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Chapter 1

Introduction

As it became clear that general relativity and Maxwell theory are both intimately tied to the

concept of local symmetries, a unified description of the forces of nature became conceivable.

In general relativity (GR), a local choice of coordinates has to be made and the action is a

local functional of the metric and of the matter fields that is independent of this choice. Elec-

trodynamics (ED) can be described very efficiently by a vector potential Aµ = (φ, ~A), with the

field strengths Fµν = ∂µAν−∂νAµ being invariant under gauge transformations δAµ = ∂µΛ(xµ)

[H. Weyl, 1918]. While classical physics can be formulated in terms of the field strengths,

a local description of the coupling to quantum mechanical wave functions requires the gauge

potentials, as is illustated by the Aharonov–Bohm effect [ah59].

A promising framework for unification was suggested by Kaluza and Klein [ka21]: They

proposed that space-time is 5-dimensional, but with only 4 approximately flat directions and

with one direction curled up on a small circle. Then the off-diagonal entry of the metric

Aµ := g4µ transforms as a vector from the 4-dimensional point of view and serves as the gauge

potential. It is still unknown, however, how the dynamics of the gravitational field generates

the vacuum expectation value (VEV) for the metric. In the 20s it was not even possible to

pose this question within any proper framework, which certainly has to incorporate a quantum

mechanical treatment of the gravitational interactions.

After a long development of quantum field theory, techniques for a perturbative analysis

of quantum gravity became available in the 60s [fe63, De65]. At about the same time the

standard model of strong and electroweak particle interations, an SU3×SU2×U1 gauge theory

that is spontaneously broken to SU3 × U1 below 100GeV , was constructed. This led to the

discovery of asymptotic freedom [co73] of QCD and – a decade later – to the detection of the

W and Z bosons, which mediate weak interactions. Attempts at a group theoretical ‘grand

unification’ of the standard model by a gauge theory with SU5 [ge74] or even larger gauge

groups [sl81] produced surprisingly good predictions for the ratio of the W and Z masses and,
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at the same time, lead to a unification scale of 1014 − 1016GeV , far above the weak (Fermi)

scale of 300GeV . Since quantum gravity is bound to become important at the Planck mass1

MPl =
√
~c/GN = 1.22 × 1019GeV/c2, this may be regarded as an indication that gravity

should no longer be ignored in particle physics.

It turned out that a perturbative quantization of gravity is spoiled by non-renormalizability,

i.e. an infinite number of divergent quantum corrections that cannot be controlled by sym-

metries. An important example of such a correction is the one that modifies the cosmological

constant Λ (the energy density of the vacuum becomes observable in gravitational interactions).

The experimental bound for the physical value is best characterized by the tiny dimensionless

ratio |Λ|/M2
Pl < 10−121 [data].2 It is clear that such a tiny quantity should be explained by

a symmetry, the best candidate for which is supersymmetry (SUSY) [WE83]: Note that the

energy of a harmonic oscillator is E = 1
2
ω(a†a±aa†) = ω(a†a± 1

2
) for excitation modes that are

quantized according to bosonic/fermionic statistics a†a∓ aa† = 1. The zero point energies are,

therefore, of equal size and opposite sign. The energy operators for second quantized free fields

consist of an infinite sum of such oscillator terms. In order to have a cancellation of zero point

energies we should thus have an equal number of bosonic and fermionic degrees of freedom and

a symmetry that controlls the cancellation when interactions are turned on. Due to the spin

statistics theorem [ST64] a physical symmetry that transforms commuting into anti-commuting

fields should be in a spin 1/2 representation of the Lorentz group and should be implemented

by an anticommuting operator in Hilbert space.

Because the anti-commutator of two SUSY transformations generates translations, the lo-

cal (or gauged) version or supersymmetry automatically contains gravity and is hence called

supergravity (SUGRA). In the late 70s and early 80s it was hoped that SUGRA might cure the

divergences of quantum gravity. This also lead to a revival of the ideas of Kaluza and Klein,

but now with a higher dimensional compactification space in order to be able to incorporate

the whole standard model of particle interactions into a (super)geometrical picture. It was

shown that the standard model can only be obtained from at least 11 dimensions, which, at

the same time, is the maximal dimension allowed for supergravity (a Weyl fermion has 2d/2−1

components in d (even) dimensions while a massless vector field has d − 2 transversal degrees

of freedom; this leads to a mismatch for d > 11). But it is hard to get chiral fermions by

starting in an odd number of dimensions [ba87]. The alternative of adding gauge symmetries

to a 10-dimensional theory by hand goes against the original spirit of the ideas of Kaluza and

Klein. Even worse, it turned out that SUGRA could not solve the problem with divergences.

1 In cgs units MPl = 2.2× 10−5g; the corresponding length scale is
√
~GN/c3 = 1.6× 10−33cm.

2 The experimental bound for the photon mass is mγ < 3 × 10−33MeV , so that electromagnetic gauge
invariance appears to be an exact symmetry of nature.
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Fig. 1: g = 2 world sheet and some corresponding 2-loop Feynman graphs.
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1.1 String unification

String unification apparently works in a rather different way: Here the fundamental object is a

thread or a loop in space-time which, during time evolution, sweeps out a surface that is called

world sheet (in analogy to the world line of a point particle). The dynamics is described by an

action that is proportional to the area of that surface, and hence in purely geometrical terms.

Particles are oscillation modes of the string, and interactions occur by joining and splitting of

string configurations, as is shown in Fig. 1. This has two important consequences:

• There is no interaction point (the apparent splitting point changes under Lorentz trans-

formations), which avoids the UV divergences of second quantized point particle theory.

• There is a unique geometrical interaction, which unifies an a priory infinite number of

independent couplings among different fields.

Alltogether, string theory leads to a unification of interactions and to a unification of particles.

From a more modern point of view we may think of the world sheet as an independent

two-dimensional space with local coordinates σm. The string coordinate functions Xµ(σ) are

quantum fields on that space and describe its embedding into a target space, which may itself

be a topologically non-trivial manifold with local coordinates Xµ. The geometrical description

of the action ensures that is can be constructed in a coordinate invariant way as a sum over

terms that are defined via local coordinates. For historical reasons such a quantum field theory

is called a σσσ model. Unfortunately, there are two big problems with this approach:

• Scattering amplitudes are only defined as an infinite sum over different world sheet topolo-

gies, i.e. we do not have a non-perturbative definition of string theory. The sum over

topologies may be badly divergent.

• To define a string theory we need to choose some fixed background target space geometry

(or, in a more abstract description, a conformal field theory). Although different choices of

this background should lead to equivalent physics, this is not manifest in the construction.

It may or may not be the case that some more elaborate version of string field theory [zw93],

which is sometimes referred to by the name ‘third quantization’, will eventually solve this

problem. At present it is not at all clear what string theory really is.
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In any case, we do have a well-defined prescription for constructing a finite perturbative

expansion of scattering amplitudes for the particles that effectively describe the physics of a

string model at large distances (i.e. distances larger than 10−33cm). This is done in terms of

2-dimensional conformally invariant quantum field theories and a lot has been learned about

how the properties of these world sheet models are related to the resulting space-time physics

that we can proble in accelerator experiments or astrophysical observations. An incomplete

dictionary is compiled at this point for later reference:

Space-time ←→ world sheet

Einstein equations ←→ conformal invariance

gauge invariance ←→ current algebra (Kac–Moody)

anomaly cancellation ←→ modular invariance

N = 1 supergravity ←→ N = 2 supersymmetry

space-time geometry XXXz
���9particle spectrum

conformal field theory

In the last entry of this table it is indicated that a given background space-time geometry

leads to a well-defined conformal field theory on the world sheet. Note, however, that this

arrow cannot be reversed: In case of strong curvature quantum corrections can be large so that

classically different background geometries can lead to quantum mechanically equivalent string

theories (and therefore to the same space time physics).

It was already indicated above that we actually need a supersymmetric version of string

theory. This has two reasons: The bosonic string has a tachyonic excitation in its spectrum,

which indicates that it is unstable and which leads to IR divergences in perturbation theory.

Furthermore, we want to describe spin 1/2 particles like electrons or nucleons, and these are

missing in the excitation spectrum of the bosonic theory. This leads to the superstring whose

conformal anomaly vanishes in 10 dimensions, which is also consistent with an effective low

energy supergravity theory.

Actually, there seem to be 5 consistent supersymmetric string theories in 10 dimensions

[GR87]: For a flat target space the coordinate fields satisfy the 2D wave equation 2Xµ =

(∂1 + ∂0)(∂1 − ∂0)Xµ = 0, whose general solution is a superposition of left-moving and right-

moving excitations. In case of open superstrings, called type I, boundary conditions lead to

a reflection of these modes at the string ends (the type I theory also contains closed string

states in its spectrum since they can be formed by interactions, and its consistency requires to

consider unoriented world sheets and Chan–Paton factors for the gauge group SO32 [GR87]).

For oriented closed strings we have to make a choice in the relative chirality of the left and

right moving supersymmetries. This leads to the type IIA and type IIB theories with N = 2
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space-time SUSY, the latter of which is chiral. Moreover, in the closed string case we may

even chose to combine a left-moving bosonic string with a right-moving fermionic string. The

Dbos. − Dferm. = 26 − 10 = 16 single left-moving bosons cannot be interpreted as space-time

coordinates but rather show up as gauge degrees of freedom. This asymmetric construction

is strongly constrained by potential quantum violation of symmetries (space-time anomalies

coming from a violation of WS modular invariance), so that only two consistent choices exist:

The heterotic strings with gauge groups E8 × E8 and SO32, respectively.

An important phenomenon in string theory (and many of its building blocks and effective

theories) is duality, which means that different classical theories can lead to the identical quan-

tum mechanical models. The oldest example of this type – except for bosonization – is the

R ←→ 1/R duality of strings compactified on a circle with radius R. This duality exchanges

winding modes and oscillation modes and is a stringy phenomenon that has no analogue in

Kalaza–Klein compactification. Mirror symmetry is a generalization of this duality to certain

3-dimensional curved complex manifolds that can be used to construct more realistic mod-

els. In that case quantum mechanically equivalent backgrounds differ not only in size but also

in shape and even topology, which leads to exciting implications for both, mathematics and

physics [as94,mo95].

Quite recently, this duality business has even been extended to dualities among the above 5

different string theories, or rather their lower dimensional relatives which are continuously

connected to 10-dimensional theories by letting some compactification radii go to infinity

[as95, fe95, ka95, va95, wi95]. While most of these string-string dualities are still hypothet-

ical, they already survived a number on non-trivial tests [ka195] and they may well teach us

some important lessons towards understanding what string theory really is. There are attempts

to understand these dualities in terms of hypothetical 11- or 12-dimensional theories, called M

and F theory, respectively [wi196,va96,be396,ma96].

The present lecture notes on strings are largely based on the books by Green, Schwarz

and Witten [GR87] and by Lüst and Theisen [LU89]. There are many other good sources, like

the book by Kaku [KA88] and the lecture notes by Kiritsis [Ki97], which can be obtained via

internet. In particular I recommend the excellent books by Polchinski [PO98]. Most books on

string theory use the sign convention ηµν = diag(−,+,+,+) for the Minkowski space metric,

so that mass and momentum are related by m2 = −p2 (we use natural units ~ = c = 1).

