
Chapter 2

Wave Mechanics and the Schrödinger

equation

Falls es bei dieser verdammten Quantenspringerei bleiben

sollte, so bedauere ich, mich jemals mit der Quantentheorie

beschäftigt zu haben!

-Erwin Schrödinger

In this chapter we introduce the Schrödinger equation and its probabilistic interpretation.
We then discuss some basic physical phenomena like wave packets, discrete bound state energies
and scattering on the basis of one-dimensional examples.

2.1 The Schrödinger equation

Schrödingers wave mechanics originates in the work of Louis de Broglie on matter waves. De
Broglie postulated that all material particles can have corpuscular as well as wavelike aspects
and that the correspondence between the dynamical variables of the particle and the charac-
teristic quantities of the associated wave,

E = ~ω, and ~p = ~~k, (2.1)

which was established for photons by the Compton effect, continues to hold for all matter

waves. Schrödinger extended these ideas and suggested that the dynamical state of a quantum
system is completely described by a wave function ψ satisfying a homogeneous linear differential
equation (so that different solutions can be superimposed, which is a typical property of waves).
In particular, we can express ψ as a continuous superposition of plane waves,

ψ(~x, t) =

∫

d3k f(~k) ei(
~k~x−ω(k)t). (2.2)

For the plane waves ei(
~k~x−ωt) the relation (2.1) suggests the correspondence rule

E → i~
∂

∂t
, ~p→ ~

i
~∇. (2.3)
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Energy and momentum of a free classical particle are related by E = p2/2m. When a particle
moves in a potential V (x) its conserved energy is given by the Hamilton function H(x, p) =
p2

2m
+ V (x). Setting Eψ = Hψ with E → i~∂t and ~p → ~

i
~∇ we arrive at the Schrödinger

equation

i~
∂

∂t
ψ(x, t) = Hψ(x, t) with H = − ~

2

2m
∆ + V (x), (2.4)

where ∆ = ~∇2 is the Laplace operator and V = eφ for an electron moving in an electric field
~E(x) = −gradφ(x).

More generally, a classical point particle with mass m and charge e moving in an electro-
magnetic field

~E = −~∇φ− 1

c
∂t ~A, ~B = ~∇× ~A (2.5)

with gauge potential Aµ = (φ, ~A) feels a Lorentz force ~F = e( ~E + 1
c
~v × ~B). The Hamilton

function describing this dynamics is1

H(x, p; t) =
1

2m
(~p− e

c
~A(~x, t))2 + eφ(~x, t). (2.6)

With the correspondence rule (2.3) we thus find the general Schrödinger equation

i~
∂

∂t
ψ =

[

1

2m

(

~

i
~∇− e

c
~A

)2

+ eφ

]

ψ, (2.7)

which describes the motion of a quantum mechanical scalar point particle in a classical external
electromagnetic field. This is an approximation in several respects. First we have neglected the
spin of elementary point particles like electrons, which we will discuss in chapter 5. In chapter 7
we will discuss the Dirac equation, which is the relativistic generalization of the Schrödinger
equation. The relativistic treatment is necessary for a proper understanding of the magnetic
interactions, and hence of the fine structure of the energy levels of hydrogen, and it will lead to
the prediction of anti-matter. Eventually we should note that also the environment, including
the electromagnetic field, consists of quantum systems. This leads to the “second quantization”
of quantum field theory. First, however, we restrict our attention to the quantum mechanical
description of a single non-relativistic point particle in a classical environment.

It is an important and surprising property of the Schrödinger equation that it explicitly
depends on the electromagnetic potentials Aµ, which are unobservable and whose values depend
on the coice of a gauge. This is in contrast to classical physics, where the Lorentz force is a

1In order to derive the Lorentz force from this Hamiltonian we consider the canonical equations of motion

ẋi =
∂H

∂pi

=
pi − e

c
Ai

m
, ṗj = − ∂H

∂xj

=
e

c

∂Ai

∂xj

pi − e
c
Ai

m
− e

∂φ

∂xj

=
e

c
(∂jAi)ẋi − e∂jφ,

which imply ~F = m~̈x = d
dt

(pi − e
c
Ai) =~̇p − e

c
(∂t + ẋi∂i) ~A = e

c
(vi

~∇Ai − vi∂i
~A) − e( 1

c
~̇A + ~∇φ) = e

c
~v × ~B + e ~E.

Note that the relation between the canonical momentum pj = mẋj + e
c
Aj and the velocity ~v =~̇x depends on

the gauge-dependent vector potential ~A. The gauge-independent quantity ~π = ṁ~x = ~p− e
c

~A is sometimes called

physical or mechanical momentum. According to the general quantization rule (see below) the operator ~

i
~∇ has

to replace the canonical momentum.
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function of the gauge invariant field strengths. A straightforward calculation shows that a
gauge transformation

φ→ φ′ = φ− 1

c

∂

∂t
Λ, A→ A′ = A+ ~∂Λ (2.8)

of the scalar and vector potentials, which leaves the observable fields ~E and ~B invariant for an
arbitrary function Λ(t, ~x), can be compensated by an space- and time-dependent phase rotation
of the wave function2

ψ → ψ′ = e
ie
~c

Λψ, (2.9)

i.e. if ψ solves the Schrödinger equation (2.7) then ψ′ solves the same equation for potentials

φ′ and ~A′. Since the phase of the wave function ψ can be changed arbitrarily by such a gauge
transformation we might expect that only its modulus |ψ(t, x)| is observable. This conclusion
is indeed consistent with the physical interpretation of the wave function that was suggested
by Max Born in 1927: |ψ|2(x) = (ψ∗ψ)(x) is the probability density for finding an electron
with wave function ψ(x) at a position x ∈ R

3. It is a perplexing but characteristic feature of
quantum physics that a local description of particle interactions requires the introduction of
mathematical objects like gauge potentials (φ, ~A) and complex wave functions ψ that are not
directly observable and only certain functions of which can be related to “the real world”.3

2.1.1 Probability density and probability current density

Born’s interpretation of the wave function ψ(~x, t) implies that the integral over the probability
density, i.e. the total probability to find the electron somewhere in space, has to be one:

∫

d3x ρ(~x, t) = 1, with ρ(~x, t) = |ψ(~x, t)|2. (2.10)

