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Strings in Geometric Background

Manifold,  background tensor 
fields 
Fluctuations: modes of string
Treat background and 
fluctuations the same?

Gij , Hijk,Φ

Stringy geometry?  Singularity resolution?
Dualities: mix geometric and stringy modes
Use in transititions between patches
Sigma Model inadequate. String Field Theory?

Non-Geometric Background?



• T-folds: T-duality transitions

• Doubled formalism, D-branes

• Example, Generalised T-duality

• Compactifications and gauged SUGRA

• Generalised geometry and U-folds: C3

• How do we introduce fermions and 
supersymmetry in non-geometry?

• Generalised spinors, SUSY

Plan of Talk



• T-duals or mirrors of flux compactifications

• Stringy, not supergravity. Simplest extension

• Stringy Geometry, singularity resolution

• New “compactifications”, fix moduli

• Lift of generic D=4 supergravity to D=10 
or 11 is non-geometric

• Generic solutions of string (field) theory?



Geometric Background

Duality

???Non-Geometric Background

Manifold with tensor fields, fluxes and 
gauge fields

Dualities: stringy symmetries
Usually maps to another geometric background
But sometimes not:  
Obstruction to duality?
Or non-geometric background?



Patches glued using geometric symmetries:
Diffeomorphisms, gauge transformations
to construct geometric background

U U
′

Glue using T-dualities also   
T-fold: Patching uses T-duality
Physics smooth, as T-duality a symmetry

T-duality
If toroidal  
fibration:



T-fold patching

R 1/R

Glue big circle (R) to small (1/R)
Glue momentum modes to winding modes
(or linear combination of momentum and winding)
Not conventional smooth geometry



Non-Geometric Backgrounds
Many consistent non-geometric string backgrounds
Orbifolds, asymmetric orbifolds: 
    arise in NGB at special points in moduli space
T-folds, U-folds, mirror-folds
    spaces with torus fibration and T or U duality patching,
    or CY fibration and mirror symmetry patching

S. Kachru, M. B. Schulz, P. K. Tripathy and S. P. Trivedi
A. Dabholkar and C. Hull
S. Hellerman, J. McGreevy and B. Williams 
A. Flournoy, B. Wecht and B. Williams
J. Shelton, W. Taylor and B. Wecht
S. Hellerman and J. Walcher;  D.Vegh and J. McGreevy



T-Duality Monodromies Round Degenerate Fibres
B.Greene,  A.Shapere, C.Vafa, S.T.Yau
S. Hellerman, J. McGreevy and B. Williams 2002

Torus fibration over base
Singularities in base where fibre degenerates
T-duality monodromies round singularities 

Reductions with Duality Twist
A. Dabholkar and C. Hull 2002

Compactify on circle (or torus)
T-duality or U-duality Monodromy round circle(s)
Stringy lift of Scherk-Schwarz
At special points in mod space: assym orbifolds



NG Phenomenology?

• Internal NG background, gives conventional 
4-D field theory

• Lift of generic 4-D SUGRA

• Count in landscape? T-folds? More general 
NG spaces?

• Moduli Stabilisation

• Beckers, Vafa, Walcher: all moduli frozen



U U
′

Y
′Y

E(Y ) E
′(Y ′)

Geometric background: E=G+B tensorial

E
′ = (aE + b)(cE + d)−1 in U ∩ U

′

E
′
= aEa

t
in U ∩ U

′

Duality: transition 
functions now T-dualities

Non-tensorial

Patches glued using geometric symmetries

Glue using T-dualities also ➞  T-fold
Physics smooth, as T-duality a symmetry

Torus 
fibration

a ∈ GL(d, Z)

O(d, d; Z)



Example: T3 with H-flux

H = N × (V ol)

Hxyz = N

Regard as product S
1
× T

2

x

x y, z

Byz = B0 +
1

2π
Nx



T-dual on z-circle:

y, z

x

Torus bundle over circle,  H=0

τ(x) = τ0 +
1

2π
Nx

Nilfold: Heisenberg group manifold 
identified under discrete subgroup

Next,T-dual on y-circle?
No global Killing vector. Do fibrewise duality, use 
Buscher rules locally



T-dual on y-circle:

y, z

x

Torus bundle over circle?

