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Introduction and motivation

String theory is a very powerful tool to analyze field theories, and in
particular gauge theories.

Behind this, there is a rather simple and well-known fact: in the field

theory limit o/ — 0, a single string scattering amplitude reproduces a
sum of different Feynman diagrams

Q;X +>w<+...
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Introduction and motivation

String theory is a very powerful tool to analyze field theories, and in
particular gauge theories.

Behind this, there is a rather simple and well-known fact: in the field

theory limit o/ — 0, a single string scattering amplitude reproduces a
sum of different Feynman diagrams

Q;X +>w<+...

String theory S-matrix elements = vertices and effective actions in
field theory
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In general, a N-point string amplitude Ay is given schematically by

PR

where
> V,, is the vertex for the emission of the field ¢;: V5, = ¢; Vy,
» 3 is a Riemann surface of a given topology

> (...)s is the v.e.v. with respect to the vacuum defined by ¥..



In general, a N-point string amplitude Ay is given schematically by

PR

where
> V,, is the vertex for the emission of the field ¢;: V5, = ¢; Vy,
» 3 is a Riemann surface of a given topology

> (...)s is the v.e.v. with respect to the vacuum defined by ¥..

The simplest world-sheets ¥ are:

spheres for closed strings and disks for open strings



» For any closed string field ¢ s.q, ON€ has

<V¢closed >sphere - 0

=

< ¢Closed>sphere =0
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» For any closed string field ¢ s.q, ON€ has

<V¢closed >sphere - 0

=

< ¢ ClOSed>sphere =0

» For any open string field ¢ ..., one has
<V¢0pen >disk =0 =

<¢Open>disk =0



» For any closed string field ¢ o5, ONE has

< V¢ closed >sphere - O

= <¢Closed>sphere =0
» For any open string field ¢ ..., one has

<V¢open >disk =0

=

<¢0pen>disk =0

» spheres and disks describe the trivial vacuum around which
ordinary perturbation theory is performed
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» For any closed string field ¢ o5, ONE has

< V¢ closed >sphere =0 = <¢Closed>sphere =0

» For any open string field ¢ ..., one has

<V¢>open >disk =0 = <¢0pen>disk =0

» spheres and disks describe the trivial vacuum around which
ordinary perturbation theory is performed

» spheres and disks are inadequate to describe non-perturbative
backgrounds where fields have non trivial profile!



However, after the discovery of D-branes, the perspective has drastically
changed, and nowadays we know that also some non-perturbative properties
of field theories can be analyzed using perturbative string theory!

The solitonic brane solutions of SUGRA with RR charge have a perturbative
description in terms of closed strings emitted from disks with Dirichlet
boundary conditions

(bC Se (ZS N+
~ = Q‘M’V"Wc‘]’(: ’ = <¢closed>disk 7& O

/

source

D-brane
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In this lecture

» We will extend this idea to open strings by introducing “mixed

disks” (i.e. disks with mixed boundary conditions) such that
<¢open>mixed disk 7’é 0
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In this lecture

» We will extend this idea to open strings by introducing “mixed
disks” (i.e. disks with mixed boundary conditions) such that

<¢Open>mixed disk 7& 0

» We will exploit this idea to describe instantons in (supersymmetric)
gauge theories using open strings and D-branes.



In this lecture

» We will extend this idea to open strings by introducing “mixed
disks” (i.e. disks with mixed boundary conditions) such that

{ @ open ) mixed disk 7# 0

» We will exploit this idea to describe instantons in (supersymmetric)
gauge theories using open strings and D-branes.

» We will see that instantons arise as (possibly wrapped) Euclidean
branes



In this lecture

» We will extend this idea to open strings by introducing “mixed
disks” (i.e. disks with mixed boundary conditions) such that

{ @ open ) mixed disk 7# 0

» We will exploit this idea to describe instantons in (supersymmetric)
gauge theories using open strings and D-branes.

» We will see that instantons arise as (possibly wrapped) Euclidean
branes

» We will show that in addition to the usual field theory effects, this
stringy realization of the instanton calculus provides a rationale for
explaining the presence of new types of non-perturbative terms in
the low energy effection actions of D-brane models.