This fixes the normalization of the wave function, which is also called probability amplitude,
at some initial time up to a phase. Consistency of the interpretation requires that the total
probability stays one under time evolution. To check this we compute the time derivative of ρ
for a solution of the Schrödinger equation. With ~

i
~∇ − e

c
~A = ~

i
(~∇ − ig ~A) for g = e/(~c) and

the anti-commutator {~∇, ~A} ≡ ~∇ ~A+ ~A~∇ = (~∇ ~A) + 2 ~A~∇ we find

ρ̇(~x, t) = ψ̇∗ψ + ψ∗ψ̇ = (
1

i~
Hψ)∗ψ + ψ∗ 1

i~
Hψ

=
1

i~

~
2

2m

(

ψ(~∇ + ig ~A)2ψ∗ − ψ∗(~∇− ig ~A)2ψ
)

=
~

2im

(

ψ(∆ + ig{~∇, ~A} − g2 ~A2)ψ∗ − ψ∗(∆ − ig{~∇, ~A} − g2 ~A2)ψ
)

=
~

2im

(

ψ∆ψ∗ − ψ∗∆ψ + 2ig
(

(~∇ ~A)ψ∗ψ + ψ ~A~∇ψ∗ + ψ∗ ~A~∇ψ
))

= −~∇
(

~

2im
(ψ∗~∇ψ − ψ~∇ψ∗) − e

mc
~Aψ∗ψ

)

(2.11)

2 This follows from (~

i
~∇− e

c
~A′)e

ie

~c
Λ = e

ie

~c
Λ(~

i
~∇− e

c
~A) and (i~∂t − eφ′)e

ie

~c
Λ = e

ie

~c
Λ(i~∂t − eφ).

3 For the electromagnetic potentials this necessity manifests itself in the Aharonov-Bohm effect, which
predicts an “action at a distance” of a magnetic field on interference patterns of electrons (see below). This
effect was predicted in 1959 and first confirmed experimentally in 1960 [Schwabl].
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We thus obtain a continuity equation (similar to the one we know for incompressible fluids)

∂

∂t
ρ(~x, t) + ~∇~j(~x, t) = 0 (2.12)

with the probability current density

~j(~x, t) =
~

2im
(ψ∗~∇ψ − (~∇ψ∗)ψ.) − e

mc
~Aψ∗ψ (2.13)

(It is instructive to compare this formula with the classical particle current~̇x = 1
m

(~p − e
c
~A).)

By Gauss’ theorem, the change in time of the probability to find the particle in a finite volume
V equals the flow of the probability current density through the bounding surface ∂V of that
domain,

∂

∂t

∫

V

ρ(~x, t)d3x = −
∫

V

~∇~j(~x, t)d3x = −
∮

∂V

~j(~x, t)d~f (2.14)

Normalizability of ψ implies that the fields fall off at infinity so that the surface integral vanishes
as V → R

3. This establishes conservation of the total probability
∫

R3

d3x ρ(x) = 1 for all times.

2.1.2 Axioms of quantum theory

In order to gain some intuition for the physical meaning of the Schrödinger equation we next
work out its solutions for a number of simple one-dimensional examples. Before going into the
details of the necessary calculations we list here, for later reference, the basic assumptions of
quantum mechanics:

1. The state of a quantum system is described by a wave function ψ(x).

2. Observables correspond to self-adjoint operators A (these can be diagonalized and have
real eigenvalues).

3. Expectation values of observables (i.e. mean values for repeated measurements of A in
the same quantum state) are given by the “scalar product” 〈A〉 = 〈ψ|Aψ〉 =

∫

ψ∗Aψ.

4. The time evolution of the system is determined by the Schrödinger equation i~∂ψ
∂t

= Hψ.

5. When the measurement of an observable A yields an eigenvalue an then the wave function
immediately turns into the corresponding eigenfunction ψn of A (this is called collapse of
the wave function).

It can be shown that axioms 2 and 3 imply that the result of the measurement of an observable
A can only be an eigenvalues an of that operator and that the probability for measuring an is
given by |cn|2, where cn is the coefficient of the eigenfunction ψn in the expansion ψ =

∑

cnψn.
In particular, this will imply Born’s probability density interpretation of |ψ(x)|2.
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2.1.3 Spreading of free wave packets and uncertainty relation

The position and the momentum of a quantum mechanical particle are described by the oper-
ators

~Xψ(x) = ~xψ(x) and ~Pψ(x) =
~

i
~∇ψ(x), (2.15)

respectively. The uncertainty ∆A of a measurement of an observable A in a state ψ is defined
as the square root of its mean squared deviation from its expectation value,

(∆A)2 = 〈ψ| (A− 〈A〉ψ)2 |ψ〉 = 〈A2〉ψ − (〈A〉ψ)2, (2.16)

where 〈A〉ψ = 〈ψ|A|ψ〉 denotes the expectation value of A in the state ψ(x); to be more precise,
within the expectation value the number 〈A〉ψ is identified with that number times the unit
operator.

For a free particle it can be shown that the uncertainty ∆X of the position increases at late
times, i.e. that the wave packets describing localized free particles delocalize and spread out.
We now illustrate this phenomenon for a Gaussian wave packet and consider the time evolution
of the wave function of a free particle in one dimension, which satisfies the Schrödinger equation
with vanishing potential

− ~
2

2m

∂2

∂x2
ψ(x, t) = −~

i

∂

∂t
ψ(x, t). (2.17)

Since the Fourier transform ψ̃(k) of a Gaussian distribution is again a Gaussian we start with
a Fourier integral

ψ(x, 0) =
1√
2π

∫

dk eikx ψ̃(k) (2.18)

with
ψ̃(k) = α e−d

2(k−k0)2 , (2.19)

so that the wave numbers are centered about k0 with width d. The normalization constant α
will be determined later. Since plane waves ei(kx−ωt) satisfy the free Schrödinger equation if
ω = ω(k) = ~k2/(2m) we can directly write down the solution for arbitrary times as a Fourier
integral

ψ(x, t) =
1√
2π

∫

dk ψ̃(k)ei(kx−ωt) =
α√
2π

∫

dk ei(kx−
~k2

2m
t) e−(k−k0)2 d2 (2.20)

In order to evaluate this integral we bring the exponent into a quadratic form

ψ(x, t) =
α√
2π

∫

dk e−ak
2+2bk−c, (2.21)

where we introduced the combinations

a = d2 +
i~t

2m
, b = k0d

2 +
ix

2
, c = k2

0d
2. (2.22)

Due to the exponential falloff of the integrand the integration path −∞ < k <∞ can be shifted
in the complex plane by the imaginary part of b/a and rotated by the argument of

√
a without

picking up a contribution from the arcs at infinity. Hence we can integrate the new integration
variable κ =

√
a(k − b

a
) again over the real axis and find

ψ(x, t) =
α√
2π

∞
∫

−∞

dk e−a(k−
b
a)

