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Effective actions from Flux compactifications
Start from type Il supergravity

Compactification on Calabi-Yau 3-folds
< ungauged N = 2 sugra in 4d — no scalar potential

CY with fluxes :
e get just a few gaugings
¢ not consistent with 10d (pure sugra) EoM

Beyond Calabi-Yau

?? most general flux compactifications
leading to N = 2 sugra in 4d ??

Useful tool : Generalized Geometry

??How N = 2 data are determined by Generalized Geometry??
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Supergravity and SU(3)xSU(3) structures

Need a couple of
(possibly coincident)
internal spinors 7!, n?
2 \
a couple of SU(3)
structures

for TM¢ T structure group

Best seen as an SU(3)xSU(3) structure on TM¢ & T*Mj
[Grafa,Louis,Waldram '05,06]

Structures on T & T* are described by Generalized Geometry
[Hitchin '02]
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e encode the whole infernal NSNS sector (g,.., By, @)

o &, canbebuiltas ¢ 8(n} ©n3)

— polyforms through fierzing



Supergravity and SU(3)xSU(3) structures eca ks ov it

Koerber & Martucci]

Basic objects: 0(6,6) pure spinors @, and ¢_

polyforms : &, € A™"T*Mgs , ®_ € ANT*M,

generalize J and 2 of a CY

encode the whole infernal NSNS sector (g,.., By, @)

@ can be built as ¢ 2(n} @ ni)

— polyforms through fierzing

Polyforms natural also in the RR sector:

forlA: F=Fg+Fo+...+Fg+Fyp (democratic formulation)
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Expansion forms

When 10d = need to truncate
reducing ¢ to a finite set of modes

Truncation specified introducing a finite basis of (poly)forms

~A 1/
we(2) - =e(2)

and expanding ¢ as:

(I)+ = XAwA — ./TA(:)A s P = Z[Oé] - glﬂl .

foraCY:®, =e” | &_ = and the forms are harmonic
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Expansion forms

¥+ and X _ have to satisfy several constraints for a 4d, N =2
supergravity to be defined (and the reduction proceed

analogously to the CY case) [Grafa,Louis,Waldram '05,06;
Minasian,Kashani-Poor’06;

DC,Bilal'07; DC'08]

E.g. basis forms have to preserve a symplectic structure:

f=m = (5 5)

where (, ) is the antisymmetric Mukai pairing :

(@,B) = Ma)ABle  »  Ma) = ()5

Further condition :

(4, 24) and

<(I) 3 > @7 constant on Mg
+5 *F+ —
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Expansion forms

In general ¥ are not closed :

ds_ = Q%

more gaugings w.r.t.

Q : geometric charges — CY with fluxes

Q also accommodates nongeometric fluxes [Graria,Louis,Waldram "06]

Examples?
SU(3) Gy Sp(2)
)xU(1)> SU3)’ S(UR)xU(1)) * -
[Caviezel,Koerber,Kors,List,
Tsimpis,Zagermann '08]

on coset spaces: 1

Not only: the reduction goes through consistently (solutions lift)



Special Kahler Geometry

Moduli space of CY manifolds

CY case:

Ogmn — 0J, 082

(K&hler- & complex-structure deformations)
parameterize two Special Kahler manifolds.

Kahler potentials:

U
fits into 4d, N = 2 sugra
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What about general SU(3) xSU(3) structures?

0d, d®_ at a point of Mg

7
Special Kahler geometries

[Hitchin’02]
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Special Kahler Geometry
Deformations of SU(3) xSU(3) structures

/ =) What about general SU(3) xSU(3) structures?
>
% / - 6®, , 60_ at a point of Mg
| S !
2 ~ Special Kahler geometries  [Hitchin'02]

\ = QO) Requirements on X assure this is inherited by
the truncated 4d theory

Kahler potentials : Ky = —logi [(®4,Py)
We computed:

ez% f Volée—qugmngpq(5gmp5gnq + 6Bmp(anq) — 6h0|06amiK+ + 5hoI05antiK7

metric on space of g, and B,,, deform. sp. Kahler metrics for @ and ®_ def.

U

4d scalar kinetic terms
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SU(3)xSU(3) invariant polyforms :

. |
1,3 31
1,3 3,3 31
1,1 3.3 33
31 33 1,3
3.1 1,3
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Special Kahler Geometry

Generalized diamond

SU(3)xSU(3) invariant polyforms :

2
!