In phenomenological applications of string theory, instanton effects are
important for various reasons, e.g.

e they may generate non-perturbative contributions to the effective
superpotentials and hence play a crucial réle for moduli
stabilization

e they may generate perturbatively forbidden couplings, like
Majorana masses for neutrinos, ...
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In phenomenological applications of string theory, instanton effects are
important for various reasons, e.g.

e they may generate non-perturbative contributions to the effective
superpotentials and hence play a crucial réle for moduli
stabilization

e they may generate perturbatively forbidden couplings, like
Majorana masses for neutrinos, ...

Instanton effects in string theory have been studied over the years from
various standpoints, mainly exploiting string duality:

Witten, Becker?+Strominger, Harvey+Moore, Beasley+Witten,
Antoniadis+Gava+Narain+Taylor, Bachas+Fabre+Kiritsis+Obers+Vanhove,
Kiritis+Pioline, Green+Gutperle, + ...



In phenomenological applications of string theory, instanton effects are
important for various reasons, e.g.

e they may generate non-perturbative contributions to the effective
superpotentials and hence play a crucial réle for moduli
stabilization

e they may generate perturbatively forbidden couplings, like
Majorana masses for neutrinos, ...

Only recently concrete tools have been developed to directly compute
instanton effects using (perturbative) string theory:

Green+Gutperle, Billo+Frau+Fucito+A.L.+Liccardo+Pesando,
Billo+Frau+Fucito+A.L., Blumenhagen,Cvetic+Weigand, Ibafiez+Uranga,
Akerblom+Blumenhagen+Luest+Plauschinn+Schmidt-Sommerfeld, + ...
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Branes and instantons in flat space



String description of SYM theories and their instantons

The effective action of a SYM theory can be given a simple and
calculable string theory realization:

» The gauge degrees of freedom are realized by open strings
attached to NV D3 branes.

_D
Uy

» From the disk amplitudes of open string massless fields one
recovers the standard Super Yang-Mills action.




String description of SYM theories and their instantons

The effective action of a SYM theory can be given a simple and
calculable string theory realization:

» The gauge degrees of freedom are realized by open strings
attached to N D3 branes.

N

* k D-instantons

» The instanton sector of charge k is realized by adding k D(—1)
branes (D-instantons).




Instantons and D-instantons

» Consider the effective action for a stack of N D3 branes
D.B.I. + / [04 + 1CoTr(FAF)
D3 2

The topological density of an instanton configuration corresponds
to a localized source for the R-R scalar Cy, i.e., to a distribution of
D-instantons inside the D3’s.



Instantons and D-instantons

» Consider the effective action for a stack of N D3 branes
D.B.l. + / [04 + 1CoTr(FAF)
D3 2

The topological density of an instanton configuration corresponds
to a localized source for the R-R scalar Cy, i.e., to a distribution of
D-instantons inside the D3’s.

» Instanton solutions of SU(N) gauge theories with charge k
correspond to k D-instantons inside N D3-branes.
[Witten 1995, Douglas 1995, Dorey 1999, ...]
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D3
D(-1)

* * x X * ok X




Open string degrees of freedom

N D3-branes
=

D
Uy

In this D-brane system there are different open string sectors

)

B/\D3/D3

D3/D(—1)

D(—1)/D(—1)

e D3/D3 strings: gauge theory fields
e D(—1)/D(—1) strings: neutral instanton moduli

e D3/D(—1) strings: charged instanton moduli
Alberto Lerda (U.PO.)
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Moduli vertices and instanton parameters

Open strings with at least one end on a D(—1) carry no momentum:
they are moduli, rather than dynamical fields.

