_2 D_5 D_6] \tag{73}$$

The Calabi-Yau space is defined by $2K_1^2 + 4K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 60$. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -1 & -2 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ -3 & -2 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
(74)

The dual basis of divisors is

$$J_1 = K_1 - K_2 \qquad J_2 = K_2 \tag{75}$$

Its second Chern class is

$$c_2(X) = J_1^2 + 6 J_2 J_1 + 4 J_2^2 \tag{76}$$

(79)

(80)

The non-zero intersection numbers are

$$K_{1,2,2} = 6 K_{2,2,2} = 2 (77)$$

The linear forms are

$$c_2 \cdot J_1 = 24$$
 $c_2 \cdot J_2 = 44$ (78)

 J_1 is a K3 surface with intersection form

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	384	2634	35584	606012	12211584
1	72	2736	130392	5764032	249232392	10571395104
2	18	6912	1243224	144080640	12971756646	999171770112
3	0	9440	5603256	1480459440	254979255792	33534668602080
4	0	6912	15055758	8623900800	2694436483392	580400203457664
5	0	2736	26470224	32830966656	18124556932656	6221352556523088

[6]

7 Polyhedron 4

7.1 Partition 1 of model 4

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	0	1	0	0	1	0	1
	0	1	1	0	1	1	0	1	0
	0	0	1	0	0	0	0	1	-1
	0	0	0	0	1	0	0	0	-1
	0	0	0	0	0	1	0	0	-1
	0	0	0	0	0	0	1	0	-1
	0	0	-1	1	0	0	0	0	0

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -1 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 \\ -2 & -3 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$
(82)

A positive basis for the generators of the Kähler cone is $K_1 = D_1$, $K_2 = D_3$. The Stanley Reisner ideal is

$$[D_1 D_2, D_3 D_4 D_5 D_6 D_7] \tag{83}$$

The Calabi-Yau space is defined by $3K_1K_2 + 6K_2^2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 62$. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -1 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 \\ -2 & -3 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$
(84)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = K_2 \tag{85}$$

Its second Chern class is

$$c_2(X) = -J_1^2 + 4J_2^2 + 3J_2J_1 \tag{86}$$

The non-zero intersection numbers are

$$K_{1,2,2} = 6 K_{2,2,2} = 9 (87)$$

The linear forms are

$$c_2 \cdot J_1 = 24$$
 $c_2 \cdot J_2 = 54$ (88)

 J_1 is a K3 surface with intersection form

$$\left[\begin{array}{c} 6\end{array}\right] \tag{89}$$

(90)

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	378	2646	35556	606096	12211290
1	12	648	30132	1353696	59046084	2521375776
2	0	27	19764	3622821	405431784	35520639453
3	0	0	324	1398216	529944336	106249923936
4	0	0	-54	15762	143215128	87235305480
5	0	0	0	-1968	1316952	18108696960

8 Polyhedron 1

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

1	0	0	0	0	0	1	1	1
0	1	1	1	1	1	0	0	0
0	0	0	0	1	0	0	0	-1
0	0	-1	0	0	0	0	1	0
0	0	-1	0	0	1	0	0	0
0	0	-1	0	0	0	1	0	0
0	0	-1	1	0	0	0	0	0

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -2 & -3 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(92)

A positive basis for the generators of the Kähler cone is $K_2 = D_3$, $K_1 = D_1$. The Stanley Reisner ideal is

$$[D_3 D_7, D_1 D_2 D_4 D_5 D_6] \tag{93}$$

The Calabi-Yau space is defined by $6K_1^2 + 5K_1K_2 + K_2^2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 66$. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -3 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(94)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = K_2 \tag{95}$$

Its second Chern class is

$$c_2(X) = 4J_1^2 + 5J_2J_1 \tag{96}$$

(99)

The non-zero intersection numbers are

$$K_{1,1,1} = 5 K_{1,1,2} = 6 (97)$$

The linear forms are

$$c_2 \cdot J_1 = 50$$
 $c_2 \cdot J_2 = 24$ (98)

 J_2 is a K3 surface with intersection form

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5	
0	0	36	0	0	0	0	
1	366	1584	909	16	0	0	
2	2670	73728	255960	231336	45216	360	(100)
3	35500	3286224	34736049	106245024	119474748	48046176	
4	606264	142523712	3387935304	23702767680	66922830504	85607985132	
5	12210702	6060689280	273906849222	3623779411776	19938817169442	53346064121712	

6

9 Polyhedron 1

9.1 Partition 1 of model 1

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	0	0	0	1	1	1	0
	0	1	1	1	1	0	0	0	1
	0	0	0	-2	0	0	0	1	-1
	0	0	0	-2	1	0	0	0	-1
	0	0	0	-2	0	1	0	0	-1
	0	0	0	-2	0	0	1	0	-1
	0	0	1	-1	0	0	0	0	0

$$\begin{bmatrix} -3 & -2 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & -2 \end{bmatrix}$$
(102)

A positive basis for the generators of the Kähler cone is $K_1 = D_3$, $K_2 = D_1$. The Stanley Reisner ideal is

$$[D_1 D_2, D_3 D_4 D_5 D_6 D_7] \tag{103}$$

The Calabi-Yau space is defined by $6K_1^2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 68$. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -3 & -2 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & -2 \end{bmatrix}$$
(104)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = K_2 \tag{105}$$

(109)

(110)

Its second Chern class is

$$c_2(X) = -3J_2^2 + 4J_1^2 + 2J_2J_1$$
(106)

The non-zero intersection numbers are

The linear forms are

$$c_2 \cdot J_1 = 60 \qquad \qquad c_2 \cdot J_2 = 24 \tag{108}$$

 J_2 is a K3 surface with intersection form

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	6	0	0	0	0
1	360	360	0	0	0	0
2	2682	17064	2682	0	0	0
3	35472	770280	770280	35472	0	0
4	606348	33726420	99533664	33726420	606348	0
5	12210408	1444231296	9382024152	9382024152	1444231296	12210408

6

10 Polyhedron 1

10.1 Partition 1 of model 1

The model has 5 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

Γ	1	0	0	1	0	0	1	0	1	1 -
	0	1	1	0	1	1	0	1	0	1
	0	0	-1	0	0	0	0	1	-2	-1
	0	0	-1	0	1	0	0	0	-1	0
	0	0	-1	0	0	1	0	0	-1	0
	0	0	-1	0	0	0	1	0	-1	0
L	0	0	-1	1	0	0	0	0	0	0

$$\begin{bmatrix} -1 & -2 & 1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & -1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & -2 \end{bmatrix}$$
(112)

A positive basis for the generators of the Kähler cone is $K_1 = D_1 + D_6$, $K_2 = D_6$, $K_3 = D_3$. The Stanley Reisner ideal is

$$[D_6D_7, D_6D_8, D_1D_2D_8, D_3D_4D_5D_7, D_1D_2D_3D_4D_5]$$
(113)

The Calabi-Yau space is defined by $2K_1^2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 72$. The divisors D_8 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -4 & 2 & 2 & 1 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
(114)

The dual basis of divisors is

$$J_1 = 1/2 K_1 \qquad J_2 = K_2 \tag{115}$$

Its second Chern class is

$$c_2(X) = 4J_1^2 - 2J_2^2 + 5J_2J_1 \tag{116}$$

The non-zero intersection numbers are

$$K_{1,1,1} = 6$$
 $K_{1,1,2} = 8$ $K_{1,2,2} = 8$ $K_{2,2,2} = 8$ (117)

The linear forms are

$$c_2 \cdot J_1 = 48 \qquad \qquad c_2 \cdot J_2 = 56 \tag{118}$$

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5	
0	0	8	0	0	0	0	
1	56	1184	704	0	0	0	
2	-272	1104	82832	130192	9704	0	(119)
3	3240	-18176	132544	13865248	36973952	13506752	
4	-58432	400536	-2699264	26457848	3385637232	12854281944	
5	1303840	-10532352	71413056	-577466880	7219059360	1021710328800	

