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Thinking about what may be the ‘most general theory’ that one can write down we always
have to start from some reasonable set of assumptions. In flat space we usually describe
the dynamics of local fields (or first-quantized point particles) by a Lorentz invariant and
renormalizable local action. In curved space Lorentz invariance will refer to tangent space
indices and is supplemented by the requirement of general coordinate invariance; in 4 dimensions
renormalizability can only be imposed on the matter part of the action since, with the Einstein-
Hilbert action S = ﬁ Jv/=9gR, the gravitational coupling constant £ = /167Gy has

negative mass dimension.'

It is a well-known fact in group theory that, in addition to vector and tensor representations,
the Lorentz algebra has an irreducible spinor representation s and its conjugate ¢ = s¢; all
representations are contained in (Kronecker) products of tensors of SO(1, D — 1) — i.e. tensor
products of the vector representation — with possibly one additional factor of s or ¢. Therefore
we construct a field theory out of tensor fields t,, 4, %" and spinor fields ¢%,, , """ where
a can be « for the spinor representation or ¢ for its conjugate.? General tensors of this form
correspond to reducible representations. One can project to irreducible representations either
by setting contractions with invariant tensors to 0 or by making them redundant via gauge
symmetries. In 4 dimensions renormalizable Lorentz-invariant interactions exist only for scalar,
spinor, and vector fields; consistent couplings to gravitons g¢,,, and gravitinos ~,,% require local

coordinate invariance and local supersymmetry, respectively.

The reason for the split into tensor and spinor representations is that SO(1, D—1), and more
generally SO(p, q), is not simply connected but has a double covering group, which is called
Spin(p,q). The spinor representations are the double valued ‘representations’ of SO(p, q). We
will discuss the properties of spinors of the Lorentz group using representations of the Clifford
algebra, which will provide us with a realization of the double covering group Spin(p,q). Then
we turn to some elementary aspects of supersymmetry and supergravity. Since D = 2,4,10
dimensions are all important in string theory, we discuss the situation as far as possible for an
arbitrary (even) number of dimensions. Eventually we explicitly construct the so-called (1,1)

supergravity in 2 dimensions and its (0,1) restriction, which is relevant for heterotic strings.

I In perturbation theory we use gmn = Tmn + Khmn With & = /167G N = V2M SfD/ 2 and expand in powers
of h, so that we obtain a k-independent quadratic term (with second derivatives) and corrections proportional
to h?(kh)"; in D = 4 dimensions the mass dimension of Gy is 2 — D = —2. More generally, physical bosonic
fields ¢ have 2 derivatives in their kinetic terms, while fermions have a Dirac operator [P = 4™ D,,, so that the
mass dimensions of these fields are dim(¢) = (D — 2)/2 and dim(¢)) = (D — 1)/2. Higher derivative kinetic
terms for physical fields usually spoil unitarity (or positivity of the energy): Since ((O + m?2)(0 + m3))~! =
(m3 —m2)~ (O +m2)~t — (O+m3)~1), we always have some kinetic term of the wrong sign.

2 Since the vector representation is contained in s ® ¢ we also could use fields with only spinor indices, but
in more than 4 dimensions this is not very economic since the dimensions of the spinor representations become
too large.
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Chapter 1

Spinors

1.1 Clifford algebras, representations and spin

With any vector space with a non-degenerate scalar product there comes a Clifford algebra
that is constructed in the following way: We consider a basis in which the metric has the form
Nay = diag(+,...,+,—, ..., —) with p positive and ¢ = D — p negative entries and objects v*
that satisfy the relations

{1 =21, DUt= gty (1.1)

where 1 is the identity operator. Then the products £I'*% with a; < as < ... < a; (together
with +1) form a finite group with 2 Zf):o (13 ) = 2D*1! elements whose formal linear combinations
with coefficients in some field K form an algebra of vector space dimensions 22 (we will only
be interested in K = R or K = C; we will also write C(p, ¢) instead of Cg(p,q)). This algebra
is called Clifford algebra Cx(p,q): Its generators anticommute, p of them square to 1 and the
remaining ¢ generators square to —1. Special cases are the Dirac algebra C(1,3), the Pauli
algebra C(2,0), the complex numbers Cg(0, 1), and the quaternions H = Cr(0, 2), which are the

smallest non-commutative field containing the complex numbers.!

SO(p, q) is the group of linear transformations with det = 1 that leave a (pseudo) metric
tensor 7y, invariant. The defining (vector) representation is given by matrices Q,° satisfying
Q%™ eg = Nap. For infinitesimal transformations Q,° = 6° + w,” + O(w?) this implies that
Wap 1= W Nep 1s antisymmetric. Using the basis (l“b)cd = (53(5£ - (5252 of antisymmetric matrices

we can write wyg = %wab(l“b)cd and obtain the structure constants of the Lie algebra so(p, q) as

Laby lea) = —Naclva + Mbelad + Nadlve — Mbalac, (Lap0)e = (lap)e™a = —NacVh + Noeva (1.2)

L The symbol H refers to Hamilton, who discovered the quaternions in 1844 when he tried to find a group
structure on the 3-sphere. With i := ~', j := ~2 and k := ij we have 3 different ‘square roots of —1’ that are
related by jk = i and ki = j. Rotations of vectors (z,y, z) are represented by ¢ — uqu~"' where q = iz + jy+kz
is a ‘pure quaternion’ and w a ‘unit quaternion’ u = ag + a7 + asj + azk with wu = 3" a? = 1. Quaternionic
manifolds appear in extended supersymmetry.
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Our next step is to find a spinor representation of this Lie algebra, i.e. a representation such

that finite transformations provide a double cover of SO(p, q).

To this end we consider antisymmetrized bilinears ., := %[%,%] = %('ya% — Nap), Whose
commutator with v, is [Yap, V.| = %[%%,%] = YaTbe — NaeYp and thus has the same form as
a Lorentz transformation of the vector «, of Clifford algebra generators. This implies that,
for any matrix representation of the Clifford algebra, the ¥,,’s provide a representation of the

Lorentz algebra,

1
Zab == h/a’ 7b]7 [Zaln f)/c] = —MNacVb + MoeVas [Eaba Ecd] = _naczbd + nbczad + nadzbc - nbdzac-

4
(1.3)
To see that we actually constructed a double cover of SO(p,q) we perform a rotation by an
angle ¢ in the ij-plane, where we assume that both directions are ‘space-like’ (7;)? = (7;)?; this
is, of course, not possible for SO(1,1), whose fundamental group is trivial (for (v;)* = —(v;)?
we would consider boosts and thus get hyperbolic sines and cosines). Since X% = %'y"’yj squares

to (¥%)? = —11 for i # j we find in the spinor representation
wij=—wi=¢ = oxpw)=exp(zual®) = exp(pXV) = cos § + (7)) sin 5, (1.4)

so that only a rotation by 47 leaves a spinor, i.e. a vector in the representation space of
the Clifford algebra, invariant. In other words, the spinor representation is a double valued

representation of SO(p, q).

In order to understand that the properties of spinors and Clifford algebras are independent
of a particular matrix representation we now recall some elementary facts of group theory: A
representation R of a group G is a map R : G — End(V) from G into the group of linear
transformations on a vector space V over a field K that is consistent with the group structures,
i.e. R(g) o R(h) = R(gh) for all g,h € G. The dimension n of the vector space is called
dimension of the representation. A choice of a basis in V' provides an identification of End (V')
with the matrix group GL(n,K).