The D(—1)/D(—1) open strings have DD boundary conditions in all
directions and the spectrum is:

|| moduli ADHM Meaning Vertex Chan-Paton
NS centers Pre ? adj. U(k)
aux. P e :
Lagrange mult. M P*
R partners SaSae” 2%
Lagrange mult. ~ S®She z¢

where u,v =0,1,2,3; myn=45,....9;a,&a=1,2and A=1,2,3,4.
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In the D3/D(—1) sector the string coordinates X* and " (1 = 0,1,2,3)
satisfy mixed ND or DN boundary conditions = their moding is
shifted by 1/2 so that

e the lowest state of the NS sector is a bosonic spinor of SO(4)

o the lowest state of the R sector is a fermionic scalar of SO(4)

|| moduli  ADHM Meaning Vertex Chan-Paton

NS Wy, sizes ASYe™? kx N
We, sizes AS%e¥ N x k

R w partners ASpe 2% kx N
i : ASpe ¢ N x k

A and A are the twist fields whose insertion modify the boundary
conditions from D3 to D(—1) type and viceversa.



Disk amplitudes and effective actions
D3 disks

O
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Disk amplitudes and effective actions
D3 disks
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Disk amplitudes and effective actions
D3 disks

Mixed disks
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Disk amplitudes and effective actions
D3 disks

Disk amplitudes
D(-1) disks

field theory limit o/ — 0

Effective actions
D3 disks
Mixed disks

D(—1) and mixed disks
SYM action
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An example of mixed disk amplitude

Consider the following mixed disk diagram

1L

which corresponds to the following amplitude

<<vA vwvu>> = co/% x (Va(21) Vi (22) Viu(25)) = ... :trk{ua;4 W ;I,A}

where Cy = 872 /g? is the disk normalization.



The instanton moduli action

Collecting all diagrams D(—1) and mixed disk diagrams with insertion of
all moduli vertices, we can extract the instanton moduli action

S = te] — [ " — M [as, ME] 4 X Waw i + SO0
— iD°¢ (V_Vd(Tc)f wy -+ i, [, a”])
+ X (A we + Wap + ol M7, a,]) |
where xag = xm (X) z5-

» S, is just a gauge theory action dimensionally reduced to d = 0 in
the ADHM limit.

» The last two lines in Sy correspond to the bosonic and fermionic
ADHM constraints.



Take for simplicity k =1 (— [, ] = 0). The bosonic “equations of
motion”

Wue X" =0, Weu(r%)w,; =0
determine the classical vacua.
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Take for simplicity k =1 (— [, ] = 0). The bosonic “equations of
motion”

Wya Xm =0 s Wdu(Tc)dﬁWuB =0

determine the classical vacua.

There are two types of solutions:

Xm7éoa Wudzo

(-
D3

=--f---=>0

D(-1)
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Take for simplicity k =1 (— [, ] = 0). The bosonic “equations of
motion” .
Wua X" =0 Wau(Tc)aﬁWua =0

determine the classical vacua.

There are two types of solutions:

1
X"#0 , Wy =0 XmZOaWud:p( 2z )

O(N—2)x2
f X D3
D3

= oo i/\

p ~ instanton size

D(-1)




» The neutral zero-modes

x* =t(a") and 64 = (M)

are the Goldstone modes of the broken (super)translations. S; does not
depend on them. They play the role of the superspace coordinates.

Alberto Lerda (U.PO.)
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» The neutral zero-modes
x* =t(a") and 64 = (M)

are the Goldstone modes of the broken (super)translations. S; does not
depend on them. They play the role of the superspace coordinates.

» The other neutral (anti-chiral) fermionic zero-modes
AGA

appear linearly in S; and are the Lagrange multipliers for the fermionic
ADHM constraints. They have dimensions of (length)~3/2.



The neutral zero-modes
x* =t(a") and 64 = (M)

are the Goldstone modes of the broken (super)translations. S; does not
depend on them. They play the role of the superspace coordinates.

The other neutral (anti-chiral) fermionic zero-modes
AaA

appear linearly in S; and are the Lagrange multipliers for the fermionic
ADHM constraints. They have dimensions of (length)~3/2.

The bosonic charged moduli
We , W

describe the instanton size and its orientation (in the SU(N)). They carry
dimensions of (length).



To understand better all this,
let us look at the instanton classical solution

Alberto Lerda (U.PO.)



Instanton classical solution

» The mixed disks are the sources for a non-trivial gauge field
whose profile is exactly that of the classical instanton!!

[Bill6 et al. 2002,...]



