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Challenge of Heterotic Phenomenology

How close can string theory get to real world particle physics?? We need

unification, symmetries, fermion masses, yukawa couplings, moduli

stabilization, etc.

How generic is real world physics within string theory? What are the

properties of ‘realistic’ models?

Heterotic models are promising (gauge unification is automatic, N = 1

SUSY, etc.). But mathematical details (algebraic geometry, defining

bundles and manifolds) are difficult.

It’s easy to come close to the real world, but very hard to get the details

exactly right.

Any single heterotic model is likely to fail when confronted with detailed

structure of SM physics

⇒ want to study large numbers of models ⇒ an algorithmic approach
Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 3 / 39



A heterotic model

We begin with the E8 × E8 Heterotic string in 10-dimensions

One E8 gives rise to the “Visible” sector, the other to the “Hidden” sector

Compactify on a Calabi-Yau 3-fold, X - leads to N = 1 SUSY in 4D

Also have a vector bundle V on X (with structure group G ⊂ E8)

V breaks E8 to Low Energy GUT group

The weakly coupled theory has been studied since the 80’s (beginning

with the so-called ’Standard Embedding’). The strongly coupled theory is

dual to M-Theory on a manifold with boundary - Hořava-Witten Theory

-(w/ 5 branes in bulk)
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The idea...

Finding the correct string vacuua to model realistic particle physics is a

difficult task. How to choose? How to design the right model?

A new approach:

Formulate an algorithmic and systematic search for the correct vacuum

using computational algebraic geometry

1 Produce a computer database of thousands of CY spaces and their

topological data

2 Construct broad, well-defined sets of vector bundles over them

3 Scan through literally hundreds of billions of potential candidates in the

vast landscape of string vacuua for those that are physically relevant

How many are close to nature? Study these models...

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 5 / 39



The idea...

Finding the correct string vacuua to model realistic particle physics is a

difficult task. How to choose? How to design the right model?

A new approach:

Formulate an algorithmic and systematic search for the correct vacuum

using computational algebraic geometry

1 Produce a computer database of thousands of CY spaces and their

topological data

2 Construct broad, well-defined sets of vector bundles over them

3 Scan through literally hundreds of billions of potential candidates in the

vast landscape of string vacuua for those that are physically relevant

How many are close to nature? Study these models...

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 5 / 39



The idea...

Finding the correct string vacuua to model realistic particle physics is a

difficult task. How to choose? How to design the right model?

A new approach:

Formulate an algorithmic and systematic search for the correct vacuum

using computational algebraic geometry

1 Produce a computer database of thousands of CY spaces and their

topological data

2 Construct broad, well-defined sets of vector bundles over them

3 Scan through literally hundreds of billions of potential candidates in the

vast landscape of string vacuua for those that are physically relevant

How many are close to nature? Study these models...

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 5 / 39



The idea...

Finding the correct string vacuua to model realistic particle physics is a

difficult task. How to choose? How to design the right model?

A new approach:

Formulate an algorithmic and systematic search for the correct vacuum

using computational algebraic geometry

1 Produce a computer database of thousands of CY spaces and their

topological data

2 Construct broad, well-defined sets of vector bundles over them

3 Scan through literally hundreds of billions of potential candidates in the

vast landscape of string vacuua for those that are physically relevant

How many are close to nature? Study these models...

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 5 / 39



The idea...

Finding the correct string vacuua to model realistic particle physics is a

difficult task. How to choose? How to design the right model?

A new approach:

Formulate an algorithmic and systematic search for the correct vacuum

using computational algebraic geometry

1 Produce a computer database of thousands of CY spaces and their

topological data

2 Construct broad, well-defined sets of vector bundles over them

3 Scan through literally hundreds of billions of potential candidates in the

vast landscape of string vacuua for those that are physically relevant

How many are close to nature? Study these models...

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 5 / 39



The idea...

Finding the correct string vacuua to model realistic particle physics is a

difficult task. How to choose? How to design the right model?

A new approach:

Formulate an algorithmic and systematic search for the correct vacuum

using computational algebraic geometry

1 Produce a computer database of thousands of CY spaces and their

topological data

2 Construct broad, well-defined sets of vector bundles over them

3 Scan through literally hundreds of billions of potential candidates in the

vast landscape of string vacuua for those that are physically relevant

How many are close to nature? Study these models...

