

ARNOLD SOMMERFELD

Generalized Geometry and Flux Compactifications (part II)

Luca Martucci (LMU München)

40 viewpoint

§ In the first part, the pure spinors Ψ_1 and Ψ_2 have been used to characterize (on-shell) type II supersymmetric vacua and their (generalized) calibration structures

40 viewpoint

§ In the first part, the pure spinors Ψ_1 and Ψ_2 have been used to characterize (on-shell) type II supersymmetric vacua and their (generalized) calibration structures

Solution: A state of the section of

40 viewpoint

§ In the first part, the pure spinors Ψ_1 and Ψ_2 have been used to characterize (on-shell) type II supersymmetric vacua and their (generalized) calibration structures

Solution: A state of the section of

Answer difficult: • Ignorance about moduli

 No clear way to disentangle massive and light/massless modes (warping)

Firy to identify first 40 (supersymmetric) structures

 ${\mathcal W}$, ${\mathcal K}$ and V

of the untruncated theory

Firy to identify first 40 (supersymmetric) structures

Firy to identify first 4D (supersymmetric) structures

 \mathcal{W} , \mathcal{K} and V

of the untruncated theory sense?

Sincate the theory at a second step, hopefully in a consistent way

Firy to identify first 4D (supersymmetric) structures

W . K and V → Does it make of the untruncated theory sense?

Sincate the theory at a second step, hopefully in a consistent way

onumber Obtain effective potentials: $\mathcal{W}_{\mathrm{eff}}$, $\mathcal{K}_{\mathrm{eff}}$ & V_{eff}

\Rightarrow If $e^A \simeq 1$: underlying (gauged) N=2 structure

Graña, Louis & Waldram `05 & `07, Benmachiche & Grimm `06 (N=1 by orientifold truncation) Cassani & Bilal `07, Cassani `08

\Rightarrow If $e^A \simeq 1$: underlying (gauged) N=2 structure

Graña, Louis & Waldram `05 & `07, Benmachiche & Grimm `06 (N=1 by orientifold truncation) Cassani & Bilal `07, Cassani `08

Cassaní's and Kashaní-Poor's talks

\Rightarrow If $e^A \simeq 1$: underlying (gauged) N=2 structure

Graña, Louis & Waldram `05 & `07, Benmachiche & Grimm `06 (N=1 by orientifold truncation) Cassani & Bilal `07, Cassani `08

Cassaní's and Kashaní-Poor's talks

SUSY vacua with non-trivial warping: Koerber & L.M. `07 intrinsically N=1 structure

ightarrow If $e^A \simeq 1$: underlying (gauged) N=2 structure

Graña, Louis & Waldram `05 & `07, Benmachiche & Grimm `06 (N=1 by orientifold truncation) Cassani & Bilal `07, Cassani `08

Cassaní's and Kashaní-Poor's talks

SUSY vacua with non-trivial warping: Koerber & L.M. `07

intrinsically N=1 structure

DeWolfe & Giddings, `02 **cfr** Giddings & Maharana, `02 Douglas, Shelton & Torroba, `07 Shiu, Torroba, Underwood & Douglas `07

for IIB warped CY

Pouglas & Torroba, `08

\Rightarrow If $e^A \simeq 1$: underlying (gauged) N=2 structure

Graña, Louis & Waldram `05 & `07, Benmachiche & Grimm `06 (N=1 by orientifold truncation) Cassani & Bilal `07, Cassani `08

Cassaní's and Kashaní-Poor's talks

SUSY vacua with non-trivial warping: Koerber & L.M. `07

intrinsically N=1 structure

DeWolfe & Giddings, `02 **cfr** Giddings & Maharana, `02 Douglas, Shelton & Torroba, `07 Shiu, Torroba, Underwood & Douglas `07

Pouglas & Torroba, `08

for IIB warped CY

SUSY warped vacua: Lüst, Marchesano, L.M. & Tsimpis `08

\Rightarrow If $e^A \simeq 1$: underlying (gauged) N=2 structure

Graña, Louis & Waldram `05 & `07, Benmachiche & Grimm `06 (N=1 by orientifold truncation) Cassani & Bilal `07, Cassani `08

Cassaní's and Kashaní-Poor's talks

SUSY vacua with non-trivial warping: Koerber & L.M. `07

intrinsically N=1 structure

DeWolfe & Giddings, `02 **cfr** Giddings & Maharana, `02 Douglas, Shelton & Torroba, `07 Shiu, Torroba, Underwood & Douglas `07

Pouglas & Torroba, `08

for IIB warped CY

SUSY warped vacua: • 40 SUSY structures ???

Lüst, Marchesano, L.M. & Tsimpis `08

\Rightarrow If $e^A \simeq 1$: underlying (gauged) N=2 structure

Graña, Louis & Waldram `05 & `07, Benmachiche & Grimm `06 (N=1 by orientifold truncation) Cassani & Bilal `07, Cassani `08

Cassaní's and Kashaní-Poor's talks

SUSY vacua with non-trivial warping: Koerber & L.M. `07

intrinsically N=1 structure

DeWolfe & Giddings, `02 **cfr** Giddings & Maharana, `02 Douglas, Shelton & Torroba, `07 Shiu, Torroba, Underwood & Douglas `07

Pouglas & Torroba, `08

for IIB warped CY

SUSY warped vacua: • 40 SUSY structures ???

Lüst, Marchesano, L.M. & Tsimpis `08

• clearer if $e^A \simeq 1$ & spectrum is truncated

Camara & Graña `07

\Rightarrow If $e^A \simeq 1$: underlying (gauged) N=2 structure

Graña, Louis & Waldram `05 & `07, Benmachiche & Grimm `06 (N=1 by orientifold truncation) Cassani & Bilal `07, Cassani `08

Cassaní's and Kashaní-Poor's talks

SUSY vacua with non-trivial warping: Koerber & L.M. `07

I'll focus on these papers

intrinsically N=1 structure

DeWolfe & Giddings, `02 **cfr** Giddings & Maharana, `02 Douglas, Shelton & Torroba, `07 Shiu, Torroba, Underwood & Douglas `07

Pouglas & Torroba, `08

for IIB warped CY

SUSY warped vacua: • 40 SUSY structures ???