Complex representations, where K = C, always come in quartets R, R*, (RT)~!, and (RT)~!,
where R* is the complex conjugate representation and (R?)™! is called contragradient or
dual representation. Note that R? is not a representation of the group G and that all of these
representations live in different vector spaces. An intertwiner between two representations
Ry and Ry is a map A : V; — V5 that is compatible with the representations, i.e. AR;(g) =
Ry(g)A Vg € G (more abstractly, this is a morphism of the category of representations of G,
i.e. a map that is compatible with the ‘relevant’ algebraic structures). The representations
Ry and R, are called equivalent if there exists an invertible intertwiner (an isomorphism);
for matrix representations this means that there is a matrix A € GL(n,K) such that Ry(g) =
AR (g)A™! Vg e G.
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A representation on a vector space with a hermitian metric is called unitary if all linear
maps R(g) preserve scalar products or, equivalently, if all representation matrices R(g) are
unitary in one (and hence in any) orthonormal basis. For finite groups and for compact groups
it can be shown that all finite-dimensional representations are equivalent to unitary represen-
tations (an appropriate metric can be constructed by averaging an arbitrary hermitian metric
over the group). Furthermore, equivalent unitary representations are unitarily equivalent, i.e.

A can be chosen to fulfill AAT = 1.

A representation R : G — End(V) is called irreducible if {0} and V' are the only invariant
subspaces. It is called completely reducible if for all invariant subspaces V; C V there exists
an invariant complement, i.e. a subspace V5 such that V = V; & V5, and all representation
matrices R(g) become block diagonal in a basis consisting of elements of V;. A representation
is called faithful if R is injective, i.e. if R(g) = 1 implies that g is the unit of the group. The
group ring is the set of formal linear combinations of group elements with coefficients in some
ring K with the natural product operation. If K is a field, then the group ring is an algebra,
since the group ring is a vector space over K. (The Clifford algebra is thus the group algebra

of the finite group that is generated by ~,.)

Schur’s Lemma: If A is a homomorphism of a finite-dimensional irreducible representation
R with [A, R(g)] =0 Vg € G then A = A1 is a multiple of unity.

Proof: For finite-dimensional representations A must have some eigenvalue . Since A com-
mutes with all representation maps R(g) the kernel of A— 1 is a non-empty invariant subspace

and must thus be equal to the whole representation space. O
Corrolary: Intertwiners between irreducible representations are unique up to a factor.

Proof: Assume that f : Vi — Vo and g : V; — V4 are intertwiners between two irreducible
representations Ry, Ry. Since the kernel of g is an invariant subspace it must be all of V; or
{0}. Hence we either have g = 0 - f or g is invertible. In the latter case A := fog™ :V, — 1,
is an automorphism with [A, R2(g)] =0 Vg € G. Hence, A = A1 and f = Ag. O

Theorem: All unitary representations are irreducible or completely reducible.?
(Without proof)

Before turning to the formulation of Lorentz invariant field theories that contain spinors
we should first understand the irreducible representations of the Clifford algebra. We define

7 1= 2P and observe that it satisfies

1 D
V=Y a D-1_a 2 [254] 1 p—q=0,1 mod 4
— = (— — (— 1 — )
5= Z[%]% C T =T = () -1 p—¢=2,3 mod 4
(1.5)
2 An example of a reducible representation that is not completely reducible is given by the Galilei transfor-

mations (;) — (711 g) (;)7 vectors with t = 0 form a non-trivial invariant subspace.
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because ¢ + (g) = 2pq + (p;q) = (p;q) = [”2;‘1] mod 2. The first equation shows that in
odd dimensions there cannot exist an irreducible faithful representation of the Clifford algebra
since 7, would have to be proportional to the unit element because of Schur’s lemma. In even
dimensions 4 anticommutes with all v*’s and squares to 1. It can therefore be used to define the
helicity projectors Py = %(1 + ), which will be important for the construction of irreducible

spin representations since they commute with the generators ., of spin(p, q).

For D € 27 the existence of a faithful irreducible representation of dimension 2°/2 can be

shown by explicit construction: For D = 2 we can use any two of the three Pauli matrices

0 1 0 —i 1 0 |
01:(1 0)7 02:(2, 0), 03:(0 _1)7 02 =1, o10005 =il (1.6)

to represent C(2,0) and imaginary multiples to get the other signatures. Representations for

larger dimensions can be constructed recursively since

C(p1 +p2, 1 +q2) if P54 is even

o : (1.7)
C(p1 + 2, q1 +p2) if P52 is odd

C(p1,q1) @ C(pa, q2) = {

To see this, an isomorphism can be constructed in the following way: For given representations
7@ of C(pi,q) we use the matrices 7((11) ®1® with a; = 1,...,D; and 7Y ® 'y[(lz) with as =
1,..., Dy, which all anticommute, e.g. {%(LP ®1® ~1 %(5)} = %(&)7*(1) ® %g? + 7*(1)7&) ®
72 = (A0} @48 = 0. Moreover, (1" ® 1@)? = )10 © 1@ and () © 1P)? =
(—)plgq1 171(12@)1(1) ® 1@ which establishes the isomorphism.

Corrolary: C(4,0) = C(2,0) ® C(0,2) = C(0,2) ® C(2,0) = C(0,4) implies the isomorphism
C(p,q) =C(4,0)@C(p—4,q9) =C(0,4)@C(p—4,9) = C(p—4,q+4), so that C(p,q) only
depends on D and p — gmod 8.

For odd dimensions D = p+ ¢ = 2n + 1 two irreducible representations can be obtained by

using a set of y-matrices for the case D = 2n and in addition the matrices 47, or iy, .

These two representations are inequivalent since the product v, 2"V of all D = 2n+1 y-matrices
o

is proportional to unity, v, 2"t = +"2’] 1, but with different signs of the proportionality factor
in the two representations. This factor cannot be changed by an equivalence transformation.
If {y*,a = 1,...,D} is a representation with ~,?"*+) = +il*2'11 then {—y*a=1,...,D}
provides a representation with , 271 = —i[%2"]1. Tt can be shown that the 2°/2-dimensional
representation for D € 27 and the two 2(P~1/2-dimensional representations for D ¢ 27 are
unique up to equivalence.? In the odd-dimensional case the direct sum of the two inequivalent

representations is isomorphic to C(p, ¢) and thus provides the minimal faithful representation.

3 The proof uses some results about the dimensions of irreducible representations of finite groups: The group
ring of a finite group carries the regular representation, which has dimension |G| and whose representation ma-
trices correspond to permutations of the group elements. The number of inequivalent irreducible representations
(irreps) of a finite group is equal to the number N.. of conjugacy classes (i.e. classes of group elements h that
are related by equivalence transformations h — ghg~! for some g € G). The regular representation contains
each irrep Ry of dimension dy of the group exactly dy times, so that |G| = Zf;ﬂl d3. In our case |G| = 2P*1
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Note that the tensor product of representations corresponds to ‘matrices of matrices’ (like
e.g. 2x2 matrices whose entries are lower-dimensional y-matrices). We can obtain, for example,
a purely imaginary (Majorana) representation of the Dirac algebra C(1,3) = C(1,1) ® C(0,2)
using (09,i01) and (ioy,i03) with 1Y) = o9(io1) = 03, so that, inserting the left factor into the

right factor,

0 __ 09 0 1 iO‘l 0 2 0 Z.O'g 3 iO’g 0
7 "( 0 ag)’ 7 “( 0 i01>’ 7 "(zag 0 )’ 7 "( 0 —ioy) 1O

We will see later that a representation of C(1,3) with real matrices cannot exist.

Another non-commutative algebra that comes with any vector space is the exterior algebra
A= 25) AP, which also has dimension 2”. There is, in fact, a natural one-to-one correspondence
of k-forms and Clifford algebra elements which is given by w +— ¢ = %F TR, e, (€082,
CH54]. The Clifford product and the exterior product differ by terms of lower ‘form degree’.
The Clifford algebra is therefore not a Z-graded algebra. Since the defining anticommutation
relation (1.1) has a term of degree 0 on the r.h.s. there is, however, a Z, grading left that
we can use to define the decomposition C(p,q) = C4(p,q) ® C_(p,q), where C,(p,q) contains
all linear combinations of products of an even number of v matrices and C_(p, q) contains all

products of an odd number of « factors.