ds2
= dx2

+
1

1 + N2x2

(

dy2
+ dz2

)

Byz =
Nx

1 + N2x2

But x periodic

E(x + 2π) = (aE + b)(cE + d)−1

Monodromy

T-fold.       T-duality in x? No isometry - see later

(

a b
c d

)

∈ O(2, 2; Z) T-duality



Strings on Td

X = XL(σ + τ) + XR(σ − τ), X̃ = XL − XR

conjugate to momentum,X X̃ to winding no.

dX = ∗dX̃ ∂aX = εab∂
b
X̃

Need “auxiliary”     for interacting theory
i) Vertex operators 
ii) String field Kugo & Zwiebach

X̃

e
ikL·XL , e

ikR·XR

Ψ[X, X̃, a, ã]



Doubled Formalism

X
I

=

(
Xi

X̃i

)
I = 1, ..., 2d

Transforms linearly under
T-fold transition: mixes
No global way of separating “real” space coordinate
     from “auxiliary”

O(d, d; Z)

X X̃

Duality covariant formulation in terms of
Transition functions 
can be used to construct bundle with fibres T2d

X

O(d, d; Z) ⊂ GL(2d; Z)



Doubled Bundle

X
I

Y
m

T2d bundle: doubled fibre
Construct duality-covariant sigma 
model on doubled space
Constraint to halve degrees of 
freedom on fibre:

(XI , Y m)

dX = ∗dX̃

S(Y ) =

(

0 1
1 0

)

+ O(Y )

for free case

for general case

S
2

= 1

DX = S(Y ) ∗ DX



Polarisation
To recover conventional formulation, split into 
“fundamental” and “auxiliary”:

X → {Xi, X̃i}

Pick “real spacetime”, T
d
⊂ T

2d

X

X̃

T-duality rotates polarisation.
T-duality symmetry:
physics independent of 
polarisation.



T-fold

Pick polarisation over each patch in base.
T-duality transitions: polarisation changes from patch 
to patch.
Geometric: there is global spacetime submanifold
Non-geometric if there is no global polarisation.



Lk =
1

4
HIJ (dX

I + AI) ∧ ∗(dX
J + AJ)

LWZ = −
1

2
LIJdX

I ∧ AJ
Ltop =

1

2
ΩIJdX

I
∧ dX

J

H =

(

G − BG−1B BG−1

−G−1B G−1

)

H → h
t
Hh

AI
=

(
Ai

Ãi

)
L =

(

0 1

1 0

)

S
I
J = L

IK
HKJ

Generalised metric

O(d,d) metric

2d connections A
i
∼ GmidY

m

Ã
i
∼ BmidY

m

O(d,d) Covariant X → h
−1

X A → h
−1A

Product structure S
2

= 1

+L(Y )



D-Branes and Open Strings

If     Neumann, T-dual      is Dirichlet
If     Dirichlet,   T-dual     is Neumann

X̃X

X̃ X

e.g. d=9,  RtimexT9

X
I = (XiD , XiN )

9 D coordinates, 9 N ones. 
Universal 9-brane, lagrangian cycle

Polarisation chooses some number p of the 
Neumann directions as physical.
Interpret as p-brane



X1N , X2N , X3N ....X9N ,  X1D ,X2D,X3D...X9D

Polarisation chooses 9 of 18 coords as “physical”



X1N , X2N , X3N ....X9N ,  X1D ,X2D,X3D...X9D

Polarisation chooses 9 of 18 coords as “physical”

X1D ,X2D,X3D...X9D

X1N , X2D,X3D...X9D

X1N , X2N ,X3D...X9D

X1N , X2N , X3N ....X9N 

All 9 coords Dirichlet, 0-brane

1-brane

2-brane

9-brane



X1N , X2N , X3N ....X9N ,  X1D ,X2D,X3D...X9D

Polarisation chooses 9 of 18 coords as “physical”

X1D ,X2D,X3D...X9D

X1N , X2D,X3D...X9D

X1N , X2N ,X3D...X9D

X1N , X2N , X3N ....X9N 

All 9 coords Dirichlet, 0-brane

1-brane

2-brane

9-brane

T-fold transition: Glue Dp-brane to Dq-brane
Doubled picture: glue universal 9-branes together
smoothly,but polarisation jumps



