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Outline

@ Introduction
@ Heterotic Phenomenology (and the necessary mathematics)
o Why we're interested (and the problems)
@ The monad construction
@ The Calabi-Yau Spaces
¢ Building vector bundles
@ Particle spectra
@ Bundle stability

@ Finding physically relevant bundles - An algorithmic approach

@ Future directions - Symmetry breaking, yukawa couplings, moduli

stabilization.
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Challenge of Heterotic Phenomenology

@ How close can string theory get to real world particle physics?? We need
unification, symmetries, fermion masses, yukawa couplings, moduli
stabilization, etc.

@ How generic is real world physics within string theory? What are the
properties of ‘realistic’ models?

@ Heterotic models are promising (gauge unification is automatic, N =1
SUSY, etc.). But mathematical details (algebraic geometry, defining
bundles and manifolds) are difficult.

9 It’s easy to come close to the real world, but very hard to get the details
exactly right.

@ Any single heterotic model is likely to fail when confronted with detailed
structure of SM physics

= want to study large numbers of models = an algorithmic approach
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A heterotic model

We begin with the Eg x Eg Heterotic string in 10-dimensions
@ One Eg gives rise to the “Visible” sector, the other to the “Hidden” sector
@ Compactify on a Calabi-Yau 3-fold, X - leads to A/ =1 SUSY in 4D
@ Also have a vector bundle V on X (with structure group G C Eg)
V breaks Eg to Low Energy GUT group

@ The weakly coupled theory has been studied since the 80’s (beginning
with the so-called ’Standard Embedding’). The strongly coupled theory is
dual to M-Theory on a manifold with boundary - Hotava-Witten Theory
-(w/ 5 branes in bulk)
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The idea...

@ Finding the correct string vacuua to model realistic particle physics is a

difficult task. How to choose? How to design the right model?
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@ Finding the correct string vacuua to model realistic particle physics is a
difficult task. How to choose? How to design the right model?
@ A new approach:

Formulate an algorithmic and systematic search for the correct vacuum

using computational algebraic geometry
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@ Finding the correct string vacuua to model realistic particle physics is a

difficult task. How to choose? How to design the right model?

@ A new approach:
Formulate an algorithmic and systematic search for the correct vacuum
using computational algebraic geometry
@ Produce a computer database of thousands of CY spaces and their

topological data
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@ A new approach:
Formulate an algorithmic and systematic search for the correct vacuum
using computational algebraic geometry
@ Produce a computer database of thousands of CY spaces and their
topological data
@ Construct broad, well-defined sets of vector bundles over them
@ Scan through literally hundreds of billions of potential candidates in the

vast landscape of string vacuua for those that are physically relevant
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The idea...

@ Finding the correct string vacuua to model realistic particle physics is a

difficult task. How to choose? How to design the right model?

@ A new approach:
Formulate an algorithmic and systematic search for the correct vacuum
using computational algebraic geometry
@ Produce a computer database of thousands of CY spaces and their
topological data
@ Construct broad, well-defined sets of vector bundles over them
@ Scan through literally hundreds of billions of potential candidates in the

vast landscape of string vacuua for those that are physically relevant

@ How many are close to nature? Study these models...
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General Embedding

A more general choice of vector bundle can be made
@ Take G = SU(n), n = 3,4,5 low energy gauge group

@ 4D structure group, H =Commutant(G, Eg)

Egs — GxH Residual Group Structure

SU(3) x Eg 248 — (1,78) @ (3,27) @ (3,27) @ (8, 1)

SU(4) x SO(10) | 248 — (1,45) @ (4,16) @ (4,16) @ (6,10) @ (15,1)
SU(5) x SU(5) | 248 — (1,24) @ (5,10) & (5,10) @ (10,5) @ (10,5) @ (24,1)

@ We expect “Two-step” Symmetry breaking
1. Es breaks to GUT group (Es,50(10), or SU(5))
2. Wilson lines break GUT symmetry

Wilson line = SU(3) x SU(2); x U(1)y x U(1)g_; symmetry
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The Elements of the construction

@ X: A Calabi-Yau 3—fold, X

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactificatio Vienna - Oct 6th, 08 7/39



The Elements of the construction

@ X: A Calabi-Yau 3—fold, X

@ V: A holomorphic vector bundle, satisfying the Hermitian YM equations

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactificatio Vienna - Oct 6th, 08 7/39



The Elements of the construction

@ X: A Calabi-Yau 3—fold, X
@ V: A holomorphic vector bundle, satisfying the Hermitian YM equations

@ G: The structure group of V (G C Eg)
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The Elements of the construction

