New Calabi-Yau 3-folds and their mirrors via conifold transitions / data supplement
[arXiv:math/0802.3376]

data supplements
V. Batyrev, M. Kreuzer:
Constructing new Calabi-Yau 3-folds and their mirrors via conifold transitions




  • Results and Hodge data
Picard number: 1 2 3 4 5 6 7 8 9 10 11 12 15 #conifolds: 8871 43080 74570 50863 17090 3540 646 124 41 17 2 4 1 #smooth CYs: 210 3470 11389 10264 3898 815 140 35 9 8 1 1 1 #topologies: 69 Lists with h11=1:
Ypic1.sortH.gz Ypic1.sortV.gz 8871 CYs with h12 = 21,23-51,53,55,59,61,65,73,76,79,89,101,103,129 210 smooth: h12 = 25,28-41,45,47,51,53,55,59,61,65,73,76,79,89,101,103,129 Lists with h11=2: Ypic2.sortH.gz Ypic2.sortV.gz 43080 CYs with h12 = 22,24-80,82-90,96,100,102,103,111,112,116,128 3470 smooth: h12 = 26,28-60,62-68,70,72,74,76,77,78,80,82-84,86,88,90,96,100,102,112,116,128 Lists with h11=3: Ypic3.sortH.gz Ypic3.sortV.gz 74570 CYs with h12 = 23-97,99-107,111,112,115,118,121,124 11389 smooth: h12 = 25,27-73,75-79,81,83,85,87,89,91,93,95,99,101,103,105,107,111,115 Lists with h11=4: Ypic4.sortH.gz Ypic4.sortV.gz 50863 CYs with h12 = 20,22-108,111-112,115 10264 smooth: h12 = 24,28,30-76,78-82,84,86,88-98,100,102,104,106,112 Lists with h11=5: Ypic5.sortH.gz Ypic5.sortV.gz 17090 CYs with h12 = 21,23-93,95,97,99,100,108 3898 smooth: h12 = 27,29,30-83,85-93,97 Lists with h11=6: Ypic6.sortH.gz Ypic6.sortV.gz 3540 CYs with h12 = 24-80,82,83,85 815 smooth: h12 = 28,30-32,34-56,58-70,72-76,80,82 Lists with h11=7: Ypic7.sortH.gz Ypic7.sortV.gz 646 CYs with h12 = 21,24-64,66,67,70,76 140 smooth: h12 = 27,29-31,33-35,37-41,43,45,47,49-51,53,55,57,59,61,62,64,76 Lists with h11=8: Ypic8.sortH.gz Ypic8.sortV.gz 124 CYs with h12 = 24-34,36-46,49-53 35 smooth: h12 = 30,32-34,36,38,40,42,44,52 Lists with h11=9: Ypic9.sortH.gz Ypic9.sortV.gz 41 CYs with h12 = 19,24-35,37,38,40,43,44,47 9 smooth: h12 = 31,33,37 Lists with h11=10: Ypic10.sortH.gz Ypic10.sortV.gz 17 CYs with h12 = 23,24,26-28,30,34,36 8 smooth: h12 = 26,30,34,36 Lists with h11=11: Ypic11.sortH.gz Ypic11.sortV.gz 2 CYs with h12 = 23,27 1 smooth: h12 = 27 Lists with h11=12: Ypic12.sortH.gz Ypic12.sortV.gz 4 CYs with h12 = 22,24,26,28 1 smooth: h12 = 28 Lists with h11=15: Ypic15.sortH.gz Ypic15.sortV.gz 1 (smooth) CY with h12 = 23

  • File lists and HOWTO find the polytopes
Results: Y.v06.gz Y.v07.gz Y.v08.gz Y.v09.gz Y.v10.gz 
Y.v11.gz Y.v12.gz Y.v13.gz Y.v14.gz Y.v15.gz Y.v16.gz 
Y.v17.gz Y.v18.gz Y.v19.gz Y.v20.gz Y.v21.gz Y.v22.gz 
Y.v23.gz Y.v24.gz Y.v25.gz Y.v26.gz Y.v27.gz 

HOWTO find the polytopes: Find the spectra in "Ypic#.sortH", then search for the correct 
file(s) in "Ypic#.sortV" (look for "Y.v##.gz" at beginning of line).
FILE FORMATS: rk=rank of relations due to squares <= #sq,  #sq=number of basic squares, 
#dp=number of double points,  toric=spec of toric resolution  F=F-vector of M-lattice polytope
dim x #vertices: N-lattice polytope as column vectors,  M: #points #vertices  N: #points #vertices

  • HOWTO reproduce the results (assuming a UNIX-like environment)
  mkdir ccy ; cd ccy ; WD=$PWD                                              # create working directory
  wget hep.itp.tuwien.ac.at/~kreuzer/CY/palp/palp-1.1.tar.gz                # fetch and compile PALP
  gunzip palp-*.tar.gz; tar -xvf palp-*.tar
  cd palp ; make ; cd $WD
  wget http://quark.itp.tuwien.ac.at/~kreuzer/d4/zzdb.info                  # fetch 4d reflexive polytopes:
  VL="05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27" # be sure you want to do this,
  for NV in $VL ; do                                                        # these are 4.5 GB !!!
      wget http://quark.itp.tuwien.ac.at/~kreuzer/d4/zzdb.v$NV ; 
  done
  for NV in $VL ; do                                                        # add "&" for multi-processor:
      palp/class.x -b -di zzdb -vf $NV -vt $NV | palp/poly.x -vfC1 > CY.v$NV &  
  done;