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Motivation

Supersymmetric compactifications of type II supergravity

With fluxes: moduli stabilization
With four-dimensional flat Minkowski or AdS4 factor: uplifting to
dS in later phase

Why supersymmetric?

Supersymmetry conditions: easier to solve than EOM
Supersymmetry conditions and Bianchi’s form fields imply all EOM
IIA: Lüst,Tsimpis, IIB: Gauntlett, Martelli, Sparks, Waldram

With sources: PK, Tsimpis

Break supersymmetry at low energy (for e.g. hierarchy problem)
See part II for GG and susy breaking

Relation between susy conditions of type II in the presence of fluxes
and GG

Applications to AdS/CFT:
find new susy solutions of supergravity
=⇒ geometric dual of CFT

3 / 23

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)



Introduction Supersymmetry conditions of type II supergravity Generalized geometry Generalized calibrations

Compactification ansatz I

Metric:

ds2 = e2A(y)g(4)µν(x)dxµdxν + gmn(y)dymdyn ,

with g(4) flat Minkowski or AdS4 metric, A warp factor
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Compactification ansatz I

Metric:

ds2 = e2A(y)g(4)µν(x)dxµdxν + gmn(y)dymdyn ,

with g(4) flat Minkowski or AdS4 metric, A warp factor

RR-fluxes:

Democratic formalism: double fields, impose duality condition
Combine forms into one polyform

Ftot =
∑

l

F(l) = F + e
4Avol4 ∧ Fel , (Fel = ⋆6σ(F ))

with l even/odd in type IIA/IIB
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Compactification ansatz II

N = 1 ansatz for susy generators:

ǫ1 = ζ+ ⊗ η(1)
+ + ζ− ⊗ η(1)

− ,

ǫ2 = ζ+ ⊗ η(2)
∓ + ζ− ⊗ η(2)

± ,

ζ: 4d spinor characterizes preserved susy
η(1,2): fixed 6d-spinor, property background
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Compactification ansatz II

η(1,2): fixed 6d-spinor, property background

Define polyforms

/Ψ± = − 8i

||η(1)||2 η
(1)
+ ⊗ η(2)†

±
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Compactification ansatz II

η(1,2): fixed 6d-spinor, property background

Define polyforms

/Ψ± = − 8i

||η(1)||2 η
(1)
+ ⊗ η(2)†

±

Fierzing, we find:

Ψ± = − i

||η(1)||2
∑

l

1

l!
η
(2)†
± γi1...il

η
(1)
+ dxil ∧ . . . ∧ dxi1
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Compactification ansatz II

η(1,2): fixed 6d-spinor, property background

Define polyforms

/Ψ± = − 8i

||η(1)||2 η
(1)
+ ⊗ η(2)†

±

Clifford map between polyforms and operators on spinors

Not every polyform ⇐⇒ spinor bilinear, only pure spinors
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Compactification ansatz II

η(1,2): fixed 6d-spinor, property background

Define polyforms

/Ψ± = − 8i

||η(1)||2 η
(1)
+ ⊗ η(2)†

±

Clifford map between polyforms and operators on spinors

Not every polyform ⇐⇒ spinor bilinear, only pure spinors

Special case SU(3)-structure: η(2) = cη(1)

⇒ Ψ+ = −ic−1eiJ , Ψ− = Ω

J two-form, Ω holomorphic three-form
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Background susy conditions

Graña, Minasian, Petrini, Tomasiello

Susy conditions type II sugra:
Gravitino’s

δψ1
M =

(

∇M +
1

4
/HM

)

ǫ1 +
1

16
eΦ /Ftot ΓMΓ(10)ǫ

2 = 0

δψ2
M =

(

∇M −
1

4
/HM

)

ǫ2 − 1

16
eΦσ(/Ftot) ΓMΓ(10)ǫ

1 = 0

Dilatino’s

δλ1 =

(

/∂Φ +
1

2
/H

)

ǫ1 +
1

16
eΦΓM /Ftot ΓMΓ(10)ǫ

2 = 0

δλ2 =

(

/∂Φ− 1

2
/H

)

ǫ2 − 1

16
eΦΓMσ(/Ftot) ΓMΓ(10)ǫ

1 = 0
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Background susy conditions

Graña, Minasian, Petrini, Tomasiello

Susy conditions type II sugra:
Gravitino’s

δψ1
M =

(

∇M +
1

4
/HM

)