Lüst, Marchesano, L.M. & Tsimpis `08

• clearer if $e^A \simeq 1$ & spectrum is truncated

Camara & Graña `07

Plan of this talk

Gff-shell 40 N=1 structures in flux compactifications

40 potential, calibrations and broken SUSY

Pure spinors and 40 chiral fields

Restrict to configurations of the form

- $ds_{10}^2 = e^{2A(y)} ds_{X_4}^2 + g_{mn}(y) dy^m dy^n$
- $F_{
 m tot} = e^{4A} {
 m dvol}_4 \wedge F_{
 m el} + F$ (with $F_{
 m el} = *_6 F$)

Restrict to configurations of the form

 $ds_{10}^2 = e^{2A(y)} ds_{X_4}^2 + g_{mn}(y) dy^m dy^n$

 $F_{\rm tot} = e^{4A} {
m dvol}_4 \wedge F_{\rm el} + F$ (with $F_{\rm el} = *_6 F$)

Solution of the ordinary spinors:

 $\epsilon_1 = \zeta \otimes \eta_1 + \text{ c.c.}$ $\epsilon_2 = \zeta \otimes \eta_2 + \text{ c.c.}$

Restrict to configurations of the form

 $ds_{10}^2 = e^{2A(y)} ds_{X_4}^2 + g_{mn}(y) dy^m dy^n$

 $F_{\mathrm{tot}} = e^{4A} \mathrm{dvol}_4 \wedge F_{\mathrm{el}} + F$ (with $F_{\mathrm{el}} = *_6 F$)

Solutionary spinors:

 $\epsilon_1 = \zeta \otimes \eta_1 + \text{ c.c.}$ $\epsilon_2 = \zeta \otimes \eta_2 + \text{ c.c.}$ O(6,6) pure spinors

$$\Psi_1 \simeq \eta_1 \otimes \eta_2^{\dagger}$$
 $\Psi_2 \simeq \eta_1 \otimes \eta_2^T$

Restrict to configurations of the form

 $ds_{10}^2 = e^{2A(y)} ds_{X_4}^2 + g_{mn}(y) dy^m dy^n$

 $F_{
m tot} = e^{4A} {
m dvol}_4 \wedge F_{
m el} + F$ (with $F_{
m el} = *_6 F$)

Rescaled twisted pure spinors:

 $t \equiv e^{-\Phi} e^B \Psi_1$ $\mathcal{Z} \equiv e^{3A - \Phi} e^B \Psi_2$

Restrict to configurations of the form

 $ds_{10}^2 = e^{2A(y)} ds_{X_4}^2 + g_{mn}(y) dy^m dy^n$

 $F_{
m tot} = e^{4A} {
m dvol}_4 \wedge F_{
m el} + F$ (with $F_{
m el} = *_6 F$)

Rescaled twisted pure spinors:

 $t \equiv e^{-\Phi} e^B \Psi_1$ $\mathcal{Z} \equiv e^{3A - \Phi} e^B \Psi_2$

i t and Z contain complete information about:

NS sector: $g_{(6)}$, B , Φ and A

Internal spinors: η_1 and η_2

Solution (Invisted) RR-sector: $F = \sum_k F_k = F^0 + \mathrm{d} C$

(Twisted) RR-sector: $F = \sum_k F_k = F^0 + dC$

Solve that: $\operatorname{Im} t = \mathcal{I}(\operatorname{Re} t)$ [Hitchin, `02]

\Im (Twisted) RR-sector: $F = \sum_k F_k = F^0 + \mathrm{d}C$

Solve that: $\operatorname{Im} t = \mathcal{I}(\operatorname{Re} t)$ [Hitchin, 02]

\Im Combine Ret and C into: $\mathcal{T} \equiv \operatorname{Re} t - iC$

- (Twisted) RR-sector: $F = \sum_{k} F_{k} = F^{0} + dC$
- Solve that: $\operatorname{Im} t = \mathcal{I}(\operatorname{Re} t)$ [Hitchin, 02]
- \cong Combine Ret and C into: $\mathcal{T} \equiv \operatorname{Re} t iC$

For fixed flux cohomology classes, the complete information about the configuration is in:

T and Z (our 4D chiral fields)

Kähler potential E superpotential

Solution By dimensional reduction and $\mathcal{L} = \frac{1}{2}\mathcal{N}R + \dots$

$\longrightarrow \mathcal{N} = 4\pi \int e^{2A - 2\Phi} \mathrm{dVol}_6$

Solution By dimensional reduction and $\mathcal{L} = \frac{1}{2}\mathcal{N}R + \dots$

 $\mathcal{N} = rac{i\pi}{2} \int \langle t, \bar{t} \rangle^{2/3} \langle \mathcal{Z}, \bar{\mathcal{Z}} \rangle^{1/3}$

Solution By dimensional reduction and $\mathcal{L} = \frac{1}{2}\mathcal{N}R + \dots$

 $\mathcal{N} = \frac{i\pi}{2} \int \langle t, \bar{t} \rangle^{2/3} \langle \mathcal{Z}, \bar{\mathcal{Z}} \rangle^{1/3}$

Solution By dimensional reduction and $\mathcal{L} = \frac{1}{2}\mathcal{N}R + \dots$

 $\mathcal{N} = \frac{i\pi}{2} \int \langle t, \bar{t} \rangle^{2/3} \langle \mathcal{Z}, \bar{\mathcal{Z}} \rangle^{1/3}$

 $t = t(\mathcal{T})$

 $\mathcal{K} = -3\log\left(\frac{i\pi}{2}\int \langle t, \bar{t} \rangle^{2/3} \langle \mathcal{Z}, \bar{\mathcal{Z}} \rangle^{1/3}\right)$

Superpotential

From D-brane domain wall calibration [L.M. & Smyth, `05; Evslin & L.M., `07]

 $\mathrm{d}F = \delta(\mathrm{DW}) \wedge e^{-\mathrm{F}}$

Vacuum 2

Superpotential

From D-brane domain wall calibration [L.M. & Smyth, `05; Evslin & L.M., `07]

 $\mathrm{d}F = \delta(\mathrm{DW}) \wedge e^{-\mathrm{F}}$

Vacuum 2

$T_{\rm DW} = 2\pi \int \langle \mathcal{Z}, \Delta F \rangle = 2 |\Delta \mathcal{W}|$
Superpotential

4D SUSY conditions

 $\begin{array}{l} \clubsuit \quad F\text{-flatness:} \quad F_{\mathcal{Z}} \equiv \delta_{\mathcal{Z}} \mathcal{W} + \mathcal{W} \delta_{\mathcal{Z}} \mathcal{K} = 0 \\ F_{\mathcal{T}} \equiv \delta_{\mathcal{T}} \mathcal{W} + \mathcal{W} \delta_{\mathcal{T}} \mathcal{K} = 0 \end{array}$

$$arphi$$
 D-flatness: $\mathcal{D}\simeq \delta_\lambda^{
m hol}\mathcal{K}=0$

from RR gauge symmetry $\delta C = \mathrm{d}\lambda$

4D SUSY conditions

 $\begin{array}{l} \clubsuit \quad F\text{-flatness:} \quad F_{\mathcal{Z}} \equiv \delta_{\mathcal{Z}} \mathcal{W} + \mathcal{W} \delta_{\mathcal{Z}} \mathcal{K} = 0 \\ F_{\mathcal{T}} \equiv \delta_{\mathcal{T}} \mathcal{W} + \mathcal{W} \delta_{\mathcal{T}} \mathcal{K} = 0 \end{array}$

\mathcal{P} -flatness: $\mathcal{D} \simeq \delta_{\lambda}^{\text{hol}} \mathcal{K} = 0$ from RR gauge symmetry $\delta C = d\lambda$

They reproduce all 10D susy equations!