Instanton classical solution

» The mixed disks are the sources for a non-trivial gauge field
whose profile is exactly that of the classical instanton!!

[Bill6 et al. 2002,...]
Let us consider the following mixed-disk amplitude:

S|

= .
AL(P)

= < VAfL(p) >mixed disk
)
’
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Instanton classical solution

» The mixed disks are the sources for a non-trivial gauge field
k =1 one finds

whose profile is exactly that of the classical instanton!!

[Bill6 et al. 2002,...]

Using the explicit expressions of the vertex operators, for SU(2) with
< VAﬁ(p) >mixed disk

(Vi Vag (p) Vi)

— i iG, (W wa) e PR = AS(p; w, Xo)
tadpole!

» On this mixed disk the gauge vector field has a non-vanishing

o = = z DA



» Taking the Fourier transform of A% (p; w, xo), after inserting the
free propagator 1/p?, we obtain

(x — x0)”

d*p 1
c — C(p- . alpx 2 =C
A/J,(X) - / (271_)2 A“(p, Wa XO) p2 € 2f) n/u/ (X _ X0)4

where we have used the solution of the ADHM constraints so that
W Wy = 2 p2.

» This is the leading term in the large distance expansion of an
SU(2) instanton with size p and center xp in the singular gauge!!



» Taking the Fourier transform of A% (p; w, xo), after inserting the
free propagator 1/p?, we obtain

d‘p 1 ip o (x—x0)"
c — C(n- . alpx 2 =C
A/J,(X) - / (271_)2 A“(p, Wa XO) p2 € 2[) n/j,u (X _ X0)4

where we have used the solution of the ADHM constraints so that
W Wy = 2 p2.

» This is the leading term in the large distance expansion of an
SU(2) instanton with size p and center xg in the singular gauge!!

» |n fact

AC — 2,25C (X_XO)V
#(X) instanton P v (X — X0)2 [(X _ X0)2 4 [)2]
v 2
_ e KX)o
P () (x—xP



» The subleading terms in the large distance expansion can be
obtained from mixed disks with more insertions of moduli.

» For example, at the next-to-leading order we have to consider the
following mixed disk which can be easily evaluated for o/ — 0

> o —0

» Its Fourier transform gives precisely the 2nd order in the large
distance expansion of the instanton profile

c(x)® = _p g0 XZX0)
A,u(x) - 2/0 npu (X—XO)G

Alberto Lerda (U.RPO.)




Summary

» Mixed disks are sources for open strings

¢open
Al
~ -

mixed disk

- /@V"V‘M — <V¢ open >mixed disk ?é 0

source

» The gauge field emitted from mixed disks is precisely that of the
classical instanton

(Va, Jmixed disk & Ay

instanton

» This procedure can be easily generalized to the SUSY partners of
the gauge boson.

o = = = faqe



The stringy instanton calculus



The instanton partition function

» The crucial ingredient is the moduli action S;: it is given by
(mixed) disk diagrams; the result depends only on the centered
moduli M (k) but not on the center x* nor on its super-partners goA



The instanton partition function
» The crucial ingredient is the moduli action S;: it is given by
(mixed) disk diagrams; the result depends only on the centered
moduli M, but not on the center x* nor on its super-partners 6oA

» The combinatorics of the disk diagrams

w
= T ‘:- + ..
o:>\
a’—0 8712 k K —
~ — g2 — S1 (M(k))
is such that they exponentiate, leading to the instanton partition
function
87r2k

VAQRS /d4x d®o d./\//\l(k) e @ M) /d4x a8y Z(
[Polchinski 1994, ..., Dorey et al. 1999, ...]
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» The mixed disk amplitudes giving rise to the moduli action
81 (M(k)), ie.

- S1(Mx))

from the D3 brane point of view represent a “vacuum contribution”.

Alberto Lerda (U.PO.)
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» The mixed disk amplitudes giving rise to the moduli action
81 (./\/l(k)), ie.

= - S51(M))

from the D3 brane point of view represent a “vacuum contribution”.

» Since we integrate over the instanton moduli My, also
disconnected diagrams must be considered. For example we
must take into account also

X = S1(M)?

