
Aspects of the stringy instanton calculus: part I

Alberto Lerda

U.P.O. “A. Avogadro” & I.N.F.N. - Alessandria

Vienna, October 7, 2008

Alberto Lerda (U.P.O.) Instantons Vienna, October 7, 2008 1 / 42



Plan of this talk

1 Introduction and motivation

2 Branes and instantons in flat space

3 Instanton classical solution from string diagrams

4 The stringy instanton calculus

Alberto Lerda (U.P.O.) Instantons Vienna, October 7, 2008 2 / 42



Introduction and motivation

String theory is a very powerful tool to analyze field theories, and in
particular gauge theories.

Behind this, there is a rather simple and well-known fact: in the field
theory limit α′ → 0, a single string scattering amplitude reproduces a
sum of different Feynman diagrams

α′→0−→ + + . . .

String theory S-matrix elements =⇒ vertices and effective actions in
field theory
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In general, a N-point string amplitude AN is given schematically by

AN =

∫
Σ

〈
Vφ1 · · ·VφN

〉
Σ

where

I Vφi is the vertex for the emission of the field φi : Vφi ≡ φi Vφi

I Σ is a Riemann surface of a given topology

I
〈
. . .
〉

Σ
is the v.e.v. with respect to the vacuum defined by Σ.
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I Σ is a Riemann surface of a given topology

I
〈
. . .
〉

Σ
is the v.e.v. with respect to the vacuum defined by Σ.

The simplest world-sheets Σ are:

spheres for closed strings and disks for open strings
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I For any closed string field φ closed, one has〈
Vφ closed

〉
sphere = 0 ⇒

〈
φ closed

〉
sphere = 0

I For any open string field φ open, one has〈
Vφ open

〉
disk = 0 ⇒

〈
φ open

〉
disk = 0

I spheres and disks describe the trivial vacuum around which
ordinary perturbation theory is performed

I spheres and disks are inadequate to describe non-perturbative
backgrounds where fields have non trivial profile!
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However, after the discovery of D-branes, the perspective has drastically
changed, and nowadays we know that also some non-perturbative properties
of field theories can be analyzed using perturbative string theory!

The solitonic brane solutions of SUGRA with RR charge have a perturbative
description in terms of closed strings emitted from disks with Dirichlet
boundary conditions

D-brane

source

φclosed φclosed
=⇒ =⇒ 〈φclosed〉disk 6= 0
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In this lecture

I We will extend this idea to open strings by introducing “mixed
disks” (i.e. disks with mixed boundary conditions) such that〈

φ open
〉

mixed disk 6= 0

I We will exploit this idea to describe instantons in (supersymmetric)
gauge theories using open strings and D-branes.

I We will see that instantons arise as (possibly wrapped) Euclidean
branes

I We will show that in addition to the usual field theory effects, this
stringy realization of the instanton calculus provides a rationale for
explaining the presence of new types of non-perturbative terms in
the low energy effection actions of D-brane models.
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In phenomenological applications of string theory, instanton effects are
important for various reasons, e.g.

• they may generate non-perturbative contributions to the effective
superpotentials and hence play a crucial rôle for moduli
stabilization

• they may generate perturbatively forbidden couplings, like
Majorana masses for neutrinos, ...

• ...
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Instanton effects in string theory have been studied over the years from
various standpoints, mainly exploiting string duality:

Witten, Becker2+Strominger, Harvey+Moore, Beasley+Witten,
Antoniadis+Gava+Narain+Taylor, Bachas+Fabre+Kiritsis+Obers+Vanhove,

Kiritis+Pioline, Green+Gutperle, + ...
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• they may generate non-perturbative contributions to the effective
superpotentials and hence play a crucial rôle for moduli
stabilization

• they may generate perturbatively forbidden couplings, like
Majorana masses for neutrinos, ...

• ...

