Generalized Geometry and Flux Compactifications

Part I by Paul Koerber

Max-Planck-Institut für Physik, Munich

Vienna, 10 October 2008

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)

Contents

- Supersymmetry conditions for compactifications of type II supergravity
- Generalized geometry
- Generalized calibrations

Motivation

- Supersymmetric compactifications of type II supergravity
 - With fluxes: moduli stabilization
 - $\bullet\,$ With four-dimensional flat Minkowski or AdS_4 factor: uplifting to dS in later phase

Motivation

- Supersymmetric compactifications of type II supergravity
 - With fluxes: moduli stabilization
 - $\bullet\,$ With four-dimensional flat Minkowski or AdS_4 factor: uplifting to dS in later phase
- Why supersymmetric?

Motivation

- Supersymmetric compactifications of type II supergravity
 - With fluxes: moduli stabilization
 - $\bullet\,$ With four-dimensional flat Minkowski or AdS_4 factor: uplifting to dS in later phase
- Why supersymmetric?
 - Supersymmetry conditions: easier to solve than EOM
 - Supersymmetry conditions and Bianchi's form fields imply all EOM IIA: *Lüst*, *Tsimpis*, IIB: *Gauntlett*, *Martelli*, *Sparks*, *Waldram* With sources: *PK*, *Tsimpis*

3 / 23

Motivation

- Supersymmetric compactifications of type II supergravity
 - With fluxes: moduli stabilization
 - $\bullet\,$ With four-dimensional flat Minkowski or AdS_4 factor: uplifting to dS in later phase
- Why supersymmetric?
 - Supersymmetry conditions: easier to solve than EOM
 - Supersymmetry conditions and Bianchi's form fields imply all EOM IIA: *Lüst*, *Tsimpis*, IIB: *Gauntlett*, *Martelli*, *Sparks*, *Waldram* With sources: *PK*, *Tsimpis*
 - Break supersymmetry at low energy (for e.g. hierarchy problem) See part II for GG and susy breaking

3 / 23

Motivation

- Supersymmetric compactifications of type II supergravity
 - With fluxes: moduli stabilization
 - $\bullet\,$ With four-dimensional flat Minkowski or AdS_4 factor: uplifting to dS in later phase
- Why supersymmetric?
 - Supersymmetry conditions: easier to solve than EOM
 - Supersymmetry conditions and Bianchi's form fields imply all EOM IIA: *Lüst*, *Tsimpis*, IIB: *Gauntlett*, *Martelli*, *Sparks*, *Waldram* With sources: *PK*, *Tsimpis*
 - Break supersymmetry at low energy (for e.g. hierarchy problem) See part II for GG and susy breaking
- Relation between susy conditions of type II in the presence of fluxes and GG

Motivation

- Supersymmetric compactifications of type II supergravity
 - With fluxes: moduli stabilization
 - $\bullet\,$ With four-dimensional flat Minkowski or AdS_4 factor: uplifting to dS in later phase
- Why supersymmetric?
 - Supersymmetry conditions: easier to solve than EOM
 - Supersymmetry conditions and Bianchi's form fields imply all EOM IIA: *Lüst, Tsimpis*, IIB: *Gauntlett, Martelli, Sparks, Waldram* With sources: *PK, Tsimpis*
 - Break supersymmetry at low energy (for e.g. hierarchy problem) See part II for GG and susy breaking
- Relation between susy conditions of type II in the presence of fluxes and GG
- Applications to AdS/CFT: find new susy solutions of supergravity
 - \implies geometric dual of CFT

Metric:

$$\mathrm{d}s^2 = e^{2A(y)}g_{(4)\mu\nu}(x)\mathrm{d}x^\mu\mathrm{d}x^\nu + g_{mn}(y)\mathrm{d}y^m\mathrm{d}y^n \ ,$$

with $g_{(4)}$ flat Minkowski or AdS₄ metric, A warp factor

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)

Metric:

$$\mathrm{d}s^2 = e^{2A(y)}g_{(4)\mu\nu}(x)\mathrm{d}x^\mu\mathrm{d}x^\nu + g_{mn}(y)\mathrm{d}y^m\mathrm{d}y^n \ ,$$

with $g_{(4)}$ flat Minkowski or AdS₄ metric, A warp factor

- RR-fluxes:
 - Democratic formalism: double fields, impose duality condition
 - Combine forms into one polyform

$$F_{\rm tot} = \sum_{l} F_{(l)} = F + e^{4A} \operatorname{vol}_4 \wedge F_{\rm el} \,, \qquad (F_{\rm el} = \star_6 \sigma(F))$$

with l even/odd in type IIA/IIB

• N = 1 ansatz for susy generators:

$$\epsilon^{1} = \zeta_{+} \otimes \eta_{+}^{(1)} + \zeta_{-} \otimes \eta_{-}^{(1)} ,$$

$$\epsilon^{2} = \zeta_{+} \otimes \eta_{\mp}^{(2)} + \zeta_{-} \otimes \eta_{\pm}^{(2)} ,$$

 $\zeta: \mbox{ 4d spinor characterizes preserved susy } \eta^{(1,2)}: \mbox{ fixed 6d-spinor, property background }$

5 / 23

Generalized calibrations

Compactification ansatz II

- $\eta^{(1,2)}$: fixed 6d-spinor, property background
- Define polyforms

$$\Psi_{\pm} = -\frac{8i}{||\eta^{(1)}||^2} \eta^{(1)}_{\pm} \otimes \eta^{(2)\dagger}_{\pm}$$

- $\eta^{(1,2)}$: fixed 6d-spinor, property background
- Define polyforms

$$\Psi_{\pm} = -\frac{8i}{||\eta^{(1)}||^2} \eta^{(1)}_{\pm} \otimes \eta^{(2)\dagger}_{\pm}$$

Fierzing, we find:

$$\Psi_{\pm} = -\frac{i}{||\eta^{(1)}||^2} \sum_{l} \frac{1}{l!} \eta_{\pm}^{(2)\dagger} \gamma_{i_1...i_l} \eta_{\pm}^{(1)} dx^{i_l} \wedge \ldots \wedge dx^{i_1}$$

- $\eta^{(1,2)}$: fixed 6d-spinor, property background
- Define polyforms

$$\Psi_{\pm} = -\frac{8i}{||\eta^{(1)}||^2} \eta^{(1)}_{\pm} \otimes \eta^{(2)\dagger}_{\pm}$$

- Clifford map between polyforms and operators on spinors

5 / 23

- $\eta^{(1,2)}$: fixed 6d-spinor, property background
- Define polyforms

$$\Psi_{\pm} = -\frac{8i}{||\eta^{(1)}||^2} \eta^{(1)}_{\pm} \otimes \eta^{(2)\dagger}_{\pm}$$