2
+ b2

a
−c =

α√
2π

e
b2

a
−c

∞
∫

−∞

dκ√
a
e−κ

2

=
α√
2π

· e b2

a
−c
√

π

a
. (2.23)
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t = 0

h
h · e−1

0√
2d

t = t1

v · t1
√

2d2(1 + T 2)

t = t2

v · t2 x

Figure 2.1: Schematic graph of the delocalization of a Gaussian wave packet

For the probability density we obtain

|ψ(x, t)|2 =
|α|2
2π

π

|a| · e
2Re

“

b2−ac
a

”

=
α2

2d2
√

(1 + T 2)
· e

−(x−v0t)2

2d2(1+T2) , (2.24)

where we introduced the velocity v0 and a rescaled time T as

v0 =
~k0

m
, T =

~t

2md2
. (2.25)

As expected, the integrated probability density

∫

dx |ψ(x, t)|2 =
|α|2

2d2
√

(1 + T 2)

√

2πd2(1 + T 2) =
|α|2
d

√

π

2
(2.26)

becomes time independent and we find

|α|2 =

√

2

π
d. (2.27)

v0 = ~k0/m is the group velocity of the wave packet and for large times t≫ 2md2/~ the width
of the wave packet in position space becomes proportional to d T = t~/(2md) as shown in figure
2.1. Inserting the expressions eq. (2.22) we find the explicit form

ψ(x, t) =

√
1 − iT

√

2πd(1 + T 2)
· e

−(x−v0t)2+i(Tx2+4xk0d2
−4Tk2

0d4)

4d2(1+T2) (2.28)

for the solution to the Schrödinger equation with initial data ψ(x, 0).

Heisenberg’s uncertainty relation for position and momentum

In chapter 3 we will derive the general form of Heisenberg’s uncertainty relation which, when
specialized to position and momentum, reads ∆X ∆P ≥ 1

2
~. Here we check that this inequality
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is satisfied for our special solution. We first compute the expectation values that enter the
uncertainty ∆X2 = 〈(x− 〈x〉)2〉 of the position.

〈x〉 =

∫

x|ψ(x, t)|2dx =

∫

(x− v0t)|ψ(x, t)|2dx+ v0t

∫

|ψ(x, t)|2dx = v0t. (2.29)

The first integral on the r.h.s. is equal zero because the integration domain is symmetric in
x′ = x − v0t and ψ is an even function of x′ so that its product with x′ is odd. The second
integral has been normalized to one. For the uncertainty we find

(∆x)2 = 〈(x− 〈x〉)2〉 =

∫

(x− v0t)
2|ψ(x, t)|2dx = d2(1 + T 2), (2.30)

where we have used
∫ +∞

−∞
x2e−bx

2

dx = − ∂

∂b

∫ +∞

−∞
e−bx

2

dx = − ∂

∂b

√

π

b
=

√

π

b

1

2b
, (2.31)

i.e. the expectation value of x2 in a normalized Gaussian integral, as in eq. (2.24), is 1
2

times
the inverse coefficient of −x2 in the exponent.

The uncertainty of the momentum can be computed similarly in terms of the Fourier trans-
form of the wave function since P = ~

i
∂x = ~k in the integral representation

∫

dx ψ∗P nψ =

∫

dx

∫∫

dk dk′

2π
e−i(k

′x−ω′t)ψ̃∗(k)(~k)nei(kx−ωt)ψ̃(k) =

∫

dk |ψ̃(k)|2(~k)n, (2.32)

where
∫

dx eix(k−k
′) = 2πδ(k−k′) was used to perform the k′ integration. Like above, symmetric

integration therefore implies 〈P 〉 = ~〈k〉 = ~k0, and by differentiation with respect to the
coefficient of −k2 in the exponent of |ψ̃(k)|2 we find

1

~2
(∆P )2 = (∆k)2 = 〈(k − k0)

2〉 =

∫

(k − k0)
2|ψ̃(k)|2 = (4d2)−1. (2.33)

The product of the uncertainties is

∆X∆P = ~∆x∆k =
~

2

√
1 + T 2 (2.34)

which assumes its minimum at the initial time t = 0. Hence

∆X∆P ≥ ~

2
. (2.35)

Relation (2.35) is known as the Heisenberg uncertainty relation and, for this special case, it
predicts that one cannot measure position and momentum of a particle at the same time with
arbitrary precision. In chapter 3 we will derive the general form of the uncertainty relations for
arbitrary pairs of observables and for arbitrary states.

2.2 The time-independent Schrödinger equation

If the Hamiltonian does not explicitly depend on time we can make a separation ansatz

Ψ(~x, t) = u(~x)v(t). (2.36)
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E
V

u(x)

e±iKx
K =

√

2m(E−V )
~2

eκx

κ =
√

2m(V−E)
~2

e−κx

Figure 2.2: Bound state solutions for the stationary Schrödinger equation.

The Schrödinger equation now reads

v(t)

(

− ~
2

2m
∆ + V (~x)

)

u(~x) = u(~x) i~
∂

∂t
v(t). (2.37)

u(~x) and v(t) cannot vanish identically, and except for isolated zeros of these functions we can
divide by their product,

1

u(~x)

(

− ~
2

2m
∆ + V (~x)u(~x)

)

=
1

v(t)

(

i~
∂v(t)

∂t

)

= E. (2.38)

The left hand side (Hu)/u depends only on ~x and the right hand side i~v̇/v only on t, therefore
both sides of this equation must be equal to a constant E. We thus obtain two separate
eigenvalue equations:

[

− ~
2

2m
∆ + V (~x)

]

u(~x) = Eu(~x) (2.39)

and

i~
∂

∂t
v(t) = Ev(t). (2.40)

Equation (2.39) is known as the time-independent or stationary Schrödinger equation. Up to
constant factor, which is absorbed into a redefinition of u(x), the unique solution to (2.40) is

v(t) = e−
i
~
Et = e−iωt (2.41)

with the Einstein relation E = ~ω. The stationary solutions ψ(x, t) to the Schrödinger equation
thus have the form

ψ(~x, t) = u(~x)e−iωt. (2.42)

Their time dependence is a pure phase so that probability densities are time independent.

In order to get an idea of the form of the wave function u(x) we consider a slowly varying
and asymptotically constant attractive potential as shown in figure 2.2. Since the stationary
Schrödinger equation in one dimension

− ~
2

2m
u′′(x) = (E − V (x))u(x) (2.43)

is a second order differential equation it has two linearly independent solutions, which for a
slowly varying V (x) are (locally) approximately exponential functions

u(x) ≈







AeiKx +Be−iKx = A′ sin(Kx) +B′ cos(Kx), K =
√

2m(E−V )
~2 for E > V,

Ceκx +De−κx = C ′ sinh(κx) +D′ cosh (κx), κ =
√

2m(V−E)
~2 for E < V.