Alberto Lerda (U.RPO.)




» Of course one should add more disconnected components and
take into account the appropriate symmetry factors

» A careful study of the combinatorics of boundaries leads to the

exponentiation of the disk amplitudes, namely to
[Polchinski 1994]

{1 +. +%‘ X. +.'.}
1
:1—S1(M(k))+§S1(M(k))2+...

82 k o
— e S Mw) — o7 i ~ S1(Mw)
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Field dependent moduli action

» Consider correlators of D3/D3 fields, e.g. of the scalars ¢, in
presence of k D-instantons. They are described by disk diagrams
with (at least) one insertion of Vem. For example we have

1B

®m



Field dependent moduli action

» Consider correlators of D3/D3 fields, e.g. of the scalars ¢, in

presence of k D-instantons. They are described by disk diagrams
with (at least) one insertion of Vem. For example we have

A Y
om k

I-"'

IaA

» Considering all such diagrams one obtains the field-dependent
moduli action

—~ o

SoMpy; @) = t{ s O w4 5 () g A0 117

+ X Wy Oy WY+ Wy Dy dem} + fermion terms
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A k-instanton contribution is then given by the integral over ALL
MODULI

700 o / IM g €51 M)~ SeMiw )
[ dlax.MAD.w. Wi oS

Since
xt =tr(a") and 6= tr(M)

are the Goldstone modes of the broken (super)translations and play
the role of the superspace coordinates, it is convenient to separate
them and write

Z(k) /d4x d89 dM ) e ?_81(-/\/1 )_SZ(M\(k);(D)

/ d*x d®0 Z(0) (o)



Some simple possibilities:

D3/D(-1) systemon R* x C®

N2
N = 4 SYM + instantons
[ ]

4

(A=1,2,3,4)
N = 2 SYM + instantons
[ ]

D3/D(-1) systemon R* x C x C?/Z;

1,2)

(A=

D3/D(-1) systemon R* x C3/(Zy x Zy)
\

N =1

SYM + instantons

Alberto Lerda (U.PO.)
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In the case of reduced SUSY, some of the #*4 will not be present.
[} N = 2

Z:/dx4 do* 7 where ]—“oc/dﬂ/l\(k) e 1%
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In the case of reduced SUSY, some of the #*4 will not be present
[} N = 2

Z:/dx4 do* 7 where ]—“oc/dﬂ/l\(k) e 1%
[} N:1

zZ= / dx*do? W where W / dM o e~ 51 =%
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In the case of reduced SUSY, some of the #*4 will not be present.
o N =2

Z:/dx4 do* 7 where J—“oc/dﬂ/l\(k) e 1%

e N =1

Z:/dx4 do®> W  where Woc/d/\?(k) e 51—

» The integral over the anti-chiral zero modes A, enforces the
fermionic ADHM constraints from S;.

» In general, one must investigate under what conditions these
instanton contributions to F or W are non vanishing, and what is
their structure (prepotential, superpotential, ...)



Some explicit examples and applications of this stringy
instanton calculus will be discussed in

Marco Billd’s talk
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The instanton partition function (... again)

The k-instanton partition function is the “functional” integral over the
instanton moduli:

ZH) = ¢y / d M e~ SMx)
where

e Cy is a dimensionful normalization factor which compensates for
the dimensions of d M

o S(My) is the moduli action which accounts for all interactions
among the instanton moduli in the limit o/ — 0 at any order of
string perturbation theory, i.e. on any world-sheet topology.

-s(at =t o | ; o
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As we have seen before, at the tree-level, we have

......