@ X: A Calabi-Yau 3—fold, X
@ V: A holomorphic vector bundle, satisfying the Hermitian YM equations
@ G: The structure group of V (G C Es)

@ H: The low energy 4D, N’ =1 GUT symmetry (H is the commutant of G
in Eg)
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@ G: The structure group of V (G C Eg)
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in Eg)
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The Elements of the construction

@ X: A Calabi-Yau 3—fold, X

@ V: A holomorphic vector bundle, satisfying the Hermitian YM equations

@ G: The structure group of V (G C Es)

@ H: The low energy 4D, N’ =1 GUT symmetry (H is the commutant of G
in Eg)

@ V 4 Wilson line leads to symmetry containing that of the MSSM

@ Heterotic vacuua contain M5-branes which can wrap a holomorphic
effective 2-cycle, W (€ Hy(X,Z)), of X. Leads to anomaly cancellation

condition

CQ(X) — CQ(V) = WM5
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Stability

]

Hermitian YM equations are a set of wickedly complicated PDE’s

Fus = Fip = 8°F5, = 0

@ We are saved by the Donaldson-Uhlenbeck-Yau Theorem:

On each stable, holomorphic vector bundle V, there exists a Hermitian

YM connection satisfying the HYM equations.

©

The slope, p(V), of a vector bundle is
w(V) = m [y a(V) gt

where J is a Kahler form on X.
@ V is Stable if for every sub-sheaf, F, of V, u(F) < u(V)

@ Unfortunately, “conservation of misery” = stability still very hard to

show!
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Spectra and Cohomology

In heterotic models, 4D particle spectra is determined by bundle cohomology:

Decomposition | Cohomologies

SU(3) x Eg ny7 = V), n= = A1 (V*) = h3(V),m = h'(V @ V*)
SU(4) x SO(10) | e = h*(V), ng = h*(V), n1o = A1 (A2V), ny = AV @ V*)
SU(5) x SU(5) | mo = h*(V*), nig = h(V), ns = h'(A2V), ng = RH(A2V*)
n = h(V e V")

@ We need to compute various bundle cohomologies in order to proceed!
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The Plan...

@ We need a large class of CY manifolds and a systematic way to construct
bundles over them

= 7890 CICYs + Monad construction
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The Plan...

@ We need a large class of CY manifolds and a systematic way to construct
bundles over them
= 7890 CICYs + Monad construction

@ We require an explicit construction compatible with “Two-step”
symmetry breaking, Wilson lines, etc.
= CICYs are the simplest and most explict form of CY construction. Relatively easy to

find discrete symmetries, Wilson lines, etc.
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The Plan...

@ We need a large class of CY manifolds and a systematic way to construct
bundles over them
= 7890 CICYs + Monad construction

@ We require an explicit construction compatible with “Two-step”
symmetry breaking, Wilson lines, etc.
= CICYs are the simplest and most explict form of CY construction. Relatively easy to
find discrete symmetries, Wilson lines, etc.

@ Computerizability. Millions of models cannot be analyzed by hand, need
an algorithmic approach that makes good use of existing technology in
computational algebraic geometry.
= Teach computers how to analyze monads! (C code, Mathematica, Singular,

Macau]ay)
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@ Need to be able to compute bundle cohomology (Koszul and spectral sequences)
@ Need to be able to prove bundle stablhty (Hoppe’s Criterion and generalization)

@ Scan millions of bundles for physical suitability!

@ How many bundles are there? What distributions? What properties?...
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Complete Intersection CYs

@ CICYs: A product of projective space P™ x ... x P" and K defining polynomials {pj—1 ... k}

@ The CY 3-fold is described by a configuration matrix (columns < constraints).

L I
P2 | gt ¢3 ... gf

(1)
P G G o |

@ Favorable CICYs: Those for which h*! = no. of embedding P™’s (4515 manifolds)
= The Kahler forms J on the CY descend from those on the ambient space.

Computationally useful!

@ Line bundles on a “favorable” CY: Ox(ki, kz, ..., km)
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What is a Monad?