This convention facilitates to keep equations consistent while performing the Wick rotation to

Euclidean space. We will, however, use the convention ηµν = diag(+,−,−,−), which is mostly

preferred in QFT textbooks, so that t = x0 = x0, which is somewhat nicer in the Hamilton

formalism.
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Fig. 2: Regge trajectories
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1.2 History of string theory

String theory was discovered in the late 60s as a model for hadron resonances, large numbers

of which were found with a spin–mass relation described by Regge trajectories J = α0 +m2α′,

as shown in Fig. 2. Renormalizable QFTs, however, were and are known only for spin J ∈
{0, 1

2
, 1}: Scalars interacting by exchange of a spin J particle, for example, have an amplitude

AJ(s, t) ∼ sJ

t−m2 where s = (p1 + p2)2, t = (p1 + p3)2 and u = (p1 + p4)2 are the Mandelstam

variables3 for scattering of two particles with momenta p1 and p2 to particles with outgoing

momenta −p3 and −p4, because there are J derivatives in the interaction term4 [GR87]. This

generated doubts that hadron resonances were really fundamental particles.

At that time analytical properties of the S-matrix, like the relation between s and t channel

amplitudes, were studied extensively, and the idea of duality was born [do68]. It states that

s and t channel contributions should be equal, instead of being added as in QFT (see Fig. 3).

This hypothesis had only marginal experimental support, but Veneziano [ve68] guessed an

amplitude with the desired property, namely A(s, t) + A(t, u) + A(u, s) with

A(s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)− α(t))
=

∫ 1

0

dz z−1−α(s)(1− z)−1−α(t), α(s) = α0 + α′s. (1.1)

It has exponentially soft UV behaviour, whereas for QFTs cross sections only decrease like

inverse powers, and it has infinitely many poles, i.e. describes infinitely many particles.

It turned out that this dynamics can be described by a string picture, with the observed

particles being the excitation modes of the string. The Nambu-Goto action for the string is

proportional to the area of the world sheet, just as the action for a relativistic point particle

is proportional to its proper time S[x] = −m
∫
ds = −m

∫
dτ
√
ẋ2, where τ parametrizes the

world line xµ(τ). From this geometrical picture of string interactions (see Fig. 1) duality is now

apparent. Furthermore, the UV behaviour of string amplitudes is exponentially soft because

there are no localizable interaction points on a smooth surface: The symmetries of the string

organize the contributions of infinitely many massive particles of high spin in such a way that

3 s/t/u is the total energy squared in the rest frame of the s/t/u chanel, and s+ t+ u =
∑
m2
i .

4 Loop amplitudes ∼
∫
dpnA2(p)/p4 are UV finite for J < 1 and have a potentially renormalizable logarith-

mic divergence for J = 1 in n = 4 dimensions.
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the sum of an infinite number of terms with polynomial growth is exponentially small, like in

the Taylor expansion of exp(−x).

In the early 70s QCD turned out to do better in describing hadron interactions5 (asymptotic

freedom in 1973, etc.). But Scherk and Schwarz showed that strings provide a promising theory

for quantum gravity [sc74]: There always is a massless spin 2 excitation – the graviton – and

there are no UV divergences, because there are no point-like interactions. The bad news,

however, was that, in light-cone quantization [go73], Lorentz invariance is broken in D 6= 26,

and that the intercept α0 turned out to be positive so that the squared mass of the ground

state is negative (tachyonic) and the theory is, at best, formulated in an unstable ‘vacuum’.

This inconsistency was eventually cured by fermions, which had already been introduced into

dual models by Ramond [ra71] and by Neveu and Schwarz [ne71] in order to describe fermionic

hadron resonances. A generalization of the Nambu action to the ‘spinning string’ [br76,de76]

was possible, however, only after some development of supersymmetry. Due to the additional

fermionic degrees of freedom on the world sheet the critical dimension of the spinning string

reduces to D = 10. But this model still is plagued by inconsistencies related to a tachyon,

which eventually was thrown out by the GSO projection [gl76]. The resulting spectrum of

states then turned out to be space-time supersymmetric, i.e. contains an equal number of

bosonic and fermionic degrees of freedom, which are related by an anticommuting symmetry.6

There is an alternative formulation, called the Green–Schwarz superstring [GR87], which is

manifestly space-time supersymmetric. We will, however, mainly consider the RNS model with

the manifest supersymmetry living on the world sheet.

After almost 10 years of underground development of string theory and many fruitless

efforts to find a viable model for SUGRA Kaluza–Klein unification it was time for the string

revolution, which came in 1984 with the discovery of the Green–Schwarz mechanism [gr84]:

In the ‘zero slope’ limit the superstring leads to a chiral 10-dimensional supergravity theory,

and anomaly cancellation fixes the gauge group almost uniquely. The Kaluza–Klein scenario

thus eventually obtained a solid basis, but this time including an (almost) unique additional

gauge group E8 × E8 (or SO32). As it turned out, however, the vacuum structure is not so

unique after compactification or when string theories are constructed directly in 4 dimensions.

There remain many open problems concerning the quantum mechanics that (hopefully) selects

a ground state resembling the observable universe (which includes a small cosmological term

after SUSY breaking). Moreover, it is still not at all clear what string theory really is.

5 ‘Color strings’ are, however, still in use for describing quark interaction at long distances; ‘cosmic strings’
could form from topological defects in spontaneous symmetry breaking. In both cases, the Nambu–Goto action
is only an approximation. We will only be interested in ‘fundamental’ strings.

6 It turned out that the GSO projection is not only possible but is mandatory in order to avoid global
anomalies at higher genus (this requirement is called ‘modular invariance’). Thus supersymmetry, and in
particular the presence of fermions, presumably is an unavoidable consequence of string unification.
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Chapter 2

The bosonic string

The Nambu–Goto action for the bosonic string is given by the area of the world sheet that

is embedded in some D-dimensional space. If the target space is itself a general manifold

with a metric Gµν(X) depending on local coordinates Xµ then the resulting theory is called a

(non-linear) σ-model. So we start with the action1

SN [X] = −T
∫
d2σ
√
− detG∗ with G∗mn := (X∗G)mn =

∂Xµ

∂σm
∂Xν

∂σn
Gµν(X), (2.1)

where σ0 and σ1 are local coordinates of the world sheet and the embedding is described by

D coordinate functions Xµ(σ). The induced metric G∗mn(σ) on the world sheet is the pull back

X∗G of the target space metric Gµν(X) to the parameter space of the embedded surface. The

string tension T is a constant with the dimension of an inverse length squared and the sign of

the action is chosen such that the kinetic energy will be positive for the space-like coordinates

X1, . . . , XD−1 of the target space (see below).

2.1 The Polyakov action

From the σ-model point of view another natural action for the string is

SP [X, g] = −T
2

∫
d2σ
√
−g gmn∂X

µ

∂σm
∂Xν

∂σn
Gµν . (2.2)

Although this action was already used in refs. [de76,br76] as the bosonic part of a supersym-

metric action for the spinning string, it usually goes under the name Polyakov, who emphasized

the role of the 2-dimensional geometry on the world sheet and showed how to quantize the string

1The area element spanned by the vectors ∂1X and ∂2X, which are tangential to target space, is given by

|∂1X| |∂2X| sin(∂1X, ∂2X) = |∂1X| |∂2X|
√

1−
(

∂1X·∂2X
|∂1X| |∂2X|

)2

=
√

det
(
∂X
∂σm ·

∂X
∂σn

)
, where sin(∂1X, ∂2X) de-

notes the sinus of the angle between the tangent vectors.
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in arbitrary dimensions [po81]. The two actions (2.1) and (2.2) are classically equivalent, as

they lead to the same equations of motion for the string world sheet. To see this we calcu-

late the variation of SP with respect to the metric, which by definition2 is proportional to the

energy–momentum tensor Tmn. Using δ(ln detM) = δ(tr lnM) = tr(M−1δM) we obtain

Tmn :=
2

T

1√
−g

δSP
δgmn

=
1

2
gmng

klG∗kl −G∗mn = 0. (2.3)

The equation of motion Tmn = 0 implies that the world sheet metric must be proportional

to the induced metric, i.e. gmn = ρG∗mn, where the factor ρ = 2/(gklG∗kl) drops out of all

equations and remains arbitrary. Since the Polyakov action does not depend on derivatives of

the metric, δSP
δgmn

= 0 is algebraic in gmn and we may insert it back into the action without

changing the equations of motion for the ‘matter fields’ Xµ. Taking determinants, we thus

observe classical equivalence. For quantization, however, SP is more convenient because the

world sheet scalars Xµ now have their usual kinetic terms rather than appearing in the square

root of a determinant.

Now we compute the total variation of the action to obtain the equations of motion3 for

minimal area surfaces (since Gµν depends on Xα(σm) we have ∂mGµν = ∂mX
α∂aGµν):

− 2
T
δSP =

∫
d2σ
√
−g
(
δXα∂αGµνDnX

µDnXν + 2Dn(δXα)DnXρGαρ − δgmnTmn
)

(2.4)

=

∫
d2σ
√
−g

(
δXα

(
∂αGµνDnX

µDnXν − 2D2XρGαρ − 2DnXρDnX
ν∂νGαρ)− δgmnTmn

)
Here we ignored surface terms which have to be taken into account for open strings (see below).

The last term ∂νGαρ is symmetrized in ν and ρ, hence all derivatives of the target space metric

combine to give the Christoffel symbol Γ̂µνα = 1
2
(∂µGαν + ∂νGαµ − ∂αGµν) of the target space

metric. Contracting δSP/δX
α with Gλα we thus arrive at the equations of motion

∆Xλ + gmn∂mX
µ∂nX

νΓ̂µν
λ = 0, (2.5)

∆ := D2 = gmnDmDn = gmn(∂m∂n−Γ̂mn
l∂l) is the Laplace–Beltrami operator for scalars on the

world sheet. (In a non-covariant evaluation of the variational derivative the Christoffel symbol

Γ̂mn
l of the world sheet metric comes from the term ∂m(

√
g gmn) = −√g gklΓ̂kln.) Note that

we recover the geodesic equation if we let the string collapse to a point, so that all derivatives

with respect to the space coordinate σ1 are zero, and use an affine parametrization g00 = 1 of

the resulting world line.
2 In string theory it is common to deviate from the usual normalization Tmn = 2√

−g
δS
δgmn , which is consistent

with the Noether formula T̂l
m = ∂lφ

i ∂L
∂∂mφi

− δml L for the canonical energy–momentum tensor in Minkowski

space. T̂nm = ηnlT̂l
m is in general neither symmetric nor gauge invariant and differs from the flat space limit

of Tmn by the Belinfante improvement term, which is a divergence of an antisymmetric tensor, plus terms that
are proportional to the equations of motion.

3 The variational derivatives of an action S =
∫
L(φ, ∂mφ) are defined by δS

δφi := ∂L
∂φi − ∂m

∂L
∂∂mφi

.
In curved space it is, however, often more efficient to compute the variation directly with covariant par-
tial integration in scalar densities using

∫
∂m1(

√
g Am2...mIB

m1...mI ) =
∫ √

g Dm1(Am2...mIB
m1...mI ) =∫ √

g (Dm1Am2...mIB
m1...mI +Am2...mIDm1B

m1...mI ).
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2.2 Local symmetries and gauge fixing

Before we try to solve the equations of motion we should have a look at the symmetries of the

Polyakov action LP . By construction the Nambu–Goto action is coordinate invariant in the

target space as well as on the world sheet. This carries over to LP , but for that action we have,

in addition, the Weyl invariance gmn(σ)→ e2Λ(σ) gmn(σ) on the world sheet. Together with two

coordinate functions σ̃m(σ) this gives a total of 3 functions of σm that we are free to choose.

