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this case

NS form field strength: H = dB + α′ (ωL − ωYM)
dH = α′ (tr(F ∧ F )− tr(R ∧R))

gauge invariant transforms under YM and L

(Bosonic) action as    expansion and           :α′

S10 = − 1
2κ2

10

∫ [√
−g R + 4dφ ∧ #dφ +

1
2
e−φH ∧ #H

+α′e−φ/2
(
trF 2 − tr(R2)

)]

+fermions +O(α′2)

gS = eφ
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Branes: only NS two-form B, so string and NS 5-brane

5-brane world-volume     : dH = α′ (tr(F ∧ F )− tr(R ∧R) + δ(M5))M5
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ds2 = e−φ/6ds2
10 + e4φ/3dx2

11

BAB = CAB11 R3
11 ∼ e2φ = g2

S

Witten ‘95

Branes: 
membrane supersymmetric along      -> d=10 stringx11

M 5-brane supersymmetric orthogonal to      -> d=10 NS 5-
brane 

x11

Lalak, Lukas, Ovrut ‘97

higher order terms: integrating out    

X8plus      produces all d=10 terms in W8

Lukas, Ovrut, Waldram ‘98

GABCD ∼ κ2/3
(
f1(x11)J (1) + f2(x11)J (2)

)
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For a supersymmetric background one need to satisfy Killing spinor eqs.

δψA = DAη +O(H) = 0 , δλ ∼ ∂φη +O(H) = 0 , δχ ∼ FABΓABη = 0

Simplest choice: φ = const , H = 0 , ds2
10 = dxµdxνηµν + 2gab̄dzadz̄b

Rab̄ = 0 gab̄Fab̄ = 0 , Fab = Fāb̄ = 0
hermitian

YM equations

In addition, Bianchi identity dH = α′ (tr(F ∧ F )− tr(R ∧R) + δ(M5))

requires

[tr(F ∧ F )− tr(R ∧R) + δ(M5)] = 0

Standard embedding: no 5-branes and          :     remains zero   F = R H

In general: Expansion in           and    , corrections to CY metric  α′/R2
CY gS

Candelas et al. ‘85
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dG ∼ κ2/3
(
J (1) ∧ δ(y) + δ(M (1)

5 ) + · · · + δ(M (N)
5 ) + J (2) ∧ δ(y − πρ)

)

So, main difference: inherent flux          and warping alongGABCD x11

. . .

. . .

CY X

y = x11y0 = 0 y1 yN yN+1 = πρ

boundary boundaryN 5-branes

charges: q(0)
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Solution is expansion in:
εS ∼ κ2/3 R11

V 2/3
CY

strong-coupling expansion
parameter, controls warping

εR ∼
V 1/6

CY
R11

controls massive modes

bi = O(εS)
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and     are analogous to            and     in weakly coupled case.  εS εR α′/R2
CY gS

For a valid solution we need          and          .  εS < 1 εR < 1

For           one looses control of supergravity (      expansion) and
typically one     becomes strongly coupled. 

εS → 1 κ2/3

E8

For          the effect of massive modes becomes important. εR → 1
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εS ∼ R11

V 2/3
CY

∼ TR
SR

= 1

??

εR ∼
S1/2

R
TR

= 1

d=5
theory

unification point:
(MGUT, gGUT, MPl)↔ (R11, VCY, κ)

single “brane” ->
universal gauge coupling

weakly
coupled

strongly
coupled

g2
S ∼ R3

11 ∼
T 3

R
SR
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The way to d=4:
d=11 heterotic

M-theory

on CY with
(2,2) flux

d=5 heterotic
M-theory

d=4 theory

on domain
wall

on warped CY
with (2,2) flux

Lukas, Ovrut, Stelle, Waldram ‘98

d=5 theory is N=1 bulk
gauged SUGRA coupled
to d=4, N=1 “brane” theories.