Obviously Cy(p, q) is a subalgebra, which is again isomorphic to a Clifford algebra. To see
this we use, for some fixed ag, the products y*°~* with a # ag as generators of C, (p, q). Since
{raone yaoabt — —(730)20~a AP this gives us an isomorphism to C(g,p — 1) or to C(p,q — 1),

depending on whether (v%)? is positive or negative. We thus find the chain of isomorphisms

Ci(p,q) = C(p,g—1)=Clq,p—1) =Ci(q,p) (1.9)

Note that Spin(p, ¢), the Lie group corresponding to the Lie algebra generated by ¥, resides in
the even part C, of the Clifford algebra. This implies that the dimension dependent properties of
the spin representations are just reversed as compared to those of the Clifford algebra: There are
two inequivalent spinors in even dimensions, and in odd dimensions there is a unique irreducible
representation. In fact, we already found the projectors P, that decompose the Clifford algebra
representation for D € 27 into the two inequivalent irreducible spinor representations of so(p, q),
which are of dimension 2°/2~! and whose elements are called Weyl spinors. Spinors in odd

dimensions have 2(P~1)/2

components. The symmetry of C, (p, ¢) under the exchange of p and
g should have been expected since the properties of spin representations of so(p, ¢) should not

depend on which sign convention we choose for the indefinite metric.

and N,. = 2P +s with s = 1 (s = 2) for D even (odd): All products ['*t-? of different v matrices are combined
into conjugate pairs +I" except for p = 0 (and p = D if D is odd, because then {1} and {£-.} are classes that
contain only one element). Since we already have dimension Y d3 = 2P from 1 (2) irreps for D even (odd), all
other irreps must be 1-dimensional.
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1.2 Dirac adjoint and charge conjugation

From now on we assume, without loss of generality, that our representations of y-matrices are
unitary:

()'=0"" = (1.10)
This will be useful for constructing real Lorentz tensors that are quadratic in spinor fields, the
stuff we need as building blocks of Lagrange densities, and it allows us to use group theoretic
results on unitary representations. We also restrict our discussion to the even-dimensional
case D € 27, where we have a unique irreducible representation. Analogous results for the
odd-dimensional case can then be derived, for example, by using what we know about the ~

matrices in dimension D — 1.

In addition to the contragradient and the complex conjugate representations the structure
of the Clifford algebra provides us with a host of other representations for any given one. We
may, for example, flip the sign of any number of v matrices, consider transposed matrices,
or even linear combinations v* — Q%" with arbitrary SO(p, ¢) transformations Q% In the
latter case, we loose unitarity of the representation if 2%, contains boosts and does not just
mix space-like and time-like directions among themselves. In any case we are guaranteed
the existence of an intertwiner (as we only consider even dimensions). The physically most

important equivalences [gl76,Re84]| are listed in the following table:

vt = Ay Af A=Al = (i2y, )P 2 e vi=ytA,  AAT =1

A0k . RTAa _ T _ T __ a c.__ * _
v =B"vB | B=bB" =CA —vawl(y*y) Y= By*, BB =1

—T = CTyaC C =cCT = BA* = bcA'B Ype=0y , OCt=1

QY = Ay A | A =14 towh ]+ 0W?) | A= BIAB, AT = AATAT

Here v is the Dirac adjoint spinor, which transforms contragradient so that it can be used
to write down Lorentz invariant scalar products. The matrix B allows us to impose Lorentz-
invariant reality conditions )¢ = v on spinors. The explicit formula that we gave for B assumes
that we use a representation with all 4 matrices either being real or imaginary (tensor products
of Pauli matrices, which we used for our recursive construction of representations, obviously
are of this type). The charge conjugate spinor ¥°¢ is usually defined in terms of the Dirac
adjoint spinor and the charge conjugation matrix C'. Eventually we recover the existence of a
Lorentz transformation A(£2) on spinors. After imposing reality and normalization conditions
A becomes unique up to a sign. This remaining ambiguity cannot be removed since we are

dealing with a double valued representation.
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Before we discuss the various equivalences and the entries in the above table in more detail
let us first elaborate on what spaces and intertwiners we are talking about. With any vector
space V over a field K there comes its dual space V which is the space of all linear functionals
a:V — K. The elements of V are also called covectors. We define (a,v) = (v,a) := a(v)
for all a € V,v € V. V* denotes the complex conjugate dual space which is the space of all
antilinear functionals on V, a*(v) := (a,v)*. The complex conjugate vector space V* is the
space of all antilinear functionals on V, v*(a) := (a,v)* (this is not a perfect notation, but we
want to reserve the ‘«’ symbol for complex conjugation). If we have a (semi) linear operator
L :V — W intertwining two complex representation spaces, then we have its transposed map
LT : W — V (defined by (L"b,v) := (b, Lv)*)), the complex conjugate map L* : V* — W*
(defined by (L*v*,b) := (v*, L7b)™®) and the hermitian conjugate map L' : W* — V* (defined
by (Lb*,v) := (b*, Lv)™)).

From the left column of the above table we observe how A : V. — V* B : V* - V
and C' : V — V intertwine the various representations. Hence AT : V* — V, and if we
use lower (upper) indices « for (dual) spinors and indices @ for the complex conjugate spaces
we have the index pictures A%, BQE, Cas, and (AT)@B (we underline spinor indices and
reserve o for Weyl spinors; see below). Hence C~! plays the role of a bilinear metric in spinor
space. A and B are antilinear on spinors v, i.e. linear on ¥*. Implicit in our formulas is
that we fix the real subspace of V' and a hermitian metric (having the same index picture as
A), which allow us to define unitary matrices and transposed and conjugated vectors. With
these intertwiners, whose existence in even dimensions is guaranteed by the uniqueness of the
irreducible representation, we can now define the Dirac adjoint spinor? ¢ = ¢TA € V and the
conjugate spinor ¢ = By* = C’ET = C AT%*, which requires a choice of normalizations that
is compatible with B = C AT,

Unitarity of our representation of v matrices implies that v* and 421 = (72)~! are related
by a unitary matrix A. It is easy to see that for p odd (even) the product of all v matrices
with positive (negative) square can be used. Since AT does the same job as A, Schur’s lemma
implies that AT and A are, in fact, proportional. With an appropriate choice of the phase
of A, which is not fixed by unitarity, we may choose A = AT, as is done in the formula
for A in the table. With the matrix A we can define the Dirac adjoint spinor 1 = ¢fA,
which transforms contragradient to ) under Lorentz transformations because 1) — A1) implies
v — YIATA = YTAA~!. This allows us to construct Lorentz-invariant real scalars ¢n), as
well as antisymmetric tensors I %1). The job of A is to compensate the non-unitarity
of the spinor representation in the non-compact case (i.e. for boosts). Note that we define

hermitian and complex conjugation for anti-commuting fields such that (XY)' := YTXT and

4 More precisely we should write 1) := AT4y* because 1) := 1T A only makes sense after a choice of basis,
which allows us to write bilinears in terms of matrix multiplications (there is no natural map ¢ — ' € V*).
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(XY)* := (—)XIVIX*Y*. In the case of Minkowski signature p = 1 we have A = ~°.