Only recently concrete tools have been developed to directly compute
instanton effects using (perturbative) string theory:

Green+Gutperle, Billò+Frau+Fucito+A.L.+Liccardo+Pesando,
Billò+Frau+Fucito+A.L., Blumenhagen,Cvetic+Weigand, Ibañez+Uranga,
Akerblom+Blumenhagen+Luest+Plauschinn+Schmidt-Sommerfeld, + ...
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Branes and instantons in flat space

Alberto Lerda (U.P.O.) Instantons Vienna, October 7, 2008 10 / 42



String description of SYM theories and their instantons

The effective action of a SYM theory can be given a simple and
calculable string theory realization:

I The gauge degrees of freedom are realized by open strings
attached to N D3 branes.

N D3-branes

I From the disk amplitudes of open string massless fields one
recovers the standard Super Yang-Mills action.

I The instanton sector of charge k is realized by adding k D(–1)
branes (D-instantons).
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Instantons and D-instantons
I Consider the effective action for a stack of N D3 branes

D. B. I. +

∫
D3

[
C4 +

1
2

C0 Tr
(

F ∧ F
)]

The topological density of an instanton configuration corresponds
to a localized source for the R-R scalar C0, i.e., to a distribution of
D-instantons inside the D3’s.

I Instanton solutions of SU(N) gauge theories with charge k
correspond to k D-instantons inside N D3-branes.

[Witten 1995, Douglas 1995, Dorey 1999, ...]

0 1 2 3 4 5 6 7 8 9
D3 − − − − ∗ ∗ ∗ ∗ ∗ ∗

D(−1) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Open string degrees of freedom

In this D-brane system there are different open string sectors
N D3-branes

k D-instantons

D(−1)/D(−1)

D3/D3

D3/D(−1)

• D3/D3 strings: gauge theory fields
• D(–1)/D(–1) strings: neutral instanton moduli
• D3/D(–1) strings: charged instanton moduli
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Moduli vertices and instanton parameters

Open strings with at least one end on a D(–1) carry no momentum:
they are moduli, rather than dynamical fields.

The D(–1)/D(–1) open strings have DD boundary conditions in all
directions and the spectrum is:

moduli ADHM Meaning Vertex Chan-Paton

NS a′µ centers ψµ e−ϕ adj. U(k)

χm aux. ψm e−ϕ(z)
...

Dc Lagrange mult. η̄c
µνψ

νψµ
...

R MαA partners SαSA e−
1
2ϕ

...

λα̇A Lagrange mult. Sα̇SA e−
1
2ϕ

...

where µ, ν = 0, 1, 2, 3; m, n = 4, 5, ..., 9; α, α̇ = 1, 2 and A = 1, 2, 3, 4.
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In the D3/D(–1) sector the string coordinates Xµ and ψµ (µ = 0,1,2,3)
satisfy mixed ND or DN boundary conditions ⇒ their moding is
shifted by 1/2 so that

• the lowest state of the NS sector is a bosonic spinor of SO(4)

• the lowest state of the R sector is a fermionic scalar of SO(4)

moduli ADHM Meaning Vertex Chan-Paton

NS wα̇ sizes ∆Sα̇ e−ϕ k × N

w̄α̇ sizes ∆Sα̇ e−ϕ N × k

R µA partners ∆SA e−
1
2ϕ k × N

µ̄A
... ∆SA e−

1
2ϕ N × k

∆ and ∆ are the twist fields whose insertion modify the boundary
conditions from D3 to D(–1) type and viceversa.
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Disk amplitudes and effective actions
D3 disks

D(–1) disks

Mixed disks
SYM action instanton action (ADHM)

Effective actions

Disk amplitudes

field theory limit α′ → 0

D3 disks D(–1) and mixed disks
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An example of mixed disk amplitude

Consider the following mixed disk diagram

w̄

λ

µ

which corresponds to the following amplitude〈〈
VλVw̄ Vµ

〉〉
≡ C0

∫ ∏
i dzi

dVCKG
×
〈
Vλ(z1)Vw̄ (z2)Vµ(z3)

〉
= ... = trk

{
iλα̇A w̄α̇ µA

}
where C0 = 8π2/g2 is the disk normalization.
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The instanton moduli action
Collecting all diagrams D(–1) and mixed disk diagrams with insertion of
all moduli vertices, we can extract the instanton moduli action

S1 = tr
{
− [aµ, χ

m]
2 − i

4
MαA[χAB,MB

α ] + χmw̄α̇w α̇χm +
i
2
µ̄AµBχAB

− iDc
(

w̄ α̇(τ c) β̇
α̇ wβ̇ + i η̄c

µν [aµ,aν ]
)

+ iλα̇
A

(
µ̄Awα̇ + w̄α̇µ

A + σµ
βα̇[MβA,aµ]

)}
where χAB = χm (Σm)AB.