Difference between d=10 and d=11 CY compactifications: accessible part
of moduli space and possible existence of d=5 intermediate theory.
Otherwise, the same! 
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So, necessary data: CY 3-fold   , holomorphic vector bundles
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X
X
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W ∈ H2(X, Z)
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Choose “observable”bundle   with structure group                     ,
where              such that    

V G = SU(n) ⊂ E8

n = 3, 4, 5 c2(TX)− c2(V ) ∈ Mori cone of X

Then anomaly constraint can be satisfied by a suitable 5-brane curve
(but hidden bundle or combination of hidden bundle and 5-branes
may be possible).

E8 → G×H Residual Group Structure

SU(3)× E6 248→ (1,78)⊕ (3,27)⊕ (3,27)⊕ (8,1)

SU(4)× SO(10) 248→ (1,45)⊕ (4,16)⊕ (4,16)⊕ (6,10)⊕ (15,1)

SU(5)× SU(5) 248→ (1,24)⊕ (5,10)⊕ (5,10)⊕ (10,5)⊕ (10,5)⊕ (24,1)

Table 1: Breaking patterns of E8 and decompositions of the 248 adjoint representation.

Decomposition Cohomologies

SU(3)× E6 n27 = h1(V ), n27 = h1(V ∗) = h2(V ), n1 = h1(V ⊗ V ∗)

SU(4)× SO(10) n16 = h1(V ), n16 = h2(V ), n10 = h1(∧2V ), n1 = h1(V ⊗ V ∗)

SU(5)× SU(5) n10 = h1(V ∗), n10 = h1(V ), n5 = h1(∧2V ), n5 = h1(∧2V ∗)

n1 = h1(V ⊗ V ∗)

Table 2: Computation of low-energy particle spectra.

where Ad(H) denotes the adjoint representation of H and {(Ri, ri)} is a set of represen-
tations of G×H. The adjoint representation of H corresponds to the low-energy gauge
fields while the low-energy matter fields transform in the representations ri of H. For the
three relevant structure groups these matter field representations are explicitly listed in
Table 1. We may ask how many supermultiplets will occur in the low energy theory for
each representation ri? It turns out that this number is given by nri = h1(X, VRi), the
dimension of the cohomology group H1(X, VRi) of the vector bundle V in the specific
G representation Ri which is paired up with the H representation ri in the decomposi-
tion (3). For G = SU(n), the relevant representations Ri can be obtained by appropriate
tensor products of the fundamental representation and one ends up having to compute
h1(X,V ⊗ V ∗), h1(X, V ), h1(X, V ∗), h1(X,∧2V ), and h1(X,∧2V ∗). Using Serre du-
ality, h1(X, V ∗) = h2(X,V ), the number the low-energy representations can then be
computed as summarized in Table 2. Further, the Atiyah-Singer index theorem [39],
applied to the case c1(TX) = c1(V ) = 0, tells us that the index of V can be expressed
as

ind(V ) =
3∑

p=0

(−1)p hp(X, V ) =
1
2

∫

X
c3(V ) , (4)

where c3(V ) is the third Chern class of V . For a stable bundle, we have h0(X, V ) =
h3(X,V ) = 0 and comparison with Table 2 shows that, in this case, the index counts
the chiral asymmetry, that is, the difference of the number of generations and anti-
generations. The index is usually easier to compute than individual cohomologies and
is useful to impose a physical constraint on the chiral asymmetry.

The heterotic models considered in this paper will be constructed as follows. After
choosing a Calabi-Yau space X (which we will take to be one of the five Calabi-Yau
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where Ad(H) denotes the adjoint representation of H and {(Ri, ri)} is a set of represen-
tations of G×H. The adjoint representation of H corresponds to the low-energy gauge
fields while the low-energy matter fields transform in the representations ri of H. For the
three relevant structure groups these matter field representations are explicitly listed in
Table 1. We may ask how many supermultiplets will occur in the low energy theory for
each representation ri? It turns out that this number is given by nri = h1(X, VRi), the
dimension of the cohomology group H1(X, VRi) of the vector bundle V in the specific
G representation Ri which is paired up with the H representation ri in the decomposi-
tion (3). For G = SU(n), the relevant representations Ri can be obtained by appropriate
tensor products of the fundamental representation and one ends up having to compute
h1(X,V ⊗ V ∗), h1(X, V ), h1(X, V ∗), h1(X,∧2V ), and h1(X,∧2V ∗). Using Serre du-
ality, h1(X, V ∗) = h2(X,V ), the number the low-energy representations can then be
computed as summarized in Table 2. Further, the Atiyah-Singer index theorem [39],
applied to the case c1(TX) = c1(V ) = 0, tells us that the index of V can be expressed
as