This is triangulation 2. The Gorenstein cone after desingularization is

[1	0	0	1	0	0	1	0	1	1	
0	1	1	0	1	1	0	1	0	1	
0	0	-1	0	0	0	0	1	-2	-1	
0	0	-1	0	1	0	0	0	-1	0	(120)
0	0	-1	0	0	1	0	0	-1	0	
0	0	-1	0	0	0	1	0	-1	0	
	0	-1	1	0	0	0	0	0	0 _	

$$\begin{bmatrix} -1 & -2 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & -2 \end{bmatrix}$$
(121)

A positive basis for the generators of the Kähler cone is $K_2 = D_1$, $K_3 = D_3$, $K_1 = D_6 + D_1$. The Stanley Reisner ideal is

$$[D_1 D_2, D_6 D_8, D_3 D_4 D_5 D_7] \tag{122}$$

The Calabi-Yau space is defined by $2K_1^2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 72$. The divisors D_8 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -4 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & -1 & 0 \end{bmatrix}$$
(123)

The dual basis of divisors is

$$J_1 = 1/2 K_1 \qquad J_2 = K_2 \tag{124}$$

Its second Chern class is

$$c_2(X) = 6 J_1^2 - 2 J_2^2 + 3 J_2 J_1 \tag{125}$$

The non-zero intersection numbers are

$$K_{1,1,1} = 6 (126)$$

The linear forms are

$$c_2 \cdot J_1 = 48 \qquad \qquad c_2 \cdot J_2 = 24 \tag{127}$$

 J_2 is a K3 surface with intersection form

$$\left[\begin{array}{c}4\end{array}\right] \tag{128}$$

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5]
0	0	8	0	0	0	0	
1	704	1184	56	0	0	0	
2	9704	130192	82832	1104	-272	0	(129)
3	291008	13506752	36973952	13865248	132544	-18176	
4	10952056	1351951736	9855970048	12854281944	3385637232	26457848	
5	495618240	131926687008	2028056415104	6201762710528	5040816284800	1021710328800	

11.1 Partition 1 of model 2

The model has 2 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

Γ	1	0	0	1	0	0	0	1	1 -
	0	1	1	0	1	1	1	0	0
	0	0	1	0	0	0	0	1	-1
	0	0	0	0	1	0	0	0	-1
	0	0	0	0	0	1	0	0	-1
	0	0	0	0	0	0	1	0	-1
	0	0	-1	1	0	0	0	0	0

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -2 & -3 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$
(131)

A positive basis for the generators of the Kähler cone is $K_1 = D_3$, $K_2 = D_1$. The Stanley Reisner ideal is

$$[D_1 D_2, D_3 D_4 D_5 D_6 D_7] \tag{132}$$

The Calabi-Yau space is defined by $6K_1^2 + 2K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 72$. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -3 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$
(133)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = K_2 \tag{134}$$

Its second Chern class is

$$c_2(X) = -J_2^2 + 4J_1^2 + 4J_2J_1$$
(135)

(138)

(139)

The non-zero intersection numbers are

$$K_{1,1,1} = 8 K_{1,1,2} = 6 (136)$$

The linear forms are

$$c_2 \cdot J_1 = 56 \qquad \qquad c_2 \cdot J_2 = 24 \tag{137}$$

 J_2 is a K3 surface with intersection form

	6]
The genus zero instanton numbers up to degree 5 are		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Γ		0	1	2	3	4	5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	18	0	0	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	348	900	36	-4	0	0	
4 606516 81468792 864795636 1928672640 985016556 25990110		2	2706	41778	46548	1512	-306	54	
		3	35416	1871784	8009712	5604204	153936	-24768	
5 12209820 3473471196 74041264872 363480492960 530436671676 214272257040		4	606516	81468792	864795636	1928672640	985016556	25990110	
		5	12209820	3473471196	74041264872	363480492960	530436671676	214272257040	

12.1 Partition 1 of model 4

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	0	0	0	1	0	0	1	0
0	1	1	1	1	0	1	1	0	2
0	0	0	0	1	0	0	0	-1	0
0	0	0	-2	0	1	0	0	0	-1
0	0	0	-1	0	0	0	1	0	0
0	0	0	-1	0	0	1	0	0	0
0	0	1	-1	0	0	0	0	0	0

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ -1 & -2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & -2 \end{bmatrix}$$
(141)

A positive basis for the generators of the Kähler cone is $K_1 = D_3$, $K_3 = D_1$, $K_2 = D_4$. The Stanley Reisner ideal is

$$[D_3D_7, D_4D_8, D_1D_2D_5D_6] \tag{142}$$

The Calabi-Yau space is defined by $K_1^2 + 3K_1K_2 + 2K_2^2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 72$. The divisors D_8 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = 1/2 \, K_2 \tag{144}$$

Its second Chern class is

$$c_2(X) = 6 J_2^2 + 6 J_2 J_1 \tag{145}$$

The non-zero intersection numbers are

The linear forms are

$$c_2 \cdot J_1 = 24$$
 $c_2 \cdot J_2 = 42$ (147)

 J_1 is a K3 surface with intersection form

 $\left[\begin{array}{c}4\end{array}\right] \tag{148}$

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	704	9704	291008	10952056	495618240
1	32	3904	416736	42873024	4258889312	413449786176
2	0	3216	2030176	644810720	146713202496	27524945558992
3	0	64	2699616	2830008448	1466448925952	522305452066176
4	0	-4	860352	4743969216	6016375594432	4136767940274624
5	0	0	12768	3034501632	11540204027808	16213245681158080

13.1 Partition 1 of model 16

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	1	0	0	0	0	1	0	1	0	0
0	1	0	1	1	1	1	0	1	0	2	2
0	0	0	3	-1	0	0	0	1	0	1	2
0	0	0	-1	0	0	1	0	0	0	0	0
0	0	0	-1	0	1	0	0	0	0	0	0
0	0	1	-2	0	0	0	1	0	1	-1	-1
0	0	2	-2	0	0	0	0	0	1	-1	-1

The Mori cone of the ambient space is generated by

$\begin{bmatrix} -1 \end{bmatrix}$	0	0	0	0	0	0	0	-2	1	0	1
0	-1	0	-1	0	-1	-1	0	0	0	1	1
0	0	1	0	0	0	0	1	0	-2	0	0
0	0	0	1	0	1	1	0	1	0	0	-2
0	0	0	1	1	1	1	0	0	0	-2	0

A positive basis for the generators of the Kähler cone is $K_5 = D_3$, $K_3 = D_1$, $K_1 = D_8 + 2D_1$, $K_4 = D_7 + 2D_8 + 4D_1$, $K_2 = -D_2 + D_3 + D_7 + 2D_8 + 4D_1$. The Stanley Reisner ideal is

$$[D_1D_6, D_3D_7, D_3D_{10}, D_7D_9, D_8D_9, D_8D_{10}, D_9D_{10}, D_2D_3D_4D_5, D_2D_4D_5D_7, D_2D_4D_5D_8]$$
(152)

The Calabi-Yau space is defined by K_1K_2 . The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 72$. The divisors D_7 , D_9 , D_{10} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

The dual basis of divisors is

$$J_1 = 1/2 K_1 \qquad J_2 = K_3 \tag{154}$$

Its second Chern class is

$$c_2(X) = 12 J_1^2 + 4 J_2 J_1 - 3 J_2^2$$
(155)

(149)

The non-zero intersection numbers are

The linear forms are

 $c_2 \cdot J_1 = 32 \qquad \qquad c_2 \cdot J_2 = 24 \tag{157}$

 J_2 is a K3 surface with intersection form

 $\left[\begin{array}{c}2\end{array}\right] \tag{158}$

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	
0	0	8	0	0	0	
1	3264	9024	3264	0	0	
2	193704	6677856	14161056	6677856	193704	
3	40897216	4501790208	33088733952	58621711936	33088733952	45017
4	8869331832	2899431143088	53279323863936	234194824987824	369911930813472	2341948249
5	2585556116160	1809306027051264	68666260414628736	614033520793122816	2022411513672681984	29552649225700
						(159)

