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Effective supergravities in
d=10 and d=l1




Weakly coupled theory in d=10
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Weakly coupled theory in d=10

focus mostly on

N=1 supergravity multiplet: (gap, ¢, Bap, A, va) | )° €d%@

d=10 SYM multiplet: (A%, x?), gauge group or SO(32)

gauge invariant  transforms under YM and L

md bl

NS form field strength: H = dB + o (wr, — wym)
dH = o (tr(FAF)—tr(RAR))

(Bosonic) action as o’ expansion and gg = e? :

1 I 1
5 / V=g R+ 4dd N xdd + —e PH AN xH
2670 J | 2

+a'e /2 (tr F% — tr(RQ))}

+fermions + O(a/*)




fermion supersymmetry transformations:
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fermion supersymmetry transformations:

[ (EL ]
01 4 D an+ %e ¢ (FECD — 95§F0D) Hpopn + fermi? fixes
1 %eome’rry

O\ —FAé’Agb n + §6_¢FABCHABC77 + fermi?
1 fixes

= _—¢17AB 1ra T
)% 1€ ' F% g1 + fermi gauge bundle

1
2/ 2

- 1
Some higher order terms: ~ T / Wig <t§

e<10>B> W

GS anomaly
Wz is a quartic polynomial in R and F cancelation

Branes: only NS two-form B, so string and NS 5-brane

5-brane world-volume Ms: dH = o/ (tr(F A F) —tr(R A R) + 6(Ms))
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Strongly coupled theory in d=11 rite sl

M-theory on
M11 — Sl/ZQ X M10

MY =0y @ PNZ, & M?={s=np

d=11, N=1 bulk supergravity multiplet: (9r.7,%r1,Crix)

Zo even: gaB, 911,11,V a, C114B Zo odd: gai1,%11,CaBC

Two d=10, N=1 F¢ SYM multiplets at Ml%) and Mf? :

(A(B})’ X(l)a) and (A(B?)’ X(Q)a)




Horava, Witten '96

Strongly coupled theory in d=11
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Strongly coupled theory in d=11 rif O

M-theory on
My = S /7y x My

Ml((lj) =i =0] P ZQ Ml(g) =l ol

d=11, N=1 bulk supergravity multiplet: (g77,%71,Crix)

Zo even: gaB, 911,11,V a, C114B Zo odd: gai1,%11,CaBC

Two d=10, N=1 E, SYM multiplets at M) and M2 -

(A xPe) and (A, x @)

Four-form field strength: dG ~ x%/3 (J(l) A Szt + TP A 52t — Wp))

JO) — tr ) A ) @rrR AR

x2/3 plays role similar to o’. Three-form C transforms under YM and L.




bosonic action as expansion in x>/

1 1
DR B {\/—9R+ §G/\*G—|— EC/\G/\G—FfeI’miOHS—I—O(IiZHS)}

4)\2 <
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1 1
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bosonic action as expansion in x>/

1 1
{\/—gR T §G N *xG + EC A G N\ G + fermions + O(/ill/g)}

j

1
—@; /Ml(é) v —310 {trFé) — §trR2 + fermions + (9(/{2/3)}
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bosonic action as expansion in &2/°

1 1
{\/—gR + §G N *G + EC A G A G + fermions + O(/ill/g)}

y
1 1
—@ g / | vV —d10 {trFé) = §trR2 + fermions + (9(5;2/3)}
1==1! MlO

O(/{4/3)

1
2v/2

Some higher order (bulk) ferms: ~ /4;2/3/ Vg (t82 e“”()) o
M1

Xg quartic polynomial in R
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bosonic action as expansion in K

1 1
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2
1 1
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i=1 ¥ Mig
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from here and C NG A G
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bosonic action as expansion in K /3

1 1
{\/—gR T §G N *G + 60 A G A G + fermions + C’)(/i4/3)}

2
1 1
WD E / o V910 [trF(Qi) — §trR2 + fermions + O(/{Q/B)}
i=1 Y Mo

O(/{4/3)

1
2+/2

Some higher order (bulk) terms: ~ r2/3 vV —3 <t§

Miq

6(11)C> Xg

A's quartic polynomial in R GS anomaly influx into A"
from here and C NG A G

Branes: membrane and M 5-brane coupling to three-form C.