@ For this work, we consider monads defined by a short exact sequence of
vector bundles (sheaves)
0o—-v--B-ECc—o0
where short exact implies that ker(g) = im(f).
@ The vector bundle V is defined as
V = ker(g) with rk(V) = rk(B) — rk(C)
@ Where B and C are taken to be direct sums of line bundles
B=dow), C=do(d)
9 The map g calrzlbe written as a sz;clrix of polynomials. (e.g. on P" the jj-th
entry is a homogencous polynomial of degree ¢ — b;)
@ The monad construction is a powerful and general way of defining vector

bundles. For example, every bundle on P"” can be written as a monad
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Physical Constraints

To begin, we consider the most simple physical constraints:

@ SU(n) bundles - (Structure group SU(n), c1(V) =0)

©

Anomaly cancellation condition

[

Ind(V) =3k for k e Z

k > 1 = need Wilson lines and discrete symmetries

Stable bundles

©

[

Monads must define bundles (i.e. defining exact sequences should produce

bundles rather than just sheaves)
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Classification

The physical and Mathematical constraints can be written as constraints on

the integers defining the line bundles of the monad

B=@Oo). C=o(d)
i=1 j=1
where

0—>V—f>Bi>C—>0

@ Is this a finite class? What are the properties of the bundles defined by

these constraints?
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Constraints

@ bl <clforalli,j,s= ker(g) defines a bundle.

@ The map g can be taken to be generic so long as exactness of the sequence

is maintained.

o Cl(\/):0<:>
Yb - g =0
j=1

° Anomaly cancellation <
rc

(TX) — (V) =a(TX) — (Z b’b’ ZCJC)JSJtEO
i=1
e 3 Generations =

(V) = (Z bbby — 3 cedcd) I
Jj=1
is divisible by 3 (and compatible with the Euler number of X).

@ Stability places constraints on the signs of b/ and ¢
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Warming Up...The cyclic CICYs

The mathematical technology of producing bundles and computing their
spectra is difficult, so we begin with the most straightforward possible cases...
@ There are 5 cyclic (Pic(X) = Z) CICYs
[4]5], [5]2 4], [5]3 3], [6132 2], [7]222 2]
@ These are the simplest known CYs.
@ We can find a complete classification of all physical monad bundles on
these spaces.
¢ Demanding SU(n) and anomaly-free bundles is sufficient to bound the

problem

@ A finite class - We find only 37 bundles over these 5 spaces
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Cyclic CICYs

©

For the cyclic CYs, we find only positive monads to be physical (e.g.
those for which b;, ¢; > 0)

@ bj,¢; <0 = unstable

@ Can compute the full spectra of these bundles using exact and spectral

sequences (and results can be checked using Macaulay, Singular)

@ No anti-generations (limits exotics)

[

The Higgs content is dependent on the choice of map (where we are in

moduli space)

[

Using Hoppe’s Criterion, we find that all positive monads on CICYs are

stable!
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Monads on CICYS: An example

@ For example consider the monad
00—V —01)7 5 03)a0(2)?2—-0

@ this is a rank 4 bundle on [4|5]

9
X X2
XiXj  XP A+ ...
8= Xi Xj... (2)
Xi Xjaen

@ SU(4) bundle, stable, anomaly-free
9 3 = —30 = Zs X Zs symmetry for Wilson lines
@ Cohomology calculation gives us nig = 30, n; = 112 (Number of Higgs

depends on choice of map)
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Rank {bi} {ci} c(V)/J% | ind(V)
3 (2,2,1,1,1) (4, 3) -60
3 2,2,2,1, 1) (5, 3) 10 -105
3 (3,2,1,1,1) (4, 4) 8 75
3 (1,1,1,1,1, 1) 2,2, 2) 3 15
3 (2,2,2,1,1,1) (3, 3, 3) 6 45
3 (3,3,3,1,1, 1) (4, 4, 4) 9 -90
3 (2,2,2,2,2,2,2,2) (4,3,3,3,3) 10 -90
30| (2,2,2,2,2,2,2,2,2) | (3,3 3,3,3,3) 9 75
4 2,2,1,1,1, 1) (4, 4) 10 -90
4 (1,1,1,1,1, 1, 1) (3,2, 2) 5 -30
4 (2,2,2,1,1,1, 1) (4,3, 3) 9 75
4 (2,2,2,2,1,1,1,1) (3,3, 3, 3) 8 -60
5 1,1,1,1,1,1,1, 1) (3, 3, 2) 7 45
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Positive Monads on favorable CICYs

@ To generalize these techniques beyond the cyclic manifolds, we begin by
considering positive monads over all favorable CICYs

@ How to compute the spectra? Need to develop tools to compute the
cohomology of line bundles on CICYs

@ For positive line bundles this is easy -
Kodaira Vanishing theorem: H*(X, L) = 0 for all k > 0 if
L= 0(my, ma,...,m,) with m; > 0.

@ But what about general mixed line bundles? e.g. O(—my, —my, m3,...).