- Clifford map between polyforms and operators on spinors
- Special case $\underline{SU(3)}\text{-structure:}\ \eta^{(2)}=c\eta^{(1)}$

$$\Rightarrow \Psi_+ = -ic^{-1}e^{iJ}, \quad \Psi_- = \Omega$$

J two-form, Ω holomorphic three-form

Background susy conditions

Graña, Minasian, Petrini, Tomasiello

• Susy conditions type II sugra: Gravitino's

Dilatino's

$$\begin{split} \delta\lambda^{1} &= \left(\partial\!\!\!/\Phi + \frac{1}{2} \not\!\!/H \right) \epsilon^{1} + \frac{1}{16} e^{\Phi} \Gamma^{M} \not\!\!/ _{\text{tot}} \Gamma_{M} \Gamma_{(10)} \epsilon^{2} = 0 \\ \delta\lambda^{2} &= \left(\partial\!\!\!/\Phi - \frac{1}{2} \not\!\!/H \right) \epsilon^{2} - \frac{1}{16} e^{\Phi} \Gamma^{M} \sigma(\not\!\!/ _{\text{tot}}) \Gamma_{M} \Gamma_{(10)} \epsilon^{1} = 0 \end{split}$$

6 / 23

Background susy conditions

Graña, Minasian, Petrini, Tomasiello

• Susy conditions type II sugra: Gravitino's

Dilatino's

$$\delta\lambda^{1} = \left(\partial \!\!\!/ \Phi + \frac{1}{2} \not\!\!\!/ H \right) \epsilon^{1} + \frac{1}{16} e^{\Phi} \Gamma^{M} \not\!\!\!/ _{\text{tot}} \Gamma_{M} \Gamma_{(10)} \epsilon^{2} = 0$$

$$\delta\lambda^{2} = \left(\partial \!\!\!/ \Phi - \frac{1}{2} \not\!\!\!/ H \right) \epsilon^{2} - \frac{1}{16} e^{\Phi} \Gamma^{M} \sigma(\not\!\!\!/ _{\text{tot}}) \Gamma_{M} \Gamma_{(10)} \epsilon^{1} = 0$$

 \Longrightarrow can be concisely rewritten as \ldots

Background susy conditions

Graña, Minasian, Petrini, Tomasiello

• Susy equations in polyform notation:

$$\begin{split} &\mathsf{d}_{H}\big(e^{4A-\Phi}\mathrm{Re}\,\Psi_{1}\big)=e^{4A}F_{\mathsf{el}}\,,\\ &\mathsf{d}_{H}\big(e^{3A-\Phi}\Psi_{2}\big)=0\,,\\ &\mathsf{d}_{H}(e^{2A-\Phi}\mathrm{Im}\,\Psi_{1})=0\,\,, \end{split}$$

for Minkowski.

• F_{el} : external part polyform RR-fluxes, Φ : dilaton, A: warp factor, H NSNS 3-form, $d_H = d + H \wedge$

•
$$\Psi_1 = \Psi_{\mp}, \Psi_2 = \Psi_{\pm}$$
 for IIA/IIB

Background susy conditions

Graña, Minasian, Petrini, Tomasiello

• Susy equations in polyform notation:

$$\begin{split} \mathsf{d}_{H} & \left(e^{4A - \Phi} \mathrm{Re} \, \Psi_{1} \right) = (3/R) \, e^{3A - \Phi} \mathrm{Re} \left(e^{i\theta} \Psi_{2} \right) + e^{4A} F_{\mathsf{el}} \, , \\ \mathsf{d}_{H} & \left(e^{3A - \Phi} \Psi_{2} \right) = (2/R) i \, e^{2A - \Phi} e^{-i\theta} \mathrm{Im} \, \Psi_{1} \, , \\ \mathsf{d}_{H} & \left(e^{2A - \Phi} \mathrm{Im} \, \Psi_{1} \right) = 0 \, , \end{split}$$

for AdS: $\nabla_{\mu}\zeta_{-} = \pm \frac{e^{-i\theta}}{2R}\gamma_{\mu}\zeta_{+}.$

• F_{el} : external part polyform RR-fluxes, Φ : dilaton, A: warp factor, H NSNS 3-form, $d_H = d + H \wedge$

•
$$\Psi_1 = \Psi_{\mp}, \Psi_2 = \Psi_{\pm}$$
 for IIA/IIB

6 / 23

Generalized calibrations

Finding solutions

• Susy equations supplemented with Bianchi's:

 $\mathsf{d}_H F = -\mathbf{j}\,,$

where j represents sources

Generalized calibrations

Finding solutions

• Susy equations supplemented with Bianchi's:

$$\mathsf{d}_H F = -\mathbf{j}\,,$$

where j represents sources

 $\begin{cases} Susy conditions & B \\ Bianchi with sources & \Longrightarrow \\ Sources = gen. cal. cycles \end{cases}$

PK, Tsimpis

Einstein equations with sources dilaton EOM with sources EOM fluxes

7 / 23

Einstein equations with sources dilaton EOM with sources EOM fluxes

Generalized calibrations

Finding solutions

• Susy equations supplemented with Bianchi's:

$$\mathsf{d}_H F = -\mathbf{j}\,,$$

where j represents sources

 $\begin{cases} Susy conditions & Ei \\ Bianchi with sources & \Longrightarrow \\ Sources = gen. cal. cycles \end{cases}$

PK, Tsimpis

 For Minkowski compactifications: Sources negative tension (orientifolds) necessary *Maldacena, Núñez* For AdS₄: solutions without sources possible

Einstein equations with sources

dilaton EOM with sources EOM fluxes

Generalized calibrations

Finding solutions

• Susy equations supplemented with Bianchi's:

$$\mathsf{d}_H F = -\mathbf{j}\,,$$

 \implies

where j represents sources

Susy conditions Bianchi with sources Sources = gen. cal. cycles

PK, Tsimpis

- For Minkowski compactifications: Sources negative tension (orientifolds) necessary Maldacena, Núñez For AdS₄: solutions without sources possible
- New Minkowski solutions on nilmanifolds/solvmanifolds: *Graña, Minasian, Petrini, Tomasiello; Andriot*
- New AdS₄ solutions on twistor bundles/coset manifolds: *Tomasiello*; *PK*, *Lüst*, *Tsimpis*

N = 1 ansatz susy generators:

$$\epsilon^{1} = \zeta_{+} \otimes \eta_{+}^{(1)} + \zeta_{-} \otimes \eta_{-}^{(1)}$$
$$\epsilon^{2} = \zeta_{+} \otimes \eta_{\mp}^{(2)} + \zeta_{-} \otimes \eta_{\pm}^{(2)}$$

Relation $\eta^{(1)}$ and $\eta^{(2)}$: $\eta^{(2)}_+ = c \eta^{(1)}_+ + W^i \gamma_i \eta^{(1)}_-$

N = 1 ansatz susy generators:

$$\epsilon^{1} = \zeta_{+} \otimes \eta_{+}^{(1)} + \zeta_{-} \otimes \eta_{-}^{(1)}$$
$$\epsilon^{2} = \zeta_{+} \otimes \eta_{\mp}^{(2)} + \zeta_{-} \otimes \eta_{\pm}^{(2)}$$