1,3 3.1
1,3 3.3 3.1
| 3.3 3.3 ey
3.1 3.3 1,3
3.1 1,3

acting with (anti)holomorphic Spin(6) gamma matrices one can
build a basis for the repr space (easy to include B)
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Special Kahler Geometry
Deformations of SU(3) xSU(3) structures

Deformations of ¢ (analogous for ®_) :

s2.4
1,3 31
5&) 6&) 5@
1,1 33 3,3 1,1
31 33 1,3
3,1 1,3
1,1

— relation with 6g,,, , by, ?
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complex structure
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U

A (Re®@i , I'* Re®.)
Ty = 4 (P4, Dy)

with [jJr,jf] =0

generalized almost

. * * 2 _ .
Je TOT" =TT, (Jz) = ~idrer complex structure

where IA = (dfm A) :  0(6,6) gamma matrices
O
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Special Kahler Geometry
Deformations of SU(3) xSU(3) structures

compatible &, , &_

U

(Re®4 ,I'* Re®4 )

A .
iy = 4 (4, D)

with [j+,j7] =0

generalized almost

. * * 2 _ .
Je :TOT =TT, (J2) = —idrer complex structure

where T4 = (df:A> : 0(6,6) gamma matrices
MetriconTe T : G=-J.J-= §'B 8
g§—Bg'B —Bg!

Deformations :
8" 8" (08mp0&ng + OBmpdByg) = —1Tr [5g5g}



Special Kahler Geometry
Deformations of SU(3) xSU(3) structures

compatible &, , &_
1l

A (Red®y T Redy) . B
Thy = o535 with [T+, J-]=0

generalized almost
complex structure

Je :TeT —>TaeT |, (Ju)* = —idrer

where T4 = ( dz;nA ) : 0(6,6) gamma matrices
MetriconT & T* : G=-J.J = §'B g
¢g—Bg'B —Bg!
Deformations :
8" 8" (08mpO8gng + OBupdByg) = —3Tr[6GoG]

use: 0G =—-0J+J- —J+(6J-)
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P +, ¥4
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Deformations of SU(3) xSU(3) structures

e 8gun, 0B, are expressed in terms of 6y, < 3,3, dx_ < 3,3

e we arrive at:

62799 f<6X776>27> f<6X+55>_(+>

3 fe’Z(pvolég’”"gpq(5gmp5gnq + 53/71}768115/):_ f<(1) (i) > - f<(I) (i) >
— = +5 F 4+

e Oy and dx_ yield independent contributions
e Recall : Ky = —logi [(®4,®1). Then:
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&&= contribution from the §® which modify 7. but not G.




Special Kahler Geometry
Deformations of SU(3) xSU(3) structures

e 8gun, 0B, are expressed in terms of 6y, < 3,3, dx_ < 3,3

e we arrive at:

ezl f<5X776>27> f<6X+56>_(+>

8 fefz(p"olégnmgpq(58'171)53114+5an1753”‘/):_ f@’ o ) - f@’ ) )
— = +5 F 4+

e Oy and dx_ yield independent contributions
e Recall : Ky = —logi [(®4,®1). Then:

shologantig: +5ho|o(5antiK_:_f<5X—;55(4 S {0x+, 0x4) PN

.[<(I)—7(i)—> (f<®+7(i)+>

&&= contribution from the §® which modify 7. but not G.

Matching : yes, provided we truncate these deformations
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e uses xpe:=c i )\(Po)

generalizes a result valid for the harmonic 3-forms of CY
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Special Kahler Geometry

Period matrices

Important ingredient: Gy = MyZ/ , DG = MyDZ’
N\ period matrix
R=ReM , T=ImM
_(IT+RI'R —RI ) B <—f<a,*3a> [ (o 58) >

M R J(B.550)  — [{B.%sB)

o uses spe:=c Bx (o)
e generalizes a result valid for the harmonic 3-forms of CY

o parallel expression for even forms — A & N
(valid for CY as well)

e Ine.g. lIA:
e ImN and ReN define kinetic & top. terms for gauge fields
o M enters in the hyperscalar kinetic terms
e Both M and N appear in the scalar potential
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Scalar potential

NSNS sector— Vs ~ [y, volse % (Rs + 48,09 ¢ — 15 HpnpH™)

Recast in Generalized Geometry language:
L [DmaDn] n o~ Rmnpqupqn
e derive formula relating Rs and ¢ ~ nl ® nf
e ‘dress’ it with ¢ and B

e4<p . _
WNs = T y <dq)+7*3(d<b+)>+<d¢)*/*B<d(I>*>>
6
2 — 2
- 64/’0/ ‘<d®+q)—>‘ +l<dcb+/q)—>‘
M() l<¢‘ ©>

[DC, 0804.0595]



Scalar potential
NSNS sector— Vs ~ [y, volse % (Rs + 40,09 ¢ — 15 HpnpH™)

Recast in Generalized Geometry language:
® [Dy, D] 1~ Runpgy™n
e derive formula relating Rs and @1 ~ 1l ® nf
e ‘dress’ it with ¢ and B

4o o o
V= ths Ve = G [ (@ sal@) + (a0 xa(dB))
M()

64,@/ [(d®y, @ )" + (@@, @ )|
M i(®, D)
e*?