(for both Minkowski and AdS vacua)

All expressions are consistent with orientifolds

All expressions are consistent with orientifolds

 \Rightarrow The open string spectrum is automatically taken into account by RR Bl's: $\mathrm{d}F=-j^{\mathrm{loc}}$

All expressions are consistent with orientifolds

The open string spectrum is automatically taken into account by RR Bl's: $dF = -j^{loc}$

• E.g. splitting $F = F_{\mathrm{back}} + \theta_{\mathrm{loc}}$

\Im In N=2 language: \mathcal{Z} - vector multiplets t - hypermultiplets

Sin N=2 language: \mathcal{Z} ~ vector multiplets t ~ hypermultiplets

Supplit \mathcal{K} : purely N=1 description

$$\mathcal{K} = -3 \log \left(rac{i\pi}{2} \int \langle t, \bar{t}
angle^{2/3} \langle \mathcal{Z}, \bar{\mathcal{Z}}
angle^{1/3}
ight)$$

Sin N=2 language: \mathcal{Z} ~ vector multiplets t ~ hypermultiplets

Supplit \mathcal{K} : purely N=1 description

$$\mathcal{K} = -3\log\left(\frac{i\pi}{2}\int \langle t,\bar{t}\rangle^{2/3} \langle \mathcal{Z},\bar{\mathcal{Z}}\rangle^{1/3}\right) \neq \mathcal{K}_1(t,\bar{t}) + \mathcal{K}_2(\mathcal{Z},\bar{\mathcal{Z}})$$

Sin N=2 language: \mathcal{Z} ~ vector multiplets t ~ hypermultiplets

Solution \mathcal{K} : purely N=1 description

$$\begin{split} \mathcal{K} &= -3\log\left(\frac{i\pi}{2}\int\langle t,\bar{t}\rangle^{2/3}\langle \mathcal{Z},\bar{\mathcal{Z}}\rangle^{1/3}\right) \neq \mathcal{K}_{1}(t,\bar{t}) + \mathcal{K}_{2}(\mathcal{Z},\bar{\mathcal{Z}}) \\ &= -2\log\left(i\int e^{2A}\langle t,\bar{t}\rangle\right) - \log\left(i\int e^{-4A}\langle \mathcal{Z},\bar{\mathcal{Z}}\rangle\right) - 3\log\frac{\pi}{2} \end{split}$$

Sin N=2 language: \mathcal{Z} ~ vector multiplets t ~ hypermultiplets

Supplies \mathcal{K} : purely N=1 description

$$\begin{split} \mathcal{K} &= -3\log\left(\frac{i\pi}{2}\int\langle t,\bar{t}\rangle^{2/3}\langle\mathcal{Z},\bar{\mathcal{Z}}\rangle^{1/3}\right) \neq \mathcal{K}_{1}(t,\bar{t}) + \mathcal{K}_{2}(\mathcal{Z},\bar{\mathcal{Z}}) \\ &= -2\log\left(i\int e^{2A}\langle t,\bar{t}\rangle\right) - \log\left(i\int e^{-4A}\langle\mathcal{Z},\bar{\mathcal{Z}}\rangle\right) - 3\log\frac{\pi}{2} \end{split}$$

 $\mathcal{K}\simeq -2\log\left(i\int\langle t,ar{t}
angle
ight) - \log\left(i\int\langle\mathcal{Z},ar{\mathcal{Z}}
angle
ight) - 3\lograc{\pi}{2}$

Underlying N=2 structure

[Grana, Waldram & Louis, `05-`06; Benmachiche & Grimm `06;]

Special Kähler structure [Hitchin, `02]

 $\mathcal{W} = \int \Omega_{\mathrm{CY}} \wedge (F_3 + i e^{-\Phi} H)$ Insensible to EGukov, Vafa & -Witten, `991 warp factor! [DeWolfe & Giddings, `02]

 $\mathcal{W} = \int \Omega_{\mathrm{CY}} \wedge (F_3 + i e^{-\Phi} H)$ [Gukov, Vafa & Witten, `991

Insensible to warp factor!

[DeWolfe & Giddings, `02]

 $\mathcal{K} = -2\log\left(\frac{4}{3}\int e^{-4A}J_{\rm CY}\wedge J_{\rm CY}\wedge J_{\rm CY}\right) - \log\left(-i\int e^{-4A}\Omega_{\rm CY}\wedge\bar{\Omega}_{\rm CY}\right)$

 $\mathcal{W} = \int \Omega_{\rm CY} \wedge (F_3 + ie^{-\Phi}H)$ Insensible to [Gukov, Vafa & \rightarrow Witten, '991 warp factor! [DeWolfe & Giddings, `02] $\mathcal{K} = -2\log\left(\frac{4}{3}\int e^{-4A}J_{\rm CY} \wedge J_{\rm CY} \wedge J_{\rm CY}\right) - \log\left(-i\int e^{-4A}\Omega_{\rm CY} \wedge \bar{\Omega}_{\rm CY}\right)$

 $\mathcal{W} = \int \Omega_{\mathrm{CY}} \wedge (F_3 + i e^{-\Phi} H)$ Insensible to [Gukov, Vafa & Witten, `991 warp factor! [DeWolfe & Giddings, `02]

 $\mathcal{K} = -2\log\left(\frac{4}{3}\int e^{-4A}J_{\rm CY} \wedge J_{\rm CY} \wedge J_{\rm CY}\right) - \log\left(-i\int e^{-4A}\Omega_{\rm CY} \wedge \bar{\Omega}_{\rm CY}\right)$

agrees with [Grimm & Louis, `04] for constant warp-factor

 $\mathcal{W} = \int \Omega_{\rm CY} \wedge (F_3 + ie^{-\Phi}H)$ Insensible to [Gukov, Vafa & Witten, '991 warp factor! [DeWolfe & Giddings, `02]

 $\mathcal{K} = -2\log\left(\frac{4}{3}\int e^{-4A}J_{\rm CY} \wedge J_{\rm CY} \wedge J_{\rm CY}\right) - \log\left(-i\int e^{-4A}\Omega_{\rm CY} \wedge \bar{\Omega}_{\rm CY}\right)$

agrees with [Grimm & Louis, `04] for constant warp-factor

Generically e^A non-trivial

 \Im In this subcase: $\mathcal{Z}=\Omega_{
m CY}$, $t=e^{-\Phi}\exp(ie^{-2A}J_{
m CY})$

 $\mathcal{W} = \int \Omega_{\mathrm{CY}} \wedge (F_3 + i e^{-\Phi} H)$ Insensible to [Gukov, Vafa & Witten, `991 warp factor!