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 5 / 39



General Embedding

A more general choice of vector bundle can be made

Take G = SU(n), n = 3, 4, 5 low energy gauge group

4D structure group, H =Commutant(G , E8)

E8 → G × H Residual Group Structure

SU(3) × E6 248 → (1, 78) ⊕ (3, 27)⊕ (3, 27) ⊕ (8, 1)

SU(4) × SO(10) 248 → (1, 45) ⊕ (4, 16)⊕ (4, 16) ⊕ (6, 10)⊕ (15, 1)

SU(5) × SU(5) 248 → (1, 24) ⊕ (5, 10) ⊕ (5, 10) ⊕ (10, 5)⊕ (10, 5) ⊕ (24, 1)

We expect “Two-step” Symmetry breaking

1. E8 breaks to GUT group (E6,SO(10), or SU(5))

2. Wilson lines break GUT symmetry

Wilson line ⇒ SU(3)c × SU(2)l × U(1)Y × U(1)B−L symmetry
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The Elements of the construction

X : A Calabi-Yau 3−fold, X

V : A holomorphic vector bundle, satisfying the Hermitian YM equations

G : The structure group of V (G ⊂ E8)

H : The low energy 4D, N = 1 GUT symmetry (H is the commutant of G

in E8)

V + Wilson line leads to symmetry containing that of the MSSM

Heterotic vacuua contain M5-branes which can wrap a holomorphic

effective 2-cycle, W (∈ H2(X , Z)), of X . Leads to anomaly cancellation

condition

c2(X ) − c2(V ) = WM5

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 7 / 39



The Elements of the construction

X : A Calabi-Yau 3−fold, X

V : A holomorphic vector bundle, satisfying the Hermitian YM equations

G : The structure group of V (G ⊂ E8)

H : The low energy 4D, N = 1 GUT symmetry (H is the commutant of G

in E8)

V + Wilson line leads to symmetry containing that of the MSSM

Heterotic vacuua contain M5-branes which can wrap a holomorphic

effective 2-cycle, W (∈ H2(X , Z)), of X . Leads to anomaly cancellation

condition

c2(X ) − c2(V ) = WM5

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 7 / 39



The Elements of the construction

X : A Calabi-Yau 3−fold, X

V : A holomorphic vector bundle, satisfying the Hermitian YM equations

G : The structure group of V (G ⊂ E8)

H : The low energy 4D, N = 1 GUT symmetry (H is the commutant of G

in E8)

V + Wilson line leads to symmetry containing that of the MSSM

Heterotic vacuua contain M5-branes which can wrap a holomorphic

effective 2-cycle, W (∈ H2(X , Z)), of X . Leads to anomaly cancellation

condition

c2(X ) − c2(V ) = WM5

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 7 / 39



The Elements of the construction

X : A Calabi-Yau 3−fold, X

V : A holomorphic vector bundle, satisfying the Hermitian YM equations

G : The structure group of V (G ⊂ E8)

H : The low energy 4D, N = 1 GUT symmetry (H is the commutant of G

in E8)

V + Wilson line leads to symmetry containing that of the MSSM

Heterotic vacuua contain M5-branes which can wrap a holomorphic

effective 2-cycle, W (∈ H2(X , Z)), of X . Leads to anomaly cancellation

condition

c2(X ) − c2(V ) = WM5

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 7 / 39



The Elements of the construction

X : A Calabi-Yau 3−fold, X

V : A holomorphic vector bundle, satisfying the Hermitian YM equations

G : The structure group of V (G ⊂ E8)

H : The low energy 4D, N = 1 GUT symmetry (H is the commutant of G

in E8)

V + Wilson line leads to symmetry containing that of the MSSM

Heterotic vacuua contain M5-branes which can wrap a holomorphic

effective 2-cycle, W (∈ H2(X , Z)), of X . Leads to anomaly cancellation

condition

c2(X ) − c2(V ) = WM5

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 7 / 39



The Elements of the construction

X : A Calabi-Yau 3−fold, X

V : A holomorphic vector bundle, satisfying the Hermitian YM equations

G : The structure group of V (G ⊂ E8)

H : The low energy 4D, N = 1 GUT symmetry (H is the commutant of G

in E8)

V + Wilson line leads to symmetry containing that of the MSSM

Heterotic vacuua contain M5-branes which can wrap a holomorphic

effective 2-cycle, W (∈ H2(X , Z)), of X . Leads to anomaly cancellation

condition

c2(X ) − c2(V ) = WM5

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 7 / 39



Stability

Hermitian YM equations are a set of wickedly complicated PDE’s

Fab = Fab = g abFba = 0

We are saved by the Donaldson-Uhlenbeck-Yau Theorem:

On each stable, holomorphic vector bundle V, there exists a Hermitian

YM connection satisfying the HYM equations.