The number of gauge degrees of freedom thus coincides with the degrees of freedom in the

world sheet metric. This suggests that we should be able to use a flat metric gmn = ηmn on

the world sheet, which indeed is true locally. To see this note that in two dimensions for any

two linearly independent vector fields there exists a coordinate system whose coordinate lines

coincide with the integral curves of the vector fields. Having a metric with Lorentzian signature,

there are two natural vector fields defined by the two independent null vectors at each point. In

a corresponding coordinate system with coordinates σ+ and σ− the metric has only off-diagonal

entries. With ∂± := ∂/∂σ± we thus have

g+− = g(∂+, ∂−) = 1
2
eϕ, g++ = g−− = 0. (2.6)

σ± are called light-cone coordinates. They are unique up to reparametrizations σ± → f±(σ±)

and we choose them in such a way that τ = σ0 := (σ+ + σ−)/2 is time-like and increasing with

the target-space time X0, whereas σ = σ1 := (σ+ − σ−)/2 is space-like. g+− > 0 is required

by g00 = g++ + 2g+− + g−− > 0 and g11 = g++ − 2g+− + g−− < 0. These equations, as well as

g01 = g++ − g−−, follow from ∂τ = ∂+ + ∂− and ∂σ = ∂+ − ∂−. We also find

σ± = τ ± σ, g+− = 2e−ϕ = 1/g+−, g+− = 1
4
(g00 − g11), (2.7)

∂± = 1
2
(∂τ ± ∂σ), gmn = eϕηmn, g±± = 1

4
(g00 ± 2g01 + g11). (2.8)

Now we can perform a Weyl rescaling to get a flat world sheet metric gmn = ηmn.

In light-cone coordinates we obtain very simple expressions for the Christoffel symbol, whose

only non-vanishing components are

Γ̂++
+ = ∂+ ln

√
−g = ∂+ϕ, Γ̂−−

− = ∂− ln
√
−g = ∂−ϕ, (2.9)

since Γ̂m++ = Γ̂m−− = 0. For the energy–momentum tensor (2.3) we find

T++ = −∂+X · ∂+X, T+− = 0, T−− = −∂−X · ∂−X. (2.10)

There also is a simple geometrical interpretation of the minimal area equation: Observing that

∂+X
µ and ∂−X

µ are the light-like tangent vectors defined by the coordinate lines σ+ and σ− it

is easy to see that (2.5) is nothing but D
∂−X

∂+X = 0, i.e. the covariant derivative (with respect
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to the Levi–Civita connection in target space) of ∂+X along ∂−X has to vanish. For a flat

target space Gµν = ηµν this reduces to the wave equation 2Xµ = ∂+∂−X
µ = 0, whose general

solution is a superposition of a left-moving mode Xµ
L(σ+) and a right-moving mode Xµ

R(σ−).

We now turn to global properties of our choice of parametrization. The basic assumption

for our local construction was that the metric has Minkowski signature. This cannot be true

globally for interacting strings, as can be seen for a ‘pant’ representing a smooth joining of two

closed strings: For such a world sheet there is always some region where the induced metric

is Euclidean. It is therefore convenient to restrict our attention to free strings with ‘generic’

world sheets and to postpone the study of the interacting case and the rigorous treatment of

global questions till after a Wick rotation to Euclidean space. In particular, we exclude world

sheets with closed time-like curves and degenerations of the light cone.

The choice of light cone coodinates still allows for reparametrizations of the coordinate lines

σ± → f±(σ±). This freedom can now be used to choose a parametrization that is 2π-periodic

in σ for closed strings:

Xµ(τ, σ) = Xµ(τ, σ + 2π) (2.11)

(the case of open strings will be discussed in section 2.3). In order to see that (2.11) is con-

sistent with the conformal gauge gmn ∝ ηmn we choose an arbitrary point on the closed string

surface as the coordinate origin σ = τ = 0 (see Fig. 4). Then we go along the two light-like

curves in positive time direction till we arrive at the first intersection point P and choose some

parametrization of these two pieces of coordinate lines in such a way that the coordinate labels

are smooth and monotonic and reach 2π at P . We can now assign coordinates σ± modulo 2π

to any point on the surface by going along the two light cones till we meet one of the sections

of coordinate lines where the coordinates have been chosen. In order to fix the coordinates
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completely we cut the surface along a time-like curve through the origin and demand that the

coordinate functions are continuous on the resulting strip. In order to see what happens at

the cut we go from the origin to the intersection point along the σ+ coordinate line in positive

direction till we reach the point P with σ+ = 2π and σ− = 0. Then we continue along the

other coordinate line till we return to the origin, with σ+ constant and σ− decreasing by 2π

till we arrive at the origin. We thus observe that the coordinate σ jumps by 2π and that τ is

continuous if we cross the cut at the origin. Because of continuity of the coordinates away from

the cut the same has to happen everywhere along the cut.

If we restrict ourselves to parametrizations satisfying (2.11) then we are only free to choose

a parametrization of the coordinate lines σ± in the intervals 0 < σ± < 2π. Taking into account

the additional freedom of choosing the origin and imposing smoothness of the coordinate trans-

formation at the origin we end up with a residual reparametrization freedom σ± → σ± − ξ±

with smooth 2π-periodic functions ξ+(σ+) and ξ−(σ−), where we also require |∂±ξ±| < 1 in

order that the new coordinates be monotonic.

The restriction that the parametrization of the surface should be 2π-periodic in σ with

the metric gmn being proportional to ηmn is called conformal gauge. A diffeomorphism σ̃m =

σm − ξm(σ) that changes the metric only by a Weyl rescaling g̃mn(σ̃) = e2Λ(σ)gmn(σ) is called

a conformal transformation (in other words, this is a reparametrization that preserves angles

between coordinate lines; of course we may also think about such a transformation in an active

way as giving us a new surface parametrized by the old coordinates). Such transformations

respect the conformal gauge. Considering infinitesimal transformations (i.e. keeping only terms

that are linear in the small quantities ξm and Λ) this leads to the conformal Killing equation

δgmn = Lξgmn − 2Λgmn = Dmξn +Dnξm − 2Λgmn = 0. (2.12)

This means that variation of the metric under infinitesimal coordinate transformations, which

is given by the Lie derivative Lξgmn = Dmξn +Dnξm with respect to the vector field ξm, can be

compensated by a Weyl transformation. Taking the trace we find Dnξ
n = Λgmngmn = Λ d, so

that the Weyl factor becomes proportional to the covariant divergence of ξ. In d = 2 dimensions

this yields Dmξn+Dnξm−gmnDlξ
l = 0. Using light cone coordinates this equation is an identity

for (m,n) = (±,∓) and we recover the conditions D±ξ± = g+−D±ξ
∓ = 0 ⇔ ∂±ξ

∓ = 0.

2.3 Open strings

For open strings the Euler-Lagrange equations of motion still have to be supplemented by

boundary conditions that come from the surface terms of a general variation of the action. But

first we construct, in analogy to our discussion of closed strings, a conformally flat coordinate
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system whose space coordinate σ ranges from 0 to π for all τ . To this end we choose a point

at the left boundary4 as the origin and choose coordinate labels 0 < σ+ < 2π along the future

light cone, as shown in Fig. 5. Imposing the condition that the left and the right boundary of

the string is parametrized by σ = 0 and σ = π, respectively, we can assign coordinates to all

points on the string surface by following the light rays till we intersect the original piece of σ+-

coordinate line. The only difference to the case of closed strings is that this time the coordinate

lines are ‘reflected’ at the boundary. On the σ− coordinate line through the origin, for example,

we find coordinate labels between 0 and −2π (σ± is constant along the σ∓ coordinate lines).

From this construction it follows that the functions f+(σ+) and f−(σ−) that correspond to

the residual gauge invariance in conformal gauge must be identical f+ ≡ f− and 2π periodic

to be consistent with a σ coordinate that runs from 0 to π. The freedom of parametrizing

the σ+ coordinate line (and thereby also the σ− line) can also be interpreted in a different

way: As a consequence of the choice of σ± labels the line τ = (σ+ + σ−)/2 = 0 and the σ

coordinate labels on that line are fixed. In turn, we can first choose the line of vanishing time

τ = 0 and assign σ coordinate labels between 0 and π on that line. Then the σ± coordinate

labels can be constructed as shown in Fig. 5. Hence the choice of the line of equal time τ = τ0

corresponds to the even part of 2π-periodic infinitesimal reparametrizations δσ± = f(σ±), and

the freedom of assigning the σ coordinate labels corresponds to fodd in the unique decomposition

f = feven + fodd.

Now we turn to the derivation of the boundary conditions at the ends of the string. We

require that the action should be stationary if the variation vanishes at the initial and final

times, but is arbitrary at the string ends. To avoid terms coming from a variation of the

integration domain we assume a parametrization with 0 < σ < π. We thus pick up a surface

term ∫
d2σ∂m

(
δXµ ∂S

∂∂mXµ

)
= −T

∫ t1

t0

dτ
(
δXµ

√
−g Gµν g

1n∂nX
ν
)∣∣∣∣σ=π

σ=0

. (2.13)

If we require this expression to vanish for arbitrary variations δXµ we conclude that for σ = 0

and for σ = π we must have

√
−g (g10Ẋ + g11X ′) = (g01Ẋ − g00X

′)/
√
−g = 0. (2.14)

This implies that the induced metric G∗mn becomes singular at the boundary, which can be seen

as follows: First assume that Ẋ and X ′ are linearly independent, implying that g01/
√
−g =

g00/
√
−g = 0. The equations of motion imply that gmn is proportional to the induced metric

G∗mn = ρgmn everywhere on the world sheet, with ρ dropping out in the ratio gmn/
√
−g . This

cannot happen if G∗mn has a non-singular limit at the boundary. If, on the other hand, Ẋ and

4 ‘left’ refers to decreasing space-like coordinate σ1 for an oriented parametrization with X0 increasing with
a time-like coordinate σ0.
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X ′ become proportional at the boundary, then the matrix G∗mn = ∂mX · ∂nX also is singular.

The discussion of boundary conditions is therefore very delicate in general and we better first

choose a convenient gauge.

In conformal gauge the induced metric G∗mn, with entries Ẋ2, Ẋ · X ′ and (X ′)2, becomes

proportional to the flat metric, i.e. G∗mn = ρ ηmn, and ρ has to vanish at the boundary. Inserting

this back into eq. (2.14) we find the boundary conditions X ′ = 0 and Ẋ2 = 0. The second

condition has the geometrical interpretation that the string ends move with the speed of light,

and therefore is independent of the gauge. The D conditions ∂σX
µ = 0, on the other hand, are

valid only in the conformal gauge, as can be seen by choosing a gauge for which the coordinate

lines are not orthogonal.5 Sticking to the conformal gauge, we have von Neumann boundary

conditions. We therefore can continue the coordinate functions Xµ(τ, σ) beyond 0 < σ < π to

get even and 2π-periodic functions of σ. Hence all open string solutions can be obtained in the

conformal gauge as special cases of closed string solutions.

Von Neumann boundary conditions (in conformal gauge) are the only Lorentz-invariant

possibility to make surface terms vanish. If we relax that condition, however, it is also possible

to make (2.14) vanish by choosing Dirichlet boundary conditions Xµ = const. for p of the

space-like string coordinates (in a flat target space). The string ends are then constrained to

move on a p-dimensional submanifold, a so-called D-brane (a p-brane is an extended object

of space-time dimension p + 1, so that a 2-brane is a membrane and a 1-brane is a string;

here, however, the ‘D’ stands for ‘Dirichlet’, indicating that open strings have to end on that

brane without specifying its dimension). The consistency and importance of these boundary

conditions was discovered in the context of T -duality [da89,ho89] (see below) and the presense

and dynamics of the associated (solitonic) extended objects, i.e. p-branes acting as D-branes,

plays an important role in recent results on non-perturbative string dualities [po195,po196].