[DeWolfe & Giddings, `02]

 $\mathcal{K} = -2\log\left(\frac{4}{3}\int e^{-4A}J_{\rm CY} \wedge J_{\rm CY} \wedge J_{\rm CY}\right) - \log\left(-i\int e^{-4A}\Omega_{\rm CY} \wedge \bar{\Omega}_{\rm CY}\right)$

agrees with [Grimm & Louis, `04] for constant warp-factor

Generically e^A non-trivial

Purely N=1 description! see also EDouglas, Shelton & Torroba, `071 EDouglas & Torroba, `081

Other example: SU(3)structure in IIA

$$\mathcal{W}_{\text{IIA}} = \int \left[\mathrm{d}(e^{3A - \Phi}J) - ie^{3A - \Phi}H \right] \wedge \left(e^{-\Phi}\mathrm{Re}\Omega\right) - \int F \wedge e^{3A - \Phi}e^{-(B + iJ)}$$

$$\mathcal{K}_{\mathrm{IIA}} = -2\log\left(-i\int e^{2A-2\Phi}\Omega\wedge\overline{\Omega}\right) - \log\left(\frac{4}{3}\int e^{2A-2\Phi}J\wedge J\wedge J\right)$$

In constant warp-factor approximation, and using CY inspired truncation, in agreement with previous results, e.g. E...; Gurrieri, Louis, Micu & Waldram, `02; Derendinger, Kounnas, Petropoulos & Zwirner `04; Villadoro & Zwirner, `05; DeWolfe, Giriavets, Kachru & Taylor, `05; ...1

It is not clear if ${\cal W}$ and ${\cal K}\,$ give a full standard N=1 theory for untruncated modes

It is not clear if $\mathcal W$ and $\mathcal K$ give a full standard N=1 theory for untruncated modes

Indeed:

\Im Redundancy of degrees of freedom in T and Z

It is not clear if \mathcal{W} and \mathcal{K} give a full standard N=1 theory for untruncated modes

Indeed:

\cong Redundancy of degrees of freedom in T and Z

Checked only under 1st order SUSY equations.

It is not clear if \mathcal{W} and \mathcal{K} give a full standard N=1 theory for untruncated modes

Indeed:

 $\stackrel{\scriptscriptstyle {ar{\wp}}}{
ightarrow}$ Redundancy of degrees of freedom in ${\mathcal T}$ and ${\mathcal Z}$

Checked only under 1st order SUSY equations.

Kinetic terms? further analysis required [Shiu, Torroba, Underwood & Pouglas, `08] [Douglas & Torroba `08]

It is not clear if \mathcal{W} and \mathcal{K} give a full standard N=1 theory for untruncated modes

Indeed:

 $\stackrel{\scriptscriptstyle {ar{\wp}}}{
ightarrow}$ Redundancy of degrees of freedom in ${\mathcal T}$ and ${\mathcal Z}$

- Checked only under 1st order SUSY equations.
- $\stackrel{\scriptstyle \ensuremath{\wp}}{\sim}$ Kinetic terms? further analysis required ^{IS}

EShiu, Torroba, Underwood & Pouglas, `08] EPouglas & Torroba `08]

Solution Full potential not precisely of the form $V = e^{\mathcal{K}} (|D\mathcal{W}|^2 - 3|\mathcal{W}|^2) + \mathcal{D}^2$

(see later)

Nevertheless...

~~ After consistent truncation, W and K are expected to give correct effective \mathcal{W}_{eff} and \mathcal{K}_{eff}

Nevertheless...

~~ After consistent truncation, ${\cal W}$ and $~{\cal K}$ are expected to give correct effective ${\cal W}_{\rm eff}$ and ${\cal K}_{\rm eff}$

Agreement with different proposals for flux compactifications with CY-inspired truncated spectrum

Nevertheless...

~~ After consistent truncation, W and K are expected to give correct effective \mathcal{W}_{eff} and \mathcal{K}_{eff}

Agreement with different proposals for flux compactifications with CY-inspired truncated spectrum

Solution If $e^A \simeq 1$: exactly true in IIA SU(3)structure AdS vacua there are proposals of truncation giving well defined 40 N=1 and N=2 supergravities

> [Kashani-Poor `07] [Cassani `08] [Caviezel, Koerber, Körs, Lüst, Tsimpis & Zagermann, `08]

Summarizing so far $\mathcal{Z} \equiv e^{3A-\Phi}e^B\Psi_2$, $t \equiv e^{-\Phi}e^B\Psi_1$ chiral \mathcal{Z} and $\mathcal{T} \equiv \operatorname{Re} t - iC$ fields $egin{aligned} \mathcal{K} &= -3\log\left(rac{i\pi}{2}\int\langle t,ar{t}
angle^{2/3}\langle\mathcal{Z},ar{\mathcal{Z}}
angle^{1/3}
ight) \ \mathcal{W} &= \pi\int\langle\mathcal{Z},F+i\mathrm{dRet}
angle \end{aligned}$ S Then

Summarizing so far

$\stackrel{\scriptscriptstyle {\wp}}{\scriptstyle {\scriptscriptstyle {\sf {\sf S}}}}$ E.g. in N=1 compactifications (to flat ${\mathbb R}^{1,3}$) we have

Graña, Mínasían, Petríní & Tomasíello `05	L.M. & Smyth`05	Koerber & L.M. `07
Equation	D-brane BPSness	4D SUGRA int.
$d_H(e^{4A} \operatorname{Re} t) = e^{4A} * F$	gauge BPSness	$\langle F_{\mathcal{Z}} angle = 0$
$d_H(e^{2A} \operatorname{Im} t) = 0$	string BPSness	$\langle {\cal D} angle = 0$
$\mathrm{d}_H \mathcal{Z} = 0$	DW BPSness	$\langle F_{\mathcal{T}} angle = 0$

Summarizing so far

$\stackrel{\scriptscriptstyle \ensuremath{\wp}}{=}$ E.g. in N=1 compactifications (to flat $\mathbb{R}^{1,3}$) we have

Graña, Mínasían, Petríní & Tomasíello `05	L.M. & Smyth`05	Koerber & L.M. `07
Equation	D-brane BPSness	4D SUGRA int.
$d_H(e^{4A} \operatorname{Re} t) = e^{4A} * F$	gauge BPSness	$\langle F_{\mathcal{Z}} \rangle = 0$
$d_H(e^{2A} \operatorname{Im} t) = 0$	string BPSness	$\langle {\cal D} angle = 0$
$\mathrm{d}_H \mathcal{Z} = 0$	DW BPSness	$\langle F_{\mathcal{T}} angle = 0$

How to break SUSY in a controlled way?