Quantisation
How should we impose constraint?

dX + A = S(Y ) ∗ (dX + A)

1) Chose polarisation locally
2) Constraint generates shifts in     
    Gauge these shifts: sigma-model
3)

Gives equivalence on arbitrary Riemann surface   
4) Extends proof of T-duality to fibrewise case, with 
Killing vectors only locally defined
5) Canonical    Hackett-Jones                                                      

L(Y, X)

exp(i

∫
Ltop) = exp(πinñ) = ±1

X̃

X → {Xi, X̃i}



Toroidal Reduction on Td

L = e
−2Φ

{

R + (∇Φ)2 −
1

12
HµνλH

µνλ
}

Gauge group U(1)2d A
i
∼ GmidY

m
Ã

i
∼ BmidY

m

Gij + Bij ∈
O(d, d)

O(d) × O(d)
Moduli: scalar fields

Supergravity with global O(d,d) symmetry

Scherk-Schwarz Reduction
Gauged supergravity, non-abelian gauge fields
2d-dimensional gauge group

A, Ã

G2d ⊂ O(d, d)

τ =

Compactification



Landscape of gauged 
supergravities

General gauged supergravities from gauging any

G2d ⊂ O(d, d)

Some lift to Scherk-Schwarz or other 
compactifications of D=10 supergravity.  Many don’t.

Which can arise from string theory? Generically, arise 
from non-geometric reductions.

Dabholkar and Hull Shelton, Taylor and Wecht



Gauge Algebra

[Za, Zb] = fab
cZc + HabcX

c

[Za, Xb] = −fac
bXc + Qbc

a Zc

[Xa, Xb] = Qab
c Xc + RabcZc

Background, algebra specified by “fluxes”

fab
c, Habc, Q

ab
c , Rabc

T-dualities

Habc ↔ fa
bc ↔ Qab

c ↔ Rabc

Ta
Tb Tc



• Twisted torus reductions with flux.         
Lift of Scherk-Schwarz to string theory      

• Reduction with Duality Twist

• Asymmetric Orbifold

• Orbifolds with dual twists

• Reductions with dual twists

5 Classes of gauged supergravities, with lifts:

CMH & Reid-Edwards

Dabholkar and Hull

f,H

f,H,Q

f,H,Q

f,H,Q,R

f,H,Q,R

Kaloper & Myers



Origin of gauged sugras

1) Twisted torus reductions with flux

Scherk-Schwarz reductions of supergravity use 
a symmetry to define a field theory truncation. 
This lifts to string theory as a compactification 
on        where    is a group manifold, in general 
non-compact, and    is a discrete subgroup.

G/Γ

Γ

G

CMH & Reid-Edwards

f,H



2) Reduction with Duality Twist

Compactify on    , theory has T-duality  symmetryT
n

H = O(n, n; Z)

Compactify on further circle with H-twist.
Geometric twist: twist in 
Gives torus bundle over circle.
T-duality twist: gives T-fold

GL(n, Z)×Z
n(n−1)/2

Dabholkar and Hull

3) Asymetric Orbifold

At special points in moduli space, 
DUALITY TWIST           ASYMMETRIC ORBIFOLD

S
1 x → x + 2π/m

Symmetry of CFT
Shift on

τ(x)

τ = τ0

Zm ⊂ O(n, n; Z)

f,H,Q

f,H,Q



4) Orbifolds with dual twists

At special points in moduli space, 

Zm × Z em ⊂ O(n, n; Z)

S
1

x → x + 2π/m

Symmetry of CFT

Shifts on “doubled”

x̃ → x̃ + 2π/m̃

∣∣∣p, w
〉
→ exp (2πip/m) exp (2πiw/m̃)

∣∣∣p, w
〉

Fourier Trans to momentum p, winding number w
∣

∣

∣
p, w

〉

Zm × Z em action on

f,H,Q,R



5) Reductions with dual twists

At orbifold points, x-twists reduce to x-shifts.
Suggests that moving away from orbifold points:

x − shifts → x − twists

x̃ − shifts → x̃ − twists

Dependence on dual coordinate!
Not even locally geometric

f,H,Q,R



Example: T3 with H-flux

T-duality in z-direction: gives     bundle over 

τ = τ0 +
1

2π
Nx

T
2

S
1

Hxyz = NRegard as product S
1
× T

2

x

x y, z

Moduli

ρ = ρ0 +
1

2π
Nx

E = E0 + Ωx Ω =
N

2π

(

0 1

−1 0

)