Charge conjugation should change the sign of the coupling of the gauge field to the
fermion in the Dirac equation, i.e. we want to transform (i —eA —m)y = 0 into the equation
(i@ + eA — m)y© = 0 for the wave function of the charge conjugate particle. Such an equation
can easily be obtained by transposition of the Dirac equation ¥ (—i 5 —ed —m) = 0 for the

adjoint spinor provided that there exists an intertwiner C' that transposes the v matrices,

(™) (10 + €Ap) —m) ' = C i@ +ed—m)CY =0, ¢°:=Cy .  (L11)
Putting the pieces together we find that ¢¢ = Bvy* with B := CAT. We should indeed expect
that ¢¢ is proportional to 1* since wave functions transform with phases ¥ — e~/ under

gauge transformations A — A + dA.

Unitarity of the v* implies unitary equivalence, so that C' can be fixed up to an irrelevant
phase by CCT = 1. Furthermore, the transposed equation —y% = CT~T(CT)~1 of —T =
C~1'44C shows that CT does the same job as C so that these intertwiners must be proportional
C = cCT with ¢ = +1. The constant ¢ can be computed if we observe that the matrices

-2 which span the representation space, are all either symmetric or antisymmetric:
70 _ —C’}/T = [re--arr = (_)rc«(_)(g) (Fal...ar)T — C(_)(T;rl) (Fal...arO)T‘ (112)
The number of symmetric minus the number of antisymmetric matrices is the dimension of the

representation, hence

2b/2 — Cig (f) (—)(2) = CED: <l:) Re((1 4 4)i") (1.13)

r=0
D/§+1) .

= cRe(1 + )P+ = cRe((1 +4)(20)P/2) = 2P/2(—)(
Note that C’ := ~,C intertwines v* and +7°7. Since C~!(v.C) = (—)( 2 >’y*T = (—)[TH]%T =
(—)P/24,T we obtain

D/§+1)

et =o)L = (o) (=) (1.15)

For the chiral projector Py we thus find C™'P.C' = P{ if D € 4Z and C7'P.C = Pi if
D € 47 + 2. The metric C thus mixes chiralities in 2 mod 4 dimensions and preserves chirality
in 4mod 4 dimensions: In a Weyl basis, in which Py is diagonal, C' must be block-(off )diagonal
for even (odd) D/2. The same is true for C".

In the odd-dimensional case D = 2n 4 1 there cannot exist intertwiners between v* and
both +7%7 and —y*T (otherwise v*T would be equivalent to both 4% and —“ in contradiction
to the inequivalence of 7* and —v%). Recall that v-matrices in D = 2n + 1 dimensions can

be constructed from those in D — 1 = 2n dimensions. The first D — 1 matrices v* (a =
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1,2,...,D — 1) are taken to be those in D — 1 dimensions. The last matrix v is taken to be
47,2 or +iv, 2" depending on whether a = D is a space-like or a time-like direction. Then

the intertwiners C, C" used in D — 1 dimensions satisfy

C1yC =T OO =44, a=1,...,D—-1, (1.16)

C_I’YDC — C/_I’YDC, — (_)(Dgl),yDT (117)

Hence, if (—)(Dgl) = -1 ((—)(Dgl) = +1) we can use C' (C") to intertwine v* and —y7 (+~°T).
Formally, we can define the intertwiner C” = 3 (C’ +C+ (—)<D;1)(C’ - C)) satisfying

D—-1

C”_IVGON = (_)( 2 )fy“T, a=1,...,D, (1.18)

D—-1)/2+1
(D-1/241)

()7 = (=) (1.19)
Note that the symmetry properties of the linear intertwiner C' only depend on D; reality

properties, like the symmetry of B, will depend on the signature p — q.

1.3 Majorana and Weyl spinors

It will be important to know what Lorentz invariant reality conditions we may impose on
spinors. The Majorana condition requires that a spinor is equal to its charge conjugate v =
¢ := Bvy*, which is possible iff BB* = 1, as can be seen as follows: First we note that ¢ = ¥°
implies (¢¢)° = B(By*)* = 1, i.e. BB* should have an eigenvalue 1. Complex conjugation of
—y%* = BB yields v* = —BTy* B* = B B14*BB* = (BB*)'v*BB*, so that Schur’s lemma
implies BB* = bl. Using unitarity B~! = BT we thus find B = b(B*)"! = bBT = b?B with
b = £1. The sign factor b can be computed using the symmetry of C: Since A is the product
of p (q) v matrices for p odd (even) we find

B=CAT = BT — ACT = ACc=CA™h = b= (=)™ % with s — {p praodd o)
q p,q even

r+1

(recall that [t C' = C’F““"“T(—)( 2 )) The sign b = (—)? thus becomes

5= (527 + G2) + 5 (pg + p+ 5 + 5) (1.21)
] mod 2 (1.22)

because for p odd pg+ g+ s* +s = (p+ 1)(¢+p) € 4Z and for p even pg+q+ s° + 5 =
q(p+1+4q+1) € 4Z. Majorana spinors therefore don’t exist for ¢ —p € {4,6} mod 8, i.e. in 6
and 8 even dimensions with Minkowski signature. Somewhat puzzling about this result is that

the existence of Majorana spinors depends on the convention that we use for the sign of the
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metric. There is, however, another spin(p, ¢)-invariant reality condition that we may impose,
namely ¢ = B'i)* with B’ = 7, B. As above we find ~,B(7,)*B* = b'1 with &/ = +1,

b= ()% = ¥V =9B0)B = (-)"(n)’BB = (-)7 b= ()7, (1.23)

so that indeed the role of p and ¢ is exchanged in the modified Majorana condition (Majorana
spinors have to be multiplied by ~, times some phase to conform with such an exchange).
Sometimes spinors satisfying the modified Majorana condition are called pseudo Majorana
spinors. Note that B’ = ~, B intertwines v* and +y**. Both reality conditions can be imposed
simultaneously iff the chiral projector commutes with B, which happens if p — ¢ = OmodS8.
Then we can have Majorana-Weyl spinors, i.e., with an appropriate choice of basis, real Weyl

spinors.

Theorem: There is a basis with B = 1 and all v matrices imaginary iff b = 1. In this basis

the Dirac equation (i) + m)i is real. (There is a basis with real v matrices iff ' = 1.)

Proof: As UBUT : V* — V' for U : V — V' the intertwiner B transforms into (a phase
times) UBUT under a unitary change of basis v — U~%UT. Decomposing B into real and
imaginary part B = B +iBy = BT we find BB' = 1 = B? + B? —i[By, By]. Hence B, and B,
are commuting real symmetric matrices, which can be diagonalized simultaneously by a real
orthogonal transformation (which preserves unitarity of the representation). Then B becomes
a diagonal unitary matrix, which can be transformed into B = 1 with U = 1/v/B. O

For practical calculations it is often convenient to use a Weyl representation in which the
chiral projectors are diagonal and, consequently, the matrices 7 (which anti-commute with 7)
are block off-diagonal (to see this just make an ansatz for the blocks of 4*). In such a basis
we split a Dirac spinor 1, into positive and negative chirality Weyl spinors v, and ¢%; this is

called Infeld — van der Waerden notation. We thus have

azz(é _ﬂ) = (v%gz:(kﬁgwa(fﬁ), wg==<ZZ>v (1.24)

(O.ab)aﬂ 0 ) O-(Ib — i(o.aab _ O’bEa>

y—y (1.25)

w2 = (

Eab — i(—a

Since 7 is real in a Weyl representation +, is real iff 42 = 1, so that By = (—)%'}B . With an

ansatz for the block entries of B we thus find the following general form of its matrix elements:
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q—p=D-2 0=28 2 4 6
b= BB* 1 1 -1 -1
(s) (a)
B = bBT B+ 0 0 BZ+ B+ 0 0 —BT+
0 BY B, 0 0 BY B.. 0
: ¢=B+¢*> (¢=BT @/3*)
Majorana ( ~ = - . — -
Y =DB_1 V=D
V¥ = BB* 1 -1 -1 1
p_ypr | (BT 0 0 BT\ | (B 0 0 BT
0 BY B . 0 0 BW B . 0
* _ R'T I«
p-Majorana (ﬂi i g}ﬂ) - o (dj - B/_Jp*)
Y =B Y=DB 9