ǫ1 +
1

16
eΦ /Ftot ΓMΓ(10)ǫ

2 = 0

δψ2
M =

(

∇M −
1

4
/HM

)

ǫ2 − 1

16
eΦσ(/Ftot) ΓMΓ(10)ǫ

1 = 0

Dilatino’s

δλ1 =

(

/∂Φ +
1

2
/H

)

ǫ1 +
1

16
eΦΓM /Ftot ΓMΓ(10)ǫ

2 = 0

δλ2 =

(

/∂Φ− 1

2
/H

)

ǫ2 − 1

16
eΦΓMσ(/Ftot) ΓMΓ(10)ǫ

1 = 0

=⇒ can be concisely rewritten as . . .
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Background susy conditions

Graña, Minasian, Petrini, Tomasiello

Susy equations in polyform notation:

dH

(

e4A−ΦReΨ1

)

= e4AFel ,

dH

(

e3A−ΦΨ2

)

= 0 ,

dH(e2A−ΦImΨ1) = 0 ,

for Minkowski.

Fel: external part polyform RR-fluxes, Φ: dilaton, A: warp factor,
H NSNS 3-form, dH = d+H∧
Ψ1 = Ψ∓,Ψ2 = Ψ± for IIA/IIB
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Background susy conditions

Graña, Minasian, Petrini, Tomasiello

Susy equations in polyform notation:

dH

(

e4A−ΦReΨ1

)

= (3/R) e3A−ΦRe(eiθΨ2) + e4AFel ,

dH

(

e3A−ΦΨ2

)

= (2/R)i e2A−Φe−iθImΨ1 ,

dH(e2A−ΦImΨ1) = 0 ,

for AdS: ∇µζ− = ± e−iθ

2R
γµζ+.

Fel: external part polyform RR-fluxes, Φ: dilaton, A: warp factor,
H NSNS 3-form, dH = d+H∧
Ψ1 = Ψ∓,Ψ2 = Ψ± for IIA/IIB
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Finding solutions

Susy equations supplemented with Bianchi’s:

dHF = −j ,
where j represents sources
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Finding solutions

Susy equations supplemented with Bianchi’s:

dHF = −j ,
where j represents sources






Susy conditions
Bianchi with sources

Sources = gen. cal. cycles
=⇒

Einstein equations with sources
dilaton EOM with sources

EOM fluxes

PK, Tsimpis
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





Susy conditions
Bianchi with sources

Sources = gen. cal. cycles
=⇒
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EOM fluxes
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For Minkowski compactifications:
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For AdS4: solutions without sources possible
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Finding solutions

Susy equations supplemented with Bianchi’s:

dHF = −j ,
where j represents sources






Susy conditions
Bianchi with sources

Sources = gen. cal. cycles
=⇒

Einstein equations with sources
dilaton EOM with sources

EOM fluxes

PK, Tsimpis

For Minkowski compactifications:
Sources negative tension (orientifolds) necessary Maldacena, Núñez

For AdS4: solutions without sources possible

New Minkowski solutions on nilmanifolds/solvmanifolds:
Graña, Minasian, Petrini, Tomasiello; Andriot

New AdS4 solutions on twistor bundles/coset manifolds:
Tomasiello; PK, Lüst, Tsimpis
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Classification of structures

N = 1 ansatz susy generators:

ǫ1 = ζ+ ⊗ η(1)
+ + ζ− ⊗ η(1)

−

ǫ2 = ζ+ ⊗ η(2)
∓ + ζ− ⊗ η(2)

±

Relation η(1) and η(2): η
(2)
+ = cη

(1)
+ +W iγiη

(1)
−
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Classification of structures

N = 1 ansatz susy generators:

ǫ1 = ζ+ ⊗ η(1)
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−

ǫ2 = ζ+ ⊗ η(2)
∓ + ζ− ⊗ η(2)

±

Relation η(1) and η(2): η
(2)
+ = cη

(1)
+ +W iγiη

(1)
−

Strict SU(3)-structure: c 6= 0,W = 0 everywhere

⇒ Ψ+ = −ic−1eiJ , Ψ− = Ω

J two-form, Ω holomorphic three-form Type: (0,3)

8 / 23

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)



Introduction Supersymmetry conditions of type II supergravity Generalized geometry Generalized calibrations

Classification of structures

N = 1 ansatz susy generators:

ǫ1 = ζ+ ⊗ η(1)
+ + ζ− ⊗ η(1)

−

ǫ2 = ζ+ ⊗ η(2)
∓ + ζ− ⊗ η(2)