E = G + B

τ, ρ = Byz + iV

Geometric 
twist

Byz = B0 +
1

2π
Nx



T-dual on y-circle:

y, z

x

Torus bundle over circle?

ds2
= dx2

+
1

1 + N2x2

(

dy2
+ dz2

)

Byz =
Nx

1 + N2x2

But x periodic

E(x + 2π) = (aE + b)(cE + d)−1

Monodromy

T-fold.      

(

a b
c d

)

∈ O(2, 2; Z) T-duality



The duality in y-direction gives

E(x) = (E0 + Ωx)−1

No isometry in the x-direction.
Can we do the final T-duality?
This would give the T-dual of 3-torus with constant 
H-flux on all 3-directions.  cf. mirror symmetry

T-fold, T-duality twist in x-direction



The duality in y-direction gives

E(x) = (E0 + Ωx)−1

No isometry in the x-direction.
Can we do the final T-duality?
This would give the T-dual of 3-torus with constant 
H-flux on all 3-directions.  cf. mirror symmetry

T-fold, T-duality twist in x-direction

E(x̃) = (E0 + Ωx̃)−1

T-duality swaps x with dual coordinate x → x̃

Suggests twist in    -directionx̃ Dabholkar and Hull



• Conventional T-duality requires isometry

• Generalisation suggested by doubled 
geometry

• Replace   dependence with   dependence

• General backgrounds with dependence on 
both      ?

• Not locally geometric, can’t use σ-model. 
Use string field theory

x̃x

x, x̃



U-Folds
For Td Fibration, allow Ed(Z) Transitions
Mix Momentum and brane wrapping mode

e.g. T4, E4=SL(5)
String: 4 momentum + 4 string winding
4+4 ~ 8 of O(4,4;Z)
M-Theory: 4 momm + 6 membrane wrapping
4+6 ~ 10 of SL(5;Z)

T ⊕ T
∗

T ⊕ ∧
2
T

∗

SL(5) acts non-linearly on Gij,Cijk

Doubled torus T8 replaced by M-Torus T10

U-duality changes polarisation, T4 ⊂ T10.



D n G = En Hn dim(En) dim(En/Hn)
9 2 SL(2, )× SO(2) 4 3
8 3 SL(3, )× SL(2, ) SO(3)× SO(2) 11 7
7 4 SL(5, ) SO(5) 24 14
6 5 Spin(5, 5) (Sp(2)× Sp(2))/ 2 45 25
5 6 E6(6) Sp(4)/ 2 78 42
4 7 E7(7) SU(8)/ 2 133 70
3 8 E8(8) Spin(16)/ 2 248 128

Table 1: Symmetries of Maximal Supergravities in D = 11− n Dimensions. The U-duality
groups G = En, their maximal compact subgroups Hn, and the dimensions of En and the
cosets En/Hn.

1

Symmetries in D 
Dimensions

Heterotic:G=O(d,d+16), H=O(d)xO(d+16), d=10-D

R-Symmetry: Double cover Ĥ of H



Generalised Geometry
Studies structures on a d-dimensional manifold M 
on which there is a natural action of O(d,d)

V I
=

(

vi

ξi

)

V = v + ξ ∈ T ⊕ T ∗

O(d,d) Metric

T ⊕ T
∗ Vector + 1-form

η(v + ξ, v + ξ) = 2ιvξ η =

(

0

0

)

O(d,d) V → gV g
t
ηg = η

ιvξ = viξiHitchin



Generalised Metric Gualtieri

Positive definite metric on           compatible withT ⊕ T
∗

η
−1

Hη
−1

= H
−1

η

HIJ

S = η−1
H S

2
=satisfies Real structure

H =

(

G − BG−1B BG−1

−G−1B G−1

)

Parameterised by G = Gt, B = −Bt

H → g
t
Hg E → (aE + b)(cE + d)−1

E = G + B

O(d,d):

Parameterise coset
O(d, d)

O(d) × O(d)



Geometric Subgroup g =

(

M 0
Θ (M t)−1

)

G → M tGM, B → M tBM

B → B + Θ B-shifts

GL(d, )

Γ( ) ⊂ O(d, d)

Transition Functions T, T ∗, T ⊕ T ∗....