dG ~ K2/3 (J(l) AS(z*) + TP A (2t — 7p) 5(M5)>
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Witten 95
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Small p limit of d=11 theory: no zero modes for odd fields gai1,CaBc
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brane




Relation between d=11 strong and d=10 weak coupling

Witten '95

Small p limit of d=11 theory: no zero modes for odd fields gai1,CaBc
elshilllie: 6_¢/6d8%0 iy 64¢/3d33%1

Bap CaB11 RS, e L g2

Lalak, Lukas, Ovrut ‘97

membrane supersymmetric along z'' -> d=10 string
Branes:
M 5-brane supersymmetric orthogonal to z'' => d=10 NS 5-

brane
Lukas, Ovrut, Waldram '98

higher order terms: integrating out

Gapcep ~ k3 (fi(z) I + fo(z11)JP)

plus Xg produces all d=10 terms in Wy
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Background solutions in d=10 Candelas et al. ‘85

For a supersymmetric background one need to satisfy Killing spinor egs.

0pa =Dan+OH) =0, A~dpn+OH)=0, 6bx~ Fapl*Pn=0

Simplest choice: ¢ =const, H =0, dsi,=dx"dz"n,, + 2g,;dz"dz"

ifs hermitian
gy = 0 g Fap =0, Lap = Fgp =0 oYM equations

In addition, Bianchi identity dH = o' (tr(F AN F) —tr(RA R) + 6(Ms))

requires

tr(FE A F) —tr(RAR) +6(Ms)] =0

Standard embedding: no 5-branes and ' = R : H remains zero

In general: Expansion in o' /R&y and gs, corrections to CY metric
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Background solutions in d=11 Witten ‘96

1

Background with N 5-branes aty ="' =y1,...,yn wrapping

holomorphic curves in X

et LTI

eyl Sl

N Stbranes

1
(1) q(N) q(N—I—l)

q7:o o o, i




Background solutions in d=11 Witten ‘96

1

Background with N 5-branes aty ="' =y1,...,yn wrapping

holomorphic curves in X

/\

eyl Sl

N Stbranes

1
(1) q(N) q§N+1)

Qio o o{;

>

YN  YN+1 =TP y=z

)+ 0MN) + IO A b(y — mp))

So, main difference: inherent flux G azcp and warping along z'!




Solution can be written in terms of (1,1) form Lukas, Ovrut, Waldram "98

B.s = bi(y,q) wgg + massive modes B = 20, B ;

The b; are linear in ¥ and depend on charges qz(n)




Solution can be written in terms of (1,1) form Lukas, Ovrut, Waldram "98

B.:=bi(y,q) wig + massive modes

The 0; are linear in ¥ and depend on charges qz(n)

Explicit solution:

ds? = (1 + *2B)datdz" nuy + (95 + V2i(Bes — 3wesB)) dzdz’ + (1 — 2B)da?,

3

G = *GdB
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moduli space
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Solution can be written in terms of (1,1) form Lukas, Ovrut, Waldram "98

B.s = bi(y,q) wgg + massive modes B = 20, B ;

The b; are linear in ¥ and depend on charges q§”>

Explicit solution:

ds® = (1 + %B)dm“dm”nw + (9ap —I_@b I @dzade e glg)dw%l
component not \Walk in CY Kahler

G =%6dB  .oibio in d=10 moduli space

strong-coupling expansion

L 1 parameter, controls warping
Solution Is expansion in: b; = Ofes)

controls massive modes




€s and €g are analogous to o’/Réy and gs in weakly coupled case.

For a valid solution we need € < 1 and e < 1.




€s and €g are analogous to o’/Réy and gs in weakly coupled case.

For a valid solution we need € < 1 and e < 1.

2/3

For e¢s — 1 one looses control of supergravity (k“/° expansion) and

typically one Eg becomes strongly coupled.