(2.44)
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In the classically allowed area, where the energy of the electron is larger then the potential,
the solution is oscillatory, whereas in the classically forbidden realm of E < V (x) we find a
superposition of exponential growth and of exponential decay. Normalizability of the solution
requires that the coefficient C of exponential growth for x → ∞ and the coefficient D of
exponential decay for x→ −∞ vanish. If we require normalizability for negative x and increase
the energy, then the wave function will oscillate with smaller wavelength in the classically
allowed domain, leading to a component of exponential growth of u(x) for x → ∞, until we
reach the next energy level for which a normalizable solution exists. We thus find a sequence
of wave functions un(x) with energy eigenvalues E1 < E2 < . . ., where un(x) has n − 1 nodes
(zeros). The normalizable eigenfunctions un are the wave functions of bound states with a
discrete spectrum of energy levels En.

It is clear that bound states should exist only for Vmin < E < Vmax. The lower bound
follows because otherwise the wave function is convex, and hence cannot be normalizable.
These bounds already hold in classical physics. In quantum mechanics we will see that the
energy can be bounded from below even if Vmin = −∞ (like for the Hydrogen atom). We also
observe that in one dimension the energy eigenvalues are nondegenerate, i.e. for each En any
two eigenfunctions are proportional (the vector space of eigenfunctions with eigenvalue En is
one-dimensional). Normalization of the integrated probability density moreover fixes un(x) up
to a phase factor (i.e. a complex number ρ with modulus |ρ| = 1). Since the differential equation
(2.39) has real coefficients, real and imaginary parts of every solution are again solutions. The
bound state eigenfunctions u(x) can therefore be chosen to be real.

Parity is the operation that reverses the sign of all space coordinates. If the Hamilton
operator is invariant under this operation, i.e. if H(−~x) = H(~x) and hence the potential is
symmetric V (−~x) = V (~x), then the u(−~x) is an eigenfunction for an eigenvalue E whenever
u(~x) has that property because (H(~x) − E)u(~x) = 0 implies (H(~x) − E)u(−~x) = (H(−~x) −
E)u(−~x) = 0. But every function u can be written as the sum of its even part u+ and its odd
part u−,

u(~x) = u+(~x) + u−(~x) with u±(~x) =
1

2
(u(~x) ± u(−~x) = ±u±(−~x). (2.45)

Hence u± also solve the stationary Schrödinger equation and all eigenfunctions can be chosen to
be either even or odd. In one dimension we know that, in addition, energy eigenvalues are non-
degenerate so that u+ and u− are proportional, which is only possible if one of these functions
vanishes. We conclude that parity symmetry in one dimension implies that all eigenfunctions
are automatically either even or odd. More precisely, eigenfunctions with an even (odd) number
of nodes are even (odd), and, in particular, the ground state u1 has an even eigenfunction, for
the first excited state u2 is odd with its single node at the origin, and so on.

2.2.1 One-dimensional square potentials and continuity conditions

In the search for stationary solutions we are going to solve equation (2.39) for the simple
one-dimensional and time independent potential

V (x) =

{

0 for |x| ≥ a

V0 for |x| < a
. (2.46)

For V0 < 0 we have a potential well (also known as potential pot) with an attractive force
and for V0 > 0 a repulsive potential barrier, as shown in figure 2.3. Since the force becomes
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Figure 2.3: One-dimensional square potential well and barrier

infinite (with a δ-function behavior) at a discontinuity of V (x) such potentials are unphysical
idealizations, but they are useful for studying general properties of the Schrödinger equation
and its solutions by simple and exact calculations.

Continuity conditions

We first need to study the behavior of the wave function at a discontinuity of the potential.
Integrating the time-independent Schrödinger equation (2.39) in the form

u′′(x) =
2m

~2
(V − E)u(x) (2.47)

over a small interval [a− ε, a+ ε] about the position a of the jump we obtain

a+ε
∫

a−ε

u′′(x) dx = u′(a+ ε) − u′(a− ε) =
2m

~2

a+ε
∫

a−ε

(V − E)u(x) dx. (2.48)

Assuming that u(x) is continuous (or at least bounded) the r.h.s. vanishes for ε → 0 and
we conclude that the first derivative u′(x) is continuous at the jump and only u′′(x) has a
discontinuity, which according to eq. (2.47) is proportional to u(a) and to the discontinuity of
V (x). With u(a±) = limε→0 u(a± ε) the matching condition thus becomes

u(a+) = u(a−) and u′(a+) = u′(a−) , (2.49)

confirming the consistency of our assumption of u being continuous. Even more unrealistic
potentials like an infinitely high step for which finiteness of (2.48) requires

V (x) =

{

V0 for x < a

∞ for x > a
⇒ u(x) = 0 for x ≥ a , (2.50)

or δ-function potentials, for which (2.48) implies a discontinuity of u′

V (x) = Vcont. + Aδ(a) ⇒
{

u(a+) − u(a−) = 0

u′(a+) − u′(a−) = A 2m
~2 u(a)

, (2.51)
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are used for simple and instructive toy models.

2.2.2 Bound states and the potential well

For a bound state in a potential well of the form shown in figure 2.3 we need

V0 < E < 0. (2.52)

The stationary Schrödinger equation takes the form

d2

dx2u(x) + k2u(x) = 0, k2 = 2m
~2 E = −κ2 for |x| > a

d2

dx2u(x) +K2u(x) = 0, K2 = 2m
~2 (E − V0) for |x| < a

(2.53)

in the different sectors and the respective ansätze for the general solution read

uI = A1e
κx + B1e

−κx for x ≤ −a,
uII = A2e

iKx + B2e
−iKx for |x| < a, (2.54)

uIII = A3e
κx + B3e

−κx for x ≥ a.

For x → ±∞ normalizability of the wave function implies B1 = A3 = 0. Continuity of the
wave function and of its derivative at x = ±a implies the four matching conditions

uI(−a) = uII(−a) uII(a) = uIII(a) (2.55)

u′I(−a) = u′II(−a) u′II(a) = u′III(a) (2.56)

or

u(−a) = A1e
−κa = A2e

−iKa +B2e
iKa, u(a) = A2e

iKa +B2e
−iKa = B3e

−κa, (2.57)

1
iK
u′(−a) = κ

iK
A1e

−κa = A2e
−iKa −B2e

iKa, 1
iK
u′(a) = A2e

iKa −B2e
−iKa = iκ

K
B3e

−κa. (2.58)

These are 4 homogeneous equations for 4 variables, which generically imply that all coefficients
vanish A1 = A2 = B2 = B3 = 0. Bound states (i.e. normalizable energy eigenfunctions)
therefore only exist if the equations become linearly dependent, i.e. if the determinant of the
4 × 4 coefficient matrix vanishes. This condition determines the energy eigenvalues because κ
and K are functions of the variable E.