I S1 is just a gauge theory action dimensionally reduced to d = 0 in
the ADHM limit.

I The last two lines in S1 correspond to the bosonic and fermionic
ADHM constraints.
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Take for simplicity k = 1 (−→ [ , ] = 0). The bosonic “equations of
motion”

wuα̇ χ
m = 0 , w̄α̇u(τ c)α̇β̇wuβ̇ = 0

determine the classical vacua.

There are two types of solutions:

χm 6= 0 , wuα̇ = 0

D(–1)

D3

χ

χm = 0 , wuα̇ = ρ

(
12×2

0(N−2)×2

)

ρ ∼ instanton size

D3

D(–1)
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I The neutral zero-modes

xµ = tr
(
aµ
)

and θαA = tr
(
MαA)

are the Goldstone modes of the broken (super)translations. S1 does not
depend on them. They play the role of the superspace coordinates.

I The other neutral (anti-chiral) fermionic zero-modes

λα̇A

appear linearly in S1 and are the Lagrange multipliers for the fermionic
ADHM constraints. They have dimensions of (length)−3/2.

I The bosonic charged moduli

w̄α̇ , wα̇

describe the instanton size and its orientation (in the SU(N)). They carry
dimensions of (length).
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To understand better all this,
let us look at the instanton classical solution
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Instanton classical solution

I The mixed disks are the sources for a non-trivial gauge field
whose profile is exactly that of the classical instanton!!

[Billó et al. 2002,...]
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Instanton classical solution

I The mixed disks are the sources for a non-trivial gauge field
whose profile is exactly that of the classical instanton!!

[Billó et al. 2002,...]

Let us consider the following mixed-disk amplitude:

p

Ac
µ(p)

w̄

w

≡
〈
VAc

µ(p)

〉
mixed disk
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Instanton classical solution

I The mixed disks are the sources for a non-trivial gauge field
whose profile is exactly that of the classical instanton!!

[Billó et al. 2002,...]

Using the explicit expressions of the vertex operators, for SU(2) with
k = 1 one finds〈

VAc
µ(p)

〉
mixed disk ≡

〈
Vw̄ VAc

µ
(p) Vw

〉
= − i pν η̄c

µν

(
w̄ α̇ wα̇

)
e−i p·x0 ≡ Ac

µ(p; w , x0)

I On this mixed disk the gauge vector field has a non-vanishing
tadpole!
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I Taking the Fourier transform of Ac
µ(p; w , x0), after inserting the

free propagator 1/p2, we obtain

Ac
µ(x) ≡

∫
d4p

(2π)2 Ac
µ(p; w , x0)

1
p2 ei p·x = 2 ρ2 η̄c

µν

(x − x0)ν

(x − x0)4

where we have used the solution of the ADHM constraints so that
w̄ α̇ wα̇ = 2 ρ2.

I This is the leading term in the large distance expansion of an
SU(2) instanton with size ρ and center x0 in the singular gauge!!

I In fact

Ac
µ(x)

∣∣∣
instanton

= 2 ρ2 η̄c
µν

(x − x0)ν

(x − x0)2
[
(x − x0)2 + ρ2

]
= 2 ρ2 η̄c

µν

(x − x0)ν

(x − x0)4

(
1 − ρ2

(x − x0)2 + . . .

)
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I The subleading terms in the large distance expansion can be
obtained from mixed disks with more insertions of moduli.