For eg — 1 the effect of massive modes becomes important.
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A simple moduli space in Sg = Re(S) and Tr = Re(T) :

SR oy VCY TR ~ R11Vé<(3

gl/2
Gy 751% =111




A simple moduli space in Sg = Re(S) and Tr = Re(T) :

Sr ~ Voy

IHSRA

unification point:
(Mgut, 9cut, Mp1) < (Ra1, Voy, K)
single "brane” ->
universal gauge coupling
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The way to d=4:

on CY with
(2,2) flux

d=5 heterotic
M-theory

on domain
wall

Lukas, Ovrut, Stelle, Waldram '98

d=11 heterotic
-theory

on warped CY
with (2,2) flux

d=5 theory is N=1 bulk
gauged SUGRA coupled

Y to d=4, N=1 “brane” theories.
d=4 ’rheoD

Difference between d=10 and d=11 CY compactifications: accessible part
of moduli space and possible existence of d=5 infermediate theory.
Otherwise, the same!
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Generic form of the d=4, N=1 effective theory:

vector mulfiplets: hidden and observable gauge multiplets with gauge
groups H, C Es and H, C Exg

chiral multiplets: dilaton S
Kahler moduli T

complex structure moduli Z4
5-brane moduli Y™

bundle moduli M

matter fields in H; and Hy repr. C*

plus fields localised on 5-branes




Kahler potential fo leading order:
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Kahler potential fo leading order:

K = Ky + K1) + K(2.1) + Kbundie + Z,5C*C?

Kdil === o lOg (S i g 1 Z’r]jzl c(]Z:TtS—Ii;Z’))

K11y = —log (diju(T" + T*)(T7 + T7)(T" + T"))

K(z)l) — —log (—i(ZAFA r ZAFA)) ; FA — ng—FA
A

T+ T
AL s R A LA V)

Kbundle 711

superpotential: W =\, .(Z, M)C*CYC*




Kahler potential fo leading order:

K = Kgj + K(l,l) T K(Z,l) + Kpundie + ngcxc_@

Kdil === o lOg (S i g 1 Z’r]:[:l é}j;;;i;%)

K11y = —log (diju(T" + T*)(T7 + T7)(T" + T"))

K(Z,l) == EEE lOg (—i(ZAFA Ih ZAFA)) ;
. M2

rE
et e e AR A B T

SN L

superpotential: W =\, .(Z, M)C*CYC*

N
gauge kin. fcts.: fi =8 —¢q T'T" —2 Z i
=]

fa=8S+q T




Kahler potential fo leading order:
K = Kan + K(1.1) + K2,1) + Kvundle + Zz5C*C?

Kan = —log (S + 5+ 3N, )

K1) = ~log (dijk(T@' + TH(T? +T7)(T* + T%))

Zilj’g aea eK(l,l)/SGxg(Z’ Z)M@/

superpotential: W =\, .(Z, M)C*CYC*

gauge kin. fcts.: fi =8 —¢q T'T" —2 ZY”

foll=Si g T T

everything calculable for explicit models, except
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General framework

Yaus

zl_cdci;zs; g:]jr:] a?Ii{?:l 4l fMeorem ,  Calabi-Yau three-fold X

. Donaldson,
Gauge connections A1, As  Uhlenbeck,

with gauge groups Yau
Gl, Go C Eg saﬂsfying
Hermitian YM equations

Holomorphic vector bundles

< >  V1,V2 on X, stucture groups
Gl, GQ, (POIY—) stable

Holomorphic curve
C C X for 5-branes
to wrap

Effective class
W = [C] et HQ(X, Z)

So, necessary data: CY 3-fold X, holomorphic vector bundles Vi, V5
on Xand W € Hy(X,Z) subject to the three conditions:
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anomaly cancellation: cho(V7) + chy (Vo) — cho(T'X) = W from Bianchi
identity

effectiveness of W: a hol. curve C' C X with W = |[C] needs to exist
for a supersymmetric wrapping
-> W must be effective, that is, an element of

the Mori cone of X

stability of V3, V5 : condition on V1, V2 to ensure that corresponding
gauge connections A;, As indeed lead to a
vanishing gaugino SUSY variation

What is stability?

Slope of a bundle (coherent sheaf) F: u(F) = rk(lj__) ey AT J
where J is the Kahler form of X.

A bundle Vis stable if u(F) < (V') for all coherent sub-sheafs F C V
with 0 < rank(F) < rank(V).

Stability of bundles is usually hard to prove!
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p=0
If bundle is stable then h°(X,V) =h3(X,V) =0.