14 Polyhedron 19 in the list

14.1 Partition 1 of model 19

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(160)

The Mori cone of the ambient space is generated by

A positive basis for the generators of the Kähler cone is $K_1 = D_3$, $K_3 = D_4 + D_3$, $K_2 = D_1 + D_4$. The Stanley Reisner ideal is

$$[D_3D_8, D_4D_6D_7, D_4D_6D_8, D_1D_2D_3D_5, D_1D_2D_5D_7]$$
(162)

The Calabi-Yau space is defined by $4K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 72$. The divisors D_8 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -4 & -2 & 1 & 1 & 2 & 0 & 1 & 0 & 1 & 0 \\ -4 & -4 & 0 & 0 & 2 & 2 & 0 & 2 & 2 & 0 \end{bmatrix}$$
(163)

The dual basis of divisors is

$$J_1 = 2K_1 - K_2 \qquad J_2 = -K_1 + K_2 \tag{164}$$

Its second Chern class is

$$c_2(X) = 3J_2J_1 + 2J_1^2 - 3J_2^2$$
(165)

The non-zero intersection numbers are

$$K_{1,1,1} = 108 K_{1,1,2} = -24 K_{1,2,2} = 4 (166)$$

The linear forms are

$$c_2 \cdot J_1 = 132 \qquad \qquad c_2 \cdot J_2 = -36 \tag{167}$$

 J_2 is an elliptic surface. This is triangulation 2. The Gorenstein cone after desingularization is

[1	0	0	0	1	0	1	0	1	1
0	1	1	1	0	1	0	1	0	0
0	0	0	-2	1	0	0	-1	0	-1
0	0	0	-1	0	0	0	-1	1	0
0	0	0	0	0	1	0	-1	0	0
0	0	0	-1	0	0	1	0	0	0
0	0	1	-1	0	0	0	0	0	0 _

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & -2 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 & 0 & -1 & 1 & -1 & 0 & -1 \end{bmatrix}$$
(169)

A positive basis for the generators of the Kähler cone is $K_3 = D_1$, $K_2 = D_4 + D_1$, $K_1 = D_3$. The Stanley Reisner ideal is

$$[D_3 D_8, D_1 D_2 D_5, D_4 D_6 D_7] \tag{170}$$

The Calabi-Yau space is defined by $4K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 72$. The divisors D_8 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -2 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ -4 & -2 & 1 & 1 & 2 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$
(171)

The dual basis of divisors is

$$J_1 = 2K_2 - K_1 \qquad J_2 = K_1 - K_2 \tag{172}$$

Its second Chern class is

$$c_2(X) = 9 J_2 J_1 + 2 J_1^2 + 6 J_2^2$$
(173)

The non-zero intersection numbers are

$$K_{1,2,2} = 4 \tag{174}$$

The linear forms are

$$c_2 \cdot J_1 = 24 \qquad \qquad c_2 \cdot J_2 = 36 \tag{175}$$

 J_1 is a K3 surface with intersection form

 J_2 is an elliptic surface. The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5	
0	0	704	9704	291008	10952056	495618240	
1	128	12288	1337344	135708672	13397379072	1294300782592	
2	144	103936	39945216	10230360064	2071519497472	361095490311168	(177)
3	128	638976	658513920	353338880000	130539974270976	37773988952834048	
4	140	3173888	7635363648	7724662999040	4810652504762560	2177625853806633984	
5	128	13639680	69465993216	123660569706496	122880050549305344	83266978978116784128	

 $\begin{bmatrix} 4 \end{bmatrix}$

15 Polyhedron 28 in the list

15.1 Partition 1 of model 28

The model has 2 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

1	0	0	1	0	1	0	0	1	0	1	1	1	
0	1	1	0	1	0	1	1	0	1	1	1	1	
0	0	0	-3	1	0	0	0	-1	-1	-2	-2	-1	
0	0	0	-2	0	0	0	1	0	0	-1	-1	-1	(178)
0	0	0	-1	0	1	0	0	-1	0	-1	0	0	
0	0	0	0	0	0	1	0	-1	0	0	0	0	
0	0	1	-1	0	0	0	0	0	0	0	0	0	

The Mori cone of the ambient space is generated by

This Mori cone is not simplicial. A positive basis for the generators of the Kähler cone is $K_6 = 1/2 D_8 + D_6 - 3/2 D_1 + 3/2 D_5 + D_4 + 1/2 D_3$, $K_5 = -1/2 D_3 - 1/2 D_1 + 1/2 D_5 + 1/2 D_8 + D_6 + D_4$, $K_2 = -1/2 D_1 + 1/2 D_5 + 1/2 D_8 + D_6 + 1/2 D_3$, $K_1 = D_6 - D_1 + D_5 + D_4$, $K_4 = 1/2 D_3 + 1/2 D_1 - 1/2 D_5 - 1/2 D_8 - D_6$, $K_3 = 3/2 D_5 - 1/2 D_1 + 1/2 D_8 + D_6 + 1/2 D_3$. The Stanley Reisner ideal is

The Calabi-Yau space is defined by $2K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 72$. The divisors D_8 , D_9 , D_{10} , D_{11} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori

cone of the Calabi-Yau space is generated by

The dual basis of divisors is

$$J_1 = K_2 - 1/4 K_1 \qquad J_2 = -1/2 K_2 + 1/4 K_1 \tag{182}$$

Its second Chern class is

$$c_2(X) = 16 J_2 J_1 + 8 J_1^2 + 2 J_2^2$$
(183)

The non-zero intersection numbers are

$$K_{1,1,1} = \frac{75}{4}$$
 $K_{1,1,2} = -5$ $K_{1,2,2} = 1$ (184)

The linear forms are

$$c_2 \cdot J_1 = 72$$
 $c_2 \cdot J_2 = -24$ (185)

 J_2 is an elliptic surface. This is triangulation 2. The Gorenstein cone after desingularization is 1 0 1

Γ	1	0	0	1	0	1	0	0	1	0	1	1	1	
	0	1	1	0	1	0	1	1	0	1	1	1	1	
	0	0	0	-3	1	0	0	0	-1	-1	-2	-2	-1	
	0	0	0	-2	0	0	0	1	0	0	-1	-1	-1	(186)
	0	0	0	-1	0	1	0	0	-1	0	-1	0	0	
	0	0	0	0	0	0	1	0	-1	0	0	0	0	
	0	0	1	-1	0	0	0	0	0	0	0	0	0 _	

The Mori cone of the ambient space is generated by

A positive basis for the generators of the Kähler cone is $K_6 = D_6$, $K_3 = D_3$, $K_5 = D_5 + D_6$, $K_4 = D_4 + D_8 - D_1 + D_1$ $D_5 + 2D_6, K_2 = D_8 - D_1 + D_5 + 2D_6 + D_3, K_1 = -D_1 + D_4 + D_5 + D_6$. The Stanley Reisner ideal is

The Calabi-Yau space is defined by K_1K_2 . The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 72$. The divisors D_8 , D_9 , D_{10} , D_{11} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

The dual basis of divisors is

$$J_1 = 3/4 K_1 - 1/4 K_2 \qquad J_2 = -1/4 K_1 + 1/4 K_2 \tag{190}$$

Its second Chern class is

$$c_2(X) = 12 J_2 J_1 + 2 J_1^2 + 12 J_2^2$$
(191)

The non-zero intersection numbers are

$$K_{1,2,2} = 2 \tag{192}$$

The linear forms are

 $c_2 \cdot J_1 = 24$ $c_2 \cdot J_2 = 24$ (193)