Since the potential is parity invariant we can simplify the calculation considerably by using
that the eigenfunctions are either even or odd, i.e. B2 = ±A2 and B3 = ±A1, respectively.
With A2 = B2 = 1

2
A′

2 for ueven and B2 = −A2 = i
2
B′

2 for uodd the simplified ansatz becomes

ueven = A′
2 · cos(Kx) for 0 < x < a,

ueven = B3 · e−κx for a < x
(2.59)

and
uodd = B′

2 · sin(Kx) for 0 < x < a,
uodd = B3 · e−κx for a < x.

(2.60)

In both cases it is sufficient to impose the matching conditions for x ≥ 0, i.e. at x = a. For the
even solutions continuity of u and u′ implies

A′
2 · cos(Ka) = B3 · e−κa (2.61)

−KA′
2 · sin(Ka) = −κB3 · e−κa (2.62)
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Figure 2.4: Graphical solution of the bound state energy equation for even eigenfunctions.

Taking the quotient we observe that the two equations are linearly dependent if

tan(Ka) =
κ

K
for ueven. (2.63)

For the odd case u(a) = B′
2 sin(Ka) = B3 · e−κa and u′(a) = KB′

2 cos(Ka) = −κB3 · e−κa imply

cot(Ka) = − κ

K
for uodd. (2.64)

The respective wave functions are

u(x) = A1 ·







eκx x < −a,
e−κa · cos(Kx)

cos(Ka)
|x| ≤ a,

e−κx x > a

(2.65)

and

u(x) = A1 ·







eκx x < −a,
e−κa · sin(Kx)

sin(Ka)
|x| ≤ a,

−e−κx x > a

(2.66)

with |A1| determined by the normalization integral
∫

|u|2 = 1.

The transcendental equations (2.63) and (2.64), which determine the energy levels, cannot
be solved explicitly. The key observation that enables a simple graphical solution is that
K2 + κ2 = −2mV0/~

2 is independent of E. In the (K,κ)–plane the solutions to the above
equations therefore correspond to the intersection points of the graphs of these equations with
a circle of radius

√

−2mV0/~2. It is convenient to set ξ = Ka and η = κa, hence

η2 + ξ2 = (κa)2 + (Ka)2 = −2mE

~2
a2 +

2m

~2
(E − V0)a

2 = a2 2m

~2
|V0| = R2 (2.67)
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The transcendental equations become

η =

{

ξ tan(ξ) for ueven

−ξ cot(ξ) for uodd
(2.68)

where only values in the first quadrant ξ, η > 0 are relevant because K and κ were defined as
positive square roots. Figure 2.4 shows the graph of the equations for even wave functions. We
observe that there is always at least one solution with 0 < ξ < π/2. The graph of the equation
for the odd solutions looks similar with the branches of − cot ξ shifted by π/2 as compared to
the branches of tan ξ, so that indeed even and odd solutions alternate with increasing energy
levels in accord with the oscillation theorem. An odd solution only exists if R > π/2 and for
large R the number of bound states is approximately 2

π
a
~

√
−2mV0. The energy eigenvalues are

related by

En = −(~κn)
2

2m
= −(~aηn)

2

2m
= V0 +

(~aξn)
2

2m
(2.69)

to the common solutions (ξn, ηn) of equations (2.67) and (2.68).

2.2.3 Scattering and the tunneling effect

We now turn to the considation of free electrons, i.e. to electrons whose energy exceeds the
value of the potential at infinity. In this situation there are no normalizable energy eigenstates
and a realistic description would have to work with wave packets that are superpositions of
plane waves of different energies. A typical experimental situation is a accelerator where a
beam of particles hits an interaction region, with particles scattered into different directions
(for the time being we have to ignore the possibility of particle creation or annihilation).

In our one-dimensional situation the particles are either reflected or transmitted by their
interaction with a localized potential. If we consider a stationary situation with an infinitely
large experminent this means, however, that we do not need a normalizable wave function
because the total number of particles involved is infinite, with a certain number coming out
of the electron source per unit time. Therefore we can work with a finite and for x → ±∞
constant current density, which describes the flow or particles. According to the correspondence
p = mv = ~

i
∂x we expect that the wave functions

uright = Aeikx and uleft = Be−ikx (2.70)

describe right-moving and left-moving electron rays with velocities v = ±~k/m, respectively.
Indeed, inserting into the formula (2.13) for the probability current density we find

jright =
~k

m
|A|2 and jleft = −~k

m
|B|2. (2.71)

As a concrete example we again consider the square potential. For V0 > 0 we have a potential
barrier and for V0 < 0 a potential well. Classically all electrons would be transmitted as long
as E > V0 and all electrons would be reflected by the potential barrier if E < V0. Quantum
mechanically we generically expect to find a combination of reflection and transmission, like
in optics. For a high barrier V0 > E we will find an exponentially suppressed but non-zero
probability for electrons to be able to penetrate the classically forbidden region, which is called
tunneling effect. Our ansatz for the stationary wave function in the potential of figure 2.5 is
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Figure 2.5: Potential barrier

uI = Aeikx +Be−ikx for x < 0 with k =
√

2mE
~2 , (2.72)

uII =











Fe−κx +Ge+κx for E < V0 with κ =
√

2m(V0−E)
~2 ,

F eiKx +Ge−iKx for E > V0 with K =
√

2m(E−V0)
~2 = iκ,

(2.73)

uIII = Ceikx +De−ikx for x > L. (2.74)

Since for tunneling E < V0 and for the case E > V0 the ansätze in the interaction region II as
well as the resulting continuity equations are formally related by K = iκ, both cases can be
treated in a single calculation. Moreover, the ansatz for E > V0 covers scattering at a potential
barrier V0 > 0 as well as the scattering at a potential well V0 < 0.