Relation $\eta^{(1)}$ and $\eta^{(2)}\colon\,\eta^{(2)}_+=c\eta^{(1)}_++W^i\gamma_i\eta^{(1)}_-$

• Strict SU(3)-structure: $c \neq 0, W = 0$ everywhere

$$\Rightarrow \Psi_+ = -ic^{-1}e^{iJ}, \quad \Psi_- = \Omega$$

J two-form, Ω holomorphic three-form Type: (0,3)

8 / 23

N = 1 ansatz susy generators:

$$\epsilon^{1} = \zeta_{+} \otimes \eta_{+}^{(1)} + \zeta_{-} \otimes \eta_{-}^{(1)}$$

$$\epsilon^{2} = \zeta_{+} \otimes \eta_{\mp}^{(2)} + \zeta_{-} \otimes \eta_{\pm}^{(2)}$$

Relation $\eta^{(1)}$ and $\eta^{(2)}\colon\,\eta^{(2)}_+=c\eta^{(1)}_++W^i\gamma_i\eta^{(1)}_-$

• Strict SU(3)-structure: $c \neq 0, W = 0$ everywhere

$$\Rightarrow \Psi_+ = -ic^{-1}e^{iJ}, \quad \Psi_- = \Omega$$

J two-form, Ω holomorphic three-form Type: (0,3)

• Static SU(2)-structure: $W \neq 0, c = 0$ everywhere Type: (2,1)

N = 1 ansatz susy generators:

$$\epsilon^{1} = \zeta_{+} \otimes \eta_{+}^{(1)} + \zeta_{-} \otimes \eta_{-}^{(1)}$$

$$\epsilon^{2} = \zeta_{+} \otimes \eta_{\mp}^{(2)} + \zeta_{-} \otimes \eta_{\pm}^{(2)}$$

Relation $\eta^{(1)}$ and $\eta^{(2)}\colon\,\eta^{(2)}_+=c\eta^{(1)}_++W^i\gamma_i\eta^{(1)}_-$

• Strict SU(3)-structure: $c \neq 0, W = 0$ everywhere

$$\Rightarrow \Psi_+ = -ic^{-1}e^{iJ}, \quad \Psi_- = \Omega$$

J two-form, Ω holomorphic three-form Type: (0,3)

- Static SU(2)-structure: $W \neq 0, c = 0$ everywhere Type: (2,1)
- Intermediate SU(2)-structure: $W \neq 0, c \neq 0$ $|W|^2, |c|^2$ constant, fixed angle Type: (0,1)

N = 1 ansatz susy generators:

$$\epsilon^{1} = \zeta_{+} \otimes \eta_{+}^{(1)} + \zeta_{-} \otimes \eta_{-}^{(1)}$$

$$\epsilon^{2} = \zeta_{+} \otimes \eta_{\mp}^{(2)} + \zeta_{-} \otimes \eta_{\pm}^{(2)}$$

Relation $\eta^{(1)}$ and $\eta^{(2)}\colon\,\eta^{(2)}_+=c\eta^{(1)}_++W^i\gamma_i\eta^{(1)}_-$

• Strict SU(3)-structure: $c \neq 0, W = 0$ everywhere

$$\Rightarrow \Psi_+ = -ic^{-1}e^{iJ}, \quad \Psi_- = \Omega$$

J two-form, Ω holomorphic three-form Type: (0,3)

- Static SU(2)-structure: $W \neq 0, c = 0$ everywhere Type: (2,1)
- Intermediate SU(2)-structure: $W \neq 0, c \neq 0$ $|W|^2, |c|^2$ constant, fixed angle Type: (0,1)
- Dynamic SU(3)×SU(3)-structure: type may change

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)

Generalized geometry

Hitchin; Gualtieri

 \bullet Interpretation of Ψ_\pm in generalized geometry

Generalized geometry

Hitchin; Gualtieri

- Interpretation of Ψ_{\pm} in generalized geometry
- Generalized geometry is based on: $TM \oplus T^{\star}M$

Generalized geometry

Hitchin; Gualtieri

- Interpretation of Ψ_{\pm} in generalized geometry
- Generalized geometry is based on: $TM \oplus T^{\star}M$
- Comes with natural metric:

$$\mathcal{I}(\mathbb{X},\mathbb{Y}) = \frac{1}{2}(\eta(X) + \xi(Y))$$

for $\mathbb{X} = (X, \xi), \mathbb{Y} = (Y, \eta) \in \Gamma(TM \oplus T^*M)$ \implies signature (6,6) $\implies \mathsf{SO}(6,6)$ -structure

Spinors of Spin(6,6)

• Action of generalized tangent bundle on polyforms:

$$\mathbb{X} \cdot \Psi = \iota_X \Psi + \xi \wedge \Psi \,,$$

for $\mathbb{X} = (X, \xi)$

10 / 23

Spinors of Spin(6,6)

• Action of generalized tangent bundle on polyforms:

 $\mathbb{X} \cdot \Psi = \iota_X \Psi + \xi \wedge \Psi \,,$

for $\mathbb{X} = (X, \xi)$

• Clifford algebra:

$$(\mathbb{X} \cdot \mathbb{Y} + \mathbb{Y} \cdot \mathbb{X}) \cdot \Psi = 2 \mathcal{I}(\mathbb{X}, \mathbb{Y}) \Psi$$

 \implies polyforms are spinors of Spin(6,6)

10 / 23

Spinors of Spin(6,6)

• Action of generalized tangent bundle on polyforms:

 $\mathbb{X} \cdot \Psi = \iota_X \Psi + \xi \wedge \Psi \,,$

for $\mathbb{X} = (X, \xi)$

• Clifford algebra:

$$(\mathbb{X} \cdot \mathbb{Y} + \mathbb{Y} \cdot \mathbb{X}) \cdot \Psi = 2 \mathcal{I}(\mathbb{X}, \mathbb{Y}) \Psi$$

 \implies polyforms are spinors of Spin(6,6) (well, almost)

10 / 23

Spinors of Spin(6,6)

• Action of generalized tangent bundle on polyforms:

 $\mathbb{X} \cdot \Psi = \iota_X \Psi + \xi \wedge \Psi \,,$

for $\mathbb{X} = (X, \xi)$

• Clifford algebra:

$$(\mathbb{X} \cdot \mathbb{Y} + \mathbb{Y} \cdot \mathbb{X}) \cdot \Psi = 2 \mathcal{I}(\mathbb{X}, \mathbb{Y}) \Psi$$

 \implies polyforms are spinors of Spin(6,6) (well, almost)

Spinor bilinear: Mukai pairing

$$\phi_1^T C \phi_2 = \langle \phi_1, \phi_2 \rangle = \phi_1 \wedge \sigma(\phi_2)|_{\mathsf{top}}$$

10 / 23

Pure spinors

• Null space of polyform:

$$N_{\Psi} = \{ \mathbb{X} \in \Gamma(TM \oplus T^{\star}M) : \mathbb{X} \cdot \Psi = 0 \}$$