The slope, µ(V ), of a vector bundle is

µ(V ) ≡ 1

rk(V )

∫

X
c1(V ) ∧ Jd−1

where J is a Kahler form on X .

V is Stable if for every sub-sheaf, F , of V , µ(F) < µ(V )

Unfortunately, “conservation of misery” ⇒ stability still very hard to

show!
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Spectra and Cohomology

In heterotic models, 4D particle spectra is determined by bundle cohomology:

Decomposition Cohomologies

SU(3) × E6 n27 = h1(V ), n27 = h1(V ∗) = h2(V ), n1 = h1(V ⊗ V ∗)

SU(4) × SO(10) n16 = h1(V ), n16 = h2(V ), n10 = h1(∧2V ), n1 = h1(V ⊗ V ∗)

SU(5) × SU(5) n10 = h1(V ∗), n10 = h1(V ), n5 = h1(∧2V ), n5 = h1(∧2V ∗)

n1 = h1(V ⊗ V ∗)

We need to compute various bundle cohomologies in order to proceed!
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The Plan...

We need a large class of CY manifolds and a systematic way to construct

bundles over them

⇒ 7890 CICYs + Monad construction

We require an explicit construction compatible with “Two-step”

symmetry breaking, Wilson lines, etc.

⇒ CICYs are the simplest and most explict form of CY construction. Relatively easy to

find discrete symmetries, Wilson lines, etc.

Computerizability. Millions of models cannot be analyzed by hand, need

an algorithmic approach that makes good use of existing technology in

computational algebraic geometry.

⇒ Teach computers how to analyze monads! (C code, Mathematica, Singular,

Macaulay)
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Need to be able to compute bundle cohomology (Koszul and spectral sequences)

Need to be able to prove bundle stability (Hoppe’s Criterion and generalization)

Scan millions of bundles for physical suitability!

How many bundles are there? What distributions? What properties?...
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Complete Intersection CYs

CICYs: A product of projective space P
n1 × . . .× P

nm and K defining polynomials {pj=1,...,K}

The CY 3-fold is described by a configuration matrix (columns ↔ constraints).
















P
n1 q1

1 q2
1 . . . qK

1

P
n2 q1

2 q2
2 . . . qK

2

...
...

...
. . .

...

P
nm q1

m q2
m . . . qK

m

















m×K

(1)

Favorable CICYs: Those for which h1,1 = no. of embedding P
n’s (4515 manifolds)

⇒ The Kahler forms J on the CY descend from those on the ambient space.

Computationally useful!

Line bundles on a “favorable” CY: OX (k1, k2, ..., km)
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What is a Monad?

For this work, we consider monads defined by a short exact sequence of

vector bundles (sheaves)

0 → V
f

−→ B
g

−→ C → 0

where short exact implies that ker(g) = im(f ).

The vector bundle V is defined as

V = ker(g) with rk(V ) = rk(B) − rk(C )

Where B and C are taken to be direct sums of line bundles

B =
rB
⊕

i=1

O(bi
r ) , C =

rC
⊕

j=1

O(c j
r )

The map g can be written as a matrix of polynomials. (e.g. on P
n the ij-th

entry is a homogeneous polynomial of degree ci − bj)

The monad construction is a powerful and general way of defining vector

bundles. For example, every bundle on P
n can be written as a monad
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Physical Constraints

To begin, we consider the most simple physical constraints:

SU(n) bundles - (Structure group SU(n), c1(V ) = 0)

Anomaly cancellation condition

Ind(V ) = 3k for k ∈ Z

k > 1 ⇒ need Wilson lines and discrete symmetries

Stable bundles

Monads must define bundles (i.e. defining exact sequences should produce

bundles rather than just sheaves)

Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 14 / 39



Classification

The physical and Mathematical constraints can be written as constraints on

the integers defining the line bundles of the monad

B =
rB
⊕

i=1

O(bi
r ) , C =

rC
⊕

j=1

O(c j
r )

where

0 → V
f

−→ B
g

−→ C → 0

Is this a finite class? What are the properties of the bundles defined by

these constraints?
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Constraints

bi
r ≤ c j

r for all i , j , s ⇒ ker(g) defines a bundle.