2.4 Target space symmetries and conservation laws

By construction, the Polyakov action is invariant under arbitrary coordinate transformations

of the world sheet and of the target space. The local world sheet invariances imply gauge

symmetries of the action, as we discussed above. Target space coordinate invariance, on the

other hand, in general does not imply any symmetry of the σ model, since LP is only invariant

if we also transform Gµν . Since the functions Gµν(X) can be interpreted as (an infinite number

of) coupling constants, target space coordinate transformations relate different σ models by

5 Consider, for example, the solution Xµ = (τ, cosσ cos τ, cosσ sin τ, 0, . . .) to the equations of motion in
conformal-gauge, which satisfies all boundary conditions. Changing the parametrization by τ = τ + aσ we find
Ẋ2 = sin2 σ, X ′2 = (a2− 1) sin2 σ, and Ẋ X ′ = a sin2 σ. Then X ′ = (a,−a cosσ sin τ − sinσ cos τ , a cosσ cos τ −
sinσ sin τ , . . .), which shows that X ′ does not have to vanish at the boundary in a general gauge.
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a reparametrization of the dynamical fields Xµ. We do, however, have a symmetry of the σ

model if the new functions G′µν(X
′) turn out to be identical to the old metric Gµν(X). Then

the target manifold has a (geometrical) symmetry, which corresponds to a global symmetry of

the σ model, because the transformation X → X ′ of the dynamical fields is independent of σ.

Continuous target space symmetries are equivalent to the global existence of Killing vector

fields Ξµ(X) with LΞGµν = DµΞν +DνΞµ = 0. According to the Noether theorem6 they imply

the existence of conserved quantities. In the case of a flat target space, for example, we have

Gµν = ηµν and the general solution to the Killing equation is

Ξµ = Aµ +XνΩν
µ (2.15)

with Ωµν antisymmetric. Invariance under the D independent translations δµX
ρ = −δρµ im-

plies conservation of the target space energy–momentum currents Pm
µ with the corresponding

conserved charges Pµ =
∫
dσP 0

µ (for convenience we use the conformal gauge):

Pm
µ = δρµ

∂L
∂∂mXρ

= −Tηmn∂nXµ, Pµ = −T
∫
dσ Ẋµ. (2.16)

Note that the object Pm
µ is different from the canonical (flat) world sheet energy–momentum

tensor T̂l
m = Kl

m − δlXµ ∂L
∂∂mXµ = −T (∂lX

µ∂mXµ − 1
2
δml δ

j
k∂jX

µ∂kXµ), where δlL = ∂mKl
m =

−∂lL is the infinitesimal change of the Lagrangian under translations δlφ
i = −∂lφi, so that

Kl
m = −δlmL. In particular, H =

∫
dσ T̂0

0 =
∫
dσ(ẊµΠµ − L), with the canonical momenta

Πµ = ∂L/∂Ẋµ = −TẊµ, is the Hamiltonian of our 2-dimensional field theory, which generates

time translations (up to a factor T , which is due to our convention in eq. (2.3), T̂l
m is the flat

limit of Tl
m).

Infinitesimal Lorentz transformations δµνX
ρ = δρµXν − δρνXµ yield the angular momenta

Jmµν = (Xµδ
ρ
ν−Xνδ

ρ
µ)

∂L
∂∂mXρ

= −T (Xµ∂
mXν −Xν∂

mXµ) , Jµν = −T
∫
dσ
(
XµẊν −XνẊµ

)
.

(2.17)

The Poisson brackets of these charges represent the Poincaré algebra (we include a factor i

since i{A,B}PB will be replaced by the commutator [A,B] upon quantization):

{Pα, Pβ}PB = 0, i{Jµν , Pα}PB = iηµαPν − iηναPµ, (2.18)

i{Jµν , Jαβ}PB = iηµαJνβ − iηναJµβ − iηµβJνα + iηνβJµα. (2.19)

The brackets among coordinates and momenta are {Πµ(τ, σ), Xν(τ, σ′)}PB = −δ(σ − σ′)δµν .
6 The first Noether theorem states that continuous symmetries are in one-to-one correspondence with

conserved charges: In a field theory with an action S =
∫
d4xL(φi, ∂φi) that is invariant under the infinites-

imal transformations δIφi = RI
i(φ, ∂φ), i.e. with L transforming into total derivatives δIL = ∂mKI

m, the
explicit formula for the corresponding Noether currents is JIm := KI

m − δIφ
∂L
∂∂mφ

. Since δIL = ∂KI =

δIφ
i
(
∂L
∂φi − ∂m

∂L
∂(∂mφi)

)
+ ∂m

(
δIφ

i ∂L
∂(∂mφi)

)
the equations of motion imply that the divergence ∂mJIm van-

ishes, i.e. the currents JI are conserved, so that the charges QI =
∫
d3x JI

0 are time independent on shell up
to surface terms Q̇I =

∫
d3x ~∂ ~JI .
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2.5 Classical solutions and light cone gauge

Now we want to solve the equations of motion, so we restrict our discussion to the case of a flat

target space and use the conformal gauge with the appropriate boundary conditions. Then the

coordinate functions fulfill ∂+∂−X
µ = 0 with σ± = τ ± σ, hence Xµ(τ, σ) = Xµ

L(σ+) +Xµ
R(σ−)

with

∂+X
µ = ∂+X

µ
L =

∞∑
n=−∞

αµn√
4πT

e−inσ
+

, ∂−X
µ = ∂−X

µ
R =

∞∑
n=−∞

α̃µn√
4πT

e−inσ
−
. (2.20)

Integrating these equations we obtain an integration constant, which we choose to be equal

xµL = xµR = xµ for XL and XR. The boundary conditions imply that the zero modes αµ0 and α̃µ0

must be equal, because there can be no linear σ dependence for a periodic function, and we set

αµ0 = α̃µ0 = pµ/
√

4πT . Hence

Xµ
L(τ + σ) =

1

2
xµL +

1

4πT
pµ σ+ +

i√
4πT

∑
n6=0

1

n
αµne

−inσ+

, (2.21)

Xµ
R(τ − σ) =

1

2
xµR +

1

4πT
pµ σ− +

i√
4πT

∑
n6=0

1

n
α̃µne

−inσ− (2.22)

is the most general solution.7 Reality of the coordinate functions Xµ implies α∗n = α−n.

From the closed string solutions we obtain all solutions for open strings by restricting to even

functions. This means that for open strings the left-moving and the right-moving modes must

be equal α̃n = αn and we have much less freedom.

We must be careful to remember that so far we only fulfilled the equations of motion

δS/δXµ = 0. We still have to set the energy–momentum tensor to zero, i.e. we must impose

T++ = −(∂+X)2 = 0 and T−− = −(∂−X)2 = 0: For the left-moving part this means that

T++ =
1

2πT

∞∑
n=−∞

Lne
−inσ+

= 0, T−− =
1

2πT

∞∑
n=−∞

L̃ne
−inσ− = 0. (2.23)

The Virasoro generators Ln := T
∫ 2π

0
dσ+T++e

inσ+
and L̃n := T

∫ 2π

0
dσ−T−−e

inσ− are given by

Ln = −1

2

∞∑
m=−∞

ηµνα
µ
mα

ν
n−m, L̃n = −1

2

∞∑
m=−∞

ηµνα̃
µ
mα̃

ν
n−m. (2.24)

7 The situation is different for compactified dimensions: If Xµ lives on a circle of radius R then we must allow
Xµ(σ + 2π) = 2Rπn+Xµ(σ) since the string may wind n times around the loop. Then 1

2T (pµL − p
µ
R) = n 2πR

for some n ∈ Z. The total momentum Pµ = pµL+pµR, on the other hand, will be quantized in units of 1/R in the
quantum theory because exp(2πiRP µ) generates a translation by 2πR and thus has to be the identity operator.
This is our first indication of the large/small radius duality R→ 1/(4πT R). Upon quantization pL−pR becomes
the winding number operator. Choosing arbitrary integration constants xµL and xµR, the collective coordinates
are xµ = 1

2 (xµL + xµR) and we may use the combination xµL − xµR, which does not contribute to Xµ, as the
conjugate variable for the winding number. In this way we decompose the operator algebra into a left-moving
and a right-moving part. For uncompactified dimensions, on the other hand, left-movers and right-movers are
always coupled through the momentum zero modes pµL = pµR.
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The constraints L0 = 0 = L̃0, which generate global translations on the world sheet (see below),

play a special role. Inserting the definition pµ =
√

4πTαµ0 for the zero mode, they read

p2 = −8πT
∑
n>0

α∗n · αn = −8πT
∑
n>0

α̃∗n · α̃n. (2.25)

Vanishing of H = (L0 + L̃0)/2, the 2-dimensional Hamiltonian, tells us the mass m2 = P 2 of a

string in terms of the oscillators αn with n 6= 0 (recall that P 2 = p2/4 in case of open strings).

This constraint is called the mass shell condition; the generator L0 − L̃0 of translations in the

space direction equates the masses of left and right movers.

The Virasoro constraints Ln = 0 are infinitely many quadratic equations and hard to solve

in general. It is therefore time to remember that we still have some gauge freedom left, which we

may use to simplify these equations. Note that the periodic reparametrizations of the light-cone

coordinates, which are still allowed, lead to the freedom τ → 1
2
(f+(σ+) + f−(σ−)), which just

corresponds to a solution of the wave equation for the coordinate functions. We may therefore

choose τ proportional to cµX
µ for some fixed time-like or light-like vector cµ (a space-like cµ

would lead to a space-like time direction on the world sheet). Because of the identity

V ± = V 0 ± V D−1 ⇒ VµW
µ =

1

2
(V +W− + V −W+)−

D−2∑
i=1

V iW i (2.26)

a light-like choice cµ = (1, 0 . . . , 0, 1) is particularly useful. In the resulting light cone gauge

we impose X+ = 2πT p+τ , which implies that all oscillator coefficients α+
n = α̃+

n = 0 vanish

for n 6= 0. Now the Virasoro constraints obtain linear terms and can be solved explicitly for

α−n =

√
4πT

p+

∞∑
m=−∞

D−2∑
i=1

αimα
i
n−m, α̃−n =

√
4πT

p+

∞∑
m=−∞

D−2∑
i=1

α̃imα̃
i
n−m (2.27)

(recall that p+ = α+
0

√
4πT ). This gauge, however, abandons manifest Lorentz invariance in

target space and it turns out that the quantum theory violates the Lorentz algebra (2.19) if

D 6= 26 [go73]; historically this was the first derivation of the critical dimension of the bosonic

string. Note that the light cone gauge assumes p+ 6= 0, which can always be achieved by a

Lorentz transformation unless pµ ≡ 0. This is o.k. for a single free string, but in case of

interactions intermediate strings may have arbitrary momenta and we should expect sublte

technical problems in perturbation theory [gr88].

In order to find a simple solution to the equations of motion (including the Virasoro con-

straints) we assume that only one frequency is excited (i.e. only one oscillator αn and its

complex conjugate α−n, as well as the zero mode pµ, are non-zero). Then the only relevant

left-moving constraints are

−L0 = 1
2
|α0|2 + α−n · αn = 0, − Ln = α0 · αn = 0, − L2n = 1

2
αn · αn = 0. (2.28)
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The first constraint is the mass shell condition, Ln = 0 implies transversality with respect to the

momentum pµ, and the third condition implies a light-like polarization vector αn; by complex

conjugation L−n = 0 and L−2n = 0 are redundant. To simplify things further we keep the string

oscillation in the X1 −X2 plane, and we go to the rest frame and set xµ = ~p = 0. We now use

the light cone gauge8 and choose αµn = ρn
√
πT

2
(0, 1, i, 0 . . .) and α̃µn = ρn

√
πT

2
(0, 1,±i, 0 . . .). This

is no further restriction since overall phases of αn and α̃n corresponds to shifts in σ± and the

sign of α2
n corresponds to a choice of the X2–direction. Then

Xµ
(±) = ρ

2

(
p0τ
2πT

, Re(ie−inσ
+

+ ie−inσ
−

), Re(−e−inσ+ ∓ e−inσ−), 0 , . . .
)

(2.29)

= ρ
2

(
p0τ
2πT

, sinnσ+ + sinnσ−, − cosnσ+ ∓ cosnσ−, 0 , . . .
)
. (2.30)

Using the formulas sinα + sin β = 2 sin α+β
2

cos α−β
2

, cosα + cos β = 2 cos α+β
2

cos α−β
2

, and

cosα− cos β = −2 sin α+β
2

sin α−β
2

, we obtain

Xµ
(+) = ρ

(
p0τ
4πT

, sin nτ cos nσ,− cos nτ cos nσ, 0, . . .
)
, (2.31)

Xµ
(−) = ρ

(
p0τ
4πT

, sin nτ cos nσ, sin nτ sin nσ, 0, . . .
)
. (2.32)

Xµ
(+) is a solution of total length 4nρ and 2nρ for closed and open strings, respectively. It

corresponds to a rotating (multiply covered) rod of length 2ρ. According to (2.25) we have

p0 = 2ρn πT , so that the ends indeed move with the speed of light (the tangential vector Ẋµ
(+) is

light-like at the boundary). The solution Xµ
(−) only exists for closed strings and corresponds to a

periodically collapsing (multiply covered) circle of maximal radius ρ, i.e. maximal length 2ρnπ.