 \implies isotropic: $\mathcal{I}(\mathbb{X}, \mathbb{Y}) = 0$ for all $\mathbb{X}, \mathbb{Y} \in N_{\Psi}$

11 / 23

Pure spinors

• Null space of polyform:

$$N_{\Psi} = \{ \mathbb{X} \in \Gamma(TM \oplus T^{\star}M) : \mathbb{X} \cdot \Psi = 0 \}$$

 \implies isotropic: $\mathcal{I}(\mathbb{X}, \mathbb{Y}) = 0$ for all $\mathbb{X}, \mathbb{Y} \in N_{\Psi}$

● Pure spinor ⇔ null space maximal

11 / 23

Pure spinors

• Null space of polyform:

$$N_{\Psi} = \{ \mathbb{X} \in \Gamma(TM \oplus T^{\star}M) : \mathbb{X} \cdot \Psi = 0 \}$$

 \implies isotropic: $\mathcal{I}(\mathbb{X}, \mathbb{Y}) = 0$ for all $\mathbb{X}, \mathbb{Y} \in N_{\Psi}$

- Pure spinor ↔ null space maximal
- Pure spinor ⇔ Spin(6)-spinor bilinear

11 / 23

Generalized almost complex structure

• Generalized almost complex structure

$$\mathcal{J}: TM \oplus T^{\star}M \to TM \oplus T^{\star}M$$

so that

$$\begin{split} \mathcal{J}^2 &= -\mathbb{1} \\ \mathcal{I}(\mathcal{J}\mathbb{X}, \mathcal{J}\mathbb{Y}) &= \mathcal{I}(\mathbb{X}, \mathbb{Y}) \end{split}$$

12 / 23

Generalized almost complex structure

• Generalized almost complex structure

$$\mathcal{J}: TM \oplus T^{\star}M \to TM \oplus T^{\star}M$$

so that

$$\begin{split} \mathcal{J}^2 &= -\mathbb{1} \\ \mathcal{I}(\mathcal{J}\mathbb{X}, \mathcal{J}\mathbb{Y}) &= \mathcal{I}(\mathbb{X}, \mathbb{Y}) \end{split}$$

• Defines $\pm i$ eigenbundles

$$L_{\pm} \subset (TM \oplus T^{\star}M) \otimes \mathbb{C}$$

12 / 23

Generalized almost complex structure

• Generalized almost complex structure

$$\mathcal{J}: TM \oplus T^{\star}M \to TM \oplus T^{\star}M$$

so that

$$\begin{aligned} \mathcal{J}^2 &= -\mathbb{1} \\ \mathcal{I}(\mathcal{J}\mathbb{X}, \mathcal{J}\mathbb{Y}) &= \mathcal{I}(\mathbb{X}, \mathbb{Y}) \end{aligned}$$

• Defines $\pm i$ eigenbundles

$$L_{\pm} \subset (TM \oplus T^{\star}M) \otimes \mathbb{C}$$

 \Rightarrow isotropic

12 / 23

12 / 23

Generalized almost complex structure

• Generalized almost complex structure

$$\mathcal{J}: TM \oplus T^*M \to TM \oplus T^*M$$

so that

$$\begin{aligned} \mathcal{J}^2 &= -\mathbb{1} \\ \mathcal{I}(\mathcal{J}\mathbb{X}, \mathcal{J}\mathbb{Y}) &= \mathcal{I}(\mathbb{X}, \mathbb{Y}) \end{aligned}$$

• Defines $\pm i$ eigenbundles

$$L_{\pm} \subset (TM \oplus T^{\star}M) \otimes \mathbb{C}$$

 $\Rightarrow \mathsf{isotropic}$

• Almost complex structure & symplectic structure examples

$$\mathcal{J}_{J} = \begin{pmatrix} J & \mathbf{0} \\ \mathbf{0} & -J^{T} \end{pmatrix}, \qquad \mathcal{J}_{\omega} = \begin{pmatrix} \mathbf{0} & \omega^{-1} \\ -\omega & \mathbf{0} \end{pmatrix} \qquad \underbrace{\mathcal{J}_{\omega}_{\mathcal{U}_{D}_{J} \times \mathbf{1}^{d}}}_{\frac{\operatorname{Macharmatic for Physic}}{\operatorname{Macharmatic for Physic}}$$

Generalized geometry

Generalized calibrations

Generalized complex structure

• Generalized complex structure integrable if L_+ involutive: $[L_+, L_+]_H \subset L_+$ where the H-twisted Courant bracket:

$$[X+\xi,Y+\eta]_{\boldsymbol{H}} = [X,Y] + \mathcal{L}_X\eta - \mathcal{L}_Y\xi - \frac{1}{2}\mathsf{d}(\iota_X\eta - \iota_Y\xi) + \iota_X\iota_Y\boldsymbol{H}$$

13 / 23

(Generalized geometry)

Generalized complex structure

• Generalized complex structure integrable if L_+ involutive: $[L_+, L_+]_H \subset L_+$ where the H-twisted Courant bracket:

$$[X+\xi,Y+\eta]_{H} = [X,Y] + \mathcal{L}_{X}\eta - \mathcal{L}_{Y}\xi - \frac{1}{2}\mathsf{d}(\iota_{X}\eta - \iota_{Y}\xi) + \iota_{X}\iota_{Y}H$$

- Properties Courant bracket:
 - Projects nicely to Lie bracket

$$\pi([\mathbb{X},\mathbb{Y}]_H) = [\pi(\mathbb{X}),\pi(\mathbb{Y})]$$

• Under *B*-transform (off-diagonal part of SO(6,6))

$$e^B(X+\xi) = X + (\xi + \iota_X B)$$

it transforms covariantly:

$$[e^B\mathbb{X},e^B\mathbb{Y}]_{H+\mathrm{d}B}=e^B[\mathbb{X},\mathbb{Y}]_H$$

13 / 23

Relation pure spinor and generalized almost complex structure

•
$$\Psi \longleftrightarrow \mathcal{J} \text{ iff } N_{\Psi} = L_{\mathcal{J}+}$$

14 / 23

Relation pure spinor and generalized almost complex structure

•
$$\Psi \longleftrightarrow \mathcal{J} \text{ iff } N_{\Psi} = L_{\mathcal{J}+}$$

• Integrability:

$$\mathcal{J}$$
 is *H*-integrable $\iff \mathsf{d}_{H}\Psi = \mathbb{X} \cdot \Psi$

Relation pure spinor and generalized almost complex structure

•
$$\Psi \longleftrightarrow \mathcal{J} \text{ iff } N_{\Psi} = L_{\mathcal{J}+}$$

Integrability:

 \mathcal{J} is *H*-integrable \iff $\mathsf{d}_H \Psi = \mathbb{X} \cdot \Psi$ \mathcal{J} is *H*-twisted gen. CY \iff $\mathsf{d}_H \Psi = 0$

14 / 23

Relation pure spinor and generalized almost complex structure

•
$$\Psi \longleftrightarrow \mathcal{J} \text{ iff } N_{\Psi} = L_{\mathcal{J}+}$$

Integrability:

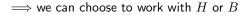
$$\mathcal{J} \quad \text{is H-integrable} \qquad \Longleftrightarrow \qquad \mathsf{d}_{H}\Psi = \mathbb{X} \cdot \Psi$$
$$\mathcal{J} \quad \text{is H-twisted gen. CY} \qquad \Longleftrightarrow \qquad \mathsf{d}_{H}\Psi = 0$$

• *B*-transform:

$$\mathbb{X} \longleftrightarrow e^{-B} \mathbb{X} \Longrightarrow [\cdot, \cdot]_H \longleftrightarrow [\cdot, \cdot]$$

corresponds to

$$\Psi \longleftrightarrow e^B \Psi \Longrightarrow \mathsf{d}_H \longleftrightarrow \mathsf{d}$$



14 / 23

Susy conditions revisited

- Pure spinors Ψ_1 , Ψ_2 satisfying compatibility relation $\langle \Psi_2, \mathbb{X} \cdot \operatorname{Re} \Psi_1 \rangle = 0$
- Corresponds to: \mathcal{J}_1 , \mathcal{J}_2 satisfying compatibility relation: $[\mathcal{J}_1, \mathcal{J}_2] = 0$

15 / 23

Susy conditions revisited

- Pure spinors Ψ_1 , Ψ_2 satisfying compatibility relation $\langle \Psi_2, \mathbb{X} \cdot \operatorname{Re} \Psi_1 \rangle = 0$
- Corresponds to: \mathcal{J}_1 , \mathcal{J}_2 satisfying compatibility relation: $[\mathcal{J}_1, \mathcal{J}_2] = 0$
- SO(6,6) structure reduces to SU(3)×SU(3)

15 / 23

Susy conditions revisited

- Pure spinors Ψ_1 , Ψ_2 satisfying compatibility relation $\langle \Psi_2, \mathbb{X} \cdot \operatorname{Re} \Psi_1 \rangle = 0$
- Corresponds to: \mathcal{J}_1 , \mathcal{J}_2 satisfying compatibility relation: $[\mathcal{J}_1, \mathcal{J}_2] = 0$
- SO(6,6) structure reduces to SU(3)×SU(3)
- Susy conditions

$$\begin{aligned} \mathsf{d}_{H} \left(e^{4A-\Phi} \mathrm{Re} \Psi_{1} \right) &= e^{4A} F_{\mathsf{e}} \\ \mathsf{d}_{H} \left(e^{3A-\Phi} \Psi_{2} \right) &= 0 \\ \mathsf{d}_{H} (e^{2A-\Phi} \mathrm{Im} \Psi_{1}) &= 0 \end{aligned}$$

15 / 23

Susy conditions revisited

- Pure spinors Ψ_1 , Ψ_2 satisfying compatibility relation $\langle \Psi_2, \mathbb{X} \cdot \operatorname{Re} \Psi_1 \rangle = 0$
- Corresponds to: \mathcal{J}_1 , \mathcal{J}_2 satisfying compatibility relation: $[\mathcal{J}_1, \mathcal{J}_2] = 0$
- SO(6,6) structure reduces to SU(3)×SU(3)
- Susy conditions

$$\begin{aligned} \mathsf{d}_{H} \left(e^{4A - \Phi} \operatorname{Re} \Psi_{1} \right) &= e^{4A} F_{\mathsf{el}} \\ \mathsf{d}_{H} \left(e^{3A - \Phi} \Psi_{2} \right) &= 0 \qquad \mathcal{J}_{2} \text{ integrable} \\ \mathsf{d}_{H} (e^{2A - \Phi} \operatorname{Im} \Psi_{1}) &= 0 \end{aligned}$$

 \implies integrability $\mathcal{J}_2:$ allows to study deformations of D-branes $PK,\ Martucci$

15 / 23

Susy conditions revisited

- Pure spinors Ψ_1 , Ψ_2 satisfying compatibility relation $\langle \Psi_2, \mathbb{X} \cdot \operatorname{Re} \Psi_1 \rangle = 0$
- Corresponds to: \mathcal{J}_1 , \mathcal{J}_2 satisfying compatibility relation: $[\mathcal{J}_1, \mathcal{J}_2] = 0$
- SO(6,6) structure reduces to SU(3)×SU(3)
- Susy conditions

$$\begin{aligned} \mathsf{d}_H (e^{4A-\Phi} \mathrm{Re} \Psi_1) &= e^{4A} F_{\mathsf{el}} \qquad \mathcal{J}_1 \text{ not integrable} \\ \mathsf{d}_H (e^{3A-\Phi} \Psi_2) &= 0 \qquad \mathcal{J}_2 \text{ integrable} \\ \mathsf{d}_H (e^{2A-\Phi} \mathrm{Im} \Psi_1) &= 0 \end{aligned}$$

 \Longrightarrow integrability $\mathcal{J}_2:$ allows to study deformations of D-branes $PK,\ Martucci$

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)

15 / 23

Susy conditions revisited

- Pure spinors Ψ_1 , Ψ_2 satisfying compatibility relation $\langle \Psi_2, \mathbb{X} \cdot \operatorname{Re} \Psi_1 \rangle = 0$
- Corresponds to: \mathcal{J}_1 , \mathcal{J}_2 satisfying compatibility relation: $[\mathcal{J}_1, \mathcal{J}_2] = 0$
- SO(6,6) structure reduces to SU(3)×SU(3)
- Susy conditions

$$\begin{aligned} \mathsf{d}_H \big(e^{4A - \Phi} \mathrm{Re} \Psi_1 \big) &= e^{4A} F_{\mathsf{el}} \qquad \mathcal{J}_1 \text{ not integrable} \\ \mathsf{d}_H \big(e^{3A - \Phi} \Psi_2 \big) &= 0 \qquad \mathcal{J}_2 \text{ integrable} \\ \mathsf{d}_H (e^{2A - \Phi} \mathrm{Im} \Psi_1) &= 0 \end{aligned}$$

- \implies integrability \mathcal{J}_2 : allows to study deformations of D-branes *PK*, *Martucci*
- \implies exceptional generalized geometry Hull; Waldram, Pacheco

15 / 23

Calibrations:

- A way to find minimal volume submanifolds in a curved space
- Second-order equations \Rightarrow first-order equations
- Analogous to self-duality solves Yang-Mills equations
- Or more generally BPS equations solve equations of motion

Generalized calibrations:

- Submanifold $\Sigma \Longrightarrow \mathsf{D}\text{-brane}(\Sigma, \mathcal{F})$
- D-brane wrapping generalized calibrated cycle \iff susy

16 / 23

Calibrations:

- A way to find minimal volume submanifolds in a curved space
- Second-order equations \Rightarrow first-order equations
- Analogous to self-duality solves Yang-Mills equations
- Or more generally BPS equations solve equations of motion

Generalized calibrations:

- Submanifold $\Sigma \Longrightarrow \mathsf{D}\text{-brane}(\Sigma, \mathcal{F})$
- D-brane wrapping generalized calibrated cycle \iff susy
- In fact: extend self-duality YM to higher dimensions, combine with calibrations