Need new techniques...
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Computing line bundle cohomology on CICYs

@ Need to combine the techniques of Spectral sequences and the Bott-Borel-Weil theorem
@ General Idea: Use information from the ambient space, A. Define define
bundles £ over A and use a Koszul resolution:
0> LONNy - LOANTING - ... LOIN; — L — L|x —0
@ The Spectral sequence for line bundle cohomology is given by
EJ (L) = H(A L® AN%), k=0,...,K, j=0,...,dim(A) = 37 n:.
@ This forms the first term of a spectral sequence- a complex defined by
differential maps dj : E;-i’k — E{;Hl’kii.

@ The subsequent terms in the spectral sequence are defined by

-j, k _ ker(d,-;E/{lk(L)_)E{ff+1,k7,*(L))
? E,‘+1(L) - Im(di:E/j+f71’k+f(L)—>E{vk(L))

» The sequence converges to ELX(L) = EJ*(L). (For line bundles)

o hI(X, Llx) =K  rankEZ™m(L)

m=0"T
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Line bundle Cohomology

@ By Bott-Borel-Weil, the entries in the tableau E/**(L) := H/(A, L ® A*N) can
be represented as polynomial spaces (dimensions given by the Bott Formula)
@ To compute Eé‘k(L), need to know ranks and kernels of maps

di . El{',k N Eij—i+1,k—i
0 0

. dl
B & EM

9@ Exampe: A co-dimension one tableau: E/* = o ’0
@ Need to compute the ranks and kernels of polynomial maps of the type di.
@ Example: For the line bundle / = O(—k, m) on the CICY, x = [ ! j ]

@ Direct computation of the kernel of the map di =

m m+3 1+2m)(6 2
(k+1)(3) = (k=1)("7) q=0 k< GuCmia)

2
WX Ox(—kom) =3 (k= 1)("5%) = (k+1)(5)  a=1 k> Gty

0 otherwise
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Positive Monads on favorable CICYs

@ For the monads with strictly positive entries (b, ¢/ > 0) the SU(n) and
anomaly conditions are sufficient to bound the problem. The class is

finite and all physical bundles can be classified.
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Positive Monads on favorable CICYs

@ For the monads with strictly positive entries (b, ¢/ > 0) the SU(n) and
anomaly conditions are sufficient to bound the problem. The class is

finite and all physical bundles can be classified.

@ Over the CICYs we find ~ 7000 bundles and compute their spectra (using

new techniques to compute the cohomology of line bundles on CICYs)
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Positive Monads on favorable CICYs

@ For the monads with strictly positive entries (b, ¢/ > 0) the SU(n) and
anomaly conditions are sufficient to bound the problem. The class is

finite and all physical bundles can be classified.

@ Over the CICYs we find ~ 7000 bundles and compute their spectra (using

new techniques to compute the cohomology of line bundles on CICYs)

@ No anti-generations!
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Positive Monads on favorable CICYs

@ For the monads with strictly positive entries (b, ¢/ > 0) the SU(n) and
anomaly conditions are sufficient to bound the problem. The class is
finite and all physical bundles can be classified.

@ Over the CICYs we find ~ 7000 bundles and compute their spectra (using
new techniques to compute the cohomology of line bundles on CICYs)

@ No anti-generations!

@ Unfortunately, we are limited by Wilson Lines and discrete symmetries of
the Calabi-Yau

Number of generations < ¢3 =3n, n € Z
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@ In order to produce exactly 3 generations, need to divide the CY by a
discrete symmetry of size n (and ind(V) must divide Euler number of
CY)

9 If c3 too large, no symmetries of the right order exist on the CY

@ The 37 monads on the cyclic CYs have the smallest ¢3 < most plausible
models for Wilson line symmetry breaking.

@ Of the 7000 positive monad bundles found on CICYs there are only 21
models with ind(V) < 40
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Positive monads and 3-generations
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Extending the search...

Since the positive bundles on CICYs are highly restricted, in order to produce

a large class for an algorithmic scan, we must extend our search...
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Zero-Entry Monads -" Semi-positive” bundles

For those with entries greater than or equal to zero (b', ¢/ > 0) the
construction is much bigger (and more interesting!)
@ Clearly not constrained as before, can produce unbounded sets of bundles

Example: B = 0(1,0)3 ® O(t — 3,0) and C = O(t,0)

is an anomaly-free bundle for each integer t > 1 on [ ﬁi

@ An infinite class? Isomorphisms?
@ Much more physically suitable

9 smaller c3(V)

9 Generically have a Higgs
@ Can do checks of stability (scan for H%3(X, V) = 0)

@ Can prove stability for some models.
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Zero-entry distributions

15000i

lUUDU: ‘

SOUU;

|l i,
20 40 (1] B0 100
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semi-positives

@ An initial scan bounding b, ¢/ < 20 produces ~ 100,000 rank 3 bundles
on CICYs with At =2

@ Number of models with 3-generations and Euler number compatible with

CY = 17,255
@ Number of models with ind(V) < 20, 6982

@ Initial scans show that many of these are stable
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Hoppe's Criterion

Over a projective manifold X with Picard group Pic(X) ~ Z, let V be a vector
bundle. If HO(X,[AP V]norm) = 0 for all p=1,2,...,rk(V) — 1, then V is
stable.