GL(d, ) ∂x′i

∂xj

Generalised Tangent Bundle:
Transition functions                    exactΓ( ) Θ

B
′
= B + dλ

 Rest of O(d,d) not symms, can’t be used as transitions

Symmetries



Transition Functions
∂x′i

∂xj

Generalised Tangent Bundle:
Transition functions                   Γ( )

 Rest of O(d,d) not symms, can’t be used as transitions

Suggestive to think of            as O(d,d) bundle          T ⊕ T
∗

GL(d, )

GL(d, )Really             bundle

If M has an n-torus fibration, there is an 
T-duality symmetry. Suggests using this as 
transition functions in more general space

O(n, n; )

T-fold



Type I  Extended Geometry

Action of O(d,d)

T ⊕ T
∗

HIJ ∈

Generalised metric
G, B2

cf Brane charges

O(d, d)

O(d) × O(d)



Type I  Extended Geometry

Action of O(d,d)

T ⊕ T
∗

HIJ ∈

Generalised metric
G, B2

cf Brane charges

O(d, d)

O(d) × O(d)

Type II: O(d,d)           Ed+1, add RR fields



Type I  Extended Geometry

Action of O(d,d)

T ⊕ T
∗

HIJ ∈

Generalised metric
G, B2

cf Brane charges

O(d, d)

O(d) × O(d)

Type M: O(d,d)           Ed,       B2                  C3

T ⊕ T
∗ T ⊕ Λ

2
T

∗



Type M Extended Geometry

Action of Ed

HIJ ∈

Generalised metric

cf Brane charges

d ≤ 4

T ⊕ Λ
2
T

∗

Ed

Hd

G, C3



Type M Extended Geometry

Action of Ed

HIJ ∈

Generalised metric

cf Brane charges
T ⊕ Λ

2
T

∗

Ed

Hd

G, C3 , C̃6

⊕Λ
5
T

∗
⊕ Λ

6
T

d ≤ 7



Type M Extended Geometry

Action of Ed

HIJ ∈

Generalised metric

cf Brane charges
T ⊕ Λ

2
T

∗

Ed

Hd

G, C3 , C̃6

⊕Λ
5
T

∗
⊕ Λ

6
T

d ≤ 7

Extended Tangent Bundle: Structure group Ed

Reducible to H-Bundle, reduction introduces HIJ



Extended Geometry for M-theory, 
Type II

Suggestive rewrite of familiar structures on manifold

Gij , Bij HIJ

J± J

C0 + C2 + C4 + ... C
+

O(d, d)

O(d) × O(d)
∈

•Understand general features, prove theorems, 
construct new examples.....
•Actions:  Hitchin functionals
•Natural action of O(d,d) or Ed but not a symmetry
•Discrete subgroups can be symmetry for toroidal 
fibrations, can be used in transtions

CMH:  hep-th 0701203; Waldram and Pacheco 0804.1362



Conclusions

• Duality in general leads to T-folds and other 
non-geometric backgrounds

• Local spacetime patches, no global 
spacetime

• Field equations from conformal and 
Lorentz anomalies. Modular invariance?

• All symmetries in transitions, T- and U-
dualities and R-symmetries



• T-folds: momentum & string winding mix             
U-folds: momentum & brane wrapping mix

• Generalised geometry: doubles tangent 
space  O(d,d), not O(d,d;Z)    [Hitchin]                               
Doubled formalism: doubles spacetime

• M-Theory: Doubled torus  e.g. T7→ T14 
becomes M-torus e.g. T7→ T56  . U-duality 
acts to change polarisation T7⊂ T56

• Ĥ-symmetry transitions allow generalised 
spinors



• D-branes and supersymmetry: incorporated

• T-fold as “Quantum bundle”: bundle of 
torus CFT’s over base.

• Generic solutions of string field theory: 
fields              No spacetime even locally?

• General backgrounds, not torus fibrations?

• What is stringy/M geometry? What is 
string/M theory?

ψ(X, X̃)