In odd dimensions D = 2n + 1 there cannot exist intertwiners between v* and both +~**
and —v**. If we take the first D — 1 matrices v* (a =1,2,...,D — 1) to be those in D — 1

dimensions and v? = £(i)7," the intertwiners B, B’ used in D — 1 dimensions satisfy

B 'Y'B =" B74WB =44 a=1,...,D—1, (1.26)

Bfl,YDB — B/flf)/DB/ — (_)p_g_l,-YD* (127)

P—gq

As in the case of charge conjugation, we define B” = % (B’ + B+ (-) = (B’ — B)) satisfying

p—g—1

[3”_17a13H = (=) 4™, a=1,...,D, (1.28)
B"(B")* =b"1 = (—)(

(p*q*l)/2+l)
2

1. (1.29)

qg—p=D-21]1 3 D 7
b// — B//(B//)* 1 _1 _1 1

With Minkowski signature (Pseudo) Majorana spinors thus exist in 1 and 3 mod 8 dimensions.

It can be shown that real Clifford algebras are always isomorphic to (the direct sum of two)

‘full matrix algebras’ M(d, K) with d x d real, complex or quaternionic entries [co82]:

p—¢q mod 8 | Dp—y) mod 8 Ce(p,q)
1 1 M2 R) & M(2IP/2 R)
2, 0 0, 2 M(2P/2 R)
3, 7 7, 3 M(2P/2 )
4, 6 6, 4 M(2P/2=1 H)
5 5 M2 H) @ M(21P/2-1 H)

The matrix algebra is real iff the v matrices can be chosen to be real.
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1.4 Towards actions

Eventually we come to the discussion of Lorentz transformations Q%7" = Ay?A~!. Since
A cannot be chosen to be unitary this defines A up to a factor A € C* = C — {0}. We next
show that this ambiguity can be resolved up to a sign if we require A and B to intertwine the

Lorentz transformations on the conjugate representation spaces:
—Q%"* = QBB = BIAY*A™'B = —(Ay*A™Y)* = (A*BY)y*(A*BT) ! (1.30)

implies that BTA and A*B' are proportional, so that we can obtain B'AB = A* by a choice of
the phase of A. Similarly,

Q4T = QU AP AT = AN ATTAT = (AP AT = (AT A)7(ATAT). (1.31)

This implies that AT~'A and AA are proportional. Now the constant can be fixed to 1 by a
choice of a real factor for A. But AT™'A = AA implies ATA™'A = AT = AA"'AT since A and

AT are proportional, which completes the proof of our proposition.

In particular we have shown now that bilinears i(%l) xI'@1-@q) transform as antisymmetric
tensors under Lorentz transformations (all of them are real for y = ). Since we are in even
dimensions we can insert chiral projectors, which flip chirality r+p times if we pull them through
the r factors of I' and through the intertwiner A that defines the Dirac adjoint. In Minkowski
space this implies that kinetic terms @ and minimal gauge couplings 4 preserve chirality, while
mass terms me) and anomalous magnetic moments v J¢) flip chirality. In 4mod 4 dimensions
it is, however, still possible to give a mass to a single Weyl spinor by coupling it to its charge
conjugate (charge conjugation changes chirality in D/2 ¢ 27 + p dimensions, where B is off-
diagonal in a Weyl representation). Such a mass term is called Majorana mass and it violates

fermion number by 2 units.

The Fierz rearrangement formulas, which are crucial for the existence of supersymmetric
actions, follow from completeness of the basis {I''} = {I'*%} of the Clifford algebra (for a
faithful representation the corresponding matrices thus provide a basis for the space of linear
maps of the representation space). We define I'; := (')~ = (I'')3; (I'')? = (1)1 with 5%1) = 1.
Lemma: In even dimensions tr '/ = 0 if I'/ # 1, tr 1 = 2P/ and w; = 5575 tr(yflp).

Proof: For all T'! # 1 there exists a '/ that anti-commutes with T'Y (in odd dimensions also
I, has to be excluded). Hence trI'! = tr "Iy = —tr I/, = —tr 'Y (in the last step we

used cyclicity of the trace). The rest is obvious. a

Theorem: In even dimensions the following (equivalent) rearrangement formulas hold:

S @ T)E = (0,8 (1)), = 2776362, (1.32)

1 1
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(@I 49) (XTPn) = (=X y "ol (@D TPy) (RTTA4), ol =" /2P/% (1.33)
1J

This means, in particular, that the partners in 4-Fermi terms of a Lorentz-invariant action can
be exchanged. The number of terms that arise in this way, however, grows rapidly with the

dimension.

Proof: First we observe that ), I''T4T; = pal because it commutes with all elements of the
Clifford algebra (which follows from Y, T'TAD, '8 = Y T8, T8) 100,18 = Y, TETITAT,
where the sum over all I'! was replaced by the sum over all I';T'® for fixed I'?). Computing
the trace we find py = 2P tr '/ tr(1) = 2P/2tr 4. Contracting (1.32) with (I'*)z2 the r.h.s.
becomes proportional to (5% . Similarly we find the proportionality to (55, and contraction of all

indices gives us the normalization. O

If we decompose the Dirac spinors into their Weyl components completeness of the I'
matrices allows us to decompose s ® s and s ® ¢ into irreducible tensor representations of
the Lorentz group. We get the correct position of indices by multiplication with the charge
conjugation matrix (C~1I'')22. Thus the tensor product of spinors of equal chirality decomposes
into even forms in D € 4Z dimensions (where C' is block diagonal), and into odd forms in
D € 47+ 2 dimensions. For ¢® s even and odd forms are exchanged. Comparing the dimension
2P72 of the tensor products of chiral and/or antichiral fermions with the number of independent
DYy =3 1 (P) = 2P/2 there seems to be a

components of the antisymmetric tensors »__ . (r -

mismatch by a factor of 2. This is easily resolved by observing that ~, is proportional to unity
on Weyl spinors, so that forms of degree r and D — r have to be identified (multiplication by
v, is analogous to the Hodge * operation on forms, i.e. contraction with the € tensor, which is

invariant under special orthogonal transformations).

For the middle degree » = D/2 the * operation is an endomorphism of A" with ** =
(—)P*+4 on r forms, which can thus be decomposed into eigenspace. Inserting D = p + ¢
and 7 = D/2 we obtain ¥> = (=)""% = (=)"2" = 7,2 Therefore the eigenvectors of * are
(real) selfdual w = *w or anti-selfdual w = — x w forms iff 5% € 27, which coincides with the
signatures where charge conjugation preserves chirality. In particular, s ® s contains the scalar
in D € 4Z (C is block diagonal) and the vector in D € 4Z + 2 (C' is off-diagonal). This is
in agreement with the result that the center of D, = Spin(2n) is Zy X Zs for even n and Zy
for odd n (the center is related to the conjugacy classes of representations). The conjugate
representation in the group theoretic sense coincides with the complex conjugate iff A is block

diagonal, i.e. iff p is even.