The map g can be taken to be generic so long as exactness of the sequence

is maintained.

c1(V ) = 0 ⇔
rB
∑

i=1

br
i −

rC
∑

j=1

c r
j = 0

Anomaly cancellation ⇔

c2(TX ) − c2(V ) = c2(TX ) − 1
2 (

rB
∑

i=1

bi
sb

i
t −

rC
∑

i=1

c j
sc

t
i )J

sJ t ≥ 0

3 Generations ⇔

c3(V ) = 1
3 (

rB
∑

i=1

br
ibs

ibt
i −

rC
∑

j=1

cr
jcs

jct
j)J rJsJ t

is divisible by 3 (and compatible with the Euler number of X ).

Stability places constraints on the signs of bi
r and c j

r
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Warming Up...The cyclic CICYs

The mathematical technology of producing bundles and computing their

spectra is difficult, so we begin with the most straightforward possible cases...

There are 5 cyclic (Pic(X ) = Z) CICYs

[4|5], [5|2 4], [5|3 3], [6|3 2 2], [7|2 2 2 2]

These are the simplest known CYs.

We can find a complete classification of all physical monad bundles on

these spaces.

Demanding SU(n) and anomaly-free bundles is sufficient to bound the

problem

A finite class - We find only 37 bundles over these 5 spaces
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Cyclic CICYs

For the cyclic CYs, we find only positive monads to be physical (e.g.

those for which bi , cj > 0)

bi , cj ≤ 0 ⇒ unstable

Can compute the full spectra of these bundles using exact and spectral

sequences (and results can be checked using Macaulay, Singular)

No anti-generations (limits exotics)

The Higgs content is dependent on the choice of map (where we are in

moduli space)

Using Hoppe’s Criterion, we find that all positive monads on CICYs are

stable!
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Monads on CICYS: An example

For example consider the monad

0 → V −→ O(1)7
g

−→ O(3) ⊕O(2)2 → 0

this is a rank 4 bundle on [4|5]

g =











xixj x2
i + ... ... ...

xi xj ...

xi xj ...











(2)

SU(4) bundle, stable, anomaly-free

c3 = −30 ⇒ Z5 × Z5 symmetry for Wilson lines

Cohomology calculation gives us n16 = 30, n1 = 112 (Number of Higgs

depends on choice of map)
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Rank {bi} {ci} c2(V )/J2 ind(V )

3 (2, 2, 1, 1, 1) (4, 3) 7 -60

3 (2, 2, 2, 1, 1) (5, 3) 10 -105

3 (3, 2, 1, 1, 1) (4, 4) 8 -75

3 (1, 1, 1, 1, 1, 1) (2, 2, 2) 3 -15

3 (2, 2, 2, 1, 1, 1) (3, 3, 3) 6 -45

3 (3, 3, 3, 1, 1, 1) (4, 4, 4) 9 -90

3 (2, 2, 2, 2, 2, 2, 2, 2) (4, 3, 3, 3, 3) 10 -90

3 (2, 2, 2, 2, 2, 2, 2, 2, 2) (3, 3, 3, 3, 3, 3) 9 -75

4 (2, 2, 1, 1, 1, 1) (4, 4) 10 -90

4 (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 5 -30

4 (2, 2, 2, 1, 1, 1, 1) (4, 3, 3) 9 -75

4 (2, 2, 2, 2, 1, 1, 1, 1) (3, 3, 3, 3) 8 -60

5 (1, 1, 1, 1, 1, 1, 1, 1) (3, 3, 2) 7 -45

5 (1, 1, 1, 1, 1, 1, 1, 1) (4, 2, 2) 8 -60Lara Anderson (UPenn/IAS) An Algorithmic Approach to Heterotic Compactification Vienna - Oct 6th, 08 20 / 39



Positive Monads on favorable CICYs

To generalize these techniques beyond the cyclic manifolds, we begin by

considering positive monads over all favorable CICYs

How to compute the spectra? Need to develop tools to compute the

cohomology of line bundles on CICYs

For positive line bundles this is easy -

Kodaira Vanishing theorem: Hk(X , L) = 0 for all k > 0 if

L = O(m1, m2, . . . , mn) with mi > 0.

But what about general mixed line bundles? e.g. O(−m1,−m2, m3, . . .).