ind(V ) =
3∑

p=0

(−1)p hp(X, V ) =
1
2

∫

X
c3(V ) , (4)

where c3(V ) is the third Chern class of V . For a stable bundle, we have h0(X, V ) =
h3(X,V ) = 0 and comparison with Table 2 shows that, in this case, the index counts
the chiral asymmetry, that is, the difference of the number of generations and anti-
generations. The index is usually easier to compute than individual cohomologies and
is useful to impose a physical constraint on the chiral asymmetry.
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6

E8    breaking and group structure

low-energy
gauge fields

families and
anti-families

Higgs



Model-building basics
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where              such that    
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n = 3, 4, 5 c2(TX)− c2(V ) ∈ Mori cone of X

Then anomaly constraint can be satisfied by a suitable 5-brane curve
(but hidden bundle or combination of hidden bundle and 5-branes
may be possible).

E8 → G×H Residual Group Structure

SU(3)× E6 248→ (1,78)⊕ (3,27)⊕ (3,27)⊕ (8,1)
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Decomposition Cohomologies

SU(3)× E6 n27 = h1(V ), n27 = h1(V ∗) = h2(V ), n1 = h1(V ⊗ V ∗)
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Table 2: Computation of low-energy particle spectra.

where Ad(H) denotes the adjoint representation of H and {(Ri, ri)} is a set of represen-
tations of G×H. The adjoint representation of H corresponds to the low-energy gauge
fields while the low-energy matter fields transform in the representations ri of H. For the
three relevant structure groups these matter field representations are explicitly listed in
Table 1. We may ask how many supermultiplets will occur in the low energy theory for
each representation ri? It turns out that this number is given by nri = h1(X, VRi), the
dimension of the cohomology group H1(X, VRi) of the vector bundle V in the specific
G representation Ri which is paired up with the H representation ri in the decomposi-
tion (3). For G = SU(n), the relevant representations Ri can be obtained by appropriate
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cohomology                  of all line bundles!hq (X,OX(k))

Focus on 5000 “favourable” Cicys:                        , h1,1(X) = m = #Ps H2(X) = Span{Jr}
J = trJr
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Then    is a vector bundle on   ! V X

Definition: A monad bundle   on    defined by short exact sequence V X

0→ V → B → C → 0
f

B =
⊕rB

i=1OX(bi) , C =
⊕rC

a=1OX(ca)where                                                and          . ca > bi

(hence               ) V = Ker(f)

The map   can be seen as a matrix of polynomials with degree  f ca − bi

Properties: n = rank(V ) = rB − rC ∈ {3, 4, 5}
!

cr
1(V ) =

∑
i br

i −
∑

a cr
a = 0

!

!
c2r(V ) = 1

2drst (
∑

i bs
i b

t
i −

∑
a cs

act
a) ≤ c2r(TX)

c3(V ) = 1
3drst (

∑
i br

i b
s
i b

t
i −

∑
a cr

acs
act

a)
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Some results for monad bundles on CICYs (Anderson, He, Lukas ’07)

 There is a finite number of positive monads (that is,                  ),
   about 7000 on 36 CICYs. We have found those explicitly.

br
i > 0, cr

a > 0

 We can compute the complete spectrum for all positive monads. The 
   number of anti-families always vanishes. Higgs multiplets can arise for
   non-generic choices of the map f.