16 / 23

Calibration form ϕ :

- $d\phi = 0$ (1) (differential property)
- Bound: $\sqrt{g}|_{T_p} \ge \phi|_{T_p}$ (2) (algebraic property) for every subspace T_p of tangent space at point pbound must be such that it can be saturated

17 / 23

Calibration form ϕ :

- $d\phi = 0$ (1) (differential property)
- Bound: $\sqrt{g}|_{T_p} \ge \phi|_{T_p}$ (2) (algebraic property) for every subspace T_p of tangent space at point pbound must be such that it can be saturated

Calibrated submanifold Σ :

• Saturates bound:
$$\sqrt{g}|_{T_p\Sigma} = \phi|_{T_p\Sigma}$$
 (3)

17 / 23

Calibration form ϕ :

- $d\phi = 0$ (1) (differential property)
- Bound: $\sqrt{g}|_{T_p} \ge \phi|_{T_p}$ (2) (algebraic property) for every subspace T_p of tangent space at point p bound must be such that it can be saturated

Calibrated submanifold Σ :

• Saturates bound: $\sqrt{g}|_{T_p\Sigma} = \phi|_{T_p\Sigma}$ (3)

For $\partial \mathcal{B} = \Sigma_2 - \Sigma_1$

17 / 23

Calibration form ϕ :

- $d\phi = 0$ (1) (differential property)
- Bound: $\sqrt{g}|_{T_p} \ge \phi|_{T_p}$ (2) (algebraic property) for every subspace T_p of tangent space at point p bound must be such that it can be saturated

Calibrated submanifold Σ :

• Saturates bound: $\sqrt{g}|_{T_p\Sigma} = \phi|_{T_p\Sigma}$ (3)

For $\partial \mathcal{B} = \Sigma_2 - \Sigma_1$

$$\mathsf{Vol}(\Sigma_2) = \int_{\Sigma_2} \sqrt{g}$$

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)

17 / 23

Calibration form ϕ :

- $d\phi = 0$ (1) (differential property)
- Bound: $\sqrt{g}|_{T_p} \ge \phi|_{T_p}$ (2) (algebraic property) for every subspace T_p of tangent space at point p bound must be such that it can be saturated

Calibrated submanifold Σ :

• Saturates bound: $\sqrt{g}|_{T_p\Sigma} = \phi|_{T_p\Sigma}$ (3)

For $\partial \mathcal{B} = \Sigma_2 - \Sigma_1$

$$\mathsf{Vol}(\Sigma_2) = \int_{\Sigma_2} \sqrt{g} \stackrel{(2)}{\geq} \int_{\Sigma_2} \phi$$

17 / 23

17 / 23

Calibrations II

Calibration form ϕ :

- $d\phi = 0$ (1) (differential property)
- Bound: $\sqrt{g}|_{T_p} \ge \phi|_{T_p}$ (2) (algebraic property) for every subspace T_p of tangent space at point pbound must be such that it can be saturated

Calibrated submanifold Σ :

• Saturates bound: $\sqrt{g}|_{T_p\Sigma} = \phi|_{T_p\Sigma}$ (3)

For $\partial \mathcal{B} = \Sigma_2 - \Sigma_1$

$$\mathsf{Vol}(\Sigma_2) = \int_{\Sigma_2} \sqrt{g} \stackrel{(2)}{\geq} \int_{\Sigma_2} \phi \stackrel{(1)}{=} \int_{\Sigma_1} \phi \stackrel{(3)}{=} \int_{\Sigma_1} \sqrt{g} = \mathsf{Vol}(\Sigma_1)$$

Calibration form ϕ :

- $d\phi = 0$ (1) (differential property)
- Bound: $\sqrt{g}|_{T_p} \ge \phi|_{T_p}$ (2) (algebraic property) for every subspace T_p of tangent space at point pbound must be such that it can be saturated

Calibrated submanifold Σ :

• Saturates bound: $\sqrt{g}|_{T_p\Sigma} = \phi|_{T_p\Sigma}$ (3)

For $\partial \mathcal{B} = \Sigma_2 - \Sigma_1$

$$\mathsf{Vol}(\Sigma_2) = \int_{\Sigma_2} \sqrt{g} \stackrel{(2)}{\geq} \int_{\Sigma_2} \phi \stackrel{(1)}{=} \int_{\Sigma_1} \phi \stackrel{(3)}{=} \int_{\Sigma_1} \sqrt{g} = \mathsf{Vol}(\Sigma_1)$$

Calibration forms from invariant spinors: e.g. $\Omega, \frac{1}{k!}J^k$ in CY

17 / 23

Generalized calibrations

PK; *Martucci, Smyth* We have:

- bulk fluxes H and F
- \mathcal{F} on the D-brane, where $\mathcal{F} = B + 2\pi \alpha' F_{WV}$ such that $d\mathcal{F} = H$

18 / 23

PK; *Martucci*, *Smyth* Calibration polyform ϕ (or $\omega = \phi - C_{el}$):

- $d_H \phi = F_{el}$ (1) (differential property)
- Bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p} \ge \phi e^{\mathcal{F}}|_{T_p}$ (2) (algebraic property) bound must be such that it can be saturated

18 / 23

Generalized calibrations

PK; *Martucci, Smyth* Calibration polyform ϕ (or $\omega = \phi - C_{el}$):

- $d_H \phi = F_{el}$ (1) (differential property)
- Bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p} \ge \phi e^{\mathcal{F}}|_{T_p}$ (2) (algebraic property) bound must be such that it can be saturated

Papadopoulos and Gutowski

18 / 23

Generalized calibrations

PK; *Martucci, Smyth* Calibration polyform ϕ (or $\omega = \phi - C_{el}$):

- $d_H \phi = F_{el}$ (1) (differential property)
- Bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p} \ge \phi e^{\mathcal{F}}|_{T_p}$ (2) (algebraic property) bound must be such that it can be saturated

Papadopoulos' and Gutowski

Generalized geometry

18 / 23

PK; *Martucci*, *Smyth* Calibration polyform ϕ (or $\omega = \phi - C_{el}$):

- $d_H \phi = F_{el}$ (1) (differential property)
- Bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p} \ge \phi e^{\mathcal{F}}|_{T_p}$ (2) (algebraic property) bound must be such that it can be saturated

Calibrated D-brane (Σ, \mathcal{F}) :

• Saturates bound:
$$e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p\Sigma} = \phi e^{\mathcal{F}}|_{T_p\Sigma}$$

18 / 23

Generalized calibrations

PK; *Martucci*, *Smyth* Calibration polyform ϕ (or $\omega = \phi - C_{el}$):

- $d_H \phi = F_{el}$ (1) (differential property)
- Bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p} \ge \phi e^{\mathcal{F}}|_{T_p}$ (2) (algebraic property) bound must be such that it can be saturated

Calibrated D-brane (Σ, \mathcal{F}) :