±

Relation η(1) and η(2): η
(2)
+ = cη

(1)
+ +W iγiη

(1)
−

Strict SU(3)-structure: c 6= 0,W = 0 everywhere

⇒ Ψ+ = −ic−1eiJ , Ψ− = Ω

J two-form, Ω holomorphic three-form Type: (0,3)

Static SU(2)-structure: W 6= 0, c = 0 everywhere Type: (2,1)

8 / 23

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)



Introduction Supersymmetry conditions of type II supergravity Generalized geometry Generalized calibrations

Classification of structures

N = 1 ansatz susy generators:

ǫ1 = ζ+ ⊗ η(1)
+ + ζ− ⊗ η(1)

−

ǫ2 = ζ+ ⊗ η(2)
∓ + ζ− ⊗ η(2)

±

Relation η(1) and η(2): η
(2)
+ = cη

(1)
+ +W iγiη

(1)
−

Strict SU(3)-structure: c 6= 0,W = 0 everywhere

⇒ Ψ+ = −ic−1eiJ , Ψ− = Ω

J two-form, Ω holomorphic three-form Type: (0,3)

Static SU(2)-structure: W 6= 0, c = 0 everywhere Type: (2,1)

Intermediate SU(2)-structure: W 6= 0, c 6= 0
|W |2, |c|2 constant, fixed angle Type: (0,1)

8 / 23

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)



Introduction Supersymmetry conditions of type II supergravity Generalized geometry Generalized calibrations

Classification of structures

N = 1 ansatz susy generators:

ǫ1 = ζ+ ⊗ η(1)
+ + ζ− ⊗ η(1)

−

ǫ2 = ζ+ ⊗ η(2)
∓ + ζ− ⊗ η(2)

±

Relation η(1) and η(2): η
(2)
+ = cη

(1)
+ +W iγiη

(1)
−

Strict SU(3)-structure: c 6= 0,W = 0 everywhere

⇒ Ψ+ = −ic−1eiJ , Ψ− = Ω

J two-form, Ω holomorphic three-form Type: (0,3)

Static SU(2)-structure: W 6= 0, c = 0 everywhere Type: (2,1)

Intermediate SU(2)-structure: W 6= 0, c 6= 0
|W |2, |c|2 constant, fixed angle Type: (0,1)

Dynamic SU(3)×SU(3)-structure: type may change

8 / 23

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)



Introduction Supersymmetry conditions of type II supergravity Generalized geometry Generalized calibrations

Generalized geometry

Hitchin; Gualtieri

Interpretation of Ψ± in generalized geometry
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Generalized geometry

Hitchin; Gualtieri

Interpretation of Ψ± in generalized geometry

Generalized geometry is based on: TM⊕T ⋆M

Comes with natural metric:

I(X,Y) =
1

2
(η(X) + ξ(Y ))

for X = (X, ξ),Y = (Y, η) ∈ Γ(TM ⊕ T ⋆M)
=⇒ signature (6,6) =⇒ SO(6,6)-structure
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Spinors of Spin(6,6)

Action of generalized tangent bundle on polyforms:

X ·Ψ = ιXΨ + ξ ∧Ψ ,

for X = (X, ξ)
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Spinors of Spin(6,6)

Action of generalized tangent bundle on polyforms:

X ·Ψ = ιXΨ + ξ ∧Ψ ,

for X = (X, ξ)

Clifford algebra:

(X ·Y + Y · X) ·Ψ = 2 I(X,Y)Ψ

=⇒ polyforms are spinors of Spin(6,6) (well, almost)

Spinor bilinear: Mukai pairing

φT
1 Cφ2 = 〈φ1, φ2〉 = φ1 ∧ σ(φ2)|top
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Pure spinors

Null space of polyform:

NΨ = {X ∈ Γ(TM ⊕ T ⋆M) : X ·Ψ = 0}

=⇒ isotropic: I(X,Y) = 0 for all X,Y ∈ NΨ
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Pure spinors

Null space of polyform:

NΨ = {X ∈ Γ(TM ⊕ T ⋆M) : X ·Ψ = 0}

=⇒ isotropic: I(X,Y) = 0 for all X,Y ∈ NΨ

Pure spinor ⇐⇒ null space maximal

Pure spinor ⇐⇒ Spin(6)-spinor bilinear
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Generalized almost complex structure

Generalized almost complex structure

J : TM ⊕ T ⋆M → TM ⊕ T ⋆M

so that

J 2 = −1
I(JX,JY) = I(X,Y)
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Generalized almost complex structure