Considering the physical situation of an electron source at x ≪ 0 and detectors measuring
the reflected and the transmitted particles we observe that A is the amplitude for the incoming
ray, B is the amplitude for reflection, C is the amplitude for transmission and we have to set
D = 0 because there is no electron source to the right of the interaction region. We define the
two quantities

reflection coefficient R =

∣

∣

∣

∣

jref
jin

∣

∣

∣

∣

, transmission coefficient T =

∣

∣

∣

∣

jtrans
jin

∣

∣

∣

∣

, (2.75)

where the reflection coefficient R is defined as the ratio of the intensity of the reflected current
over the intensity of the incident current and conservation of the total number of electrons
implies T = 1 − R. Since parity symmetry of the Hamiltonian cannot be used to restrict
the scattering ansatz to even or odd wave functions, we have shifted the interaction region by
a = L/2 as compared to figure 2.3. This slightly simplifies some of the intermediate expressions,
but of course does not change any of the observables like R and T . Using formulas (2.71) for
the currents we find

R =
|B|2
|A|2 and T =

|C|2
|A|2 , (2.76)

where we used kIII/kI = vIII/vI = 1. In situations where the potential of the electron source
and the potential of the detector differ the ratio of the velocities has to be taken into account.
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For E > V0 continuity of u and u′ at x = 0,

A+B = F +G, (2.77)

ik(A−B) = iK(F −G), (2.78)

and at x = L,

FeiKL +Ge−iKL = CeikL, (2.79)

iK(FeiKL −Ge−iKL) = ikCeikL, (2.80)

can now be used to eliminate F and G

2F = A(1 + k
K

) +B(1 − k
K

) = ei(k−K)LC(1 + k
K

), (2.81)

2G = A(1 − k
K

) +B(1 + k
K

) = ei(k+K)LC(1 − k
K

). (2.82)

From these equations we can eliminate either C or B,

e2iKL
(

A(K2 − k2) +B(K − k)2
)

= A(K2 − k2) +B(K + k)2 (2.83)

A
(

(K + k)2 − (K − k)2
)

= 4kKA = CeikL
(

e−iKL(K + k)2 − eiKL(K − k)2
)

(2.84)

and solve for the ratios of amplitudes

B

A
=

(k2 −K2)(e2iKL − 1)

e2iKL(k −K)2 − (k +K)2
(2.85)

and
C

A
=

−4kKe−ikLeiKL

e2iKL(k −K)2 − (k +K)2
. (2.86)

Using (e2iKL− 1)(e−2iKL− 1) = 2− e2iKL− e−2iKL = 2(1− cos 2Kl) = 4 sin2KL we determine
the reflection coefficient

R =
|B|2
|A|2 =

[

1 +
4k2K2

(k2 −K2)2sin2(KL)

]−1

=

[

1 +
4E(E − V0)

V 2
0 sin

2(KL)

]−1

(2.87)

and the transmission coefficient

T =
|C|2
|A|2 =

[

1 +
(k2 −K2)2sin2(KL)

4k2K2

]−1

=

[

1 +
V 2

0 sin
2(KL)

4E(E − V0)

]−1

. (2.88)

In general the transmission coefficient T is less than 1, in contrast to classical mechanics, where
the particle would always be transmitted. There are two cases with perfect transmission T = 1:
The first is of course when V0 = 0 and the second is a resonance phenomenon that occurs when
KL = nπ for n = 1, 2, . . ., i.e. when sinKL = 0 so that the length L of the interaction
region is a half-integral multiple of the wavelength of the electrons. Conservation of probability
R + T = 1 holds since 1

1+X
+ 1

1+1/X
= 1.

As we mentioned above the case of a high barrier V0 > E is related to the formulas for
E > V0 by analytic continuation K = iκ. For the ratios B/A and C/A we hence obtain

B

A
=

(k2 + κ2)(e2κL − 1)

e2κL(k + iκ)2 − (k − iκ)2
, (2.89)
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C

A
=

4ikκe−ikLeκL

e2κL(k + iκ)2 − (k − iκ)2
, (2.90)

which leads to the reflection and transmission coefficients

R =
|B|2
|A|2 =

[

1 +
4k2κ2

(k2 + κ2)2sinh2(κL)

]−1

=

[

1 +
4E(V0 − E)

V 2
0 sinh

2(κL)

]−1

, (2.91)

T =
|C|2
|A|2 =

[

1 +
(k2 + κ2)2sinh2(κL)

4k2κ2

]−1

=

[

1 +
V 2

0 sinh
2(κL)

4E(V0 − E)

]−1

. (2.92)

For E < V0 neither perfect transmission nor perfect reflection is possible. For large L the
transmission probability falls off exponentially

T −→ 16E(V0 − E)

V 2
0

e−2κL for L≫ 1/κ. (2.93)

The phenomenon that a particle has a positive probability to penetrate a classically forbidden
potential barrier is called tunneling effect.

2.2.4 Transfer matrix and scattering matrix

The wave functions ui(x) = Aie
ikix+Bie

−ikix in domains of constant potential are parametrized
by the two amplitudes Ai and Bi. The effect of an interaction region can therefore be regarded
as a linear map expressing the amplitudes on one side in terms of the amplitudes on the other
side. This map is called transfer matrix. For the potential in figure 2.5 and with our ansatz

uI = Aeikx +Be−ikx, uII =

{

Fe−κx +Ge+κx

FeiKx +Ge−iKx
, uIII = Ceikx +De−ikx (2.94)

with
k =

√
2mE, κ =

√

2m(V0 − E), K =
√

2m(E − V0) = iκ (2.95)

the matching conditions

A+B = F +G ik(A−B) = iK(F −G) (2.96)

can be solved for A and B,

(

A
B

)

= P

(

F
G

)

with P =
1

2

(

1 + K
k

1 − K
k

1 − K
k

1 + K
k

)

. (2.97)

At x = L we find

(

F
G

)

= Q

(

C
D

)

with Q =
1

2

(

(1 + k
K

)ei(k−K)L (1 − k
K

)e−i(k+K)L

(1 − k
K

)ei(k+K)L (1 + k
K

)e−i(k−K)L

)

. (2.98)

Transfer matrix M = PQ now relates the amplitudes for x→ ±∞ as

(

A
B

)

= M

(

C
D

)

, (2.99)
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where A and D are the amplitudes for incoming rays while B and C are the amplitudes for
outgoing particles. Because of the causal structure it appears natural to express the outgoing
amplitudes in terms of the incoming ones,

(

B
C

)

= S

(

A
D

)

. (2.100)

This equation defines the scattering matrix, or S-matrix, which can be obtained from the
transfer matrix by solving the linear equations A = M11C +M12D and B = M21C +M22D for
B(A,D) and C(A,D). We thus find

(

S11 = M21

M11
S12 = M22 − M12M21

M11

S21 = 1
M11

S22 = −M12

M11

)

(2.101)

For D = 0 we recover the transmission and reflection coefficients as

T =

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2

= |S21|2 =
1

|M11|2
, R =

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

= |S11|2 =
|M21|2
|M11|2

(2.102)

(we can think of the index “1´´ as left and of “2” as right; hence T = S21 describes scattering
from left to right and R = S11 describes scattering back to the left).