Summarizing so far

$\stackrel{\scriptscriptstyle {igstyle}}{=}$ E.g. in N=1 compactifications (to flat $\mathbb{R}^{1,3}$) we have

Graña, Mínasían, Petríní & Tomasíello `05	L.M. & Smyth`05	Koerber & L.M. `07
Equation	D-brane BPSness	4D SUGRA int.
$d_H(e^{4A} \operatorname{Re} t) = e^{4A} * F$	gauge BPSness	$\langle F_{\mathcal{Z}} angle = 0$
$d_H(e^{2A} \operatorname{Im} t) = 0$	string BPSness	$\langle {\cal D} angle = 0$
$\mathrm{d}_H \mathcal{Z} = 0$	DW BPSness	$\langle F_{\mathcal{T}} angle = 0$

How to break SUSY in a controlled way?

need for better understanding of 4D potential

40 potential, calibrations and SUSY-breaking

[Lüst, Marchesano, L.M. & Tsimpis, `08]
10D e.o.m. from 4D potential

10D e.o.m. from 4D potential

Restrict to configurations of the form

 $\mathrm{d}s_{10}^2 = e^{2A(y)}\mathrm{d}s_{X_4}^2 + g_{mn}(y)\mathrm{d}y^m\mathrm{d}y^n$ $F_{\mathrm{tot}} = e^{4A}\mathrm{dvol}_4 \wedge F_{\mathrm{el}} + F$ (with $F_{\mathrm{el}} = *_6F$)

10D e.o.m. from 4D potential

Restrict to configurations of the form

 $\mathrm{d}s_{10}^2=e^{2A(y)}\mathrm{d}s_{X_4}^2+g_{mn}(y)\mathrm{d}y^m\mathrm{d}y^n$ $F_{\mathrm{tot}}=e^{4A}\mathrm{dvol}_4\wedge F_{\mathrm{el}}+F$ (with $F_{\mathrm{el}}=*_6F$)

Fine full set of 100 e.o.m. can be obtained from

$$\begin{split} V &= \int_{M} \mathrm{dVol}_{6} \, e^{4A} \Big\{ e^{-2\Phi} [-R_{6} + \frac{1}{2}H^{2} - 4(\mathrm{d}\Phi)^{2} + 8\nabla^{2}A + 20(\mathrm{d}A)^{2}] - \frac{1}{2}F_{\mathrm{el}}^{2} \Big\} \\ &+ \sum_{i \in \mathrm{loc. \ sources}} \tau_{i} \Big(\int_{\Sigma_{i}} e^{4A - \Phi} \sqrt{\det(g|_{\Sigma_{i}} + \mathcal{F}_{i})} - \int_{\Sigma_{i}} C^{\mathrm{el}}|_{\Sigma_{i}} \wedge e^{\mathcal{F}_{i}} \Big) \end{split}$$

By expressing \mathcal{R}_6 in terms of pure spinors (see also Cassani `08),

By expressing \mathcal{R}_6 in terms of pure spinors (see also Cassani `08),

$$T = \frac{1}{2} \int d\text{Vol}_6 e^{4A} \left[F_{\text{el}} - e^{-4A} d_H (e^{4A} \text{Re} t) \right]^2$$
$$+ \frac{1}{2} \int d\text{Vol}_6 \left[d_H (e^{2A} \text{Im} t) \right]^2 + \frac{1}{2} \int d\text{Vol}_6 e^{-2A} \left| d_H \mathcal{Z} \right|^2$$

$$+\sum_{i\in \text{D-branes}}\tau_i\int e^{4A} \Big(\mathrm{dVol}_6\,\rho_i^{\text{DBI}}-\langle \operatorname{Re} t, j_i\rangle\Big)$$

$$\frac{1}{4} \int e^{-2A+2\Phi} \left\{ \frac{|\langle t, \mathbf{d}_H \mathcal{Z} \rangle|^2}{\mathrm{dVol}_6} + \frac{|\langle \bar{t}, \mathbf{d}_H \mathcal{Z} \rangle \rangle|^2}{\mathrm{dVol}_6} \right\}$$

+ (....

V

By expressing \mathcal{R}_6 in terms of pure spinors (see also Cassani `08),

$$V = \frac{1}{2} \int d\text{Vol}_6 e^{4A} \left[F_{\text{el}} - e^{-4A} d_H (e^{4A} \text{Re} t) \right]^2 \ge 0$$

$$+\frac{1}{2}\int \mathrm{dVol}_{6}\left[\mathrm{d}_{H}(e^{2A}\mathrm{Im}\,t)\right]^{2}+\frac{1}{2}\int \mathrm{dVol}_{6}\,e^{-2A}\left|\mathrm{d}_{H}\mathcal{Z}\right|^{2} \geq 0$$

$$+\sum_{i\in \text{D-branes}}\tau_i\int e^{4A} \left(\mathrm{dVol}_6\,\rho_i^{\text{DBI}}-\langle \operatorname{Re} t, j_i\rangle\right) \geq 0$$

$$\frac{1}{4} \int e^{-2A+2\Phi} \left\{ \frac{|\langle t, \mathbf{d}_H \mathcal{Z} \rangle|^2}{\mathrm{dVol}_6} + \frac{|\langle \bar{t}, \mathbf{d}_H \mathcal{Z} \rangle \rangle|^2}{\mathrm{dVol}_6} \right\} \leq \mathbf{0}$$

+ (...) ≤ 0

By expressing \mathcal{R}_6 in terms of pure spinors (see also Cassani `08),

 $\sim |F_{\mathcal{Z}}|^2$ (Space-filling D-brane calibration)

$$V = \frac{1}{2} \int \mathrm{dVol}_6 e^{4A} \left[F_{\mathrm{el}} - e^{-4A} \mathrm{d}_H (e^{4A} \mathrm{Re} t) \right]^2 \ge 0$$

$$+\frac{1}{2}\int \mathrm{dVol}_{6}\left[\mathrm{d}_{H}(e^{2A}\mathrm{Im}\,t)\right]^{2}+\frac{1}{2}\int \mathrm{dVol}_{6}\,e^{-2A}\left|\mathrm{d}_{H}\mathcal{Z}\right|^{2} \geq 0$$

$$+\sum_{i\in \text{D-branes}}\tau_i\int e^{4A} \left(\mathrm{dVol}_6\,\rho_i^{\text{DBI}}-\langle \operatorname{Re} t, j_i\rangle\right) \geq 0$$

$$\frac{1}{4} \int e^{-2A+2\Phi} \left\{ \frac{|\langle t, \mathbf{d}_H \mathcal{Z} \rangle|^2}{\mathrm{dVol}_6} + \frac{|\langle \bar{t}, \mathbf{d}_H \mathcal{Z} \rangle \rangle|^2}{\mathrm{dVol}_6} \right\} \leq \mathbf{0}$$

+ (...) ≤ 0

By expressing \mathcal{R}_6 in terms of pure spinors (see also Cassani `08),

~ $|F_{\mathcal{Z}}|^2$ (Space-filling D-brane calibration)

 $V = \frac{1}{2} \int d\text{Vol}_6 e^{4A} \left[F_{\text{el}} - e^{-4A} d_H (e^{4A} \text{Re} t) \right]^2 \geq \mathbf{0}$ $\frac{1}{2} \int d\text{Vol}_6 e^{4A} \left[F_{\text{el}} - e^{-4A} d_H (e^{4A} \text{Re} t) \right]^2 \geq \mathbf{0}$ $2 \int d\text{Vol}_6 e^{4A} \left[F_{\text{el}} - e^{-4A} d_H (e^{4A} \text{Re} t) \right]^2 \geq \mathbf{0}$

$$+\frac{1}{2}\int \mathrm{dVol}_{6}\left[\mathrm{d}_{H}(e^{2A}\mathrm{Im}\,t)\right]^{2}+\frac{1}{2}\int \mathrm{dVol}_{6}\,e^{-2A}\left|\mathrm{d}_{H}\mathcal{Z}\right|^{2} \geq 0$$

$$+\sum_{i\in \text{D-branes}}\tau_i\int e^{4A} \Big(\mathrm{dVol}_6\,\rho_i^{\text{DBI}}-\langle \operatorname{Re} t, j_i\rangle\Big) \geq 0$$

$$\frac{1}{4} \int e^{-2A+2\Phi} \left\{ \frac{|\langle t, \mathbf{d}_H \mathcal{Z} \rangle|^2}{\mathrm{dVol}_6} + \frac{|\langle \bar{t}, \mathbf{d}_H \mathcal{Z} \rangle \rangle|^2}{\mathrm{dVol}_6} \right\} \leq \mathbf{0}$$