Generalized almost complex structure

J : TM ⊕ T ⋆M → TM ⊕ T ⋆M

so that

J 2 = −1
I(JX,JY) = I(X,Y)

Defines ±i eigenbundles

L± ⊂ (TM ⊕ T ⋆M)⊗ C
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Generalized almost complex structure

Generalized almost complex structure

J : TM ⊕ T ⋆M → TM ⊕ T ⋆M

so that

J 2 = −1
I(JX,JY) = I(X,Y)

Defines ±i eigenbundles

L± ⊂ (TM ⊕ T ⋆M)⊗ C

⇒ isotropic

Almost complex structure & symplectic structure examples

JJ =

(

J 0

0 −JT

)

, Jω =

(

0 ω−1

−ω 0

)
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Generalized complex structure

Generalized complex structure integrable if
L+ involutive: [L+, L+]H ⊂ L+

where the H-twisted Courant bracket:

[X + ξ, Y + η]H = [X,Y ] +LXη−LY ξ−
1

2
d(ιXη− ιY ξ) + ιX ιY H
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Generalized complex structure

Generalized complex structure integrable if
L+ involutive: [L+, L+]H ⊂ L+

where the H-twisted Courant bracket:

[X + ξ, Y + η]H = [X,Y ] +LXη−LY ξ−
1

2
d(ιXη− ιY ξ) + ιX ιY H

Properties Courant bracket:

Projects nicely to Lie bracket

π([X, Y]H) = [π(X), π(Y)]

Under B-transform (off-diagonal part of SO(6,6))

e
B(X + ξ) = X + (ξ + ιXB)

it transforms covariantly:

[eB
X, e

B
Y]H+dB = e

B [X, Y]H
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Relation pure spinor and generalized almost
complex structure

Ψ←→ J iff NΨ = LJ+
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Relation pure spinor and generalized almost
complex structure
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Integrability:

J is H-integrable ⇐⇒ dHΨ = X ·Ψ
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Relation pure spinor and generalized almost
complex structure

Ψ←→ J iff NΨ = LJ+

Integrability:

J is H-integrable ⇐⇒ dHΨ = X ·Ψ
J is H-twisted gen. CY ⇐⇒ dHΨ = 0

B-transform:

X←→ e−B
X =⇒ [·, ·]H ←→ [·, ·]

corresponds to

Ψ←→ eBΨ =⇒ dH ←→ d

=⇒ we can choose to work with H or B
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[J1,J2] = 0
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(
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)

= 0 J2 integrable

dH(e2A−ΦImΨ1) = 0

=⇒ integrability J2: allows to study deformations sf D-branes
PK, Martucci

=⇒ exceptional generalized geometry Hull; Waldram, Pacheco
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Calibrations I

Calibrations:

A way to find minimal volume submanifolds in a curved space

Second-order equations ⇒ first-order equations

Analogous to self-duality solves Yang-Mills equations

Or more generally BPS equations solve equations of motion

Generalized calibrations:

Submanifold Σ =⇒ D-brane (Σ,F)

D-brane wrapping generalized calibrated cycle ⇐⇒ susy

16 / 23

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)



Introduction Supersymmetry conditions of type II supergravity Generalized geometry Generalized calibrations
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Calibrations:

A way to find minimal volume submanifolds in a curved space

Second-order equations ⇒ first-order equations

Analogous to self-duality solves Yang-Mills equations

Or more generally BPS equations solve equations of motion

Generalized calibrations:

Submanifold Σ =⇒ D-brane (Σ,F)

D-brane wrapping generalized calibrated cycle ⇐⇒ susy

In fact: extend self-duality YM to higher dimensions, combine with
calibrations
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Calibrations II

Calibration form φ:

dφ = 0 (1) (differential property)

Bound:
√
g|Tp

≥ φ|Tp
(2) (algebraic property)

for every subspace Tp of tangent space at point p
bound must be such that it can be saturated
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bound must be such that it can be saturated

Calibrated submanifold Σ:

Saturates bound:
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For ∂B = Σ2 − Σ1

Vol(Σ2) =

∫
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(2)

≥
∫

Σ2

φ
(1)
=

∫

Σ1

φ
(3)
=

∫

Σ1

√
g = Vol(Σ1)

Calibration forms from invariant spinors: e.g. Ω, 1
k!J

k in CY
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Generalized calibrations