• Saturates bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p\Sigma} = \phi e^{\mathcal{F}}|_{T_p\Sigma}$ For $\partial_H(\mathcal{B}, \tilde{\mathcal{F}}) = (\Sigma_2, \mathcal{F}_2) - (\Sigma_1, \mathcal{F}_1)$

18 / 23

Generalized calibrations

PK; *Martucci*, *Smyth* Calibration polyform ϕ (or $\omega = \phi - C_{el}$):

- $d_H \phi = F_{el}$ (1) (differential property)
- Bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p} \ge \phi e^{\mathcal{F}}|_{T_p}$ (2) (algebraic property) bound must be such that it can be saturated

Calibrated D-brane (Σ, \mathcal{F}) :

• Saturates bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p\Sigma} = \phi e^{\mathcal{F}}|_{T_p\Sigma}$ For $\partial_H(\mathcal{B}, \tilde{\mathcal{F}}) = (\Sigma_2, \mathcal{F}_2) - (\Sigma_1, \mathcal{F}_1)$ $\mathcal{V}(\Sigma_2, \mathcal{F}_2) = \int_{\Sigma_2} e^{-\Phi}\sqrt{g+\mathcal{F}_2} - C_{el}$

18 / 23

Generalized calibrations

PK; *Martucci*, *Smyth* Calibration polyform ϕ (or $\omega = \phi - C_{el}$):

- $d_H \phi = F_{el}$ (1) (differential property)
- Bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p} \ge \phi e^{\mathcal{F}}|_{T_p}$ (2) (algebraic property) bound must be such that it can be saturated

Calibrated D-brane (Σ, \mathcal{F}) :

• Saturates bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p\Sigma} = \phi e^{\mathcal{F}}|_{T_p\Sigma}$ For $\partial_H(\mathcal{B},\tilde{\mathcal{F}}) = (\Sigma_2,\mathcal{F}_2) - (\Sigma_1,\mathcal{F}_1)$

$$\mathcal{V}(\Sigma_2, \mathcal{F}_2) = \int_{\Sigma_2} e^{-\Phi} \sqrt{g + \mathcal{F}_2} - C_{\mathsf{el}} \stackrel{(2)}{\geq} \int_{\Sigma_2} (\phi - C_{\mathsf{el}}) e^{\mathcal{F}_2}$$

18 / 23

18 / 23

Generalized calibrations

PK; *Martucci, Smyth* Calibration polyform ϕ (or $\omega = \phi - C_{el}$):

- $d_H \phi = F_{el}$ (1) (differential property)
- Bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p} \ge \phi e^{\mathcal{F}}|_{T_p}$ (2) (algebraic property) bound must be such that it can be saturated

Calibrated D-brane (Σ, \mathcal{F}) :

• Saturates bound:
$$e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p\Sigma} = \phi e^{\mathcal{F}}|_{T_p\Sigma}$$

For $\partial_H(\mathcal{B}, \tilde{\mathcal{F}}) = (\Sigma_2, \mathcal{F}_2) - (\Sigma_1, \mathcal{F}_1)$
 $\mathcal{V}(\Sigma_2, \mathcal{F}_2) = \int_{\Sigma_2} e^{-\Phi}\sqrt{g+\mathcal{F}_2} - C_{\mathsf{el}} \stackrel{(2)}{\geq} \int_{\Sigma_2} (\phi - C_{\mathsf{el}}) e^{\mathcal{F}_2}$
 $\stackrel{(1)}{=} \int_{\Sigma_1} (\phi - C_{\mathsf{el}}) e^{\mathcal{F}_1} \stackrel{(3)}{=} \mathcal{V}(\Sigma_1, \mathcal{F}_1)$

18 / 23

Generalized calibrations

PK; *Martucci, Smyth* Calibration polyform ϕ (or $\omega = \phi - C_{el}$):

- $d_H \phi = F_{el}$ (1) (differential property)
- Bound: $e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p} \ge \phi e^{\mathcal{F}}|_{T_p}$ (2) (algebraic property) bound must be such that it can be saturated

Calibrated D-brane (Σ, \mathcal{F}) :

• Saturates bound:
$$e^{-\Phi}\sqrt{g+\mathcal{F}}|_{T_p\Sigma} = \phi e^{\mathcal{F}}|_{T_p\Sigma}$$

For $\partial_H(\mathcal{B}, \tilde{\mathcal{F}}) = (\Sigma_2, \mathcal{F}_2) - (\Sigma_1, \mathcal{F}_1)$
 $\mathcal{V}(\Sigma_2, \mathcal{F}_2) = \int_{\Sigma_2} e^{-\Phi}\sqrt{g+\mathcal{F}_2} - C_{\mathsf{el}} \stackrel{(2)}{\geq} \int_{\Sigma_2} (\phi - C_{\mathsf{el}}) e^{\mathcal{F}_2}$
 $\stackrel{(1)}{=} \int_{\Sigma_1} (\phi - C_{\mathsf{el}}) e^{\mathcal{F}_1} \stackrel{(3)}{=} \mathcal{V}(\Sigma_1, \mathcal{F}_1)$

• Corresponds to supersymmetric D-brane

Natural calibration forms

Martucci, Smyth

• Calibration forms are the polyforms:

$$\begin{split} \omega^{\rm sf} &= e^{4A-\Phi} {\rm Re}\,\Psi_1\,,\\ \omega_\phi^{\rm DW} &= e^{3A-\Phi} {\rm Re}\,(e^{i\phi}\Psi_2)\,,\\ \omega^{\rm string} &= e^{2A-\Phi} {\rm Im}\,\Psi_1\,. \end{split}$$

• Differential property is provided by the bulk susy equations:

$$\begin{split} &d_H \big(e^{4A-\Phi} \mathrm{Re} \Psi_1 \big) = e^{4A} F_{\mathsf{el}} \,, & \text{space-filling D-brane} \\ &d_H \big(e^{3A-\Phi} \Psi_2 \big) = 0 \,, & \text{domain wall} \\ &d_H (e^{2A-\Phi} \mathrm{Im} \Psi_1) = 0 \,, & \text{string-like D-brane} \end{split}$$

19 / 23

Natural calibration forms

Martucci, Smyth

• Calibration forms are the polyforms:

$$\begin{split} \omega^{\rm sf} &= e^{4A-\Phi} {\rm Re}\,\Psi_1\,,\\ \omega_\phi^{\rm DW} &= e^{3A-\Phi} {\rm Re}\,(e^{i\phi}\Psi_2)\,,\\ \omega^{\rm string} &= e^{2A-\Phi} {\rm Im}\,\Psi_1\,. \end{split}$$

• Differential property is provided by the bulk susy equations:

$$\begin{split} &d_H \big(e^{4A-\Phi} \mathrm{Re} \, \Psi_1 \big) = e^{4A} F_{\mathsf{el}} \,, \qquad \text{space-filling D-brane} \\ &d_H \big(e^{3A-\Phi} \Psi_2 \big) = 0 \,, \qquad \text{domain wall} \\ &d_H (e^{2A-\Phi} \mathrm{Im} \, \Psi_1) = 0 \,, \qquad \text{string-like D-brane} \end{split}$$