At the maximal radius there is no kinetic energy and we can check that (mass)/(length) = T

is the string tension. For open strings we always have kinetic energy and the factor of 2 in the

string length matches the relative factor of 2 in the ratio
√
−p2/m for the two types of strings.

Evaluation of (2.17) shows that the angular momentum tensor decomposes into an orbit

contribution xµPν − xνPµ and the left- and right-moving spin contributions Σ and Σ̃,

Jµν = xµPν − xνPµ + Σµν + Σ̃µν , Σµν = −i
∑
n>0

1

n

(
αµ−nα

ν
n − αν−nαµn

)
, (2.33)

where Σ̃ should be omitted in case of open strings (in that case the σ integral only extends

from 0 to π and the spin contribution has to be divided by 2). Inserting the above solutions

we find

p2 = (2ρnπT )2, Σ12 = ±Σ̃12 = ρ2nπT. (2.34)

The classical spin is given by J = Σ12 and J = Σ12+Σ̃12 for open and closed strings, respectively.

The length scale ρ drops out in the ratio J/m2, whose maximal value is obtained for the lowest

8 There are spurious solutions to (2.28) that are missed by the light cone gauge condition: Consider, for
example, pµ = 0 and αµ±n = α̃µ±n = (1, 1, 0, . . . , 0).
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frequency n = 1. This shows that the slope α′ of the leading Regge trajectory is

α′closed =
1

4πT
, α′open =

1

2πT
,

J

m2
≤ α′. (2.35)

According to the literature it can be shown that all classical solutions obey this inequality. In

the quantum theory it will be corrected by a constant shift α0.

2.6 Poisson brackets and Virasoro algebra

As a first step towards quantization we now compute the Poisson brackets among the oscillators

α and α̃, which follow from the canonical brackets {Πµ(τ, σ), Xν(τ, σ′)}PB = −δ(σ − σ′)ηµν

with Πµ = −TẊµ, {Xµ(τ, σ), Xν(τ, σ′)}PB = 0 and {Πµ(τ, σ),Πν(τ, σ′)}PB = 0 by a Fourier

analysis. δ(σ − σ′) is understood to be 2π–periodic. Inserting (2.21) and (2.22) we find

δ(σ − σ′)ηµν

T
= { p

µ

2πT
+
∑
m6=0

αµme
−im(τ+σ) + α̃µme

−im(τ−σ)

√
4πT

,

xν +
pντ

2πT
+
∑
n6=0

i

n

ανne
−in(τ+σ′) + α̃νne

−in(τ−σ′)
√

4πT
}PB. (2.36)

Since the variables pµ, xµ, αµm and α̃µm parametrize the general solution to the equations of

motions, general results of the canonical formalism tell us that we have to fulfill these relations

at a fixed time, say τ = 0. This fixes all brackets among the coefficients in the Fourier

representation of Xµ(τ, σ) and guarantees the canonical brackets for all times.

We first consider the closed string and pick out the brackets among the individual coefficients

by evaluating the double integrals
∫∫
dσ dσ′ei(kσ+k′σ′). For k = k′ = 0 we obtain

{pµ, xν}PB = ηµν (2.37)

and {xµ, xν}PB = {pµ, pν}PB = 0. For k = 0 6= k′ we obtain from the brackets {Ẋ, Ẋ}PB and

{Ẋ,X}PB at τ = 0 that

{pµ, ανk′ + α̃ν−k′}PB = 0 = {pµ, 1

k′
ανk′ +

1

−k′
α̃ν−k′}PB, (2.38)

hence {pµ, ανn}PB = {pµ, α̃νn}PB = 0. Similarly, for k′ = 0 6= k the brackets {X,X}PB and

{Ẋ,X}PB imply that xµ has vanishing brackets with all oscillators α and α̃. Eventually, for k

and k′ non-zero we find that all brackets among α and α̃ vanish and we conclude that

i{αµm, ανn}PB = i{α̃µm, α̃νn}PB = n δm+n η
µν , i{xµ, pν}PB = −iηµν (2.39)

are the non-vanishing brackets, where δl is an abbreviation for δl,0.
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In case of open strings we must set α̃µn = αµn, which makes Xµ even and 2π periodic. It is

convenient to integrate again over the interval 0 < σ, σ′ < 2π in order that the exponentials

provide a complete set of orthogonal vectors. But then we have to take into account a second

contribution from the δ function, i.e. we must let δ(σ−σ′)→ δ(σ−σ′)+δ(σ+σ′) in eq. (2.36).

The double integral for the Fourier coefficients then gives 2π
T
ηµν(δk−k′ + δk+k′) on the l.h.s. of

that equation. We can now repeat the same calculation as above, with the only difference that

the second δ function δk+k′ now doubles the result for the bracket {xµ, pν}PB,

i{xµ, pν}PB = −2iηµν (open string). (2.40)

This can be understood easily because, with the ansatz (2.21), the total momentum Pµ is pµ

for closed strings and pµ/2 for open strings, so that {xµ, Pν}PB = −ηµν in both cases, as we

should expect. δk+k′ also allows for a non-vanishing bracket {αn, α̃−n}PB, which is necessary

because of the identification of α̃ and α. Otherwise the Poisson brackets are the same for open

and closed strings.

Recall that the Virasoro generators Ln := T
∫ 2π

0
dσ+T++e

inσ+
and L̃n := T

∫ 2π

0
dσ−T−−e

inσ− ,

which are the Fourier modes of the energy momentum tensor, are given by

Ln = −1

2

∞∑
m=−∞

ηµνα
µ
mα

ν
n−m, L̃n = −1

2

∞∑
m=−∞

ηµνα̃
µ
mα̃

ν
n−m. (2.41)

They satisfy an infinite-dimensional Lie algebra, the Virasoro algebra

i{Lm, Ln}PB = (m− n)Lm+n, i{L̃m, L̃n}PB = (m− n)L̃m+n, (2.42)

as is easily verified using that i{Ln, αρl }PB = −lαρn+l.

A more direct way to understand this algebra is to observe that any conformal Killing vector

field ξ defines a conserved current Jmξ =
√
−g ξlTlm if the energy–momentum tensor is traceless

and conserved (which can be shown to be consequences of Weyl invariance and the equations of

motion of the matter fields, respectively). For left-moving conformal reparametrizations with

ξ = ξ+(σ+)∂+ the corresponding conserved quantity is Lξ :=
∫
dσ ξ+T+

0 =
∫
dσ+ξ+(T+

+ +

T+
−)/2 =

∫
dσ+ξ+T++ (recall that η+− = 2; dσ can be replaced by dσ+ because the in-

tegrand only depends on σ+ = σ + τ). If we choose the basis ξn = einσ
+
∂+ for periodic

infinitesimal reparametrizations of σ+, we find the Lie brackets [ξm, ξn] = [eimσ
+
∂+, e

inσ+
∂+] =

i(n − m)ei(m+n)σ+
∂+. Since Lξ generates the Lie derivative {Lξ, X}PB = −ξm∂mX, and be-

cause of the Jacobi identity, the Poisson algebra of the charges Ln = Lξn must have the same

structure constants. Note that the Virasoro constraints Ln and L̃n are conserved quantities,

i.e. it is sufficient to impose Tmn = 0 at some initial time. Obviously, the conformal algebra in

two dimensions is the direct product of two identical, infinite dimensional Lie algebras.
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Chapter 3

Quantization of bosonic strings

Before actually performing the quantization in section 2.1 let us discuss some general aspects of

canonical quantization of gauge invariant systems. It is clear by now that the ‘matter fields’ Xµ

are the dynamical fields of the bosonic string, and that, at least locally, the metric only consists

of gauge degrees of freedom. In the Hamiltonian formalism this is indicated by the fact that the

conjugate momenta (πg)
mn = ∂L/∂ġmn vanish identically. Therefore we cannot naively impose

the Poisson brackets, at least not as a ‘strong’ identity: In the process of quantization it is

certainly not consistent to impose a commutator [gmn, (πg)
kl] = i(δkmδ

l
n+δknδ

l
m)/2 if (πg)

kl ≡ 0.

Dirac and Bergmann [DI64] developed a method for obtaining a Hamiltonian description

if the Legendre transformation is singular (as it happens in our case): The defining equations

for the momenta cannot be solved for the time derivatives of the coordinates iff there are

relations among the coordinates and momenta, the primary constraints ΦÎ(p, q) = 0. If this

happens, then the Hamiltonian is only defined up to terms proportional to the constraints.

These must be fulfilled at all times, so we must have {ΦÎ , H}PB = 0 (here we ignore the fact

that the coordinates and momenta are constrained and compute the naive PB). If there is no

choice for the Hamiltonian that makes the l.h.s. of this equation proportional to the ΦÎ , then

we get additional constraints, which we call secondary. (In our case the secondary constraint

{(πg)kl, H}PB = 0 is equivalent to the vanishing of the energy momentum tensor.)

After all constraints ΦI = 0, primary and secondary, are known, we have to calculate their

Poisson algebra: If the antisymmetric matrix cIJ = {ΦI ,ΦJ}PB vanishes on the constraint

surface ΦI = 0, i.e. if it is a linear combination of constraints {ΦI ,ΦJ}PB = fIJ
KΦK , then

the ΦI are called first class. This type of constraints indicates gauge symmetries (the Virasoro

algebra is an example). Indeed, in case of gauge symmetries the equations of motion cannot be

of the form ḟ = {f,H}PB with a unique Hamiltionian, because the time evolution is not fixed

by the Euler–Lagrange equations of motion.1 For quantization it is necessary to get rid of the

1The full gauge freedom is recovered in the form of an arbitrary linear combination of the constraints
∑
λIΦI
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first class constraints by imposing additional gauge fixing constraints (this leads to the ‘reduced

phase space’). One problem of the Dirac procedure is that the set of available gauge fixings is

too restricted. In the case of QED, for example, we cannot impose a Lorentz covariant gauge,

simply because the time derivative of A0 is not available. This shortcoming has been cured

by the BFV formalism [fr75, HE92]: The phase space is extended with dynamical Lagrange

multipliers and ghosts, making available, among other benefits, covariant gauge fixings. We

will, however, arrive at the same result with the following short cut: We fix the gauge before

we perform the Legendre transformation, and thus never get first class constraints. In order

to compensate the resulting propagation of unphysical degrees of freedom we introduce ghosts,

and the cancellation of all unphysical contributions to physical quantities is controlled by BRST

invariance (see below).