PK; Martucci, Smyth
We have:

bulk fluxes H and F

F on the D-brane, where F = B + 2πα′FWV

such that dF = H
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Generalized calibrations

PK; Martucci, Smyth
Calibration polyform φ (or ω = φ− Cel):

dHφ = Fel (1) (differential property)

Bound: e−Φ
√
g+F|Tp

≥ φ eF |Tp
(2) (algebraic property)

bound must be such that it can be saturated
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dHφ = Fel (1) (differential property)

Bound: e−Φ
√
g+F|Tp

≥ φ eF |Tp
(2) (algebraic property)

bound must be such that it can be saturated

Papadopoulos and Gutowski
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For ∂H(B, F̃) = (Σ2,F2)− (Σ1,F1)
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Generalized calibrations
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Corresponds to supersymmetric D-brane
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Natural calibration forms

Martucci, Smyth

Calibration forms are the polyforms:

ωsf = e4A−ΦReΨ1 ,

ωDW
φ = e3A−ΦRe(eiφΨ2) ,

ωstring = e2A−ΦImΨ1 .

Differential property is provided by the bulk susy equations:

dH

(

e4A−ΦReΨ1

)

= e4AFel , space-filling D-brane

dH

(

e3A−ΦΨ2

)

= 0 , domain wall

dH(e2A−ΦImΨ1) = 0 , string-like D-brane
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Calibration forms are the polyforms:

ωsf = e4A−ΦReΨ1 ,

ωDW
φ = e3A−ΦRe(eiφΨ2) ,

ωstring = e2A−ΦImΨ1 .

Differential property is provided by the bulk susy equations:

dH

(

e4A−ΦReΨ1

)

= e4AFel , space-filling D-brane

dH

(

e3A−ΦΨ2

)

= 0 , domain wall

dH(e2A−ΦImΨ1) = 0 , string-like D-brane

Spoiled in the AdS case: interpretation PK, Martucci
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Generalized current

Definition: j(Σ,F)

∫

Σ

φ∧eF =

∫

M

〈φ, j(Σ,F)〉
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Generalized current

Definition: j(Σ,F)

∫

Σ

φ∧eF =

∫

M

〈φ, j(Σ,F)〉

Roughly: j(Σ,F) = δ(Σ) ∧ e−F

Appears in Bianchi’s: dHF = −j(Σ,F)

Real pure spinor: null space is generalized tangent bundle Gualtieri

T(Σ,F) = {X + ξ ∈ TΣ ⊕ T ⋆
M |Σ : PΣ[ξ] = ιXF}
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D-flatness and F-flatness conditions

Focus on space-filling D-brane
Saturating bound consists of two parts

e−Φ
√
g + F|Σ = eiαe4A−ΦΨ1|Σ ∧ eF

where eiα varying phase
⇒ (Σ,F) is generalized complex submanifold with respect to J2

This becomes an F-flatness condition in the 4d-effective theory
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Wbrane =
1

2

∫

B

e3A−ΦΨ2|B ∧ eF̃ , ∂B = Σ− Σ0
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∫

B
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This becomes a D-flatness condition in the 4d-effective theory
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where eiα varying phase
⇒ (Σ,F) is generalized complex submanifold with respect to J2

This becomes an F-flatness condition in the 4d-effective theory
Superpotential Martucci:

Wbrane =
1

2

∫

B

e3A−ΦΨ2|B ∧ eF̃ , ∂B = Σ− Σ0

ImΨ1|Σ ∧ eF = 0: analogous to the ‘special’ in special lagrangian
This becomes a D-flatness condition in the 4d-effective theory

For interpretation bulk susy conditions as F- and D-flatness:
see part II
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Conclusions

Generalized geometry organizes supersymmetry conditions of type II
with fluxes

Susy conditions background ⇐⇒ generalized calibrations of
D-branes
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Conclusions

Generalized geometry organizes supersymmetry conditions of type II
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Susy conditions background ⇐⇒ generalized calibrations of
D-branes

Sugra vacua beyond SU(3)-structure: group manifolds & coset
manifolds

No algebraic geometry, so far no easy way to produce examples
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Conclusions

Generalized geometry organizes supersymmetry conditions of type II
with fluxes

Susy conditions background ⇐⇒ generalized calibrations of
D-branes

Sugra vacua beyond SU(3)-structure: group manifolds & coset
manifolds

No algebraic geometry, so far no easy way to produce examples

Part II: 4D effective theory, susy breaking
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End

of
pa

rt

I . . . Part II by Martucci
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