Then ind(V) = h*(X,V) — h'(X,V) = chiral asymmetry

Finally: Discrete symmetry, Wilson line to break to Gsy x U(1)" 3

To obtain three net generations "downstairs” it is necessary that

ind(V)|3  and  p(X)|20

Alternatively, use U(n)bundles. (Distler and Green ‘88, Blumenhagen et al. '06)
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Which CYs and which bundles?

@ Complete intersections Monad bundles

in PNt x ... x Ptm (Distler, Greene ‘88, Kachru ‘95, Blumenhagen et al. ‘96,

Lukas, Ovrut ‘99, Blumenhagen at al ‘06)
(Hubsch, Green, Lutken, Candelas... ‘87)

+ Discrete symmeftries more straightforward thanks to ambient space
- Stability had not been shown

Focus on these! Looking for systematic, algorithmic approach
to apply to large numbers.

M N
@ Toric CYs Monads?

(... Kreuzer, Skarke ‘00,...)

@ Elliptically fibered CYs Spectral cover bundles

. . (Friedman, Morgan, Witten ‘97, Donagi ‘97,
A ICTEisae MRS OF) Donagi, Lukas, Ovrut, Waldram ‘98, Ovrut et al...)

+ Spectral cover bundles are shown to be stable
- Discrete symmeftries not easy to find
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Complete intersection CY manifolds (Cicys)  (Hubsch, Green, Lutken,
Candelas ‘87)

Complete classification of about 8000 spaces.

Intersections of polynomial zero-loci in ambient space A = ), , P"r
with Kahler forms Ji,...,Jmn

Examples: | (quintic polynomial in P*)

2 | (intersection of two polynomials of bi-degrees
1 | (0,4) and (2,1) in P! x P*

0
4

Known tfopological data: h*!(X), h*1(X), co(TX) = (T X) Iy, dyst = [ Jr A Js ATy

= m = #Ps, H*(X) = Span{J,}

Line bundles: Ox (k', ..., k™) with ¢1 (Ox(k)) = k" J,

Using spectral sequences and tensor methods we can calculate the
cohomology h? (X, Ox(k)) of all line bundles!
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Monad bundles

Definition: A monad bundle V on X defined by short exact sequence

O%V%BLCHO (hence V' = Ker(f) )

where B = @,Z, Ox(b;), C=,2, Ox(c,) and c, > b;.

Then V is a vector bundle on X!

The map f can be seen as a matrix of polynomials with degree c, — b;

!
Properties: n =rank(V) =rg —r¢c € {3,4,5

!
§d7°st (Zz bfbf Za Cq a) < C27°(TX)
sdst (O, UTOELE — > chesch)

i Av gt aa a
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Some results for monad bundles on CICYs (Anderson, He, Lukas ‘07)

® There is a finite number of positive monads (that is, b; > 0,c;, > 0),
about 7000 on 36 CICYs. We have found those explicitly.

® We have a systematic method to determine where in the Kahler
a monad bundle is stable. All positive monads on CICYs with
h''1(X) = 1 are stable everywhere and many monads are stable
in parts of the Kahler cone for At (X) = 2.

® We can compute the complete spectrum for all positive monads. The
number of anti-families always vanishes. Higgs multiplets can arise for
non-generic choices of the map f.

® The number of semi-positive monads b, > 0,c! > 0is apparently
infinite but may become finite after taking info account equivalences.
They can be stable and the spectrum can be computed.
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Calculating Yukawa couplings for monad bundles (Anderson, Gray,

Grayson, He, Lukas)

Discuss E; but method works for other cases as well.

Recall: families in H'(X,V), represented by
bundle-valued one-forms {u%|z =1,...,h'(X,V)}

27° Yukawa couplings: Auy. = [ €ancti® A ub A us A Q

Integral can be explicitly evaluated for standard embedding
but it seems difficult to do this for more general bundles.

I would like to discuss an algebraic and practical way of
computing \,,. for all monad bundles.

How does this work?
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Then HO(X, Ox(k)) ~ Ax
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(Toy) example

CICY: quintic in A = P* defined as zero locus of quintic
polynomial p = p(xo,...,z4).