 J_1 is a K3 surface with intersection form

 J_2 is a K3 surface with intersection form

 $\left[\begin{array}{c}0\end{array}\right] \tag{195}$

The genus zero instanton numbers up to degree 5 are

$\begin{array}{c cc} 0 & 0 \\ 1 & 96 \\ 2 & 148 \end{array}$	3264 84480 1048064	193704 58787328 2731077824	40897216 39090493440	8869331832 24853336094208	2585556116160 15384774694677504
	0 0 0		00000-000		
2 148	1048064	9791077994	155500105 1050		
	1040004	2131011824	4777961654272	6504047417702720	7526789771866457088
3 96	9029632	66941515776	252439380582912	643410594137323520	1267240664887775686656
4 140	60521984	1121769568832	8212311229630464	36029225481582655168	113097188395002902791168
5 96 3	341040128	14408722875392	191754703069319168	1370287344975752832000	6545198493349608639575552

 $\begin{bmatrix} 2 \end{bmatrix}$

(196)

(194)

16 Polyhedron 1

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	0	0	0	0	1	1	0
(0	1	1	1	1	1	0	0	1
	0	0	0	0	1	0	0	0	-1
(0	0	-1	0	0	0	0	1	0
(0	0	-1	0	0	1	0	0	0
(0	0	-1	0	0	0	1	0	0
	0	0	-1	1	0	0	0	0	0

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -2 & -3 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(198)

A positive basis for the generators of the Kähler cone is $K_2 = D_3$, $K_1 = D_1$. The Stanley Reisner ideal is

$$[D_3 D_7, D_1 D_2 D_4 D_5 D_6] \tag{199}$$

The Calabi-Yau space is defined by $6K_1^2 + 4K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 76$. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -3 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(200)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = K_2 \tag{201}$$

Its second Chern class is

$$c_2(X) = J_2^2 + 4J_1^2 + 6J_2J_1 \tag{202}$$

The non-zero intersection numbers are

$$K_{1,1,1} = 4 K_{1,1,2} = 6 (203)$$

The linear forms are

$$c_2 \cdot J_1 = 52$$
 $c_2 \cdot J_2 = 24$ (204)

 J_2 is a K3 surface with intersection form

$$\left[\begin{array}{c} 6\end{array}\right] \tag{205}$$

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5	
0	0	54	0	0	0	0	
1	336	2160	2160	336	0	0	
2	2730	102492	583470	1011384	583470	102492	(206)
3	35360	4539024	75358080	400151088	885946464	885946464	
4	606684	196580898	7141800672	82704010218	418964809644	1066633771068	
5	12209232	8346574800	566341955568	12034210855968	113289157975680	555840165325248	

17 Polyhedron 1

17.1 Partition 1 of model 1

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(207)$$

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -1 & -4 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ -2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(208)

A positive basis for the generators of the Kähler cone is $K_2 = D_3$, $K_1 = D_1$. The Stanley Reisner ideal is

$$[D_3 D_7, D_1 D_2 D_4 D_5 D_6] \tag{209}$$

The Calabi-Yau space is defined by $4K_1^2 + 8K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 86$. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -1 & -4 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(210)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = K_2 \tag{211}$$

Its second Chern class is

$$c_2(X) = 6 J_1^2 + J_2^2 + 2 J_2 J_1$$
(212)

(215)

(216)

The non-zero intersection numbers are

 $K_{1,1,1} = 8 K_{1,1,2} = 4 (213)$

The linear forms are

$$c_2 \cdot J_1 = 56$$
 $c_2 \cdot J_2 = 24$ (214)

 J_2 is a K3 surface with intersection form

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	4	0	0	0	0
1	640	640	0	0	0	0
2	10032	72224	10032	0	0	0
3	288384	7539200	7539200	288384	0	0
4	10979984	757561520	2346819520	757561520	10979984	0
5	495269504	74132328704	520834042880	520834042880	74132328704	495269504

4

17.2 Partition 2 of model 1

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

1	0	0	0	0	0	0	1	1
0	1	1	1	1	1	1	0	0
0	0	0	0	1	0	0	0	-1
0	0	-1	0	0	0	0	1	0
0	0	-1	0	0	1	0	0	0
0	0	-1	0	0	0	1	0	0
0	0	-1	1	0	0	0	0	0

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -1 & -4 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(218)

A positive basis for the generators of the Kähler cone is $K_2 = D_3$, $K_1 = D_1$. The Stanley Reisner ideal is

$$[D_3 D_7, D_1 D_2 D_4 D_5 D_6] \tag{219}$$

The Calabi-Yau space is defined by $4K_1^2 + 5K_1K_2 + K_2^2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 86$. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -1 & -4 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(220)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = K_2 \tag{221}$$

Its second Chern class is

$$c_2(X) = 6 J_1^2 + 5 J_2 J_1 \tag{222}$$

(225)

The non-zero intersection numbers are

$$K_{1,1,1} = 5 K_{1,1,2} = 4 (223)$$

The linear forms are

$$c_2 \cdot J_1 = 50$$
 $c_2 \cdot J_2 = 24$ (224)

 J_2 is a K3 surface with intersection form

 The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5	
0	0	16	0	0	0	0	
1	640	2144	120	-32	3	0	
2	10032	231888	356368	14608	-4920	1680	(226)
3	288384	23953120	144785584	144051072	5273880	-1505472	
4	10979984	2388434784	36512550816	115675981232	85456640608	3018009984	
5	495269504	232460466048	7251261673320	50833652046112	106397389165188	62800738246496	

18 Polyhedron 6

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	0	0	0	0	1	1	0	1
0	1	1	1	1	1	0	0	1	1
0	0	0	0	1	0	0	0	-1	0
0	0	0	-2	0	1	0	0	0	-1
0	0	0	-1	0	0	0	1	0	0
0	0	0	-1	0	0	1	0	0	0
0	0	1	-1	0	0	0	0	0	0

$$\begin{bmatrix} -1 & -2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & -2 \end{bmatrix}$$
(228)

A positive basis for the generators of the Kähler cone is $K_3 = D_1$, $K_2 = D_3$, $K_1 = D_4$. The Stanley Reisner ideal is

$$[D_3D_7, D_4D_8, D_1D_2D_5D_6] (229)$$

The Calabi-Yau space is defined by $2K_1^2 + 2K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 86$. The divisors D_8 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -4 & 1 & 1 & 0 & 2 & 1 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
(230)

The dual basis of divisors is

$$J_1 = 1/2 K_1 \qquad J_2 = K_2 \tag{231}$$

Its second Chern class is

$$c_2(X) = 6 J_1^2 + J_2^2 + 8 J_2 J_1$$
(232)

The non-zero intersection numbers are

The linear forms are

 $c_2 \cdot J_1 = 44$ $c_2 \cdot J_2 = 24$ (234)

 J_2 is a K3 surface with intersection form

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	64	0	0	0	0
1	640	6912	14400	6912	640	0
2	10032	742784	8271360	31344000	48098560	31344000
3	288384	75933184	2445747712	26556152064	130867460608	329212616704
4	10979984	7518494784	532817161216	12305418469184	130700405114112	746592735013952
5	495269504	728114777344	97089446866176	4074651399444224	78142574531195136	816759204484794624
						(236)

19.1 Partition 1 of model 4

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

1	0	0	1	0	0	0	1	1	0
0	1	1	0	1	1	1	0	0	1
0	0	0	-3	1	0	0	-2	0	-1
0	0	0	-1	0	0	0	-1	1	0
0	0	0	-1	0	1	0	-1	0	0
0	0	0	-1	0	0	1	-1	0	0
0	0	1	-1	0	0	0	0	0	0

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -2 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & -3 \\ 0 & -2 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$
(238)

A positive basis for the generators of the Kähler cone is $K_3 = -D_1 + D_4 + D_3$, $K_2 = D_3$, $K_1 = D_4$. The Stanley Reisner ideal is

$$[D_3D_8, D_6D_8, D_1D_2D_3, D_4D_5D_6D_7, D_1D_2D_4D_5D_7]$$
(239)

The Calabi-Yau space is defined by $4K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 100$. The divisors D_8 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -4 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 0 \\ 0 & -2 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$
(240)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = -2K_1 + K_2 \tag{241}$$

Its second Chern class is

$$c_2(X) = 6 J_1^2 + 7 J_2 J_1 \tag{242}$$

The non-zero intersection numbers are

$$K_{1,1,1} = 4 K_{1,1,2} = 4 (243)$$

The linear forms are

$$c_2 \cdot J_1 = 52$$
 $c_2 \cdot J_2 = 24$ (244)