SO(p, q) consists of two connected components if pg > 0 (this is easy to see if p = 1: the first
line of v* = Qy” must have length 1, hence (v°)? = 1+ @* > 1 and ortochronous transformations
with v° > 0 cannot be continuously connected to transformations that change the time direc-

tion; in the general case one has to consider the determinant of €2 restricted to a positive definite
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® Transformations that are not in the component SO°(p, q)

subspace of maximal dimension).
of the unit element thus cannot be obtained by exponentiation of the Lie algebra. The above
proof of the existence of A and the fixing of its normalization by the intertwining equations
nevertheless apply, even if we consider general orthogonal transformations O(p, ¢). In the latter
case the normalized A’s represent the double covering group Pin(p, q) of O(p,q). All elements
of Pin can be written as A € Spin with a possible additional factor of 7°, which implements
the parity transformation in Minkowski space.® Another group that is sometimes considered
is the Clifford group, which consists of all invertible elements A of the Clifford algebra. Since
Av2A~! always corresponds to an orthogonal transformation the Clifford group is a (twisted)

product of Pin and the abelian group that corresponds to multiplication by £\ € C*/Z,.

It was discovered in 1956 that parity P and charge conjugation symmetry C' are violated
in weak interaction. In 1964 it was observed in kaon decay that even the product C'P is not
a symmetry of nature. C'PT', however, is respected by any local quantum field theory and, so
far, it seems also by nature. The proof of this theorem uses the transformation behavior of the
building blocks of the Lagrangian. Our interwiners A, B and C' are, indeed, related to just
these three discrete transformations: A changes sign of space-like directions, C' corresponds to
charge conjugation, and their product B comes with complex conjugation, which is related to

a change of the time direction in the Schrédinger equation.

If we want to have spinor fields in curved space we need a vielbein field e,,*, which provides

an orthonormal basis e* = dx™e,,* of cotangent space and whose inverse E,"™ allows us to define
the Dirac operator ¢ := v*E,™0,,. Globally we also need a spin structure: On an (orientable)
manifold the structure group of the tangent bundle can always be reduced to the (special) or-
thogonal group. For a spin structure we need to lift this to a bundle with structure group
(S)Pin. The (s)pin structure, if it exists, need not be unique: On compact orientable Riemann
surfaces, for example, there are 229 spin structures (which are combined into two classes, the
even and the odd spin structures, whose elements are mixed by modular transformations). The
Klein Gordon operator for spinors in torsion-free curved space is (i) +m) (i) —m) = —0—m?,
where we defined the Laplace operator on spinors as O := [D? = D? — iR.
Proof: Since (y™) is a Lorentz-invariant tensor [P 2 = (7™ 4+ 4m~y?)D,. D, and Dy, Dy =
%[Dm,Dn]. Inserting the Lorentz generator in the spin representation we find 41" [D,,, D,] =
Alman] %RmnijEij = —%R because y[Mynlalingl = ATmnii B(I'™ipni — [nigmi — Pmipni 4 Pnipmi)
C(n™n™ —pminp™) with A = B = C = 1, as can be seen by inserting mnij = 0123, 0112 and 0110
into this ansatz. O
With this definition one finds for integrals over compact manifolds that (D¢, ) = (¢, O).

® Tt can be shown that Spin°(p, q) is simply connected for D > 2. SO(2,0) is the infinitely connected circle
and the components of the hyperbola SO(1,1) already are simply connected.

6 Any orthogonal transformation can be generated by at most D reflections on hyperplanes orthogonal to
vectors n, which can be realized as ¥ — yy/n?; SO(p,q) transformations correspond to an even number of
reflections.
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Chapter 2

Supersymmetry

We call a symmetry that (linearly) transforms physical Bose fields into physical Fermi fields
a supersymmetry (SUSY). Because of the spin—statistics theorem this implies that a SUSY
generator (), transforms as a spinor under Lorentz transformations and is an odd element of a
Zy—graded symmetry algebra (assuming that () and its hermitian conjugate act on a positive

definite Hilbert space it can be shown that ¢ must have spin 1/2 in 4 dimensions [WE83]).

The main constraint on the form of the supersymmetry algebra comes from the Coleman-
Mandula theorem [co67], which states that the most general Lie algebra of symmetries of the
S-matrix is the direct sum of the Poincaré algebra and a reductive compact Lie algebra if
1. the S-matrix is based on a local relativistic quantum field theory in 4 dimensions,

2. there are only a finite number of particles associated with one particle states of a given mass,
3. and there is a mass gap between the vacuum and one particle states.

In other words: Space-time symmetries and internal symmetries don’t mix. When it was
realized that this no-go result can be circumvented by supersymmetries (which are not part
of a Lie algebra), Haag, Lopuszanski and Sohnius [ha75, WE83] used the Coleman-Mandula
theorem to analyze the general structure of graded symmetry algebras. The bosonic part of

such algebras must be of the form that is predicted for Lie algebras of symmetries.

To take advantage of our knowledge about irreducible spin representations we will mostly
use a special type of Weyl basis for our analysis of SUSY algebras: Restricting our attention to
Minkowski signature p = 1 we can construct a Weyl representation in even dimensions using
a set {0’} of v matrices that generate an irreducible representation of C(D — 1,0), i.e. the

9D/2-1 D—1 ; oD—2

dimension of this representation is and o is proportional to the product o' ...

Then we define

(v")a? = ((ag)dﬁ (026“5) .= ((i é) . A= (_00 %) .2

so that 7° = ¢” = 1 and & = —o'. It is easily checked that these matrices obey {7¢,7%} =
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@ Changing, for example, the sign of ¢ (but not of ) we obtain an analogous basis

—2n
for the other sign convention in the Clifford algebra, as is used in the book of Wess and
Bagger [WE83]. In the Majorana—Weyl case D = 2(8) the matrices o’ can be chosen to be real,
so we automatically obtain a real Weyl basis (which could be modified into a Majorana—Weyl

basis by 0% — ic® and % — —ic?).

Symmetries can always be assumed to be real, because real and imaginary part of a sym-
metry transformation acting on the real action must vanish individually. SUSYs are therefore
often written in terms of Majorana spinors, which may cause some headache if we think about
6 dimensions, where no Majorana spinors exist. What matters, however, is that there always
exist real representations (take R @ R* for a Weyl representation R). As far as counting of
SUSYs is concerned there is thus no difference between 4 and 6 dimensions. What is different
is that complex conjugation does not flip chirality in 6 dimensions, so that R & R* cannot be
written in terms of a single Dirac spinor. In 2, 6 and 10 dimensions extended SUSY's thus exist
with various distributions of chiralities: For N = 2 theories in 6D and 10D the names ITA and
IIB are used for the non-chiral and the chiral case, respectively; in 2D one talks about (p,q)
SUSYs (where N = p + q).

To make chiralities more explicit it is useful to rewrite complex conjugates in terms of Dirac
adjoints (intertwiners can be used to write everything with indices « and ¢, which correspond
to the two inequivalent spinor representations). To write 1) = AT%* in terms of (Y2)* we
observe that complex conjugation of AC = beB gives aATC* = be(BT)™!, where A* = aAT.
To pull down the index of ) we multiply by C and use BC* = BB*A = a*bA~! to arrive at

Ut = s AT = @by BLe, Y, = By = atbAl jyd (2:2)

In Minkowski space bc = —1 is independent of the dimension and A = 7 implies a = 1 as

(7°)? = 1. Putting the pieces together we obtain the complex conjugation formula

(£2Qa)" = abe(—)*? £7Q, = ab(—)*? £,Q" (2.3)

D/2+1}
2

(recall that £2Q, = fQC’gTQC’A@Ql and CTC~! = cl1, with ¢ = (—)[

2,4,10,12, ... dimensions, so that the position of indices is relevant in exactly these dimensions).

being negative in

One might expect that the intertwiner C' should transform covariantly, i.e. that its indices can
be raised with C~'. The fact is that (C~1)2x(C~1)#C, s = (C~1)B* = (C~'T)2L. This motivated
to two different conventions for the charge conjugation matrix with upper indices: Penrose and
Rindler [PE84], among others, insist that C22 should be the result of pulling indices up, so
that C' with upper indices is equal to C~'T. Wess and Bagger [WE83], however, and most other
books on SUSY insist that C%8 and Cap should be inverse, so that all indices are shifted by

left multiplication with C, except for the indices of C' itself in the dimensions where ¢ = —1.