If
4

1 + ‘:— +..
= (Maisk — + (M)isk
o' —0 82 k —
~ g - Si(Mw)
Thus,

Maisk ~O0(@3) (M ~ O(g°)

[m] =1 =
Alberto Lerda (U.PO.)
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Similarly, at the one-loop level, one can show that

-
. ~

A TIX,
=i 0t + ORIy
\‘~~:-'_"'1 \‘~~:::‘x:
—~—~ —~—~
< 1 > annulus <M k > annulus
where

<1 >annulus ~ O(QO) ) <M(k)>annulus ~ O(QZ)
Thus, in the semi-classical approximation one has

[Blumenhagen et al., Akerblom et al. 2006]
zZk) = ¢ / dMy e SMk)

~ Ck /de e<1>di5k + (Mgyaisk + (1);

annulus

o &5 = Y
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The disk vacuum amplitude
The YM action

4
/d x Tr (2 W)
» evaluated on a constant gauge field f becomes

VP
=g
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The disk vacuum amplitude
The YM action

g fem(in)

» evaluated on a constant gauge field f becomes

Vi, f2

fl=———

S(f) =3 7
» evaluated on a k-instanton background becomes

812k
Sinsl — ?

Alberto Lerda (U.PO.)
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The disk vacuum amplitude
The YM action

4
/d x Tr (2 W)
» evaluated on a constant gauge field f becomes

Vi, f2
f) =
S = 5 g
» evaluated on a k-instanton background becomes
812k
Sinsl -

g2
Thus we have the simple relation

S( f)//
92
Alberto Lerda (U.PO.)
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The disk vacuum amplitude
The YM action

4
/d x Tr (2 W)
» evaluated on a constant gauge field f becomes

Vi, f2
SN = 542
» evaluated on a k-instanton background becomes
Sy = 87ngk
Thus we have the simple relation
S(f)”

Ve

Alberto Lerda (U.PO.)
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The annulus vacuum amplitude

A similar relation holds also at one-loop

» in the constant gauge field background we have

S(f) + 8! (f) =

V, f2
29%(u)
where g(u) is the running coupling constant at scale u
1 1 by 12
= - 4+ A
g%(n) g% 16m® /\%JV

Alberto Lerda (U.PO.)
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The annulus vacuum amplitude

A similar relation holds also at one-loop:

» in the constant gauge field background we have

V, f2
S(f + Sl—loop _
" = 262
» in the k-instanton background, for a supersymmetric theory we

have

2
1—1loo 81k
Sinst + Sinst b= gZ (Iu)

Alberto Lerda (U.PO.)
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The annulus vacuum amplitude

A similar relation holds also at one-loop:
» in the constant gauge field background we have

S( f) + Sl —loop(f)

R f2
have

- 29%(p)
» in the k-instanton background, for a supersymmetric theory we

2
—1 81k
Sinst + St T = 5
Thus, also at one-loop we have the simple relation

92(w)

S! floop( f)" Gl —loop
Ve

1nst

82k
Alberto Lerda (U.PO.)
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The annulus vacuum amplitude

A similar relation holds also at one-loop:
» in the constant gauge field background we have

S(f) + 81 or(ry = A .
29%(n)
» in the k-instanton background, for a supersymmetric theory we
have
82k

Sinst + St P = —5
e g?(n)
Thus, also at one-loop we have the simple relation
Slfloop(f)// _ :," - ~““ N _ Siln:tloop
Va ERN Y. 82k

------

[Abel+Goodsell, Akerblom et al.]

[m] = = =
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The réle of the annulus amplitude

By explicitly computing the annulus diagrams, one finds

......

. .

0 — 872K (102 b1 log(a's?) + A)

where the g-function coefficient by counts the number of charged (and
flavored) ADHM instanton moduli

1 _ 1 _
b1 = Npos — Enferm = # {Wa W} - § # {/%/1’}

and A are the threshold corrections.

[Akerblom et al., Bill6 et al.]



To conclude:

string diagrams:

» The k-instanton contributions can be computed from perturbative

mixed disks and mixed annuli
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To conclude:

string diagrams:

» The k-instanton contributions can be computed from perturbative

mixed disks and mixed annuli
» The k-instanton contributions are

_ 8rlk
= Ck/d./\/lke

Zk)  — Ck /de e{Maisk + (Mdisk + (1) innutus
¢
where Cx ~ (Ms)kb1. Thus,

(Mk)i®) — 82k A

Z(K)  pkby o 872K A / AMy e~ SMi®)
where A is the dynamically generated scale.
Alberto Lerda (U.PO.)
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Stay tuned for Marco’s talk

Thank you !

o = = = = 9ace
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