Coordinate ring: A =

monad: B = Ox(1)%* f=(f1,f2, fs, f1) (4 cubics)

Families: H'(X,V) ~ flla, 00l =505 £l

Yukawa couplings: H?(X, A%V ~ f(jgi) A L g = ST figs

]

One can check this is indeed one-dimensional.

Yukawa coupling obtained by multiplying 3 quartics.
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moduli: dilaton S
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cmpl. str. Z4
5-brane Y"

bundle M

Superpotential: W = W,,,q4(S, T, Z,Y, M) + \py.(Z, M)C*CYC*?

Even in "good” cases the number
of these fields is O(10).

Winod ::lﬂﬂﬂux-+—[¢qq) integers!

i

flux superpotential: Wiy = [ HAQ =14 Z* — A F4
Fa=2L, F=F(Z) prepotential

hidden sector gaugino string/membrane instantons
condensation

non-pert. superpotential: W, :+ ST
qolE= i R
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so basically: Wyoq = naZ® —mFa +ke ™ +...
tends tfo be needs to small for weak
large coupling (large radius)

Also: Need scale separation between flux and
compactification scale.

In essence, one needs: W,y < 1

minimuin

This is possible in IIB but Is very hard, perhaps impossible,
in heterotic, essentially because there is only NS flux.

If flux does not work how are complex structure moduli
stabilised?




Beyond Calabi-Yau manifolds




HalF-ﬂa’r mir‘r’or‘ manifo[ds Gurrieri, Louis, Micu, Waldram ‘02

2-forms 3-forms

mirror
pair




Half-flat mirror manifolds Gurrieri, Louis, Micu, Waldram ‘02

2-forms 3-forms
mirror ‘ (aug, 53)
Pair (&Ia BJ)
IIA on IIB on

~

half-flat mirror X, X with flux H = ¢;3"

\/

same d=4 theory if




HalF-ﬂa’r mir‘r’or‘ manifo[ds Gurrieri, Louis, Micu, Waldram ‘02

2-forms 3-forms

mirror ' (il 13 2)

bt (a1, B7)
IIA on IIB on

~

half-flat mirror X. X with flux H = ¢;3"

\/

same d=4 theory if

Xe has SU(3) structure, half-flat, same 2- and 3-forms as X,

and:
dwz- — 6@'50
Bﬂfji

dp? = 0

J tiw@-
() AR —fAﬁA
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Heterotic on half-flat mirror manifolds  Gurrieri, Lukas, Micu ‘04, ‘07

Want to consider heterotic string on HF mirror manifold X,
with standard embedding.

Turns out: Low energy spectrum as for compactifation on
associated CY X. In particular, gauge group FEj.

Kahler potential and matter superpotential identical to CY
case and in addition we have

Wﬂuxz/ QA (H +id.J) ’ @ m>

"geometric flux” NS Aux

Still difficult to obtain W] .. < 1

minimurin
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Generalised half-flat manifolds D’Auria et al ‘04, Grana et al ‘06

dw; = PaB% —qltag
do g PAiD"
g it aa

Heterotic on such manifolds: de Carlos, Gurrieri, Lukas, Micu ‘05

Wﬂux:/ Q/\(H—I—idJ):(nA—pAZ-Ti)ZA—(mA
X

Small Waux now possible with some effort...

A value of Re(S) compatible with gauge unification arises
for about 1 in 1000 flux choices...
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® Attractive features from a particle model building viewpoint,
in particular: gauge unification, 16 of SO(10)

® Model building is mathematically involved due to presence of
vector bundles, progress depends on (physicists) understanding
the mathematics better.

® One can find models with a spectrum close to the MSSM.

® If we want truly realistic models (Yukawa couplings, masses,..)
then, given the general lack of intuition for the finer properties,
we need fo be able to construct and analyse large numbers of
models and filter out promising ones.

® To be able to analyse (physical) Yukawa couplings one needs to
find a way to compute the matter field Kahler metric.
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Beyond Calabi-Yau manifolds

® Some of the successful features of IIB in terms of moduli
stabilisation can be realised

® Large classes of explicit manifolds not really available, not to
mention vector bundles over them.

® Particle physics model building goes into uncharted mathematical
territory....

Thanks!