 J_2 is a K3 surface with intersection form

 $\left[\begin{array}{c}4\end{array}\right] \tag{245}$

	0	1	2	3	4	5
0	0	32	-2	0	0	0
1	576	3840	576	0	0	0
2	10360	413056	1533744	445824	-55176	98304
3	285760	42452992	561744128	1518375680	580618496	4704256
4	11007912	4217952960	134320808616	1028366160576	2261335597152	1046296810176
5	494920768	409491950592	25791106777728	411041211686912	2228121584016896	4243661500095744
						(2

The genus zero instanton numbers up to degree 5 are

This is triangulation 2. The Gorenstein cone after desingularization is

Γ	1	0	0	1	0	0	0	1	1	0
	0	1	1	0	1	1	1	0	0	1
	0	0	0	-3	1	0	0	-2	0	-1
	0	0	0	-1	0	0	0	-1	1	0
	0	0	0	-1	0	1	0	-1	0	0
	0	0	0	-1	0	0	1	-1	0	0
	0	0	1	-1	0	0	0	0	0	0

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -2 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & -2 \\ 0 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & -1 \end{bmatrix}$$
(248)

A positive basis for the generators of the Kähler cone is $K_2 = D_3$, $K_1 = D_4$, $K_3 = D_1$. The Stanley Reisner ideal is

$$[D_1 D_2, D_3 D_8, D_4 D_5 D_6 D_7] \tag{249}$$

The Calabi-Yau space is defined by $4K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 100$. The divisors D_8 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -4 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 0 \\ 0 & -2 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$
(250)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = -2K_1 + K_2 \tag{251}$$

Its second Chern class is

$$c_2(X) = 6 J_1^2 + 7 J_2 J_1 \tag{252}$$

The non-zero intersection numbers are

$$K_{1,1,1} = 4 (253)$$

The linear forms are

$$c_2 \cdot J_1 = 52$$
 $c_2 \cdot J_2 = 24$ (254)

 J_2 is a K3 surface with intersection form

(255)

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	32	-2	0	0	0
1	576	3840	576	0	0	0
2	10360	413056	1533744	445824	-55176	98304
3	285760	42452992	561744128	1518375680	580618496	4704256
4	11007912	4217952960	134320808616	1028366160576	2261335597152	1046296810176
5	494920768	409491950592	25791106777728	411041211686912	2228121584016896	4243661500095744
						(2

20 Polyhedron 5

20.1 Partition 1 of model 5

The model has 2 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	1	0	1	0	0	0	0	0	0	0]
0	1	0	1	0	1	1	1	1	1	2	2
0	0	0	0	0	-1	0	0	3	1	1	2
0	0	0	0	1	0	0	0	-2	0	-1	-1
0	0	1	0	0	0	0	1	-1	0	0	0
0	0	0	0	0	0	1	0	-1	0	0	0
0	0	-1	1	0	0	0	0	0	0	0	0

The Mori cone of the ambient space is generated by

-1	0	1	1	0	0	0	-1	0	0	0	0	
-1	0	0	0	1	0	0	0	0	-2	0	1	
0	-1	0	0	0	0	-1	-1	-1	0	1	1	(258)
0	0	0	0	0	1	1	1	1	0	-2	0	
0	0	0	0	0	0	1	1	1	1	0	-2	

A positive basis for the generators of the Kähler cone is $K_2 = D_3$, $K_4 = D_4$, $K_3 = -D_5 + D_4 + D_8 + 2D_3$, $K_5 = D_8 + 2D_3$, $K_1 = D_1$. The Stanley Reisner ideal is

$$[D_1D_2, D_3D_9, D_3D_{10}, D_4D_8, D_4D_{10}, D_8D_9, D_9D_{10}, D_3D_5D_6D_7, D_4D_5D_6D_7, D_5D_6D_7D_8]$$
(259)

The Calabi-Yau space is defined by $K_1K_3 + K_2K_3$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 100$. The divisors D_8 , D_9 , D_{10} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -1 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ -2 & -6 & 0 & 0 & 2 & 3 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$
(260)

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = 1/2 \, K_2 \tag{261}$$

Its second Chern class is

$$c_2(X) = 12 J_2^2 - J_1^2 + 3 J_2 J_1$$
(262)

(265)

The non-zero intersection numbers are

The linear forms are

$$c_2 \cdot J_1 = 24$$
 $c_2 \cdot J_2 = 42$ (264)

 J_1 is a K3 surface with intersection form

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	2880	208728	39767360	8984778408	2571518571840
1	4	4752	3603528	2445085664	1580414726844	988726084819920
2	0	252	2204928	6905771456	12536489815488	17213021137437120
3	0	0	20520	2493967312	16303941022572	54281784750359040
4	0	0	-9252	17671840	4149078701904	43526767714418880
5	0	0	0	-2695040	24150423420	8540389793334960

 $\begin{bmatrix} 2 \end{bmatrix}$

21 Polyhedron 8

21.1 Partition 1 of model 8

The model has 2 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	1	1	0	0	0	0	0	0	1	1
0	1	0	0	1	1	1	1	1	1	1	1
0	0	0	-3	1	0	0	0	-1	-1	-2	-1
0	0	0	-2	0	0	1	0	1	0	-1	-1
0	0	0	0	0	1	0	0	-1	0	0	0
0	0	0	-1	0	0	0	1	0	0	0	0
0	0	1	-1	0	0	0	0	0	0	0	0

The Mori cone of the ambient space is generated by

This Mori cone is not simplicial. A positive basis for the generators of the Kähler cone is $K_5 = D_5$, $K_3 = D_3$, $K_1 = D_4 + D_5$, $K_4 = D_8 + 3D_4 + 2D_5$, $K_2 = -D_1 + 2D_5 + D_3 + D_8 + 3D_4$. The Stanley Reisner ideal is

$$\begin{bmatrix} D_3 D_8, D_3 D_9, D_5 D_8, D_5 D_9, D_5 D_{10}, D_8 D_{10}, D_9 D_{10}, D_3 D_4 D_7, D_4 D_7 D_9, D_4 D_7 D_{10}, D_1 D_2 D_3 D_6, D_1 D_2 D_5 D_6, D_1 D_2 D_6 D_8, D_1 D_2 D_8, D_1 D_2 D_8, D_1 D_2 D_8, D_1 D_2 D_8, D_1 D_$$

The Calabi-Yau space is defined by K_1K_2 . The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 100$. The divisors D_8 , D_9 , D_{10} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -6 & 1 & 1 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 1 & 1 & -1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$
(270)

The dual basis of divisors is

$$J_1 = 1/2 K_1 \qquad J_2 = 1/2 K_2 - 3/2 K_1 \tag{271}$$

Its second Chern class is

$$c_2(X) = 12 J_1^2 + 11 J_2 J_1 \tag{272}$$

The non-zero intersection numbers are

$$K_{1,1,1} = 1 K_{1,1,2} = 2 (273)$$

The linear forms are

$$c_2 \cdot J_1 = 34$$
 $c_2 \cdot J_2 = 24$ (274)

 J_2 is a K3 surface with intersection form

$$2] \qquad (275)$$

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	
0	0	48	-2	0	0	
1	2880	45120	135200	45120	2880	
2	208728	31854624	536009384	2873844768	5329853440	
3	39767360	21253338240	1091380294400	17654952181440	123133222380800	
4	8984778408	13561202128944	1602986818855252	56998790586691440	893735526092204032	72
5	2571518571840	8412769444060608	1940157518425228928	129007680793510300992	3749287422381954161792	574923
					(276)	

This is triangulation 2. The Gorenstein cone after desingularization is

1	0	1	1	0	0	0	0	0	0	1	1
0	1	0	0	1	1	1	1	1	1	1	1
0	0	0	-3	1	0	0	0	-1	-1	-2	-1
0	0	0	-2	0	0	1	0	1	0	-1	-1
0	0	0	0	0	1	0	0	-1	0	0	0
0	0	0	-1	0	0	0	1	0	0	0	0
0	0	1	-1	0	0	0	0	0	0	0	0