Need new techniques...
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Computing line bundle cohomology on CICYs

Need to combine the techniques of Spectral sequences and the Bott-Borel-Weil theorem

General Idea: Use information from the ambient space, A. Define define

bundles L over A and use a Koszul resolution:

0 → L⊗ ∧KN∗

X → L⊗ ∧K−1N∗

X → . . . → L⊗ N∗

X → L → L|X → 0

The Spectral sequence for line bundle cohomology is given by

E
j,k
1 (L) := H j(A, L ⊗ ∧kN∗

X ), k = 0, . . . , K , j = 0, . . . , dim(A) =
Pm

i=1 ni .

This forms the first term of a spectral sequence- a complex defined by

differential maps di : E
j,k
i → E

j−i+1,k−i
i .

The subsequent terms in the spectral sequence are defined by

E
j,k
i+1(L) =

ker(di :E
j,k
i

(L)→E
j−i+1,k−i
i

(L))

Im(di :E
j+i−1,k+i
i

(L)→E
j,k
i

(L))

The sequence converges to E j,k
∞

(L) = E
j,k
2 (L). (For line bundles)

hq(X , L|X ) =
PK

m=0 rankE q+m,m
∞

(L)
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Line bundle Cohomology

By Bott-Borel-Weil, the entries in the tableau E
j,k
1 (L) := H j(A, L ⊗∧kN∗

X ) can

be represented as polynomial spaces (dimensions given by the Bott Formula)

To compute E
j,k
2 (L), need to know ranks and kernels of maps

di : E
j,k
i → E

j−i+1,k−i
i

Exampe: A co-dimension one tableau: E
j,k
1 =

2

6

6

6

6

6

6

6

4

0 0

E
j,0
1

d1
1← E

1,1
j

0 0

.

.

.
.
.
.

3

7

7

7

7

7

7

7

5

Need to compute the ranks and kernels of polynomial maps of the type d1
1 .

Example: For the line bundle l = O(−k ,m) on the CICY, X =

2

4

1

3

˛

˛

˛

˛

˛

˛

2

4

3

5

Direct computation of the kernel of the map d1
1 ⇒

hq(X ,OX (−k, m)) =

8

>

>

<

>

>

:

(k + 1)
`m

3

´

− (k − 1)
`m+3

3

´

q = 0 k <
(1+2m)(6+m+m2)

3(2+3m(1−m))

(k − 1)
`

m+3
3

´

− (k + 1)
`

m
3

´

q = 1 k >
(1+2m)(6+m+m2)

3(2+3m(1−m))

0 otherwise
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Positive Monads on favorable CICYs

For the monads with strictly positive entries (bi , c j > 0) the SU(n) and

anomaly conditions are sufficient to bound the problem. The class is

finite and all physical bundles can be classified.

Over the CICYs we find ∼ 7000 bundles and compute their spectra (using

new techniques to compute the cohomology of line bundles on CICYs)

No anti-generations!

Unfortunately, we are limited by Wilson Lines and discrete symmetries of

the Calabi-Yau

Number of generations ⇔ c3 = 3n, n ∈ Z
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In order to produce exactly 3 generations, need to divide the CY by a

discrete symmetry of size n (and ind(V ) must divide Euler number of

CY)

If c3 too large, no symmetries of the right order exist on the CY

The 37 monads on the cyclic CYs have the smallest c3 ⇔ most plausible

models for Wilson line symmetry breaking.

Of the 7000 positive monad bundles found on CICYs there are only 21

models with ind(V ) < 40
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Positive monads and 3-generations
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Extending the search...

Since the positive bundles on CICYs are highly restricted, in order to produce

a large class for an algorithmic scan, we must extend our search...
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Zero-Entry Monads -”Semi-positive” bundles

For those with entries greater than or equal to zero (bi , c j ≥ 0) the

construction is much bigger (and more interesting!)

Clearly not constrained as before, can produce unbounded sets of bundles

Example: B = O(1, 0)3 ⊕O(t − 3, 0) and C = O(t, 0)

is an anomaly-free bundle for each integer t > 1 on
[

P
1 0 2

P
4 4 1

]

An infinite class? Isomorphisms?

Much more physically suitable

smaller c3(V )

Generically have a Higgs

Can do checks of stability (scan for H0,3(X , V ) = 0)

Can prove stability for some models.
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Zero-entry distributions
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semi-positives

An initial scan bounding bi
r , c

j
r < 20 produces ∼ 100, 000 rank 3 bundles

on CICYs with h1,1 = 2

Number of models with 3-generations and Euler number compatible with

CY = 17, 255

Number of models with ind(V ) < 20, 6982

Initial scans show that many of these are stable
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Hoppe’s Criterion

Over a projective manifold X with Picard group Pic(X ) ≃ Z, let V be a vector

bundle. If H0(X , [
∧p

V ]norm) = 0 for all p = 1, 2, . . . , rk(V ) − 1, then V is

stable.