+ A <Ga *BG>
2 Jum [DC, 0804.0595]

where G = Gy + G, + G4 + Gg : internal RR field strengths



Scalar potential

et

Vo= O (a0 gl 4 (d0 ()
2
4¢/\d‘1’+ \+\d‘1>+ )
7 1686

2



Scalar potential

V = :0 (dP, #p(dDy)) + (dD_, xp(dD_))
(@D, @) + (., B_) [
450/ i(®, D)
+7 (G, *x5G)

e Put the reduction ansatziny —
— find symplectically invariant 4d N = 2 potential
[D’Auria,Ferrara, Trigiante *07]
YV = 22K xTQITMQX + 5~ ZTQTNQZ]
— 8e?PeK+tE-7ZTs Q(xXxT + XxT)QTs_z
et T xA 7 A
— TG NG , where X:(fA)’ z=(%), 6=(£), sz=("

9 Gy
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430 .
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M/\dm, )+ i, T
i(®, D)
+7 (G, *x5G)

e Put the reduction ansatziny —

— find symplectically invariant 4d N = 2 potential
[D’Auria,Ferrara, Trigiante *07]

e Vinvariant under ®, < ®_ (‘mirror’ symmetry)



Scalar potential

430 .
Vo= O [(dbe (@) + (d0 ep(d@ )
M/\dm, )+ i, T
i(®, D)
+7 (G, *x5G)

e Put the reduction ansatziny —
— find symplectically invariant 4d N = 2 potential
[D’Auria,Ferrara, Trigiante *07]
e Vinvariant under ®, < ®_ (‘mirror’ symmetry)

e )V above is relevant for N = 2 reductions.
Admits N < 2 generalization [Liist,Marchesano,Martucci, Tsimpis '08]



Lifting N = 1 vacua

7~

N=1 conditions :

10d IIA d®, = —2pRe(®_)
sugra dD_ = —3iIm(udy) + Le? 453G
. with |2~ —A

l dimensional reduction

4d N=2 N=1 conditions :

degravitiniy = 0
(0=9 ) under a single

gauQed (6egaugini) =0

— (9-hyperini) = 0 susy e

N=2 —N=1 truncation

N=1 conditions :

F-flatness
D-flatness




Lifting N = 1 vacua

10d level

d®, = —2jiRe(d_) with [p2~—A
do_ = =3ilm(u®, ) + Je?(c_G + i+ G)

[Grana,Minasian,Petrini,Tomasiello '04,05]
make contact with 4d :
e expand on the basis forms X
e separate in components




Lifting N = 1 vacua

10d level

d®, = —2jiRe(d_) with [p2~—A
do_ = =3ilm(u®, ) + Je?(c_G + i+ G)

[Grana,Minasian,Petrini,Tomasiello '04,05]
make contact with 4d :
e expand on the basis forms X
e separate in components )

4d N = 2 level

(0:hyperini) = 0

(d<gravitiniy = 0

<(Sggaug|n|> — O

(é<gravitiniy = 0




Lifting N = 1 vacua

4d N =2 — N = 1 truncation (induced e.g. by O6 plane)
two N = 2 gravitini — N =1 gravitino

nc < ny chiral mult. ‘A’

ny N =2 vector mult. — { ny —nc N = 1 vector mult.

hypermultiplets —  chiral mult. ‘B’




Lifting N = 1 vacua

4d N =2 — N = 1 truncation (induced e.g. by O6 plane)
two N = 2 gravitini — N =1 gravitino

nc < ny chiral mult. ‘A’

ny N =2 vector mult. — { ny —nc N = 1 vector mult.

hypermultiplets —  chiral mult. ‘B’

e Translate in N = 1 language identifying the N = 1 variables
e From susy variations — read F- and D-terms

N = 1 conditions in N = 1 language
F-flatness for chiral mult. ‘B <

F-flatness for chiral mult. A} —

D-flatness




Summary : Comparison with Calabi-Yau case

| | CY&nofluxes | SU(3)xSU(3) + fluxes |

4d action N = 2 ungauged N = 2 gauged sugra
sugra charges: RR, NSNS-fluxes
non-CYness d¥X_ = QX4
Geometric o , Q2 00, 6P_
moduli (include 6B, 5¢)
Kahler Ky ~log [JANJAJ
potentials K_~logi [QAQ Ky =logi [(®y, Py)
Scalar potential V=0 V = V(dd, fluxes)
nontrivial N = 1
Susy vacua trivially N = 2 conditions.
Consistent with 10d egs
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Conclusions

e Type Il reductions to 4d, N = 2 sugra require SU(3)xSU(3) str.
e Generalized Geometry provides the N = 2 data
e We did a thorough analysis

(including the reduction of the 'democratic’ RR sector) —
— complete 4d N = 2 action

e Scalar potential: a compendium of the gauged N = 2 sugra

e Correspondence between 10d and 4d N = 1 conditions :
first step towards proof of consistency

e Future directions:
o apply this general formalism to further explicit examples
o first principles characterization of the expansion forms
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