 We have a systematic method to determine where in the Kahler
   a monad bundle is stable. All positive monads on CICYs with
                  are stable everywhere and many monads are stable
   in parts of the Kahler cone for                . 

h1,1(X) = 1
h1,1(X) = 2

 The number of semi-positive monads                  is apparently
   infinite but may become finite after taking into account equivalences.
   They can be stable and the spectrum can be computed.

br
i ≥ 0, cr

a ≥ 0
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Calculating Yukawa couplings for monad bundles

{
ua

x|x = 1, . . . , h1(X,V )
}Recall: families in            , represented by            

         bundle-valued one-forms 
H1(X,V )

Discuss    but method works for other cases as well.E6

How does this work?

I would like to discuss an algebraic and practical way of 
computing      for all monad bundles.  λxyz

Integral can be explicitly evaluated for standard embedding
but it seems difficult to do this for more general bundles.

Yukawa couplings: λxyz =
∫

X εabcua
x ∧ ub

y ∧ uc
z ∧ Ω273

(Anderson, Gray,
 Grayson, He, Lukas)



Positive monad defined by 
0→ V →

⊕rB

i=1OX(bi)
f→

⊕rC

a=1OX(ca)→ 0

H0(X,V )

H3(X,V )

H1(X,B) H1(X,C)
H2(X,C)H2(X,B)

H3(X,B) H3(X,C)

Long exact sequence: 0 → → H0(X, B) → H0(X, C)
→ H1(X, V ) → →
→ H2(X, V ) → →
→ → → → 0



Positive monad defined by 
0→ V →

⊕rB

i=1OX(bi)
f→

⊕rC

a=1OX(ca)→ 0

H0(X,V )

H3(X,V )

Long exact sequence: 0 → → H0(X, B) → H0(X, C)
→ H1(X, V ) → →
→ H2(X, V ) → →
→ → → → 0



Positive monad defined by 
0→ V →

⊕rB

i=1OX(bi)
f→

⊕rC

a=1OX(ca)→ 0

H0(X,V )

H3(X,V )

Long exact sequence: 0 → → H0(X, B) → H0(X, C)
→ H1(X, V ) → →
→ H2(X, V ) → →
→ → → → 0

0
0

0
0
0

0

Zero since   and    are positive.  B C



Positive monad defined by 
0→ V →

⊕rB

i=1OX(bi)
f→

⊕rC

a=1OX(ca)→ 0

Long exact sequence: 0 → → H0(X, B) → H0(X, C)
→ H1(X, V ) → →
→ H2(X, V ) → →
→ → → → 0

0
0

0
0
0

0

Zero since   and    are positive.  B C



Positive monad defined by 
0→ V →

⊕rB

i=1OX(bi)
f→

⊕rC

a=1OX(ca)→ 0

Long exact sequence: 0 → → H0(X, B) → H0(X, C)
→ H1(X, V ) → →
→ H2(X, V ) → →
→ → → → 0

0
0

0
0
0

0

Zero since   and    are positive.  B C

0

0

Zero since   is stable. V



Positive monad defined by 
0→ V →

⊕rB

i=1OX(bi)
f→

⊕rC

a=1OX(ca)→ 0

Long exact sequence: 0 → → H0(X, B) → H0(X, C)
→ H1(X, V ) → →
→ H2(X, V ) → →
→ → → → 0

0
0

0
0
0

0

Zero since   and    are positive.  B C

0

0

Zero since   is stable. V

H1(X,V ) ! H0(X,C)
H0(X,B)Hence,                        (and no anti-families).



Positive monad defined by 
0→ V →

⊕rB

i=1OX(bi)
f→

⊕rC

a=1OX(ca)→ 0

Long exact sequence: 0 → → H0(X, B) → H0(X, C)
→ H1(X, V ) → →
→ H2(X, V ) → →
→ → → → 0

0
0

0
0
0

0

Zero since   and    are positive.  B C

0

0

Zero since   is stable. V

H1(X,V ) ! H0(X,C)
H0(X,B)Hence,                        (and no anti-families).