+ (...) ≤ 0

By expressing \mathcal{R}_6 in terms of pure spinors (see also Cassani `08),

~ $|F_{\mathcal{Z}}|^2$ (Space-filling D-brane calibration)

 $V = \frac{1}{2} \int d\text{Vol}_6 e^{4A} \left[F_{\text{el}} - e^{-4A} d_H (e^{4A} \text{Re} t) \right]^2 \geq 0$ $\sim \mathcal{D}^2 \quad (D \text{-string calibration})$

$$+\frac{1}{2}\int \mathrm{dVol}_{6}\left[\mathrm{d}_{H}(e^{2A}\mathrm{Im}\,t)\right]^{2}+\frac{1}{2}\int \mathrm{dVol}_{6}\,e^{-2A}\left|\mathrm{d}_{H}\mathcal{Z}\right|^{2}\geq0$$

~ $|F_{\mathcal{T}}|^2$ (DW calibration)

$$+\sum_{i\in \text{D-branes}}\tau_i\int e^{4A} \left(\text{dVol}_6 \,\rho_i^{\text{DBI}} - \langle \text{Re}\,t, j_i \rangle \right) \geq 0$$

$$\frac{1}{4} \int e^{-2A+2\Phi} \left\{ \frac{|\langle t, \mathbf{d}_H \mathcal{Z} \rangle|^2}{\mathrm{dVol}_6} + \frac{|\langle \bar{t}, \mathbf{d}_H \mathcal{Z} \rangle \rangle|^2}{\mathrm{dVol}_6} \right\} \leq \mathbf{0}$$

+ (...) ≤ 0

By expressing \mathcal{R}_6 in terms of pure spinors (see also Cassani `08),

 $V = \frac{1}{2} \int d\text{Vol}_6 e^{4A} \left[F_{\text{el}} - e^{-4A} d_H (e^{4A} \text{Re} t) \right]^2 \stackrel{2}{\geq} 0$ $\sim \mathcal{D}^2 \text{ (D-string calibration)}$

$$+\frac{1}{2}\int \mathrm{dVol}_{6}\left[\mathrm{d}_{H}(e^{2A}\mathrm{Im}\,t)\right]^{2}+\frac{1}{2}\int \mathrm{dVol}_{6}\,e^{-2A}\left|\mathrm{d}_{H}\mathcal{Z}\right|^{2}\geq0$$

~ $|F_{\mathcal{T}}|^2$ (DW calibration)

$$+ \sum_{i} \tau_{i} \int e^{4A} \left(\mathrm{dVol}_{6} \rho_{i}^{\mathrm{DBI}} - \langle \mathrm{Re} t, j_{i} \rangle \right) \geq 0$$

 $i \in D$ -branes

D-brane calibration bound

$$\frac{1}{4} \int e^{-2A+2\Phi} \left\{ \frac{|\langle t, \mathbf{d}_H \mathcal{Z} \rangle|^2}{\mathrm{dVol}_6} + \frac{|\langle \bar{t}, \mathbf{d}_H \mathcal{Z} \rangle \rangle|^2}{\mathrm{dVol}_6} \right\} \leq \mathbf{C}$$

+ (...) ≤ 0

By expressing \mathcal{R}_6 in terms of pure spinors (see also Cassani `08),

 $V = \frac{1}{2} \int d\text{Vol}_{6} e^{4A} \left[F_{\text{el}} - e^{-4A} d_{H} (e^{4A} \text{Re} t) \right]^{2} \geq \mathbf{0}$ $= \frac{1}{2} \int d\text{Vol}_{6} e^{4A} \left[F_{\text{el}} - e^{-4A} d_{H} (e^{4A} \text{Re} t) \right]^{2} \geq \mathbf{0}$ $= \mathcal{D}^{2} \text{ (D-string calibration)}$

$$+\frac{1}{2}\int \mathrm{dVol}_{6}\left[\mathrm{d}_{H}(e^{2A}\mathrm{Im}\,t)\right]^{2}+\frac{1}{2}\int \mathrm{dVol}_{6}\,e^{-2A}\left|\mathrm{d}_{H}\mathcal{Z}\right|^{2} \geq 0$$

~ $|F_{\mathcal{T}}|^2$ (DW calibration)

$$+\sum_{i\in \text{D-branes}}\tau_i\int e^{4A} \Big(\mathrm{dVol}_6\,\rho_i^{\text{DBI}}-\langle\operatorname{Re} t,j_i\rangle\Big) \geq 0$$

D-brane calibration bound

$$\frac{1}{4} \int e^{-2A+2\Phi} \left\{ \frac{|\langle t, d_H \mathcal{Z} \rangle|^2}{d\text{Vol}_6} + \frac{|\langle \bar{t}, d_H \mathcal{Z} \rangle \rangle|^2}{d\text{Vol}_6} \right\} \leq \mathbf{0}$$

$$|F_T|^2 \quad (DW \text{ calibration})$$

+ (...) ≤ 0

By expressing \mathcal{R}_6 in terms of pure spinors (see also Cassani `08),

 $V = \frac{1}{2} \int d\text{Vol}_{6} e^{4A} \left[F_{\text{el}} - e^{-4A} d_{H} (e^{4A} \text{Re} t) \right]^{2} \stackrel{>}{\geq} \stackrel{\circ}{0} \\ + \frac{1}{2} \int d\text{Vol}_{6} \left[d_{H} (e^{2A} \text{Im} t) \right]^{2} + \frac{1}{2} \int d\text{Vol}_{6} e^{-2A} \left| d_{H} \mathcal{Z} \right|^{2} \stackrel{>}{\geq} \stackrel{\circ}{0}$

~ $|F_{\mathcal{T}}|^2$ (DW calibration)

$$+\sum_{i\in \text{D-branes}}\tau_i\int e^{4A} \left(\mathrm{dVol}_6\,\rho_i^{\text{DBI}}-\langle\operatorname{Re} t,j_i\rangle\right) \geq 0$$

D-brane calibration bound

$$-\frac{1}{4}\int e^{-2A+2\Phi}\left\{\frac{|\langle t, d_H Z \rangle|^2}{d\text{Vol}_6} + \frac{|\langle \bar{t}, d_H Z \rangle\rangle|^2}{d\text{Vol}_6}\right\} \leq \mathbf{0}$$

$$+ (...) \leq \mathbf{0} \qquad \qquad \sim |\mathcal{D} + F_T|^2$$

DW SUSY-breaking (DWSB)