I For example, at the next-to-leading order we have to consider the
following mixed disk which can be easily evaluated for α′ → 0

α′ → 0

I Its Fourier transform gives precisely the 2nd order in the large
distance expansion of the instanton profile

Ac
µ(x)

(2)
= −2 ρ4 η̄c

µν

(x − x0)ν

(x − x0)6
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Summary

I Mixed disks are sources for open strings

φopen

sourcemixed disk

−→ −→
〈
Vφ open

〉
mixed disk 6= 0

I The gauge field emitted from mixed disks is precisely that of the
classical instanton〈

VAµ
〉

mixed disk ⇔ Aµ

∣∣∣
instanton

I This procedure can be easily generalized to the SUSY partners of
the gauge boson.
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The stringy instanton calculus
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The instanton partition function

I The crucial ingredient is the moduli action S1: it is given by
(mixed) disk diagrams; the result depends only on the centered
moduli M̂(k) but not on the center xµ nor on its super-partners θαA

I The combinatorics of the disk diagrams
w̄

+ . . .≡ +

µ

λ

α′→0' − 8π2 k
g2 − S1(M̂(k))

is such that they exponentiate, leading to the instanton partition
function

Z (k)

[Polchinski 1994, ..., Dorey et al. 1999, ...]
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function

Z (k) ∼
∫

d4x d8θ dM̂(k) e
− 8π2 k
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∫

d4x d8θ Ẑ (k)
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I The mixed disk amplitudes giving rise to the moduli action
S1(M(k)), i.e.

= − S1(M(k))

from the D3 brane point of view represent a “vacuum contribution”.

I Since we integrate over the instanton moduliM(k), also
disconnected diagrams must be considered. For example we
must take into account also

× = S1(M(k))
2
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I Of course one should add more disconnected components and
take into account the appropriate symmetry factors

I A careful study of the combinatorics of boundaries leads to the
exponentiation of the disk amplitudes, namely to

[Polchinski 1994]

× + . . .+ 1
2+

{
1

}

= 1− S1(M(k)) +
1
2

S1(M(k))2 + . . .

= e−S1(M(k)) = e−
8π2 k

g2 −S1(M̂(k))
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Field dependent moduli action
I Consider correlators of D3/D3 fields, e.g. of the scalars Φm, in

presence of k D-instantons. They are described by disk diagrams
with (at least) one insertion of VΦm . For example we have

µB

µ̄A

Φm

I Considering all such diagrams one obtains the field-dependent
moduli action

S2(M(k); Φ) = tr
{

w̄α̇ ΦmΦm w α̇ +
i
2

(Σm)AB µ̄
AΦm µ

B

+ χm w̄α̇ Φm w α̇ + w̄α̇ Φm w α̇χm
}

+ fermion terms
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A k -instanton contribution is then given by the integral over ALL
MODULI

Z (k) ∝
∫

dM(k) e−S1(M(k))−S2(M(k);Φ)

∝
∫

d{a, χ,M, λ,D,w , w̄ , µ, µ̄}e−S1−S2

Since
xµ = tr

(
aµ
)

and θαA = tr
(
MαA)

are the Goldstone modes of the broken (super)translations and play
the role of the superspace coordinates, it is convenient to separate
them and write

Z (k) ∼
∫

d4x d8θ dM̂(k) e
− 8π2 k

g2 −S1( cM(k))−S2( cM(k);Φ)

∼
∫

d4x d8θ Ẑ (k)(Φ)
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Some simple possibilities:

• D3/D(–1) system on R4 × C3

⇓
N = 4 SYM + instantons (A = 1, 2, 3, 4)

• D3/D(–1) system on R4 × C × C2/Z2

⇓
N = 2 SYM + instantons (A = 1, 2)

• D3/D(–1) system on R4 × C3/(Z2 × Z2)

⇓
N = 1 SYM + instantons (A = 1)
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In the case of reduced SUSY, some of the θαA will not be present.

• N = 2

Z =

∫
dx4 dθ4F where F ∝

∫
dM̂(k) e−S1−S2

• N = 1

Z =

∫
dx4 dθ2 W where W ∝

∫
dM̂(k) e−S1−S2

I The integral over the anti-chiral zero modes λα̇A enforces the
fermionic ADHM constraints from S1.