A positive basis for the generators of the Kähler cone is $K_4 = D_8 + 2D_5 + 3D_4$, $K_2 = D_8 + 2D_5 + 3D_4 - D_1 + D_3$, $K_5 = D_4$, $K_1 = D_5 + D_4$, $K_3 = D_3$. The Stanley Reisner ideal is

$$[D_3D_8, D_3D_9, D_4D_7, D_5D_9, D_5D_{10}, D_8D_{10}, D_9D_{10}, D_1D_2D_3D_6, D_1D_2D_5D_6, D_1D_2D_6D_8]$$
(279)

The Calabi-Yau space is defined by K_1K_2 . The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 100$. The divisors D_8 , D_9 , D_{10} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -6 & 1 & 1 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 1 & 1 & -1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$
(280)

The dual basis of divisors is

$$J_1 = 1/2 K_1 \qquad J_2 = 1/2 K_2 - 3/2 K_1 \tag{281}$$

Its second Chern class is

$$c_2(X) = 12 J_1^2 + 11 J_2 J_1 \tag{282}$$

The non-zero intersection numbers are

$$K_{1,1,1} = 1 K_{1,1,2} = 2 (283)$$

The linear forms are

$$c_2 \cdot J_1 = 34$$
 $c_2 \cdot J_2 = 24$ (284)

 J_2 is a K3 surface with intersection form

 $\left[\begin{array}{c}2\end{array}\right] \tag{285}$

The genus zero instanton numbers up to degree 5 are

_						
	0	1	2	3	4	
0	0	48	-2	0	0	
1	2880	45120	135200	45120	2880	
2	208728	31854624	536009384	2873844768	5329853440	
3	39767360	21253338240	1091380294400	17654952181440	123133222380800	
4	8984778408	13561202128944	1602986818855252	56998790586691440	893735526092204032	72
5	2571518571840	8412769444060608	1940157518425228928	129007680793510300992	3749287422381954161792	574923
					(286)	

22.1 Partition 1 of model 13

The model has 2 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	1	1	1	1	1	1	2	2	2	3
0	0	0	-3	0	1	0	0	-1	-3	0	-1	-2	-1	-2
0	0	0	-1	1	0	0	0	0	-2	-1	-1	-1	-1	-2
0	0	0	-1	0	0	0	1	0	-1	0	0	0	0	0
0	0	0	-1	0	0	1	0	0	-1	0	0	0	0	0
	0	1	-1	0	0	0	0	0	0	1	1	0	0	1 .

The Mori cone of the ambient space is generated by

[-1	0	0	0	1	0	0	0	-2	0	0	0	1	0	0	
	0	-1	0	0	0	0	-1	-1	0	-1	-1	0	0	1	1	
	0	0	1	0	0	0	0	0	0	0	0	-2	0	0	1	
	0	0	1	1	-1	0	0	0	0	-1	0	0	0	0	0	(900)
	0	0	-1	0	0	0	-1	-1	0	-1	0	1	1	0	0	(288)
	0	0	0	0	0	1	1	1	0	1	0	0	0	-2	0	
	0	0	0	0	0	0	1	1	0	1	1	1	0	0	-2	
	0	0	0	0	0	0	1	1	1	1	0	0	-2	0	0	

A positive basis for the generators of the Kähler cone is $K_5 = -D_5 + D_9 + 2D_2 + D_4 + D_7 + 2D_3$, $K_2 = -D_5 + D_7 + D_{10} + 2D_1 + D_4 + 2D_3$, $K_6 = D_4$, $K_4 = D_2$, $K_1 = D_3 + D_2$, $K_3 = D_1 + D_2 - D_5 + D_9 + D_4 + D_7 + 2D_3$, $K_7 = -D_5 + D_9 + D_{10} + 2D_1 + D_4 + D_7 + 2D_3$, $K_8 = D_7 + 2D_3 + 2D_2$. The Stanley Reisner ideal is

$$\begin{bmatrix} D_1 D_2, D_1 D_{12}, D_1 D_{13}, D_2 D_9, D_2 D_{10}, D_2 D_{13}, D_3 D_9, D_3 D_{10}, D_3 D_{11}, D_3 D_{12}, D_3 D_{13}, D_4 D_7, D_4 D_{10}, D_4 D_{11}, D_4 D_{13}, D_7 D_9, D_7 D_{10} D_{10}, D_4 D_{11}, D_4 D_{13}, D_7 D_9, D_7 D_{10} D_{$$

The Calabi-Yau space is defined by K_1K_2 . The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 100$. The divisors D_7 , D_9 , D_{10} , D_{11} , D_{12} , D_{13} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -6 & 0 & 0 & 2 & 3 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(290)

The dual basis of divisors is

$$J_1 = 1/2 K_1 \qquad J_2 = K_4 \tag{291}$$

Its second Chern class is

$$c_2(X) = 12 J_1^2 - 2 J_2^2 + 3 J_2 J_1$$
(292)

The non-zero intersection numbers are

$$K_{1,1,1} = 3 K_{1,1,2} = 2 (293)$$

The linear forms are

$$c_2 \cdot J_1 = 42$$
 $c_2 \cdot J_2 = 24$ (294)

 J_2 is a K3 surface with intersection form

$$\left[\begin{array}{c}2\end{array}\right] \tag{295}$$

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	4	0	0	0	0
1	2880	4752	252	0	0	0
2	208728	3603528	2204928	20520	-9252	0
3	39767360	2445085664	6905771456	2493967312	17671840	-2695040
4	8984778408	1580414726844	12536489815488	16303941022572	4149078701904	24150423420
5	2571518571840	988726084819920	17213021137437120	54281784750359040	43526767714418880	8540389793334960
						(296)

This is triangulation 2. The Gorenstein cone after desingularization is

1	0	0	1	1	0	0	0	0	0	0	0	0	0	0 -	
0	1	1	0	0	1	1	1	1	1	1	2	2	2	3	
0	0	0	-3	0	1	0	0	-1	-3	0	-1	-2	-1	-2	
0	0	0	-1	1	0	0	0	0	-2	-1	-1	-1	-1	-2	(297)
0	0	0	-1	0	0	0	1	0	-1	0	0	0	0	0	
0	0	0	-1	0	0	1	0	0	-1	0	0	0	0	0	
0	0	1	-1	0	0	0	0	0	0	1	1	0	0	1 _	

The Mori cone of the ambient space is generated by

Γ	$^{-1}$	0	1	1	0	0	0	0	-2	-1	0	0	1	0	0	
	0	-1	0	0	0	0	-1	-1	0	-1	-1	0	0	1	1	
	0	0	-1	-1	1	0	0	0	0	1	0	0	0	0	0	
	0	0	1	0	0	0	0	0	0	0	0	-2	0	0	1	(202)
	0	0	-1	0	0	0	-1	-1	0	-1	0	1	1	0	0	(298)
	0	0	0	0	0	1	1	1	0	1	0	0	0	-2	0	
	0	0	0	0	0	0	1	1	0	1	1	1	0	0	-2	
	0	0	0	0	0	0	1	1	1	1	0	0	-2	0	0	

A positive basis for the generators of the Kähler cone is $K_6 = D_4$, $K_3 = D_3$, $K_1 = D_2 + D_3$, $K_4 = -D_5 + D_9 + D_1 + D_2 + D_4 + D_7 + 2D_3$, $K_2 = -D_5 + D_7 + 2D_1 + D_{10} + D_4 + 2D_3$, $K_8 = D_7 + 2D_2 + 2D_3$, $K_5 = 2D_2 - D_5 + D_9 + D_4 + D_7 + 2D_3$, $K_7 = -D_5 + D_9 + 2D_1 + D_{10} + D_4 + D_7 + 2D_3$. The Stanley Reisner ideal is

$$\begin{bmatrix} D_1 D_{12}, D_1 D_{13}, D_2 D_9, D_2 D_{10}, D_2 D_{13}, D_3 D_8, D_3 D_9, D_3 D_{10}, D_3 D_{11}, D_3 D_{12}, D_3 D_{13}, D_4 D_7, D_4 D_{10}, D_4 D_{11}, D_4 D_{13}, D_7 D_9, D_7 D_{10}, D_7 D$$

The Calabi-Yau space is defined by K_1K_2 . The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 100$. The divisors D_7 , D_9 , D_{10} , D_{11} , D_{12} , D_{13} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$.