$\stackrel{\scriptscriptstyle \ensuremath{\wp}}{=}$ In N=1 compactifications (to flat $\mathbb{R}^{1,3}$) we have

Graña, Mínasían, Petríní & Tomasíello `05	L.M. & Smyth`05	Koerber & L.M. `07
Equation	D-brane BPSness	4D SUGRA int.
$d_H(e^{4A}\text{Ret}) = e^{4A}F_{\text{el}}$	gauge BPSness	$\langle F_{\mathcal{Z}} angle = 0$
$d_H(e^{2A}\mathrm{Im}t) = 0$	string BPSness	$\langle {\cal D} angle = 0$
$\mathrm{d}_H \mathcal{Z} = 0$	DW BPSness	$\langle F_T \rangle = 0$

DW SUSY-breaking (DWSB)

 \Im We break N=1 \rightarrow N=0 by violating PW BPSness:

Equation	D-brane BPSness	4D SUGRA int.
$d_H(e^{4A}\text{Ret}) = e^{4A}F_{\text{el}}$	gauge BPSness	$\langle F_{\mathcal{Z}} \rangle \simeq 0$
$\mathrm{d}_H(e^{2A}\mathrm{Im}t)=0$	string BPSness	$\langle \mathcal{D} angle = 0$
$\mathrm{d}_H \mathcal{Z} eq 0$	DW (non)BPSness	$\langle F_T \rangle \neq 0$

$$d_H \mathcal{Z} = r \tilde{j}_{(\Pi,R)}$$

 $\simeq e^{-R} dVol_{\mathcal{I}}$

SUSY-breaking parameter

2

Fine potential reduces to

$$V = \frac{1}{2} \int \mathrm{dVol}_6 \, e^{4A} \left[F_{\mathrm{el}} - e^{-4A} \mathrm{d}_H (e^{4A} \mathrm{Re} \, t) \right]$$

$$+\frac{1}{2}\int \mathrm{dVol}_6 \left[\mathrm{d}_H(e^{2A}\mathrm{Im}\,t)\right]^2$$

+
$$\sum_{i \in \text{D-branes}} \tau_i \int e^{4A} \left(d\text{Vol}_6 \rho_i^{\text{DBI}} - \langle \text{Re} t, j_i \rangle \right)$$

$$+\frac{1}{2}\int e^{-2A}|r|^2\Big[\langle*\tilde{\jmath}_{(\Pi,R)},\tilde{\jmath}_{(\Pi,R)}\rangle-\frac{|\langle t,\tilde{\jmath}_{(\Pi,R)}\rangle|^2}{\mathrm{dVol}_6}\Big]$$

Solution For the potential reduces to

$$V = \frac{1}{2} \int \mathrm{dVol}_6 \, e^{4A} \left[F_{\mathrm{el}} - e^{-4A} \mathrm{d}_H (e^{4A} \mathrm{Re} \, t) \right]^2 \, \ge 0$$

$$+\frac{1}{2}\int \mathrm{dVol}_6 \left[\mathrm{d}_H(e^{2A}\mathrm{Im}\,t)\right]^2 \ge 0$$

$$+\sum_{i\in \text{D-branes}}\tau_i\int e^{4A} \Big(\mathrm{dVol}_6\,\rho_i^{\text{DBI}}-\langle \operatorname{Re} t, j_i\rangle\Big) \geqq 0$$

$$+\frac{1}{2}\int e^{-2A}|r|^2 \left[\langle *\tilde{\jmath}_{(\Pi,R)}, \tilde{\jmath}_{(\Pi,R)} \rangle - \frac{|\langle t, \tilde{\jmath}_{(\Pi,R)} \rangle|^2}{\mathrm{dVol}_6} \right] \ge 0$$

Solution For the potential reduces to

gauge BPSness ($\langle F_{\mathcal{Z}} \rangle \simeq 0$)

$$V = \frac{1}{2} \int \mathrm{dVol}_6 e^{4A} \left[F_{\mathrm{el}} - e^{-4A} \mathrm{d}_H (e^{4A} \mathrm{Re} t) \right]^2 \geq$$

$$+\frac{1}{2}\int \mathrm{dVol}_6 \left[\mathrm{d}_H(e^{2A}\mathrm{Im}\,t)\right]^2 \ge 0$$

$$+\sum_{i\in \text{D-branes}}\tau_i\int e^{4A} \Big(\mathrm{dVol}_6\,\rho_i^{\text{DBI}}-\langle \operatorname{Re} t, j_i\rangle\Big) \ge 0$$

$$+\frac{1}{2}\int e^{-2A}|r|^2 \left[\langle *\tilde{\jmath}_{(\Pi,R)},\tilde{\jmath}_{(\Pi,R)}\rangle - \frac{|\langle t,\tilde{\jmath}_{(\Pi,R)}\rangle|^2}{\mathrm{dVol}_6}\right] \ge 0$$

$$\begin{aligned} & \text{The potential reduces to} \\ & \text{gauge BPSness } (\langle F_{\mathcal{Z}} \rangle \simeq 0) \\ & V = \frac{1}{2} \int d\text{Vol}_6 e^{4A} [F_{\text{el}} - e^{-4A} d_H (e^{4A} \operatorname{Re} t)]^2 \geq 0 \\ & D \cdot \text{string BPSness } (\langle \mathcal{D} \rangle = 0) \\ & + \frac{1}{2} \int d\text{Vol}_6 \left[d_H (e^{2A} \operatorname{Im} t) \right]^2 \geq 0 \\ & + \sum_{i \in \text{D-branes}} \tau_i \int e^{4A} \left(d\text{Vol}_6 \rho_i^{\text{DBI}} - \langle \operatorname{Re} t, j_i \rangle \right) \geq 0 \\ & + \frac{1}{2} \int e^{-2A} |r|^2 \left[\langle * \tilde{j}_{(\Pi,R)}, \tilde{j}_{(\Pi,R)} \rangle - \frac{|\langle t, \tilde{j}_{(\Pi,R)} \rangle|^2}{d\text{Vol}_6} \right] \geq 0 \end{aligned}$$

$$\begin{aligned} & \text{The potential reduces to} \\ & \text{gauge BPSness } (\langle F_{\mathcal{Z}} \rangle \simeq 0) \\ & V = \frac{1}{2} \int d\text{Vol}_6 e^{4A} [F_{\text{el}} - e^{-4A} d_H(e^{4A} \text{Re} t)]^2 \geq 0 \\ & D \text{-string BPSness } (\langle \mathcal{D} \rangle = 0) \\ & + \frac{1}{2} \int d\text{Vol}_6 \left[d_H(e^{2A} \text{Im} t) \right]^2 \geq 0 \\ & \text{calibrated D-branes} \\ & + \sum_{i \in \text{D-branes}} \tau_i \int e^{4A} \left(d\text{Vol}_6 \rho_i^{\text{DBI}} - \langle \text{Re} t, j_i \rangle \right) \geq 0 \\ & + \frac{1}{2} \int e^{-2A} |r|^2 \left[\langle * \tilde{\jmath}_{(\Pi,R)}, \tilde{\jmath}_{(\Pi,R)} \rangle - \frac{|\langle t, \tilde{\jmath}_{(\Pi,R)} \rangle|^2}{d\text{Vol}_6} \right] \geq 0 \end{aligned}$$