To compare our results with the usual spinor gymnastics in 4 dimensions we define the
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proper position for index contractions to be £4Q,, if Q is chiral and &,Q¢ if it is antichiral. B
must be proportional to the product of all v,y with v* real. In 4D and with ¢* being the Pauli
matrices we thus find B oc v2. Choosing a phase of B such that C = BA* = £iy?9%* is real

the charge conjugation matrix becomes

€ap 0 o a2 0% _ —7;0'2 0 .2 0 1
(0 6@5) = (C = YTy —( 0 i02>’ € el —(_1 0 (2.4)

Using the conventions of Penrose and Rindler this is consistent with go; = ¢ =1 = g, = £'?,

and €,45 = —€q4p with ape”’ = —8]. To recover those of Wess and Bagger,

Vo =eapt’, o =Uh=eu0, P =em=1=e"=c5, cape” =06, (25
we have to change the sign of ¢’ and of Eafr

For our choice of basis and with A = +° we find in even dimensions

& «

Vo= (W) =Y, V=t () =9 (2.6)

Note that in D = 2,6, 10, . .. dimensions with Minkowski signature charge conjugation preserves
chirality and C,p is offdiagonal, so that (£2Q.)* = (—)%“b Ed@d is somewhat misleading and
should rather be written as (—)@bc £°Q, = —(—)¢Q £€"Q,, (in this case the parameter £* for a
chiral SUSY transformation @), is antichiral). We thus obtain the real BRST transformations

D=48,...:  (£Qu)" = (-)*%EQ, = (—)he £,Q",
s = ggQg = gaQa - Ed@a7 (27)
D=2,6...:  (£€Qu)" = (-)%cE'Q,, (6:Q7)" = ()% §,Q"
Se. = gaQa - Za@aa Sa.c. = ngd - Zd@a' (28)

In D = 2mod 8 dimensions the negative terms in Sepicar and Sentichirar Should be omitted with
Qo = Q% = B."Q% and £ = £PBs°, ie. Qq and i€* = iC%&P should be Majorana spinors
since £ = P Bg® implies £& = C93¢0 = (C’B_ITC_l*)dgﬁﬁ* with CB~YT'C~1* = C(BC1)* =
CbeB~1C = bc CA™Y = bcCA* = abcC AT = abeB and abc = —1. In case of extended super-
symmetries we have a sum of such terms. There are, of course, terms for all other symmetries
to be added to the BRST transformation, which at this point is only a convenient device to
collect all symmetries into a single real operator. Here the £% are just commuting parameters.
In supergravity the superghosts £ will become coordinate dependent bosonic fields that are

essential for covariant quantization.
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2.1 SUSY algebra and central charges

We make the following ansatz for the anti-commutator of supercharges in flat space:

{QL, Q5 = 20" (1 ClagPa + > (T C)apZ)! ., . (2.9)
p>0
where the indices I,J = 1,..., N label the spinor representations of the supercharges in case

of extended SUSY. The term proportional to the momentum on the r.h.s. is characteristic
for the algebra of supercharges, which are sort of square roots of momenta. The degrees and

symmetries of p-form charges Z(f ., that may occur depend on the dimensions and chiralities

of the spinors in the anti-commutator.

In 4 dimensions only scalar central charges 7!’/ ap

are allowed by the Coleman-Mandula

theorem,' so that the sum over p is restricted to 0 and 4. In both cases Z/ must be antisym-
D/2+1 41
e R

1 is negative. This allows for N(N — 1) independent

metric because ¢(—)l"z) = (=)
real central charges. Writing the algebra in terms of Weyl spinors and using the Jacobi identities
it can be shown [ha75,WE83,1y96] that?

{Q4, Qsp} = 207 Pnd, {Q4,Q5} = eapaPIT,, QL Th) = S;* QM (2.10)
[T}, Tn] = Zflkak, {Qan, Q@B} = 5d,3@i[AB}Ti7 [Tl7©dL] =S MQur (2.11)

is the most general form of the symmetry algebra, where a' intertwines the representations S,
and —S* in which @ and Q transform under the Lie algebra generators T' (all other graded
commutators vanish except for those with the angular momenta, which are fixed by the Lorentz

transformation properties).

To arrive at this result (see chapter 1 of [WE83] for details) one expands the central charges
7 +ie%d7 1.4 in terms of the internal bosonic generators 7; with complex coefficients allABl,
Odd (even) form degrees, i.e. momenta (central charges), occur in the tensor products of spinors
with opposite (equal) chirality. Since [@Q4,T}] is a chiral fermionic symmetry generator it must
be proportional to QF, i.e. [T, Q4] = —S*pQ~. and [T, Q4] = S*4”Q4p5. This fixes the form

of egs. (2.10) and (2.11).

Evaluation of the Jacobi identities (JI) implies the hermiticity and intertwining properties
of a and S: Since [P,,,T;] = 0 the JI for {T,Q,Q} implies that S*' L = SLy, ie. S = ST,
The JI for {T,Q,Q} implies that [T, Z] is proportional to Z’s, so that because of the JI for
{Q,Q,Q} implies [Q,Z] = [Z,Z] = 0. Since a reductible Lie algebra is a direct product of
simple and abelian factors, the Coleman Mandula theorem now implies [T, Z] = 0, which, when

inserted back into the JI for {7, @, Q} implies that a intertwines S and —S*.

I In principle the Lorenz generators could provide a 1-form contribution on the r.h.s., but this is inconsistent
with translational invariance of the SUSY charges [WE83].
2 Here we use the somewhat cryptic convention of [WE83] that complex conjugation shifts the index position.
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The simplest example of a solution to these constraints is the case N = 2, where f,,*
are the structure constants of an SU; in whose fundamental representation the supercharges
transform, the representation matrices are S; = 0; and —S; = —o7, and 7 is the l-independent

intertwiner so that
{Q4.QF} = cape™P (121 +ica ). (2.12)

This N = 2 algebra in 4 dimensions can be obtained by dimensional reduction from D = 6
dimensions, in which case the momenta in the two ‘internal’ dimensions can be interpreted as

the two central charges.

An interpretation of central charges in terms of ‘internal momenta’ is, however, not possible
for the N =4 and N = 8 algebras, whose versions without central charges can be obtained by
reduction of N = 1 theories in D = 10 and D = 11: In these cases there can be 12 and 56
independent charges, with a maximum of 6 and 7 internal dimensions, respectively. The missing
pieces cannot come from central charges in the N = 1 algebra in 10- dimensions, which does
not allow for (scalar) central charges. It has been observed, however, a long time ago [ho82]
that this algebra allows, in addition to the momentum, for a self-dual 5-form charge Z}, , in
the anticommutator of chiral supercharges (only odd forms occur in s ® s and since ¢ = —1 the

matrices [' % (C" are symmetric only for p = 1,2,5,6,9).

The way in which the central charges arise in this context is quite non-trivial [ab91]. The
problem with the p-form charges, and the reason why they are forbidden by the Coleman
Mandula theorem, is that they cannot be carried by point particles but only by extended
objects. Recall that the classical coupling of a 1-form gauge field to a O-form charge can be
written as an integral of the 1-form over the 0 4+ 1 dimensional world line of the particle. In a
similar way strings may carry a 1-form charge, with the coupling to the corresponding 2-form
gauge field given by its integral over the world sheet, and a p-form charge can be carried by
a p-brane, an object that extends into 1 time-like and p space-like directions. Point particles,

strings and membranes are thus 0-branes, 1-branes and 2-branes, respectively.