If cIJ = {ΦI ,ΦJ}PB has maximal rank on the constraint surface ΦI = 0 then the ΦI are

called second class. This type of constraints are caused by having too many degrees of freedom:

Usually the Lagrangian is quadratic in the time derivatives so that the equations of motion

are second order, i.e. two functions have to be specified on a Cauchy surface (the fields and

their time derivatives). The Hamiltonian equations of motion, on the other hand, are first

order, but now we have twice as many ‘off shell’ degrees of freedom (for each coordinate we

introduce a momentum). This counting is spoiled if the Lagrangian is only linear in the time

derivatives. Accordingly, pi = ∂L/∂q̇i is a function of the coordinates only, and, instead of

defining q̇i in terms of phase space variables, this equation is a second class constraint (as cIJ

is antisymmetric and invertible such constraints must occur in pairs).

So what happens is that we introduce too many phase space variables and that the redundant

momenta can be eliminated by the constraint equations. Accordingly, the PBs have to be

replaced by the Dirac brackets, which only take into account the true degrees of freedom:

{f, g}
DB

= {f, g}PB − {f,ΦI}PB cIJ {ΦJ , g}PB with cIJ = {ΦI ,ΦJ}PB and cIJc
JK = δKI , so

that {f,ΦI}DB = 0 for all functions f on phase space and for all constraints ΦI . But we

will again use a short cut. Consider the inverse Legendre transformation and the resulting

variational equations,

L = q̇ipi −H(p, q),
δL

δqi
= −ṗi −

∂H

∂qi
= 0

δL

δpi
= (−)iq̇i − ∂H

∂pi
= 0. (3.1)

If we do not eliminate the momenta from their variational equation we always find the situation

with second class constraints (this is sometimes called first order formalism). For a Lagrangian

of this form we can therefore directly read off the conjugate pairs of phase space variables and

introduce the corresponding brackets, instead of introducing momenta for qi and for pi and

eliminating them in a second step with the Dirac procedure.

that can be added to the Hamiltonian. This is know as Dirac’s conjecture and has been proven under certain
regularity assumptions. The coefficients λI are called Lagrange multiplier (fields).
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The final ingredient that we need for quantization is the BRST formalism [be76]. The

introduction of ‘ghost fields’ that have the same quantum numbers – including spin – as the

gauge degrees of freedom, but the opposite statistics, was suggested already in 1963 by Feynman

in the context of quantum gravity [fe63]. This was motivated by the observation that the gauge

degrees of freedom propagate after gauge fixing and that their contribution to loop diagrams is

not transversal, like in QED, and therefore spoils unitarity and gauge independence. In 1967

Faddeev and Popov used ghosts to bring the field dependent functional determinant that arises

from gauge fixing in non-abelian gauge theories into the exponent of the path integral [IT80].

Later it was observed by Becchi, Rouet and Stora [be76] that the resulting action has a

global fermionic nilpotent symmetry s2 = 0 with sφi = cIδIφ
i, i.e. for a δI-invariant action

the BRST transformation of a matter field φi is equal to its gauge transformation with the

gauge parameters replaced by ghost fields. In order to have a well-defined ghost number that is

consistent with the dynamics of the ghosts, we also need to introduce anti-ghost fields c̄I with

ghost number −1, whose BRST transform bI := sc̄I is usually called lagrange multiplier field.

For a general gauge theory with an irreducible closed gauge algebra [δI , δJ ] = FIJKδK it can

be shown that s2φi = 0 implies that the BRST transformation of the ghosts is

scK = (−)I

2
cIcJFJIK . (3.2)

Nilpotency of s, i.e. the equation s2cI = 0, is then equivalent to the Jacobi identity

f∑
IJK

(−)IK
(
δIFJKL + FIJMFMK

L
)

= 0, (3.3)

which follows from d∑IJK(−)IK [[δI , δJ ], δK ] = 0. (We have an open gauge algebra if the graded

commutator [δI , δJ ] is proportional to δK only on shell, i.e. up to the equations of motion. In

that case on needs the BV antibracket formalism [ba81]. Irreducibility of the gauge algebra

means that the gauge transformations δI are linearly independent.) The BRST algebra thus

encodes the structure of the symmetry algebra in a very efficient way.

The role of the BRST symmetry in canonical quantization was eventually clarified by Kugo

and Ojima [ku79]: Initially it was assumed that c̄ is the complex conjugate of c, but then gauge

fixing does not give a real Hamiltonian and thus formally spoils unitarity. Rather, c and ic̄ are

independent real fields.2 In the quantum theory the conserved charge QBRST that corresponds

to the BRST symmetry commutes with the Hamiltonian (up to anomalies), so it can be used to

define a ‘physical’ subspace of the Fock space with the physical states defined by the condition

Q|phys〉 = 0, which is consistent with time evolution.

If there is no anomaly in the commutation relation {Q,Q} = 2Q2 = 0 then all states fall

into doublet and singlet representations (|ψ〉, |Qψ〉) and |ψphys〉 of Q. For the doublets the dual
2 With this assignment gauge transforms sφi of real fields, lagrange multiplier fields sc, and gauge fixing

terms sψ with imaginary anticommuting ψ are real. Note that (XY )∗ = (−)XYX∗Y ∗ and O∗φ = (−)Oφ(Oφ∗)∗.
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states must also form a doublet since the BRST charge Q, which generates a real symmetry

transformation, should be hermitian. Furthermore, BRST-trivial states Q|ψ〉 have vanishing

scalar product with all physical states, which therefore correspond to cohomology classes of

Q-invariant states modulo Q-exact states. This is the ‘quartet mechanism’ by which doublet

states cannot contribute to negative norm states in the physical Hilbert space. What remains

to be checked for a given theory is that the ‘physical Hilbert space’ that we end up in this way

does not contain any negative norm states.

Expectation values of physical operators, i.e. observables, should not depend on the repre-

sentative we choose for a physical state. This is guaranteed if O (anti)commutes with Q, i.e.

[Q,Ophys] = 0. In turn, physical expectation values of Q-exact operators O = [Q,O′] vanish, so

that physical obervables also correspond to cohomology classes. In particular, the sum of gauge

dependent and ghost dependent terms of an s-invariant classical action with vanishing ghost

number can be shown to be s-exact: L(φ, c, c̄, b) = Linv.(φ) + sΨ(φ, c, c̄, b) (ψ is often called

gauge fermion). This suggests that physical quantities should be independent of the choice of

the gauge fixing term sψ, which is known as the Fradkin–Vilkovisky theorem [HE92].

3.1 BRST quantization

Now we are ready to apply the above machinery to the case of the bosonic string. The Polyakov

action is invariant under the nilpotent transformation

sXµ = cl∂lX
µ, sgmn = Dmcn +Dncm − 2gmnλ, scm = cl∂lc

m, sλ = cl∂lλ, (3.4)

where cm are the diffeomorphism ghosts and λ is the Weyl ghost. We want to fix the metric

to a background value ĝmn, which we initially keep arbitrary. We will see that the equations of

motion for the antighost field bmn imply that b++ is a function of σ+, so that this field naturally

has lower indices. It is thus convenient to fix the inverse metric gmn(σ) = ĝmn(σ) and we add

the gauge fixing and ghost term
∫
d2σL(c) with

2
T
L(c) = s(

√
−g bmn(gmn − ĝmn)) = L̃mn(gmn − ĝmn) + 2

√
−g bmn(gmlDlc

n − gmnλ), (3.5)

and L̃mn =
√
−g Lmn = s(

√
−g bmn) to the Polyakov action. Note that the quantum numbers of

the anti-ghost field come from the gauge fixing term, whereas those of the ghosts are inherited

from the gauge transformation (only the numbers of degrees of freedom must coincide for

ghosts and anti-ghosts, but quantum numbers like the spin can be different). The factor
√
−g

is inserted to make bmn a symmetric tensor rather than a tensor density.

Variation with respect to gmn, Lmn, λ and bmn implies the equations of motion

Lmn + T (X)
mn + T (c)

mn = 0, gmn = ĝmn, bmng
mn = 0, 2λ = Dnc

n, (3.6)
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which are algebraic for the fields Lmn, gmn, λ and for the trace of the anti-ghost.

T (c)
mn = (bmjDnc

j + bnjDmc
j +Dj(bmnc

j)− gmngijbjkDic
k) + (gmng

ijbij − 2bmn)λ (3.7)

= bmjDnc
j + bnjDmc

j +Djbmnc
j − gmngijbjkDic

k (3.8)

is the ghost contribution to the energy–momentum tensor3 and T
(X)
mn is the ‘matter’ contribution

coming from the Polyakov action. gmnbmn = 0 implies that T
(c)
mn is traceless. Furthermore, the

total energy–momentum Tmn = T
(X)
mn + T

(c)
mn, corresponding to the action

L = LP + T
√
−g bmn(gmlDlc

n − 1
2
gmnDlc

l), (3.9)

is proportional to the BRST variation of the traceless anti-ghost bmn. Note that we can eliminate

a set of fields whose own equations of motion are algebraic by inserting their values back into

the action.

In light-cone coordinates we find T
(c)
+− = 0 and T

(c)
++ = 2b++D+c

+ + D+b++c
+, where we

used the equation of motion δS/δcn = gmlDlbmn = 0, implying D−b++c
− = 0. The Christoffel

symbols drop out of this expression so that

T
(c)
++ = 2b++∂+c

+ + ∂+b++c
+, T

(c)
−− = 2b−−∂−c

− + ∂−b−−c
−, (3.10)

Since Γ̂++
+ and Γ̂−−

− are the only non-vanishing components of the Christoffel symbol and
√
−g g+− = 1, the complete Lagrangian in light-cone coordinates is

L = T∂+X
µ∂−X

νGµν + T (b++∂−c
+ + b−−∂+c

−) (3.11)

and the equations of motion imply that b++ and c+ only depend on σ+.

From (3.9) it follows that the imaginary field −Tb++ is the conjugate momentum to c+,

i{b++(τ + σ), c+(τ + σ′)}PB = i
T
δ(σ − σ′) = i{b−−(τ − σ), c−(τ − σ′)}PB. (3.12)

For the Fourier modes bn = (b−n)† = −iT
∫
dσ b++e

inσ+
and cn = (c−n)† = 1

2π

∫
dσ c+einσ

+
, and

their right-moving relatives with

b−− =
i

2πT

∞∑
n=−∞

b̃ne
−inσ− , c− =

∞∑
n=−∞

c̃ne
−inσ− , (3.13)

this implies the Poisson brackets

i{bn, cm}PB = δm+n = i{b̃n, c̃m}PB (3.14)

3 The most tedious part of the computation of T (c)
mn = 1

T
2√
−g

δL(c)

δgmn is the variation of the Christoffel symbol

contained in the covariant derivative: δ(Dlc
n) = δΓ̂lmncm = 1

2c
mδ(gnk(∂lgmk + ∂mglk − ∂kgml)). Since both

sides of this equation are covariant, all terms linear in Christoffel symbols or partial derivatives of the metric
must cancel and we immediately obtain δ(Dlc

n) = 1
2g
nkcm(Dlδgmk + Dmδglk − Dkδgml). Covariant partial

integration of the variation of the action then leads to (3.7).
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which have to be replaced by anticommutators for the quantized oscillator modes.

In light-cone coordinates the BRST current JmS = −sXµ ∂L
∂∂mXµ − scl ∂L

∂Dmcl
+ cmLP reads

J−S = −2Tcl∂lX
µ ∂+X

νGµν − 2Tcn∂nc
+ b++ + 2Tc− ∂+X

µ∂−X
νGµν (3.15)

= −2T (c+∂+X
µ∂+X

νGµν + b++c
+∂+c

+). (3.16)

This suggests to define left- and right-moving BRST charges Q± with Q = −
∫
dσ J0

S =

−1
2
(
∫
dσ+J−S +

∫
dσ−J+

S ) = Q+ +Q−,

Q+ = T

∫
dσ+ c+(∂+X

µ∂+X
νGµν + b++∂+c

+) = T

∫
dσ+ c+(T

(X)
++ +

1

2
T

(c)
++) (3.17)

and its right-moving partner Q−; note that (c+)2 = 0 and c+D+c
+ = c+∂+c

+.