@ Those manifolds where Pic(X) ~ Z are called cyclic

€

Where [V]porm = V(i) :== V ® Ox(i) for a unique i such that
a(V(i)) € [-rk(V)+1,...,-1,0]

[

normalize V so that the slope (V) is between —1 and 0.
@ Hoppe’s criterion applies directly to the 5 cyclic CYs
9 Need a generalization to arbitrary CICYs?

9@ We will begin with this criterion and the cyclic manifolds...
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The idea of Hoppe's criterion

Proof by contradiction:
@ Suppose the bundle is unstable = a de-stabilizing sub-sheaf F (of rank n)
w/ w(F) = 0.
@ Take wedge powers to form a line bundle, / = (A"F)**
@ ¢1(F) > 0 and cyclic space = [/ has a section
o = /CA"V
@ = A"V has a section
o = HYX,A"V)#0

So if HO(X,A"V) =0 for n=1,2, ..., rk(V) — 1 then stable
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Generalization to CICYs

A proof of stability for monads on CICYs (to appear...)

9 Stable “somewhere” in the Kahler cone?

@ Rather than attempt to analyze all possible sub-sheaves, can we indirectly
place bounds on them?

o Extend Hoppe’s criterion = Consider potential sub-line bundles of AKV
for k=1,...(n—1).

o Potential sub-line bundles are classified by ¢i(/) = (k, m) for | = O(k, m)

@ Consider all such line bundles (i.e. first chern classes)

@ Impose cohomological conditions to bound potential line bundle
sub-sheaves, /. e.g. Hom(l,AkV) # 0 and H°(X,/) = 0.

@ Constrain possible sub-sheaves to the extent that we can show that there

exists a well-defined stable region in the Kahler cone
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Stability somewhere in the Kahler cone

STABLE
| = (kom) ~_

I=(p —q)



An algorithmic approach...

@ We have successfully constructed a LARGE class of vector bundles and

can compute their properties in detail
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An algorithmic approach...

@ We have successfully constructed a LARGE class of vector bundles and

can compute their properties in detail

@ Previous attempts have been made to create classes of stable bundles (e.g.
Friedman-Morgan-Witten). However, this is the first effort to create an
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We have successfully constructed a LARGE class of vector bundles and

can compute their properties in detail

Previous attempts have been made to create classes of stable bundles (e.g.
Friedman-Morgan-Witten). However, this is the first effort to create an
extensive class of stable, physically relevant bundles suitable for
algorithmic scans.

So, far we have scanned for “higher-level” physical constraints - i.e.
particle spectra

We can verify low-energy SUSY (i.e. bundle stability) for a sub-class

We are now ready to impose more detailed physical constraints - Wilson

lines, discrete symmetries, etc.
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Future work

We are only at the beginning of this effort...
@ Add Wilson lines, explore realistic 4D models (in progress)
@ Extend techniques to the 473,800,776 toric CY manifolds (in progress)
@ Generalize these techniques to U(n) bundles

@ Compute yukawa couplings? Fermion masses? (in progress)
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The End
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Finding a Higgs doublet

@ Higgs at special points - The “Jumping phenomena”.
o Example: Specifically, let is consider the following SU(4) bundle on [4|5]:
00—V — 05*(2)® O*(1) 5 0F*(4) — 0

with (xo,... 4 are the homogeneous coordinates on P*)

4x§ 9xg —|—X22 8X23 2x§’ 4X13 9X13

X8 +10x3 X2 953 75 95+ x5 +T1xG

@ We can calculate that
nis = h'(X, V) =90, no = h*(X,A?V) =13
n = 277
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So...

We want a stable holomorphic vector bundle V on X =
@ For stable bundles on a CY 3-fold, X, stability implies that
HO(X, V) = H(X,V*)=0

@ In general: V with SU(n)
‘ INDEX THEOREM and particle generations: ‘

Q indexyx) - iO(—l)/'hf(x, V) = fx ch(V)d(0) = § fx 3(V)
@ Serre Duality: h'(X, V) = B*~/(X, V* @ Kx)

@ = 3-families: 3= —h'(X, V) + h}(X, V*)
@ Unfortunately, “conservation of misery” = stability still very hard to

show!
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