Conservation of the probability current implies |B|2 + |C|2 = |A|2 + |D|2, i.e. the outgoing
current of particles is equal to the incoming current. This can be written as

(A∗ D∗)

(

A
D

)

= |A|2 + |D|2 = |B|2 + |C|2 = (B∗ C∗)

(

B
C

)

= (A∗ D∗)S† S

(

A
D

)

, (2.103)

where S† = (S∗)T is the Hermitian conjugate matrix of S. Since this equality has to hold for
arbitrary complex numbers A and D we conclude that the S-matrix has to be unitary S†S = 1
or S† = S−1. We thus recover our previous result R + T = 1 as the 11-component of the
unitarity condition (S†S)11 = S∗

11S11 + S∗
21S21 = 1.

2.3 The harmonic oscillator

A very important and also interesting potential is the harmonic oscillator potential

V (x) =
mω2

0

2
x2, (2.104)

which is the potential of a particle with mass m which is attracted to a fixed center by a force
proportional to the displacement from that center. The harmonic oscillator is therefore the
prototype for systems in which there exist small vibrations about a point of stable equilibrium.
We will only solve the one-dimensional problem, but the generalization for three dimensions is
trivial because |~x|2 = x2

1 + x2
2 + x2

3 so that H = Hx +Hy +Hz. Thus we can make a separation
ansatz u(x, y, z) = u1(x)u2(y)u3(z) and solve every equation separately in one dimension. The
time independent Schrödinger equation we want to solve is

[

− ~
2

2m

d2

dx2
+
mω2

0

2
x2

]

u(x) = Eu(x). (2.105)
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For convenience we introduce the dimensionless variables

ξ =

√

mω0

~
x, (2.106)

λ =
2E

~ω0

. (2.107)

Then the Schrödinger equation reads

[

∂2

∂ξ2
− ξ2 + λ

]

u(ξ) = 0 (2.108)

Since ∂2
ξ e

± 1
2
ξ2 = (ξ2 ± 1)e±

1
2
ξ2 the asymptotic behavior of the solution for ξ → ±∞ is

u(ξ) ⋍ e−
1
2
ξ2 , (2.109)

where we discarded the case of exponentential growth since we need normalizability. We hence
make the ansatz

u(ξ) = v(ξ)e−
1
2
ξ2 (2.110)

Inserting into equation (2.108) gives the confluent hypergeometric differential equation:

[

∂2

∂ξ2
− 2ξ

∂

∂ξ
+ λ− 1

]

v(ξ) = 0 (2.111)

This differential equation is often called Hermite equation and can be solved by using the
power series ansatz

v(ξ) =
∞
∑

ν=0

aνξ
ν . (2.112)

The harmonic oscillator potential is symmetric, therefore the eigenfunctions u(ξ) of the
Schrödinger equation must have a definite parity. We can therefore consider separately the
even and the odd states.

For the even states we have u(−ξ) = u(ξ) and therefore v(−ξ) = v(ξ). So our power series
ansatz is

v(ξ) =
∞
∑

ν=0

aνξ
2ν (2.113)

and contains only even powers of ξ. Substituting (2.113) into the the Hermite equation (2.111),
we find that

∞
∑

ν=0

[2(ν + 1)(2ν + 1)aν+1 + (λ− 1 − 4ν)aν ]ξ
2ν = 0. (2.114)

This equation will be satisfied provided the coefficient of each power of ξ separately vanishes,
so that we obtain the recursion relation

aν+1 =
4ν + 1 − λ

2(ν + 1)(2ν + 1)
aν . (2.115)
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Thus, given a0 6= 0, all the coefficients aν can be determined successively by using the above
equation. We have therefore obtained a series representation of the even solution (2.113) of the
Hermite equation. If this series does not terminate, we see from (2.115) that for large ν

aν+1

aν
∼ 1

ν
.

This ratio is the same as that of the series for ξ2pexp(ξ2), where p has a finite value. So we
find that the wave function u(ξ) has an asymptotic behavior of the form

u(ξ) ∼ ξ2peξ
2/2 for |ξ| → ∞ (2.116)

which is unacceptable in a physical theory! The only way to avoid this divergence is to require
that the series terminates, which means that v(ξ) must be a polynomial in the variable ξ2.
Using the relation (2.115) we see, that the series only terminates, when λ takes on the discrete
values

λ = 4N + 1, N = 0, 1, 2, ... . (2.117)

To each value N = 0,1,2,..., of N will then correspond an even function v(ξ) which is a
polynomial of order 2N in ξ, and an even, physically acceptable, wave function u(ξ) which is
given by (2.113). In a similar way, we obtain the odd states, by using the power series:

u(ξ) =
∞
∑

ν=0

bνξ
2ν+1 (2.118)

which contains only odd powers of ξ. We again substitute the ansatz into the Hermite equation
and obtain a recursion relation for the coefficients bν . We now see, that the series terminates
for the discrete values

λ = 4N + 3, N = 0, 1, 2, ... .

To each value N = 0,1,2,..., of N will then correspond an odd function v(ξ) which is a
polynomial of order 2N+1 in ξ, and an odd, physically acceptable wave function u(ξ) given
by (2.113). Putting together the results we see that the eigenvalue λ must take on one of the
discrete values

λ = 2n+ 1, n = 0, 1, 2, ... (2.119)

where the quantum number n is a positive integer or zero. Inserting in (2.107) we therefore find
that the energy spectrum of the linear harmonic oscillator is given by

En =

(

n+
1

2

)

~ω0, n = 0, 1, 2, ... . (2.120)

We see that, in contrast to classical mechanics, the quantum mechanical energy spectrum
of the linear harmonic oscillator consists of an infinite sequence of discrete levels! The eigen-
values are non-degenerate since for each value of the quantum number n there exists only one
eigenfunction (apart from an arbitrary multiplicative constant) and the energy of the lowest
state (the zero-point-energy) is equal ~ω/2, which is clearly non-zero!
Since the wave functions vn(ξ) are solutions of the Hermite equation and polynomials of the
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Figure 2.6: Hermite polynomials

order n we will henceforth call them Hermite polynomials Hn(ξ). The Hermite polynomials are
defined as:

Hn(ξ) = (−1)neξ
2 dne−ξ

2

dξn
(2.121)

= eξ
2/2

(

ξ − d

dξ

)n

e−ξ
2/2, (2.122)

which leads to the explicit formula

H2n =
n
∑

k=0

(−1)n−k
(2n)!(2ξ)2k

(n− k)!(2k)!
, H2n+1 = 2ξ

n
∑

k=0

(−1)k
(2n+ 1)!(2ξ)2n−2k

k!(2n− 2k + 1)!
(2.123)

for n ≥ 0. The first few polynomials are

H0(ξ) = 1, (2.124)

H1(ξ) = 2ξ, (2.125)

H2(ξ) = 4ξ2 − 2, (2.126)

H3(ξ) = 8ξ3 − 12ξ, (2.127)

H4(ξ) = 16ξ4 − 48ξ2 + 12, (2.128)

as shown in figure 2.6.