For a flat target space we can insert the solutions to the equations of motion. For the

Fourier modes Ln of T++ = 1
2πT

∑
Lne

−inσ+
we obtain

L(X)
n = −1

2

∞∑
m=−∞

: αn−m · αm :, L(c)
n =

∞∑
m=−∞

(n+m) : bn−mcm : (3.18)

and for the BRST charge

Q+ =
∞∑

n=−∞

: (L(X)
n +

1

2
L(c)
n )c−n : −ac0 (3.19)

=
∞∑

n=−∞

L(X)
n c−n −

1

2

∞∑
n,m=−∞

(m− n) : c−mc−nbm+n : −ac0, (3.20)

where we introduced normal ordering symbol :: that puts creation operators (negative index)

to the left and a coefficient a parametrizing the ordering ambiguity in Q+. We find

[Ln, bl] = (n− l)bn+l, [Ln, cl] = −(2n+ l)cn+l (3.21)

with {Q+, bn} = Ln := L
(X)
n + L

(c)
n − aδn, and {Q+, cl} =

∑
n (n+ l/2)cl+nc−n.

Next we turn to the construction of a Fock space representation of our operator algebra.

Recall the commutation relations

[αµm, α
ν
n] = −mδm+nη

µν , [xν , P µ] = −iηµν , {bm, cn} = δm+n. (3.22)

with pµ =
√

4πTαµ0 . We define a vacuum state that is annihilated by all oscillators with positive

mode number, i.e. αµn|0〉 = bµn|0〉 = cµn|0〉 = 0 for n > 0. The difficult part is the treatment of

the zero modes. All states can be constructed as sums of tensor products of a coordinate factor

and a ghost factor. For the bosonic part we can, for example, diagonalize the momentum and

define eigenstates Pµ|k〉 = kµ|k〉, so that |k〉 = :eikX : |0〉. In the ghost sector the zero mode
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algebra is b2
0 = c2

0 = 0 and {b0, c0} = 1. We cannot diagonalize a nilpotent operator, so we need

to introduce a 2-dimensional representation space with

b0|↑ 〉 = |↓ 〉
b0|↓ 〉 = 0

c0|↑ 〉 = 0

c0|↓ 〉 = |↑ 〉
〈 ↑ |↓ 〉 = 〈 ↓ |↑ 〉 = 1

〈 ↑ |↑ 〉 = 〈 ↓ |↓ 〉 = 0
(3.23)

and 〈 ↓ |c0 = 〈 ↑ |, 〈 ↑ |b0 = 〈 ↓ |, 〈 ↑ |b0|↑ 〉 = 1 = 〈 ↓ |c0|↓ 〉.

3.2 Conformal anomaly and critical dimension

For the consistency of the BRST quantization program we have to check that Q2 = 0. This

will fix the constant a in eq. (3.20) and also gives us the critical dimension. First we observe

that Q2
+ = 0 implies that the Virasoro algebra has no anomalous contribution (the anticom-

mutator of Q+ and Q− vanishes trivially, so we only need to consider left movers). Indeed,

0 = [{Q+, Q+}, bn] = [Q+, {Q+, bn}]− [{Q+, bn}, Q+] = 2[Q+, Ln], hence

[Lm, Ln] = [Lm, {Q+, bn}] = {Q+, [Lm, bn]} = (m− n){Q+, bm+n} = (m− n)Lm+n. (3.24)

The converse is also true since one can show that

Q2
+ =

1

2

∑
c−mc−n([Lm, Ln]− (m− n)Lm+n). (3.25)

This calculation, however, is very tedious, so we postpone it till we have more efficient tools

for computing commutators of normal ordered expressions when we come to operator products

and contour integrals in the complex plane.

In any case, absence of anomalies in the Virasoro algebra is necessary for Q2 = 0. Since L0

is the only mode for which there is an ordering ambiguity it is easy to see that

[Lm, Ln] = (m− n)Lm+n + Amδm+n. (3.26)

Obviously, A−m = −Am and A0 = 0. From the Jacobi identity d∑lmn[Ll, [Lm, Ln]] = 0 if follows

for l +m+ n = 0 that

(m− n)Al + (n− l)Am + (l −m)An = 0. (3.27)

For l = 1 we get (n− 1)An+1 = (n+ 2)An − (2n+ 1)A1 which determines all Am in terms of

A1 and A2. Since Am = m and Am = m3 solve this equation, we find

Am = A2−2A1

6
m3 − A2−8A1

6
m. (3.28)

The final step in the calculation of the anomaly is to fix the two remaining constants by

evaluating expectation values Am = 〈 ↑ | LmL−m − 2mL0 |↓ 〉 of (3.26) where m > 0.

A1 = 〈 ↑ | (α0 · α1)(α0 · α−1)− 2(−α2
0

2
− a) + (b1c0 + 2b0c1)(−b−1c0 − 2b0c−1) |↓ 〉
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= 〈 ↑ | 2a− (2b0c1)(b−1c0) |↓ 〉 = 2a− 2, (3.29)

A2 = 〈 ↑ | (
α2

1

2
+ α0 · α2)(

α2
−1

2
+ α0 · α−2) + 4(

α2
0

2
+ a) |↓ 〉

− 〈 ↑ | (2b2c0 + 3b1c1 + 4b0c2)(2b−2c0 + 3b−1c−1 + 4b0c−2) |↓ 〉

= 〈 ↑ | 1
4
α2

1α
2
−1 + 4a− (3 · 3 + 4 · 2) |↓ 〉 = D/2 + 4a− 17. (3.30)

Putting the pieces together we find

Am =
m3

12
(D − 26)− m

12
(D − 2− 24a), (3.31)

so that Q2 = 0 implies a = 1 and D = 26. Note that the term linear in m depends on a. This

can be used to eliminate A1 even if Q2 6= 0, i.e. to bring the anomaly into the form

Am =
m3 −m

12
c, (3.32)

where c is called central charge (in our case a = 1 is the appropriate value for any D). Then the

SL(2) subalgebra of the Virasoro algebra that is generated by L0 and L±1 is free of anomalies4

(the non-vanishing commutators are [L±1, L0] = ±L±1 and [L1, L−1] = 2L0).

In addition to the BRST charge there is another (classically) conserved quantity: We assign

ghost number ±1 to ghosts cm, λ and antighosts bmn, respectively, and observe that our BRST-

invariant classical action has ghost number 0. It is thus invariant under the infinitesimal

transformation δcn = cn, δλ = λ and δbmn = −bmn. This leads to the conserved Noether

current Jmgh = −δcn ∂L
∂∂mcn

= T
√
−g gmlblncn, which again simplifies nicely in the light cone

gauge: J+
gh = 2Tb−−c

−. There is thus a left-moving and a right-moving contribution to the

ghost number, N = −i
∫
dσJ0

gh = − i
2

∫
dσ(J+

gh + J−gh) = N+ +N−,

N+ =

∫
dσ+

2i
J−gh =

∞∑
n=−∞

: cnb−n : + const. = 1
2
(c0b0 − b0c0) +

∑
n>0

(c−nbn − b−ncn) + 3
2
, (3.33)

where we include a factor of i in the definition of the charge to make the eigenvalues real. The

reason for our asymmetric choice of the constant coming from the operator ordering ambiguity

will become clear below. It leads to N+|↑ 〉 = 2|↑ 〉 and N+|↓ 〉 = |↓ 〉. We will see later that Jgh

is not conserved in the quantum theory. An anomaly of a global symmetry, however, does not

spoil the consistency of a theory; the anomalous violation of ghost number conservation is, in

fact, related to the topology of the world sheet and will play an important role in interactions.

4 This is a special case of the following result: An anomalous term like the one in eq. (3.26) is called a central
extension if it is consistent with the Jacobi identity. It is easy to show that semi-simple (finite-dimensional)
Lie algebras only admit trivial central extensions, i.e. the ‘central’ terms in the algebra can be eliminated by
adding constants to the generators.

Superstrings I / M.Kreuzer — 28 — version December 1, 2003



3.3 Physical states

The physical subspace of our Fock space is defined by the cohomology of Q. We first consider

states of the form P (α)|k〉 ⊗ |↑ 〉 or P (α)|k〉 ⊗ |↓ 〉, where P (α) is a polynomial in the physical

creation operators αµ−m. For such states

Q+ (P (α)|k〉 ⊗ |↓ 〉) =
∑
n≥0

(
L(X)
n − δn,0

)
P (α)|k〉 ⊗ c−n|↓ 〉, (3.34)

Q+ (P (α)|k〉 ⊗ |↑ 〉) =
∑
n>0

L(X)
n P (α)|k〉 ⊗ c−n|↑ 〉. (3.35)

This looks similar to Gupta–Bleuler in QED, where the annihilation part of the gauge condition

is imposed as a constraint on physical states. In the present context we need to make sure that

physical expectation values of T++ vanish. Since the states built on | ↓ 〉 are dual to the states

built on |↑ 〉 the above formulas imply that all expectation values of Ln between physical states

that do not contain ghost or antighost creation operators vanish (it is, of course, true in general,

since Ln = {Q, bn}). Hence our formalism reduces to the ‘old covariant approach’ [GR87] in the

ghost-free sector.

Since the mass shell operator L0 = {Q, b0}, the momentum operator P µ and Q all commute

with one another, we can compute the cohomology for Q for fixed eigenspaces with eigenvalues.

If (L0 − λ)|Φ〉 = 0 with λ 6= 0 for some Q-invariant state |Φ〉 then |Φ〉 = Q( 1
λ
b0|Φ〉) is Q-exact,

so that non-trivial physical states must be on-shell states. In this way we recover the mass shell

condition L0 = 0 also for the states of the form (3.35) that are built on |↑ 〉. Moreover, it can be

shown that representatives of all physical states can be chosen to be of the form (3.34) or of the

form (3.35) [th89]; there is a one-to-one correspondence of these states, which can be obtained

from one another by application of b0 or c0. So we have a two-fold degeneracy, which follows

from the existence of ghost zero modes and from the ‘quartet mechanism’ [ku79], i.e. the fact

that dual states of BRST singlets and doublets form singlets and doublets, respectively.

This can be used to give a simple proof of the fact that the ghosts drop out of the cohomology,

except for their zero modes: Since {Q, b†n} = L†n, standard arguments of homological algebra

show that all b†n with n > 0 drop out of the cohomology if the L†n can be used as part of a basis

for the algebra of creation operators, which can be shown to be true if P µ 6= 0. For P µ = 0

there are only 2D+4 on-shell states, which are the singlets b−1|↓ 〉, αµ−1|↓ 〉 and their dual states

c−1| ↑ 〉, αµ−1| ↑ 〉, and the self-dual doublet b−1| ↑ 〉 and Q(b−1| ↑ 〉) = −2c−1| ↓ 〉. The ‘SL(2,C)

invariant vacuum’ |0〉 = b−1| ↓ 〉 and its dual are the only Lorentz-invariant physical states. It

will play an important role in conformal field theory.

Since the physical states that are built on | ↓ 〉 are automatically on-shell, whereas those

on | ↑ 〉 are off-shell null states or on-shell limits of null states, the states P (α)| ↓ 〉 seem to be
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somewhat preferable. So we may choose the ‘Siegel gauge’ b0|Φ〉 = 0 in addition to the physical

state condition Q|Φ〉 = 0, a relaxed form of which plays an important role in closed string field

theory [zw93,be94,ne89,dib91].