• Spoiled in the AdS case: interpretation PK, Martucci

(Generalized calibrations)

Generalized current

• Definition: $j_{(\Sigma, \mathcal{F})}$

$$\int_{\Sigma}\phi\wedge e^{\mathcal{F}}=\int_{M}\langle\phi,j_{(\Sigma,\mathcal{F})}\rangle$$

20 / 23

•

Generalized current

• Definition: $j_{(\Sigma, \mathcal{F})}$

$$\int_{\Sigma} \phi \wedge e^{\mathcal{F}} = \int_{M} \langle \phi, j_{(\Sigma, \mathcal{F})} \rangle$$

• Roughly:
$$j_{(\Sigma,\mathcal{F})} = \delta(\Sigma) \wedge e^{-\mathcal{F}}$$

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)

20 / 23

Generalized current

• Definition: $j_{(\Sigma,\mathcal{F})}$

$$\int_{\Sigma} \phi \wedge e^{\mathcal{F}} = \int_{M} \langle \phi, j_{(\Sigma, \mathcal{F})} \rangle$$

• Roughly:
$$j_{(\Sigma,\mathcal{F})} = \delta(\Sigma) \wedge e^{-\mathcal{F}}$$

• Appears in Bianchi's: $d_H F = -j_{(\Sigma, \mathcal{F})}$

•

20 / 23

Generalized current

• Definition: $j_{(\Sigma,\mathcal{F})}$

$$\int_{\Sigma} \phi \wedge e^{\mathcal{F}} = \int_{M} \langle \phi, j_{(\Sigma, \mathcal{F})} \rangle$$

• Roughly:
$$j_{(\Sigma,\mathcal{F})} = \delta(\Sigma) \wedge e^{-\mathcal{F}}$$

- Appears in Bianchi's: $d_H F = -j_{(\Sigma, \mathcal{F})}$
- Real pure spinor: null space is generalized tangent bundle Gualtieri

$$T_{(\Sigma,\mathcal{F})} = \{ X + \xi \in T_{\Sigma} \oplus T_M^{\star} |_{\Sigma} : P_{\Sigma}[\xi] = \iota_X \mathcal{F} \}$$

20 / 23

D-flatness and **F**-flatness conditions

Focus on space-filling D-brane Saturating bound consists of two parts

•
$$e^{-\Phi}\sqrt{g + \mathcal{F}}|_{\Sigma} = e^{i\alpha}e^{4A - \Phi}\Psi_1|_{\Sigma} \wedge e^{\mathcal{F}}$$

where $e^{i\alpha}$ varying phase
 $\Rightarrow (\Sigma, \mathcal{F})$ is generalized complex submanifold with respect to \mathcal{J}_2
This becomes an F-flatness condition in the 4d-effective theory

21 / 23

D-flatness and **F**-flatness conditions

Focus on space-filling D-brane Saturating bound consists of two parts

•
$$e^{-\Phi}\sqrt{g+\mathcal{F}}|_{\Sigma} = e^{i\alpha}e^{4A-\Phi}\Psi_1|_{\Sigma} \wedge e^{\mathcal{F}}$$

where $e^{i\alpha}$ varying phase
 $\Rightarrow (\Sigma, \mathcal{F})$ is generalized complex submanifold with respect to \mathcal{J}_2
This becomes an F-flatness condition in the 4d-effective theory
Superpotential *Martucci*:

$$\mathcal{W}_{\text{brane}} = \frac{1}{2} \int_{\mathcal{B}} e^{3A - \Phi} \Psi_2 |_{\mathcal{B}} \wedge e^{\tilde{\mathcal{F}}}, \qquad \partial \mathcal{B} = \Sigma - \Sigma_0$$

21 / 23

21 / 23

D-flatness and **F**-flatness conditions

Focus on space-filling D-brane Saturating bound consists of two parts

•
$$e^{-\Phi}\sqrt{g+\mathcal{F}}|_{\Sigma} = e^{i\alpha}e^{4A-\Phi}\Psi_1|_{\Sigma} \wedge e^{\mathcal{F}}$$

where $e^{i\alpha}$ varying phase
 $\Rightarrow (\Sigma, \mathcal{F})$ is generalized complex submanifold with respect to \mathcal{J}_2
This becomes an F-flatness condition in the 4d-effective theory
Superpotential *Martucci*:

$$\mathcal{W}_{\text{brane}} = \frac{1}{2} \int_{\mathcal{B}} e^{3A - \Phi} \Psi_2|_{\mathcal{B}} \wedge e^{\tilde{\mathcal{F}}} \,, \qquad \partial \mathcal{B} = \Sigma - \Sigma_0$$

• $\operatorname{Im} \Psi_1|_{\Sigma} \wedge e^{\mathcal{F}} = 0$: analogous to the 'special' in special lagrangian This becomes a D-flatness condition in the 4d-effective theory

D-flatness and **F**-flatness conditions

Focus on space-filling D-brane Saturating bound consists of two parts

•
$$e^{-\Phi}\sqrt{g+\mathcal{F}}|_{\Sigma} = e^{i\alpha}e^{4A-\Phi}\Psi_1|_{\Sigma} \wedge e^{\mathcal{F}}$$

where $e^{i\alpha}$ varying phase
 $\Rightarrow (\Sigma, \mathcal{F})$ is generalized complex submanifold with respect to \mathcal{J}_2
This becomes an F-flatness condition in the 4d-effective theory
Superpotential *Martucci*:

$$\mathcal{W}_{\text{brane}} = \frac{1}{2} \int_{\mathcal{B}} e^{3A - \Phi} \Psi_2|_{\mathcal{B}} \wedge e^{\tilde{\mathcal{F}}}, \qquad \partial \mathcal{B} = \Sigma - \Sigma_0$$

- $\operatorname{Im} \Psi_1|_{\Sigma} \wedge e^{\mathcal{F}} = 0$: analogous to the 'special' in special lagrangian This becomes a D-flatness condition in the 4d-effective theory
- For interpretation bulk susy conditions as F- and D-flatness: see part II

21 / 23

Conclusions

- Generalized geometry organizes supersymmetry conditions of type II with fluxes
- Susy conditions background ⇐⇒ generalized calibrations of D-branes

Generalized Geometry and Flux Compactifications (Part I by Paul Koerber)

22 / 23

Conclusions

- Generalized geometry organizes supersymmetry conditions of type II with fluxes
- Susy conditions background ⇐⇒ generalized calibrations of D-branes
- Sugra vacua beyond SU(3)-structure: group manifolds & coset manifolds
- No algebraic geometry, so far no easy way to produce examples

22 / 23

Conclusions

- Generalized geometry organizes supersymmetry conditions of type II with fluxes
- Susy conditions background ⇐⇒ generalized calibrations of D-branes
- Sugra vacua beyond SU(3)-structure: group manifolds & coset manifolds
- No algebraic geometry, so far no easy way to produce examples
- Part II: 4D effective theory, susy breaking

22 / 23

End of Part 11 by Marticci

23 / 23