Another, equivalent, definition of the Hermite polynomials Hn(ξ) involves the use of a
generating function G(ξ, s):

G(ξ, s) = e−s
2+2sξ

=
∞
∑

n=0

Hn(ξ)

n!
sn. (2.129)

These relations mean that if the function exp(−s2 + 2sξ) is expanded in a power series in s,
the coefficients of successive powers of s are just 1/n! times the Hermite polynomials Hn(ξ).
Reinserting the values from the beginning gives to each of the discrete eigenvalues En one, and
only one, physically acceptable eigenfunction, namely

un(x) = Nne
−α2x2/2Hn(αx) where α =

(mω

~

)1/2

. (2.130)
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The quantity Nn is a constant which (apart from an arbitrary phase factor) can be determined
by requiring that the wave function u(x) be normalized to unity. That is

∫

|un(x)|2dx =
|Nn|2
α

∫

e−ξ
2

H2
n(ξ)dξ = 1. (2.131)

To calculate the normalization constant we use two generating functions of the type (2.129)

G(ξ, s) = e−s
2+2sξ

=
∞
∑

n=0

Hn(ξ)

n!
sn.

and

G(ξ, t) = e−t
2+2tξ

=
∞
∑

m=0

Hm(ξ)

m!
tm.

With these two we may write

∫

e−ξ
2

G(ξ, s)G(ξ, t)dξ =
∞
∑

n=0

∞
∑

m=0

sntm

n!m!

∫

e−ξ
2

Hn(ξ)Hm(ξ)dξ (2.132)

Using the fact that
∫

e−x
2

dx =
√
π (2.133)

We can calculate the left-hand side of (2.132) to
∫

e−ξ
2

e−s
2+2sξe−t

2+2tξdξ = e2st

∫

e−(ξ−s−t)2d(ξ − s− t)

=
√
πe2st

=
√
π

∞
∑

n=0

(2st)n

n!
(2.134)

Equating the coefficients of equal powers of s and t on the right hand sides of (2.129) and
(2.134), we find that

∫

e−ξ
2

H2
n(ξ)dξ =

√
π2nn! (2.135)

and
∫

e−ξ
2

Hn(ξ)Hm(ξ)dξ = 0 (2.136)

From (2.131) and (2.135) we see that apart from an arbitrary complex multiplicative factor of
modulus one the normalization constant Nn is given by

Nn =

(

α√
π2nn!

)1/2

. (2.137)

and hence the normalized linear harmonic oscillator eigenfunctions are given by

un(x) =

(

α√
π2nn!

)1/2

e−α
2x2/2Hn(αx). (2.138)
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Also these eigenfunctions are orthogonal, so that we can say, the eigenfunctions of the linear
harmonic oscillator build a set of orthonormal functions

∫

u∗n(x)um(x)dx = δnm. (2.139)

A clear and detailed description of the harmonic oscillator can be found in [Bransden,Joachain].

2.4 Summary� The Schrödinger equation : The Schrödinger equation is the equation of propagation
for a wave function ψ(~x, t). It is a homogenous and linear differential equation of the first
order with respect to time and second order with respect to space. The general form of
the Schrödinger equation is: Hψ(~x, t) = i~ ∂

∂t
ψ(~x, t) where H is the so called Hamilton

operator.� Probability current density: Via time derivation of the probability density |ψ(~x, t)|2
we defined the probability current density ~j(~x, t) = ~

2im
(Ψ∗~∇Ψ− (~∇Ψ∗)Ψ) which satisfies

a continuity equation together with the probability density. With usage of the probability
current density we later also defined the

– Transmission coefficient T =
∣

∣

∣

jtrans

jinc

∣

∣

∣
, and the

– Reflection coefficient R =
∣

∣

∣

jref

jinc

∣

∣

∣� The free one-dimensional wave packet: One solution of the free one-dimensional
Schrödinger equation is a plane monochromatic wave. In order to be able to normal-
ize and localize the wave/particle we built a wave packet which is a continuous super-
position of plane waves. As an example we used a Gaussian wave packet: Φ(x, t) =

1√
2π

∫

dkei(kx−
~k2

2m
t)α ·e−(k−k0)2·d2 In the following calculations we discovered, that the wave

packet ”delocalizes” with time.� The Heisenberg uncertainty relation: As a direct result of the solution of the free
one-dimensional Schrödinger equation we found that the product of position uncertainty
and momentum uncertainty is given by: ∆x∆p ≥ ~

2
where the uncertainties follow the

definition (∆A)2 = 〈(A− 〈A〉)2〉 and 〈A〉 is the mean value of a.� The potential well: For the negative potential −V0 we differentiated two cases: V0 <
E < 0, so called boundary states, and E > 0, so called scattering states. Solving the
Schrödinger equation for the boundary states and using the continuity conditions led to
discrete Energy eigenvalues and eigenstates. In case of scattering states we introduced
the reflection coefficient and the transmission coefficient. Calculating these we came to
the interesting result that unlike classical mechanics a particle has a certain probability
to be reflected from the well, even if its energy is greater than zero!� The potential barrier: Again we differentiated two cases (now for the potential V0 > 0):
0 ≤ E ≤ V0 and V0 < E. In both cases we calculated R and T. We came to the result,
that like for the potential well there is a certain probability for the particle to be reflected
even if V0 < E and most stunning there is a probability for the particle to be transmitted
even for 0 ≤ E ≤ V0. The latter we call tunnel effect.



CHAPTER 2. WAVE MECHANICS AND THE SCHRÖDINGER EQUATION 35� The harmonic oscillator: We solved the Schrödinger equation for the harmonic oscil-

lator potential V (x) =
mω2

0

2
x2. The calculation resulted in a discrete spectrum of energy

eigenvalues: En =
(

n+ 1
2

)

~ω0, n = 0, 1, 2, ... and to each eigenvalue an eigenfunction

un(x) =
(

α√
π2nn!

)1/2

e−α
2x2/2Hn(αx). An interesting fact is that the zero-point-energy is

~ω/2 and thus non zero!� Further reading: For more detailed information on wave mechanics and the Schrödinger
equation we suggest [Bransden,Joachain] and [Messiah]. Also for a very intuitive expla-
nation of the uncertainty principle we recommend [Feynman], volume 3, chapter one.