Recall: CICYs defined in ambient space                 with
coordinates              as zero locus of polynomials 

A =
⊗m

r=1 Pnr

(x1, . . . ,xm) p1, . . . , pK



Positive monad defined by 
0→ V →

⊕rB

i=1OX(bi)
f→

⊕rC

a=1OX(ca)→ 0

Long exact sequence: 0 → → H0(X, B) → H0(X, C)
→ H1(X, V ) → →
→ H2(X, V ) → →
→ → → → 0

0
0

0
0
0

0

Zero since   and    are positive.  B C

0

0

Zero since   is stable. V

H1(X,V ) ! H0(X,C)
H0(X,B)Hence,                        (and no anti-families).

Recall: CICYs defined in ambient space                 with
coordinates              as zero locus of polynomials 

A =
⊗m

r=1 Pnr

(x1, . . . ,xm) p1, . . . , pK

Coordinate ring of CICY:                 , degree   piece: A = C[x1,...,xm]
<p1,...,pK>

Akk



Positive monad defined by 
0→ V →

⊕rB

i=1OX(bi)
f→

⊕rC

a=1OX(ca)→ 0

Long exact sequence: 0 → → H0(X, B) → H0(X, C)
→ H1(X, V ) → →
→ H2(X, V ) → →
→ → → → 0

0
0

0
0
0

0

Zero since   and    are positive.  B C

0

0

Zero since   is stable. V

H1(X,V ) ! H0(X,C)
H0(X,B)Hence,                        (and no anti-families).
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LrC

a=1 Aca

f(LrB
i=1 Abi)

(qi)→ (
∑rB

i=1 faiqi)

one-dimensional,
spanned by P

choose three polynomials  Q1, Q2, Q3

Q1 · Q2 · Q3 = λ(Q1, Q2, Q3)P

Similarly, one can show:
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       polynomial                  .
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p = p(x0, . . . , x4)

Coordinate ring: A = C[x0,...,x4]
<p>

monad:                                                 (4 cubics)B = OX(1)⊕4 , C = OX(4) , f = (f1, f2, f3, f4)

Yukawa couplings: H3(X,∧3V ) " A12
f(A⊕4

9 ) , f(q1, . . . , q4) =
∑4

i=1 fiqi

Families: H1(X,V ) ! A4
f(A⊕4

1 ) , f(l1, . . . , l4) =
∑4

i=1 fili

One can check this is indeed one-dimensional. 

Yukawa coupling obtained by multiplying 3 quartics. 



Moduli stabilisation



Moduli and moduli superpotential
moduli:   dilaton
           Kahler
         cmpl. str.
          5-brane
           bundle 

S

T i

ZA

Y n

M

Even in “good” cases the number
of these fields is O(10).

Dine et al ’85,.........



Moduli and moduli superpotential
moduli:   dilaton
           Kahler
         cmpl. str.
          5-brane
           bundle 

S

T i

ZA

Y n

M

Even in “good” cases the number
of these fields is O(10).

Superpotential: W = Wmod(S, T, Z, Y,M) + λxyz(Z, M)CxCyCz

Wmod = Wflux + Wnp

Dine et al ’85,.........



Moduli and moduli superpotential
moduli:   dilaton
           Kahler
         cmpl. str.
          5-brane
           bundle 

S

T i

ZA

Y n

M

Even in “good” cases the number
of these fields is O(10).

Superpotential: W = Wmod(S, T, Z, Y,M) + λxyz(Z, M)CxCyCz

Wmod = Wflux + Wnp

flux superpotential: Wflux =
∫

X H ∧ Ω = nAZA −mAFA

FA = ∂F
∂ZA , F = F(Z) prepotential

Dine et al ’85,.........



Moduli and moduli superpotential
moduli:   dilaton
           Kahler
         cmpl. str.
          5-brane
           bundle 

S

T i

ZA

Y n

M

Even in “good” cases the number
of these fields is O(10).