Those manifolds where Pic(X ) ≃ Z are called cyclic

Where [V ]norm = V (i) := V ⊗ OX (i) for a unique i such that

c1(V (i)) ∈ [−rk(V ) + 1, . . . ,−1, 0]

normalize V so that the slope µ(V ) is between −1 and 0.

Hoppe’s criterion applies directly to the 5 cyclic CYs

Need a generalization to arbitrary CICYs?

We will begin with this criterion and the cyclic manifolds...
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The idea of Hoppe’s criterion

Proof by contradiction:

Suppose the bundle is unstable ⇒ a de-stabilizing sub-sheaf F (of rank n)

w/ µ(F ) ≥ 0.

Take wedge powers to form a line bundle, l = (∧nF )∗∗

c1(F ) ≥ 0 and cyclic space ⇒ l has a section

⇒ l ⊂ ∧nV

⇒ ∧nV has a section

⇒ H0(X ,∧nV ) 6= 0

So if H0(X ,∧nV ) = 0 for n = 1, 2, ..., rk(V ) − 1 then stable
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Generalization to CICYs

A proof of stability for monads on CICYs (to appear...)

Stable “somewhere” in the Kahler cone?

Rather than attempt to analyze all possible sub-sheaves, can we indirectly

place bounds on them?

Extend Hoppe’s criterion ⇒ Consider potential sub-line bundles of ∧kV

for k = 1, . . . (n − 1).

Potential sub-line bundles are classified by c1(l) = (k , m) for l = O(k , m)

Consider all such line bundles (i.e. first chern classes)

Impose cohomological conditions to bound potential line bundle

sub-sheaves, l . e.g. Hom(l ,∧kV ) 6= 0 and H0(X , l) = 0.

Constrain possible sub-sheaves to the extent that we can show that there

exists a well-defined stable region in the Kahler cone
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Stability somewhere in the Kahler cone
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An algorithmic approach...

We have successfully constructed a LARGE class of vector bundles and

can compute their properties in detail

Previous attempts have been made to create classes of stable bundles (e.g.

Friedman-Morgan-Witten). However, this is the first effort to create an

extensive class of stable, physically relevant bundles suitable for

algorithmic scans.

So, far we have scanned for “higher-level” physical constraints - i.e.

particle spectra

We can verify low-energy SUSY (i.e. bundle stability) for a sub-class

We are now ready to impose more detailed physical constraints - Wilson

lines, discrete symmetries, etc.
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Future work

We are only at the beginning of this effort...

Add Wilson lines, explore realistic 4D models (in progress)

Extend techniques to the 473, 800, 776 toric CY manifolds (in progress)

Generalize these techniques to U(n) bundles

Compute yukawa couplings? Fermion masses? (in progress)
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The End
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Finding a Higgs doublet

Higgs at special points - The “Jumping phenomena”.

Example: Specifically, let is consider the following SU(4) bundle on [4|5]:

0 → V → O⊕2
X (2) ⊕O⊕4

X (1)
g

−→ O⊕2
X (4) → 0

with (x0,...,4 are the homogeneous coordinates on P
4)

g =





4x2
3 9x2

0 + x2
2 8x3

2 2x3
3 4x3

1 9x3
1

x2
0 + 10x2

2 x2
1 9x3

2 7x3
3 9x3

1 + x3
2 x3

1 + 7x3
4



 . (3)

We can calculate that

n16 = h1(X , V ) = 90, n10 = h1(X ,∧2V ) = 13

n1 = 277
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So...

We want a stable holomorphic vector bundle V on X ⇒

For stable bundles on a CY 3-fold, X , stability implies that

H0(X , V ) = H0(X , V ∗) = 0

In general: V with SU(n)

INDEX THEOREM and particle generations:

1 index(/∇X ) =
3

P

i=0
(−1)i hi (X, V ) =

R

X ch(V )td(X ) = 1
2

R

X c3(V )

2 Serre Duality: hi (X , V ) = h3−i (X , V ∗ ⊗ /KX )

⇒ 3-families: 3 = −h1(X , V ) + h1(X , V ∗)

Unfortunately, “conservation of misery” ⇒ stability still very hard to

show!
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