The potential reduces to

$$gauge BPSness (\langle F_{Z} \rangle \simeq 0)$$

$$V = \frac{1}{2} \int dVol_{6} e^{4A} [F_{el} - e^{-4A} d_{H}(e^{4A} \operatorname{Re} t)]^{2} \geq 0$$

$$D \operatorname{string} BPSness (\langle D \rangle = 0)$$

$$+ \frac{1}{2} \int dVol_{6} [d_{H}(e^{2A} \operatorname{Im} t)]^{2} \geq 0$$

$$\operatorname{calibrated} D \operatorname{branes}$$

$$+ \sum_{i \in D \operatorname{-branes}} \tau_{i} \int e^{4A} (dVol_{6} \rho_{i}^{DBI} - \langle \operatorname{Re} t, j_{i} \rangle) \geq 0$$

$$+ \frac{1}{2} \int e^{-2A} |r|^{2} [\langle * \tilde{j}_{(\Pi,R)}, \tilde{j}_{(\Pi,R)} \rangle - \frac{|\langle t, \tilde{j}_{(\Pi,R)} \rangle|^{2}}{dVol_{6}}] \geq 0$$

$$\operatorname{calibrated} generalized$$

$$foliation (\Pi, R)$$

$$(\langle F_{T} \rangle \sim r)$$

The potential reduces to

$$y = \frac{1}{2} \int dVol_6 e^{4A} [F_{el} - e^{-4A} d_H (e^{4A} \operatorname{Re} t)]^2 \geq 0$$

$$D \cdot string BPSness \quad (\langle D \rangle = 0)$$

$$+ \frac{1}{2} \int dVol_6 \left[d_H (e^{2A} \operatorname{Im} t) \right]^2 \geq 0$$

$$calibrated D \cdot branes$$

$$+ \sum_{i \in D \cdot branes} \tau_i \int e^{4A} \left(dVol_6 \rho_i^{DBI} - \langle \operatorname{Re} t, j_i \rangle \right) \geq 0$$

$$+ \frac{1}{2} \int e^{-2A} |r|^2 \left[\langle * \tilde{j}_{(\Pi,R)}, \tilde{j}_{(\Pi,R)} \rangle - \frac{|\langle t, \tilde{j}_{(\Pi,R)} \rangle|^2}{dVol_6} \right] \geq 0$$

$$calibrated generalized$$

$$foliation \quad (\Pi, R)$$

$$T \cdot dependence disappears:$$

$$(\langle F_T \rangle \sim r)$$

$$no-scale structure$$

[Graña & Polchinski `00] [Giddings, Kachru & Polchinski `01]

$\stackrel{\scriptstyle \eq}{\scriptstyle \sim}$ In this case:

 $\{\text{leaves }\Pi\} = \{\text{points in }M\}$

[Graña & Polchinski `00] [Giddings, Kachru & Polchinski `01]

• **P-string BPSness:** $dJ_{CY} = 0$, $H \wedge J_{CY} = 0$

[Graña & Polchinski `00] [Giddings, Kachru & Polchinski `01]

 $d\Omega_{\rm CY} = 0 \quad , \ H \wedge \Omega_{\rm CY} \neq 0$

• P-string BPSness: $dJ_{CY} = 0$, $H \wedge J_{CY} = 0$

• Gauge BPSness: $*_6G_3 = iG_3$ (ISD) $\bar\partial au = 0$, $4\mathrm{d}A - \mathrm{d}\Phi = e^\Phi *_6F_5$

Remarks about DWSB vacua
We have constructed several examples with SU(3) and SU(2)structure (also with $R \neq 0$)

see also [Camara & Graña, `07]

Solution We have constructed several examples with SU(3) and SU(2)-structure (also with $R \neq 0$)

see also [Camara & Graña, `07]

Actually, generically some additional e.o.m. must be imposed

-> trivial or easily satisfied in our examples

Solution We have constructed several examples with SU(3) and SU(2)-structure (also with $R \neq 0$)

see also [Camara & Graña, `07]

Soluterpretation in untruncated N=1 formalism less clear.

Solution We have constructed several examples with SU(3) and SU(2)-structure (also with $R \neq 0$)

see also [Camara & Graña, `07]

Section in untruncated N=1 formalism less clear.

Clearer 4D SUSY structure if either:

Solution We have constructed several examples with SU(3) and SU(2)-structure (also with $R \neq 0$)

see also [Camara & Graña, `07]

Soluterpretation in untruncated N=1 formalism less clear.

Glearer 4D SUSY structure if either:

* ONE USES densities (like in [Graña, Waldram & Louis, `05])

 $\mathcal{W} = \int_M W \quad e^{-\mathcal{K}/3} = \int_M e^{-K/3}$

 \Im We have constructed several examples with SU(3) and SU(2)structure (also with $R \neq 0$)

see also ECamara & Graña, `071

 \Rightarrow Interpretation in untruncated N=1 formalism less clear.

Clearer 4D SUSY structure if either:

* ONE USES densities (like in [Graña, Waldram & Louis, `05])

 $W = \int_{M} W e^{-\kappa/3} = \int_{M} e^{-\kappa/3} \longrightarrow N=1 \text{ no-scale structure} \text{ gravitino} \\ r \sim e^{-A}m_{3/2} \text{ mass (density)}$

 \Im We have constructed several examples with SU(3) and SU(2)structure (also with $R \neq 0$)

see also ECamara & Graña, `071

 \Im Interpretation in untruncated N=1 formalism less clear.

Clearer 4D SUSY structure if either:

* ONE USES densities (like in [Graña, Waldram & Louis, `05])

 $\mathcal{W} = \int_{M} W \quad e^{-\mathcal{K}/3} = \int_{M} e^{-\mathcal{K}/3} \longrightarrow \begin{array}{c} \bullet & \mathsf{N}=1 \text{ no-scale structure} \\ \bullet & r \sim e^{-A}m_{3/2} & \text{gravitino} \\ \bullet & r \sim e^{-A}m_{3/2} & \text{mass (density)} \end{array}$

 $\sim *$ one approximates $e^A \simeq 1$ and truncates spectrum cfr. [Camara & Graña, `07]

Generic type II flux compactifications and their 40 description are naturally formulated using generalized geometry

Generic type II flux compactifications and their 40 description are naturally formulated using generalized geometry

 \Rightarrow SUSY \rightarrow • integrable GC and calibration structures

emergent N=1 4D effective structures

 \Im Generic type II flux compactifications and their 40 description are naturally formulated using generalized geometry

SUSY -> • integrable GC and calibration structures

emergent N=1 4D effective structures

- SUSY -> integrable GC but still calibration structures
 - less clear (warped) N=1 40 structures