Superpotential: W = Wmod(S, T, Z, Y,M) + λxyz(Z, M)CxCyCz

Wmod = Wflux + Wnp

flux superpotential: Wflux =
∫

X H ∧ Ω = nAZA −mAFA

FA = ∂F
∂ZA , F = F(Z) prepotential

Dine et al ’85,.........

integers!



Moduli and moduli superpotential
moduli:   dilaton
           Kahler
         cmpl. str.
          5-brane
           bundle 

S

T i

ZA

Y n

M

Even in “good” cases the number
of these fields is O(10).

Superpotential: W = Wmod(S, T, Z, Y,M) + λxyz(Z, M)CxCyCz

Wmod = Wflux + Wnp

flux superpotential: Wflux =
∫

X H ∧ Ω = nAZA −mAFA

FA = ∂F
∂ZA , F = F(Z) prepotential

Dine et al ’85,.........

non-pert. superpotential: Wnp = k e−cf2 +
∑

f(M) e−ciT
i−cnY n

f2 = S + . . .

integers!



Moduli and moduli superpotential
moduli:   dilaton
           Kahler
         cmpl. str.
          5-brane
           bundle 

S

T i

ZA

Y n

M

Even in “good” cases the number
of these fields is O(10).

Superpotential: W = Wmod(S, T, Z, Y,M) + λxyz(Z, M)CxCyCz

Wmod = Wflux + Wnp

flux superpotential: Wflux =
∫

X H ∧ Ω = nAZA −mAFA

FA = ∂F
∂ZA , F = F(Z) prepotential

Dine et al ’85,.........

non-pert. superpotential: Wnp = k e−cf2 +
∑

f(M) e−ciT
i−cnY n

f2 = S + . . .

hidden sector gaugino
condensation

integers!



Moduli and moduli superpotential
moduli:   dilaton
           Kahler
         cmpl. str.
          5-brane
           bundle 

S

T i

ZA

Y n

M

Even in “good” cases the number
of these fields is O(10).

Superpotential: W = Wmod(S, T, Z, Y,M) + λxyz(Z, M)CxCyCz

Wmod = Wflux + Wnp

flux superpotential: Wflux =
∫

X H ∧ Ω = nAZA −mAFA

FA = ∂F
∂ZA , F = F(Z) prepotential

Dine et al ’85,.........

non-pert. superpotential: Wnp = k e−cf2 +
∑

f(M) e−ciT
i−cnY n

f2 = S + . . .

hidden sector gaugino
condensation

string/membrane instantons

integers!
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so basically: Wmod = nAZA −mAFA +k e−cS + . . .

tends to be
large

needs to small for weak
coupling (large radius)

Also: Need scale separation between flux and
       compactification scale.

In essence, one needs: Wflux|minimum ! 1

This is possible in IIB but is very hard, perhaps impossible,
in heterotic, essentially because there is only NS flux. 

If flux does not work how are complex structure moduli
stabilised?
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2-forms 3-forms

X

X̃

mirror
 pair

ωi (αA, βB)
ω̃a (α̃I , β̃J)

IIB on

with fluxX̃ H = eiβ̃i

IIA on 
half-flat mirror Xe

same d=4 theory if

X    has SU(3) structure, half-flat, same 2- and 3-forms as   ,
and:
Xe

dωi = eiβ
0

dα0 = eiw̃
i

dα0 = dβA = 0

J = tiωi

Ω = ZAαA − FAβA
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Want to consider heterotic string on HF mirror manifold    
with standard embedding. 

Xe

Turns out: Low energy spectrum as for compactifation on
             associated CY   . In particular, gauge group    . X E6

Kahler potential and matter superpotential identical to CY
case and in addition we have

Wflux =
∫

Xe

Ω ∧ (H + idJ) = eiT
i + naZa −maFa

NS flux“geometric flux”

Still difficult to obtain Wflux|minimum ! 1



Generalised half-flat manifolds D’Auria et al ‘04, Grana et al ‘06

dωi = PAiβ
A − qA

i αA

dαA = pAiω̃
i

dβA = qA
i αA



Generalised half-flat manifolds D’Auria et al ‘04, Grana et al ‘06

de Carlos, Gurrieri, Lukas, Micu ‘05Heterotic on such manifolds:

Wflux =
∫

X
Ω ∧ (H + idJ) = (nA − pAiT

i)ZA − (mA − qA
i )FA

dωi = PAiβ
A − qA

i αA

dαA = pAiω̃
i

dβA = qA
i αA



Generalised half-flat manifolds D’Auria et al ‘04, Grana et al ‘06

de Carlos, Gurrieri, Lukas, Micu ‘05Heterotic on such manifolds:

Wflux =
∫

X
Ω ∧ (H + idJ) = (nA − pAiT

i)ZA − (mA − qA
i )FA

Small       now possible with some effort... Wflux

dωi = PAiβ
A − qA

i αA

dαA = pAiω̃
i

dβA = qA
i αA



Generalised half-flat manifolds D’Auria et al ‘04, Grana et al ‘06

de Carlos, Gurrieri, Lukas, Micu ‘05Heterotic on such manifolds:

Wflux =
∫

X
Ω ∧ (H + idJ) = (nA − pAiT

i)ZA − (mA − qA
i )FA

Small       now possible with some effort... Wflux

A value of Re(S) compatible with gauge unification arises
for about 1 in 1000 flux choices...

dωi = PAiβ
A − qA

i αA

dαA = pAiω̃
i

dβA = qA
i αA
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 Model building is mathematically involved due to presence of
   vector bundles, progress depends on (physicists) understanding
   the mathematics better. 

 If we want truly realistic models (Yukawa couplings, masses,..)
   then, given the general lack of intuition for the finer properties,
   we need to be able to construct and analyse large numbers of 
   models and filter out promising ones.

 One can find models with a spectrum close to the MSSM.

 To be able to analyse (physical) Yukawa couplings one needs to
    find a way to compute the matter field Kahler metric.



 Moduli stabilisation is a problem! If consistent ways of fixing
   moduli (and, in particular, complex structure moduli) cannot be
   found, all the high-powered mathematical model building is in
   vain. Then we need to go.... 



Beyond Calabi-Yau manifolds

 Moduli stabilisation is a problem! If consistent ways of fixing
   moduli (and, in particular, complex structure moduli) cannot be
   found, all the high-powered mathematical model building is in
   vain. Then we need to go.... 



Beyond Calabi-Yau manifolds

 Moduli stabilisation is a problem! If consistent ways of fixing
   moduli (and, in particular, complex structure moduli) cannot be
   found, all the high-powered mathematical model building is in
   vain. Then we need to go.... 

 Some of the successful features of IIB in terms of moduli
   stabilisation can be realised



Beyond Calabi-Yau manifolds

 Moduli stabilisation is a problem! If consistent ways of fixing
   moduli (and, in particular, complex structure moduli) cannot be
   found, all the high-powered mathematical model building is in
   vain. Then we need to go.... 

 Some of the successful features of IIB in terms of moduli
   stabilisation can be realised

 Large classes of explicit manifolds not really available, not to
   mention vector bundles over them. 



Beyond Calabi-Yau manifolds

 Moduli stabilisation is a problem! If consistent ways of fixing
   moduli (and, in particular, complex structure moduli) cannot be
   found, all the high-powered mathematical model building is in
   vain. Then we need to go.... 

 Some of the successful features of IIB in terms of moduli
   stabilisation can be realised

 Large classes of explicit manifolds not really available, not to
   mention vector bundles over them. 

 Particle physics model building goes into uncharted mathematical
   territory....  
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 Moduli stabilisation is a problem! If consistent ways of fixing
   moduli (and, in particular, complex structure moduli) cannot be
   found, all the high-powered mathematical model building is in
   vain. Then we need to go.... 

 Some of the successful features of IIB in terms of moduli
   stabilisation can be realised

 Large classes of explicit manifolds not really available, not to
   mention vector bundles over them. 

 Particle physics model building goes into uncharted mathematical
   territory....  

Thanks!