I In general, one must investigate under what conditions these
instanton contributions to F or W are non vanishing, and what is
their structure (prepotential, superpotential, ...)
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Some explicit examples and applications of this stringy
instanton calculus will be discussed in

Marco Billò’s talk
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The instanton partition function (... again)
The k -instanton partition function is the “functional” integral over the
instanton moduli:

Z (k) = Ck

∫
dMk e−S(Mk )

where
• Ck is a dimensionful normalization factor which compensates for

the dimensions of dMk

• S(Mk ) is the moduli action which accounts for all interactions
among the instanton moduli in the limit α′ → 0 at any order of
string perturbation theory, i.e. on any world-sheet topology.

+

{
+ . . .

}
−S(Mk ) = limα′→0
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As we have seen before, at the tree-level, we have

+ . . .+≡

= 〈1〉disk + 〈M(k)〉disk

α′→0' − 8π2 k
g2 − S1(M̂(k))

Thus,
〈1〉disk ∼ O(g−2) , 〈M(k)〉disk ∼ O(g0)
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Similarly, at the one-loop level, one can show that

= + + . . .

〈1〉annulus

+

︸︷︷︸ ︸︷︷︸
〈Mk〉annulus

where
〈1〉annulus ∼ O(g0) , 〈M(k)〉annulus ∼ O(g2)

Thus, in the semi-classical approximation one has
[Blumenhagen et al., Akerblom et al. 2006]

Z (k) = Ck

∫
dMk e−S(Mk )

∼ Ck

∫
dMk e〈1〉disk + 〈M(k)〉disk + 〈1〉′annulus

Alberto Lerda (U.P.O.) Instantons Vienna, October 7, 2008 37 / 42



The disk vacuum amplitude

The YM action
S =

1
g2

∫
d4x Tr

(
1
2

F 2
µν

)
I evaluated on a constant gauge field f becomes

S(f ) =
V4 f 2

2 g2

I evaluated on a k -instanton background becomes

Sinst =
8π2k

g2

Thus we have the simple relation
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V4
= = Sinst

8π2
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The annulus vacuum amplitude

A similar relation holds also at one-loop:
I in the constant gauge field background we have

S(f ) + S1−loop(f ) =
V4 f 2

2 g2(µ)

where g(µ) is the running coupling constant at scale µ

1
g2(µ)

=
1
g2 +

b1

16π2 log
µ2

Λ2
UV

+ ∆
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The annulus vacuum amplitude

A similar relation holds also at one-loop:
I in the constant gauge field background we have

S(f ) + S1−loop(f ) =
V4 f 2

2 g2(µ)

I in the k -instanton background, for a supersymmetric theory we
have

Sinst + S1−loop
inst =

8π2k
g2(µ)

Thus, also at one-loop we have the simple relation

S1−loop(f )′′

V4
= =

S1−loop
inst
8π2k≡ +

[Abel+Goodsell, Akerblom et al.]
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The rôle of the annulus amplitude
By explicitly computing the annulus diagrams, one finds

= 0

= −8π2k
(

1
16π2 b1 log(α′µ2) + ∆

)
where the β-function coefficient b1 counts the number of charged (and
flavored) ADHM instanton moduli

b1 = nbos −
1
2

nferm = # {w , w̄} − 1
2

# {µ, µ̄}

and ∆ are the threshold corrections.
[Akerblom et al., Billó et al.]
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To conclude:

I The k -instanton contributions can be computed from perturbative
string diagrams:

mixed disks and mixed annuli

I The k-instanton contributions are

Z (k) = Ck

∫
dMk e〈1〉disk + 〈M(k)〉disk + 〈1〉′annulus

= Ck

∫
dMk e

− 8π2k
g2 − S( cM(k);Φ) − 8π2k ∆

where Ck ∼ (Ms)k b1 . Thus,

Z (k) ∼ Λk b1 e− 8π2k ∆

∫
dMk e− S( cM(k);Φ)

where Λ is the dynamically generated scale.
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Stay tuned for Marco’s talk

Thank you !
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