It has been shown a long time ago that in D = 26 dimensions all physical states can be

generated from tachyonic vacua |k〉 with 1
4πT

k2 = −2 by repeated application of the so-called

DDF creation operators (Aim)† = Ai−m with m > 0 [de72, GR87], which are zero modes of

‘transversal vertex operators for massless states’ and satisfy

[Aim, A
j
n] = mδijδm+n, Aim =

∫
dτ

2π
εiµẊ

µeimqX , (3.36)

where q2 = 0, qk = 1, εik = εiq = 0 and εiεj = −δij. This implies that all physical states have

positive norm.

We now consider the tachyon and the massless states in more detail. Since [L
(X)
m , L

(X)
1 ] =

(m− 1)L
(X)
m+1 for m > 0 it is sufficient to impose

L
(X)
0 = −(

1

2
α2

0 + α−1 · α1 + α−2 · α2 + . . .) = 1, (3.37)

L
(X)
1 = −(α0 · α1 + α−1 · α2 + α−2 · α3 + . . .) = 0, (3.38)

L
(X)
2 = −(

1

2
α2

1 + α0 · α2 + α−1 · α3 + α−2 · α4 + . . .) = 0 (3.39)

on P (α)|k〉. For P (α) = 1 we obtain k̂2 = k2/(4πT ) = −2 with αµ0 |k〉 = k̂µ|k〉, i.e. we find a

scalar, tachyonic state in the string spectrum. On the next level P (α) = tµα
µ
−1 the mass shell

condition is k2 = 0 and L
(X)
1 = 0 implies transversality tµk

µ = 0 of the polarization vector tµ.

The norm of this state is proportional to t2, i.e. it vanishes for a longitudinal polarization

tµ ∼ kµ. We expect that such a state is Q-exact, and indeed,

Q(b−1|↓ 〉) = L
(X)
−1 |↓ 〉 + L

(c)
−1|↓ 〉 − b−1Q|↓ 〉 (3.40)

= k̂ · α−1|↓ 〉 − b−1c0|↓ 〉 − b−1c0(L0 − 1)|↓ 〉 (3.41)

= k̂ · α−1|↓ 〉+ 1
2
k̂2b−1c0|↓ 〉. (3.42)

In the case of open strings this is the whole story: We have a massless vector excitation in

the target space, whose polarization must be transversal since Qαµ−1| ↓ 〉 ∼ k̂µc−1| ↓ 〉 should

vanish, and there is a null (i.e. zero norm) polarization, which is Q-exact. For closed strings

we have to include the right-movers and therefore have a polarization tensor tµν which is

transversal in both indices. Now the gauge invariance corresponds to δtµν = kµv
(R)
ν + kνv

(L)
µ .

The physical interpretation requires the decomposition of the polarization tensor into irreducible

representations of the Lorentz group: tµν has a traceless symmetric part, the graviton, an

antisymmetric tensor field Bµν = tµν − tνµ, and a scalar degree of freedom due to the trace,

which is called dilaton. The antisymmetric part of the gauge invariance implies that only the

field strength Hµνρ = d∑ ∂µBνρ enters physical quantities.
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Summarizing our observations, we recover the essential ingredients of QED and of linearized

gravity. In addition, we have an infinite tower of gauge symmetries at higher levels which

controll the interplay of the infinite set of massive string modes at and above the Planck mass,

which, in our picture of string unification, is proportional to
√
T . In order to obtain interaction

terms for gravitons and the other target-space fields we need to compute string interactions.

So it seems the ‘old covariant approach’ to string quantization is sufficient. Ghosts will

become important in case of interactions. Before coming to this subject, however, we first con-

tinue to the Euclidean domain and set up the machinery of CFT. Since the SL(2) subalgebra of

the Virasoro algebra has no anomaly we could, in fact, require Ln = 0 for n ≥ −1. Accordingly,

it is useful to work with the SL(2) invariant ghost vacuum |0〉gh which is defined by

bn|0〉gh = 0 n ≥ −1, cn|0〉gh = 0 n ≥ 2. (3.43)

It is related to our previous vacuum by | ↓ 〉 = c1|0〉gh and |0〉gh = b−1| ↓ 〉. The importance of

this vacuum will become clear in the context of CFT on the complex plain.

That D ≤ 26 is a necessary condition for consistent string quantization can be seen easily

by computing the norm of a physical scalar state at the second mass level: We make the ansatz

|φ〉 = (α−1 · α−1 + A(α0 · α−1)2 +Bα0 · α−2)|p〉 (3.44)

Since Ln+1 = 1
n−1

[Ln, L1] it is sufficient to impose L0 = L1 = L2 = 0 with L0 = L
(X)
0 − 1.

Straightforward evaluation of the commutators gives L0|φ〉 = (−1
2
α2

0 + 2 − 1)α2
−1|φ〉, L1|φ〉 =

2(1 + Aα2
0 +B)α0 · α−1)|p〉 and L2|φ〉 = (−D − (A− 2B)α2

0)|p〉, so that we find

〈φ|φ〉
〈p|p〉

= 2D+ 4α2
0A+ 2α4

0A
2− 2α2

0B
2 = 2

25
(D− 1)(26−D), B = D−1

5
, A = −D+4

10
(3.45)

More generally it can be shown that there are no negative norm states if a = 1 and D = 26 or

if a ≤ 1 and D ≤ 25 (see [GR87]). A covariant quantization of string theory below the critical

dimension has first been persued successfully by Polyakov [po81]. He found that the conformal

anomaly makes the conformal mode φ of the metric gmn = eφηmn dynamical, with an effective

Lagrangian (Wess-Zumino term)

26−D
48π

(
1
2
(∂φ)2 + µ2eφ

)
(3.46)

which is positive if D < 26. This action has been known for a long time under the name

Liouville action and φ is thus called Liouville field.

3.4 Strings in background fields

To recover the full content of gravity it seems that we have to study graviton scattering order by

order in perturbation theory, which would require the calculation of correlations functions with
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an arbitrary number of graviton vertex operator insertions. There is, however, an alternative

approach that directly gives us the Einstein equations in curved space [fr85, ca185]. Recall

that we can consider the string with an arbitrary target space matric Gµν(X). We computed

the equations of motion of the coordinate fields in such a background. It is not so obvious,

however, how the dynamics of the background metric arises. As it turns out, this dynamics is

fixed by the absence of conformal anomalies.

Here we should be more general: In principle, all massless fields in our theory can form

condensates. Hence there should be a consistent movement of strings in curved target spaces

with additional backgrounds that correspond to the dilaton and antisymmetric tensor fields.

Indeed, if we write down the most general renormalizable action for the coordinate fields we

find S = SP + SB + Sφ + Sτ with

L = LP − T
2
εmn∂mX

µ∂nX
νBµν(X) + 1

4π

√
−g φ(X)R(2) +

√
−g τ(X), (3.47)

where R(2) is the curvature scalar on the world sheet. Equations of motion for the coordinate

fields read

Gαρ

√
−g T

δS

δXρ
= ∆Xα + ∂mX

µ∂nX
ν
(
gmnΓ̂µν

α − 1
2
εmn√
−gHµν

α
)

+O(1/T ) (3.48)

with the totally antisymmetric ‘torsion’Hµνλ = d∑µνλ ∂µBνλ, i.e.H = dB withB = 1
2
dxµdxνBµν

and H = 1
3!
dxµdxνdxλHµνλ. The contributions of the last 2 terms are suppressed by powers of

1/T . Sφ is conformally invariant only if φ is constant and should be considered as contributing

only at the quantum level. In 2 dimensions
√
−g R is a total derivative whose integral is pro-

portional to the Euler characteristic of the manifold. Therefore the vacuum expectation value

of a constant dilaton field φ determines the strength of the string coupling. (Sτ is needed as a

counterterm to cancel divergences and plays no further role.)

It can be shown that the resulting quantum theory is conformally invariant to leading order

in 1/T iff the following ‘β-functionals’ for the coupling functionsG, B and φ vanish [fr85,ca185],

0 = Rµν − 1
4
Hµλ

ρHνρ
λ − 2DµDνφ (3.49)

0 = DλHµν
λ − 2Hµν

λDλφ (3.50)

0 = 4DµφD
µφ− 4DµD

µφ+R + 1
12
HµνλH

µνλ (3.51)

which can be interpreted as equations of motion for the metric, the (field strength of) the

antisymmetric tensor field, and the dilaton, respectively. Actually these equations are the

Euler Lagrange equations for the (effective) action

S26 =

∫
d26X

√
−Ge−2φ(R− 4DµφD

µφ+
1

12
HµνρH

µνρ). (3.52)
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[ho89] P.Hořava, Background duality of open-string models, Phys. Lett. B231 (1989) 251

[ka21] Th.Kaluza, On the problem of unity in physics, Sitz. Preuss. Akad. Wiss. K1 (1921) 966;
O.Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys. 37 (1926) 895

[ka95] S.Kachru, C.Vafa, Exact results for N = 2 compactifications of heterotic strings, hep-
th/9505105, Nucl. Phys. B450 (1995) 69

B 2



[ka195] S.Kachru, A.Klemm, W.Lerche, P.Mayr, C.Vafa, Non-perturbative results on the point par-
ticle limit of N = 2 heterotic string compactifications, Nucl. Phys. B459 (1995) 537 hep-
th/9508155

[ku79] T.Kugo, I.Ojima, Local covariant operator formalism of non-abelian gauge theories and quark
confinement problem, Suppl. Prog. Theor. Phys. 66 (1979) 1

[ma96] P.Mayr, Mirror symmetry, N = 1 superpotentials and tensionless strings on Calabi–Yau
four-folds, hep-th/9610162

[mo95] D.R.Morrison, M.R.Plesser, Summing the instantons: quantum cohomology and mirror sym-
metry in toric varieties, Nucl. Phys. B440 (1995) 279 hep-th/9412236

[ne71] A.Neveu, J.H.Schwarz, Factorizable dual model of pions, Nucl. Phys. B31 (1971) 86;
Quark model of dual pions, Phys. Rev. D4 (1971) 1109

[ne89] P.Nelson, Cohomology and the operator formalism, Phys. Lett. B221 (1989) 31;
Covariant insertion of general vertex operators, Phys. Rev. Lett. 62 (1989) 993

[po81] A.M.Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B103 (1981) 207;
Quantum geometry of fermionic strings, Phys. Lett. B103 (1981) 211

[po195] J.Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724
hep-th/9510017

[po196] J.Polchinski, S.Chaudhuri, C.V.Johnson, Notes on D-branes, hep-th/9602052

[ra71] P.Ramond, Dual theory for free fermions, Phys. Rev. D3 (1971) 2415

[sc74] J.Scherk, J.H.Schwarz, Dual models for non-hadrons, Nucl. Phys. B81 (1974) 118

[sl81] R.Slansky, Group theory for unified model building, Phys. Rep. 79 (1981) 1

[th89] C.B.Thorn, String field theory, Phys. Rep. 175 (1989) 1

[va95] C.Vafa, E.Witten, Dual string pairs with N = 1 and N = 2 supersymmetry in four dimen-
sions, hep-th/9507050

[va96] C.Vafa, Evidence for F theory, hep-th/9602022, Nucl. Phys. B469 (1996) 403

[ve68] G.Veneziano, Construction of a crossing-symmetric, Regge-behaved amplitude for linearly
rising trajectories, Nuovo Cimento 57A (1968) 190

[wi95] E.Witten, String theory dynamics in various dimensions, Nucl. Phys. B443 (1995) 85
hep-th/9503124

[wi196] E.Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B471 (1996) 195

[zw93] B.Zwiebach, Closed string field theory: Quantum action and the Batalin–Vilkovisky master
equation, hep-th/9206084, Nucl. Phys. B390 (1993) 33

B 3