The Mori cone of the Calabi-Yau space is generated by

The dual basis of divisors is

$$J_1 = 1/2 K_1 \qquad J_2 = K_3 \tag{301}$$

Its second Chern class is

$$c_2(X) = 10 J_1^2 - 2 J_2^2 + 5 J_2 J_1$$
(302)

The non-zero intersection numbers are

$$K_{1,1,1} = 3$$
 $K_{1,1,2} = 4$ $K_{1,2,2} = 4$ $K_{2,2,2} = 4$ (303)

The linear forms are

$$c_2 \cdot J_1 = 42$$
 $c_2 \cdot J_2 = 52$ (304)

The genus zero instanton numbers up to degree 5 are $% \left({{{\mathbf{x}}_{1}}} \right)$

	0	1	2	3	4	5	
0	0	4	0	0	0	0	
1	252	4752	2880	0	0	0	
2	-9252	20520	2204928	3603528	208728	0	(305)
3	848628	-2695040	17671840	2493967312	6905771456	2445085664	
4	-114265008	460972620	-2654170560	24150423420	4149078701904	16303941022572	
5	18958064400	-92258120448	515459515968	-3831306746112	45162481474512	8540389793334960	

This is triangulation 3. The Gorenstein cone after desingularization is

Γ	1	0	0	1	1	0	0	0	0	0	0	0	0 -	
	0	1	1	0	0	1	1	1	1	1	1	2	2	
	0	0	0	-3	0	1	0	0	-1	-3	0	-2	-1	
	0	0	0	-1	1	0	0	0	0	-2	-1	-1	-1	(30
	0	0	0	-1	0	0	0	1	0	-1	0	0	0	
	0	0	0	-1	0	0	1	0	0	-1	0	0	0	
L	0	0	1	-1	0	0	0	0	0	0	1	0	0	

The Mori cone of the ambient space is generated by

-1	0	-1	0	1	0	0	0	0	0	1	0	0	
0	-1	0	0	0	0	-1	-1	0	-1	0	1	1	
0	0	1	1	-1	0	0	0	0	-1	0	0	0	(207)
0	0	1	0	0	0	0	0	-2	0	-1	1	0	(307)
0	0	0	0	0	1	1	1	0	1	0	0	-2	
0	0	0	0	0	0	1	1	1	1	0	-2	0	

A positive basis for the generators of the Kähler cone is $K_3 = D_2$, $K_5 = D_4$, $K_1 = D_3 + D_2$, $K_4 = D_1 + D_3$, $K_2 = -D_5 + 2D_3 + D_4 + D_7 + 2D_1$, $K_6 = D_7 + 2D_1 + 2D_3$. The Stanley Reisner ideal is

$$\begin{bmatrix} D_1 D_2, D_1 D_{10}, D_1 D_{11}, D_2 D_9, D_3 D_9, D_3 D_{10}, D_3 D_{11}, D_4 D_7, D_4 D_{10}, D_7 D_{11}, D_{10} D_{11}, D_1 D_5 D_6 D_8, D_3 D_5 D_6 D_8, D_4 D_5 D_6 D_8, D_6 D_8, D_6 D_8, D_6 D_8, D_6 D_8,$$

The Calabi-Yau space is defined by K_1K_2 . The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 100$. The divisors D_7 , D_9 , D_{10} , D_{11} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -6 & 0 & 0 & 2 & 3 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix}$$
(309)

The dual basis of divisors is

$$J_1 = 1/2 K_1 \qquad J_2 = K_3 \tag{310}$$

Its second Chern class is

$$c_2(X) = 12 J_1^2 - 2 J_2^2 + 3 J_2 J_1$$
(311)

The non-zero intersection numbers are

The linear forms are

$$c_2 \cdot J_1 = 42 \qquad \qquad c_2 \cdot J_2 = 24 \tag{313}$$

 J_2 is a K3 surface with intersection form

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
(0	4	0	0	0	0
1	2880	4752	252	0	0	0
2	208728	3603528	2204928	20520	-9252	0
ŝ	39767360	2445085664	6905771456	2493967312	17671840	-2695040
4	8984778408	1580414726844	12536489815488	16303941022572	4149078701904	24150423420
Ę	2571518571840	988726084819920	17213021137437120	54281784750359040	43526767714418880	8540389793334960
						(315)

This is triangulation 4. The Gorenstein cone after desingularization is

[1	0	0	1	1	0	0	0	0	0	0	0	0]
0	1	1	0	0	1	1	1	1	1	1	2	2
0	0	0	-3	0	1	0	0	-1	-3	0	-2	-1
0	0	0	-1	1	0	0	0	0	-2	-1	-1	-1
0	0	0	-1	0	0	0	1	0	-1	0	0	0
0	0	0	-1	0	0	1	0	0	-1	0	0	0
0	0	1	-1	0	0	0	0	0	0	1	0	0

A positive basis for the generators of the Kähler cone is $K_1 = D_2 + D_3$, $K_4 = D_1 + D_3$, $K_3 = D_3$, $K_5 = D_4$, $K_2 = -D_5 + D_4 + D_7 + 2D_1 + 2D_3$, $K_6 = D_7 + 2D_1 + 2D_3$. The Stanley Reisner ideal is

 $\begin{bmatrix} D_1 D_{10}, D_1 D_{11}, D_2 D_9, D_3 D_8, D_3 D_9, D_3 D_{10}, D_3 D_{11}, D_4 D_7, D_4 D_{10}, D_7 D_{11}, D_{10} D_{11}, D_1 D_2 D_5 D_6, D_1 D_5 D_6 D_8, D_4 D_5 D_6 D_8, D_6 D_8$

The Calabi-Yau space is defined by K_1K_2 . The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 100$. The divisors D_7 , D_9 , D_{10} , D_{11} do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -6 & 2 & 2 & 0 & 3 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$
(319)

The dual basis of divisors is

$$J_1 = 1/2 K_1 \qquad J_2 = K_3 \tag{320}$$

Its second Chern class is

$$c_2(X) = 10 J_1^2 - 2 J_2^2 + 5 J_2 J_1$$
(321)

The non-zero intersection numbers are

$$K_{1,1,1} = 3$$
 $K_{1,1,2} = 4$ $K_{1,2,2} = 4$ (322)

The linear forms are

$$c_2 \cdot J_1 = 42$$
 $c_2 \cdot J_2 = 52$ (323)

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5	
0	0	4	0	0	0	0	
1	252	4752	2880	0	0	0	
2	-9252	20520	2204928	3603528	208728	0	(324)
3	848628	-2695040	17671840	2493967312	6905771456	2445085664	
4	-114265008	460972620	-2654170560	24150423420	4149078701904	16303941022572	
5	18958064400	-92258120448	515459515968	-3831306746112	45162481474512	8540389793334960	

23 Polyhedron 1 in the list

The model has 1 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

$\begin{bmatrix} 1 \end{bmatrix}$	0	0	0	1	0	0	1	0	1
0	1	1	1	0	1	1	0	1	0
0	0	0	3	0	-1	0	0	1	0
0	0	0	0	1	0	0	0	0	-1
0	0	0	-1	0	0	0	1	0	0
0	0	0	-1	0	0	1	0	0	0
0	0	1	-1	0	0	0	0	0	0

The Mori cone of the ambient space is generated by

									-2
	-3								
0	1	0	0	1	0	0	0	-2	0

A positive basis for the generators of the Kähler cone is $K_1 = D_3$, $K_2 = D_1$, $K_3 = D_4$. The Stanley Reisner ideal is

$$[D_3D_8, D_4D_7, D_1D_2D_5D_6] (327)$$

The Calabi-Yau space is defined by $2K_3K_2 + 4K_1K_3$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 128$. The divisors D_7 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

The dual basis of divisors is

$$J_1 = K_1 \qquad J_2 = K_2 \tag{329}$$

Its second Chern class is

$$c_2(X) = J_1^2 + 2J_2J_1 + 12J_2^2$$
(330)

The non-zero intersection numbers are

The linear forms are

$$c_2 \cdot J_1 = 24$$
 $c_2 \cdot J_2 = 52$ (332)

 J_1 is a K3 surface with intersection form

r 1	
$\begin{bmatrix} 2 \end{bmatrix}$	(333)

(334)

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5
0	0	2496	223752	38637504	9100224984	2557481027520
1	2	2496	1941264	1327392512	861202986072	540194037151104
2	0	0	223752	1327392512	2859010142112	4247105405354496
3	0	0	0	38637504	861202986072	4247105405354496
4	0	0	0	0	9100224984	540194037151104
5	0	0	0	0	0	2557481027520

24 Polyhedron 3 in the list

24.1 Partition 1 of model 3

The model has 2 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	0	1	0	0	0	1	0	0	1
0	1	1	0	1	1	1	0	1	1	1
0	0	-1	0	1	0	0	-3	0	-1	-2
0	0	-1	0	0	0	0	-1	1	0	-1
0	0	1	0	0	1	0	-1	0	0	0
0	0	0	0	0	0	1	-1	0	0	0
0	0	-1	1	0	0	0	0	0	0	0

The Mori cone of the ambient space is generated by

A positive basis for the generators of the Kähler cone is $K_1 = D_7$, $K_4 = -D_4 + D_7 + D_3$, $K_3 = D_1 + D_3$, $K_2 = D_3$. The Stanley Reisner ideal is

$$[D_3D_8, D_7D_9, D_8D_9, D_1D_2D_7, D_1D_2D_8, D_3D_4D_9, D_1D_2D_5D_6, D_3D_4D_5D_6, D_4D_5D_6D_7]$$
(337)

The Calabi-Yau space is defined by $2K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 128$. The divisors D_8 , D_9 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -2 & -12 & 0 & 0 & 6 & 2 & 2 & 2 & 2 & 0 & 0 \\ -6 & -24 & 3 & 3 & 12 & 0 & 3 & 3 & 6 & 0 & 0 \end{bmatrix}$$
(338)

The dual basis of divisors is

$$J_1 = 3/2 K_2 - K_1 \qquad J_2 = -1/2 K_2 + 1/2 K_1 \tag{339}$$

Its second Chern class is

$$c_2(X) = -58 J_2^2 - 20 J_2 J_1 \tag{340}$$

The non-zero intersection numbers are

$$K_{1,1,1} = \frac{245}{2}$$
 $K_{1,1,2} = -\frac{63}{2}$ $K_{1,2,2} = 8$ $K_{2,2,2} = -2$ (341)

The linear forms are

$$c_2 \cdot J_1 = 166 \qquad \qquad c_2 \cdot J_2 = -44 \qquad (342)$$

This is triangulation 2. The Gorenstein cone after desingularization is

[1	0	0	1	0	0	0	1	0	0	1	
0	1	1	0	1	1	1	0	1	1	1	
0	0	-1	0	1	0	0	-3	0	-1	-2	
0	0	-1	0	0	0	0	-1	1	0	-1	(343)
0	0	1	0	0	1	0	-1	0	0	0	
0	0	0	0	0	0	1	-1	0	0	0	
0	0	-1	1	0	0	0	0	0	0	0	

The Mori cone of the ambient space is generated by

A positive basis for the generators of the Kähler cone is $K_3 = D_1 + D_4$, $K_1 = D_7$, $K_2 = D_3$, $K_4 = D_4 + D_7$. The Stanley Reisner ideal is

$$[D_3D_8, D_4D_9, D_7D_9, D_1D_2D_7, D_4D_5D_6, D_1D_2D_5D_6]$$
(345)

The Calabi-Yau space is defined by $2K_1K_2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 128$. The divisors D_8 , D_9 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -1 & -2 & 1 & 1 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\ -1 & -6 & 0 & 0 & 3 & 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$
(346)

The dual basis of divisors is

$$J_1 = 3/2 K_1 - 1/2 K_2 \qquad J_2 = -1/2 K_1 + 1/2 K_2 \tag{347}$$

Its second Chern class is

$$c_2(X) = 12 J_2^2 + 10 J_2 J_1 \tag{348}$$

The non-zero intersection numbers are

The linear forms are

 $c_2 \cdot J_1 = 24$ $c_2 \cdot J_2 = 44$ (350)

 J_1 is a K3 surface with intersection form

$\left[\begin{array}{c}2\end{array}\right]$	(351)
---	-------

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4	5	
0	0	2496	223752	38637504	9100224984	2557481027520	
1	24	24000	17244192	11552340480	7397501182992	4599501889727232	
2	-2	4544	92555600	239152764672	387426434941992	494590812861015424	(352)
3	0	-4096	22945824	911674812096	4444162191527440	12266354287567890432	
4	0	6144	-12818168	283693717248	13387851546648736	97181124180965503488	
5	0	-8192	24969216	-89080677888	4975406530694672	246059182807985648960	

25 Polyhedron 18 in the list

The model has 2 triangulations. This is triangulation 1. The Gorenstein cone after desingularization is

[1	0	0	0	1	0	1	0	0	0
0	1	1	1	0	1	0	1	1	1
0	0	0	-3	0	0	1	0	-2	-1
0	0	0	-3	1	0	0	0	-2	-1
0	0	0	0	0	1	0	0	-1	0
0	0	0	-1	0	0	0	1	0	0
	0	1	-1	0	0	0	0	0	0 _

The Mori cone of the ambient space is generated by

$$\begin{bmatrix} -2 & -1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -2 \end{bmatrix}$$
(354)

A positive basis for the generators of the Kähler cone is $K_2 = D_1$, $K_1 = D_3$, $K_3 = D_4$. The Stanley Reisner ideal is

$$[D_4 D_7, D_1 D_2 D_6, D_3 D_5 D_8] \tag{355}$$

The Calabi-Yau space is defined by $2K_1^2$. The Hodge numbers of this Calabi-Yau manifold are $h^{1,1} = 2$ and $h^{2,1} = 128$. The divisors D_8 do not intersect the CY. The number of toric moduli is $\tilde{h}^{1,1} = 2$. The Mori cone of the Calabi-Yau space is generated by

$$\begin{bmatrix} -6 & -3 & 1 & 1 & 3 & 0 & 3 & 1 & 0 & 0 \\ -4 & -2 & 0 & 0 & 2 & 1 & 2 & 0 & 1 & 0 \end{bmatrix}$$
(356)

The dual basis of divisors is

$$J_1 = K_2 \qquad J_2 = 1/2 K_1 - 3/2 K_2 \tag{357}$$

Its second Chern class is

$$c_2(X) = 18 J_2 J_1 + 12 J_1^2 + 5 J_2^2$$
(358)

The non-zero intersection numbers are

$$K_{1,1,2} = 2 \tag{359}$$

The linear forms are

$$c_2 \cdot J_1 = 36$$
 $c_2 \cdot J_2 = 24$ (360)

 J_1 is an elliptic surface. J_2 is a K3 surface with intersection form

 $\left[\begin{array}{c}2\end{array}\right] \tag{361}$

The genus zero instanton numbers up to degree 5 are

	0	1	2	3	4
0	0	288	252	288	252
1	2496	216576	6391296	104994816	1209337344
2	223752	152031744	19638646848	1180450842624	43199009739072
3	38637504	100021045248	34832157566976	4962537351009792	401057938191181824
4	9100224984	63330228232704	47042083144050624	13025847457256417280	1937385878589532624320
5	2557481027520	39070309414708224	53795625831623734272	25710308960162910621696	6317389886277581330494464
					(362)