These ideas suggest that 10-dimensional super Yang-Mills theory should allow for a solitonic
5-brane solution that could carry the 5-form charge. Such a solution to the non-linear field
equations indeed exists: We just have to recall that there is an instanton® solution with self-
dual field strength to the 4-dimensional YM/Higgs equations. With a constant extension of
this instanton into 1 time-like and 5 space-like directions this provides us with a 5-brane in 10
dimensions. If we then compactify down to 5 dimensions on a torus we can wrap the 5 trivial

space-like dimensions of the 5-brane around the 5-torus and thus obtain a point-like particle in

3 Instantons are localized in Euclidian time and their action is related to quantum mechanical tunneling
probabilities, whereas solitons are localized wave packets that evolve in time without decay. Instantons in D
dimensions thus give rise to solitons in D + 1. The existence of such solutions is due to non-linearities in the
field equations and they are stable because they carry topological charges (instanton/winding numbers) [eg80].
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4 + 1 dimensions that looks like a magnetic monopole. The maximal dimension in which this

mechanism can provide extra central charges is thus D = 5.

To get down to 4 dimensions we also need to compactify one of the non-trivial dimensions
of the instanton on a circle and deform the selfdual soliton solution to a selfdual configuration
on R? x S'. Alltogether we thus have a compactification on the 6-torus 7% = T° x S'. The
N = 4 SUSY multiplet contains a vector field and 6 scalars (these multiplets will be analysed in
the next section; the scalars can be interpreted as the 6 compactified components of the vector
field in D = 10 super-YM). This allows for 6 different types of magnetic charges by using one of
these scalars as the Higgs field for the monopole construction. All of these 6 different charges
can be realized by the different choices of the non-trivial direction in the compactification on
TS. In this way we find a realization of the maximal number 12 of central charges for the
N =4 algebra in D = 4. Only half of these charges are electric with the remaining half being

magnetic, so that they cannot be seen in perturbation theory.

The simplest way to understand the non-perturbative nature of magnetic charges is the
Dirac quantization condition: If we couple the field strength to both types of charges we have
to modify the BI dF' = 0 into an equation of motion dF' = *j(y,), where j.,) is the magnetic
current 1-form. Of course F' can then be written as F' = dA only locally and only in source-free
regions of space-time. For a point-like magnetic source the gauge connection A can be defined
outside a ray from the source to infinity, the so-called Dirac string, because the Poincaré

lemma is valid for star-shaped regions.

The charge of a magnetic monopole can be measured by the integral g = fSQ F of the
magnetic flux over a 2-sphere containing the source, just as the electric charge is given by the
integral e = |, g2 *F" over the electric flux. Since F'is continuous we can take out an infinitesimal
disk A, of the sphere around the intersection with the Dirac string and let £ — 0 to compute the
magnetic charge: g = |, g ' = J S2_A. dA=— | oA, A. The Aharonov-Bohm phase that the wave
function of an electrically charged particle of charge e receives when carried around the Dirac
string is exp(2mie § A). Vanishing of this phase thus implies that the product ge € 27Z must be
quantized for all electric charges e and magnetic charges ¢ in a consistent quantum-mechanical
system [hay96].% Therefore, as the electric charge goes to 0 in a perturbative expansion the
magnetic one goes to infinity, and so does the mass of any solitonic solution that provides a

magnetic source, for example, in a spontaneously broken GUT.

If we increase the electric coupling the monopoles become lighter and may eventually dom-
inate the physics in the strong coupling regime. This suggests that there may be a dual de-

scription in which the elementary degrees of freedom are magnetic and the electrically charged

4 For dyons that have both types of charges this generalizes to the Dirac-Zwanziger quantization condition
e1go — eagy € 2n/ with e; and g; being the electric and magnetic charge of the the it" particle.
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particles are solitons. Such a naive duality is spoiled, however, by quantum corrections (one of
the obstacles is the running of the coupling constant). In supersymmetric theories the central
charges imply Bogomol’'nyi bounds [bo76] for the masses of charged particles (see below), so
that many classical results are protected against quantum corrections (monopoles that saturate
this bound are called BPS monopoles [pr75]). This lead to the Montonen—Olive conjecture of
a duality in N = 4 super-YM theory. Such a duality that relates a strongly coupled (electric)
theory to a weakly coupled (magnetic) theory is called S duality. This picture has then been
extended to a group of SL(2Z) transformations for 7 = % + 4%, where 6 is the coefficient of
the topological term [F A F in the YM action [0178]. In the N = 2 supersymmetric case the
duality is conjectured to apply to the low energy effective theory of a spontaneously broken
SYM model [se94,bi96].

The analogous story for N = 8 is complicated by the necessity to include gravity since the
minimal N = 8 multiplet in 4 dimensions contains a spin 2 particle. All the allowed central
charges can be realized by compactifications of type ITA or IIB N = 2 supergravities in 10
dimensions or of the N = 1 supergravity in D = 11 [to95]. In the following table we list
the allowed p-form charges and the dimensions of the existing solitonic p-branes [du95, to95],
including their multiplicities in the IIB case. With (120) =45, (150) = 252, (160) = 210 one finds

D: N | Q, |degrees| Z' p-form branes #(charges)

10: 1 s odd | sym. 1, 5% 1,5 136:10+%(150)

10: ITA | Dirac all sym. | 1,2,5,6,9,10 | 0,1,2,4,5,6 | 528=104454252+210+10+1
10: 1B | s@s | odd | any |1,3,50,7,9 | 12,3,5s 528=3x10+120+3x 126
11: 1 | Dirac | all | sym. 12,5 2,5 528=11+("))+(%)

As in the N = 4 case only half of the central charges are electrical, so that 28 = 56/2 is
the maximal number of charges that can be carried by perturbative states. This ‘maximally

democratic’ situation is realized, for example, by the heterotic string [to95].

Note that the electric-magnetic duality applies to field strengths F, o = *F(’ D—p—a)+27 SO
that p branes that may carry the cooresponding p-form charges are dual to D — p — 4 branes
[ne85,te86]. In particular, point particles are dual to point particles in 4 dimensions and strings
are dual to strings in 6 dimensions and to 5-branes in 10 dimensions. After compactification
D — p — 4 only gives a lower bound since some of the dimensions of the extended object may

be wrapped around non-trivial cycles of the internal manifold.

The wrapping modes of string solitons [st90,du95] have a beautiful application to Calabi—
Yau compactifications on singular manifolds: It has been known for some time that conifold
singularities occur at finite distance (with respect to the Zamolodchikov metric of the o model

CFT) in the moduli spaces of Calabi—Yau spaces. At these singluarities correlation functions
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of the CFT diverge, which leads to conceptual problems. Strominger observed that these
singularities can be explained by taking into account non-perturbative states that are due to
the wrapping of 5-branes around cycles whose size shrinks to 0 as we approach the singular
locus in moduli space [st95,gr95|. It is conjectured that all moduli spaces of Calabi—Yau
compactification are connected via singular limits [ca89,av95], and that the physics is smooth
at the transition points due to this black hole condensation mechanism. The change in the
Hodge numbers, and in the corresponding numbers of massless matter multiplets, can indeed be

reproduced by a counting of the non-perturbative states that become massless at the singularity.

2.2 Spontaneous SUSY breaking and the Witten index

One of the important motivations for SUSY is the hope for an explanation of the small cosmo-
logical constant. In nature SUSY cannot be realized as an unbroken symmetry since that would
imply, for example, the existence of a scalar particle with the same mass and electric charge
as the electron (@, commutes with the momentum P,,). It is thus important to investigate
whether SUSY can be broken spontaneously and how this is related to the vacuum energy. For

massive momentum eigenstates we find in the rest frame
{Q, Qsp} = 2M4,305 > 0 (2.13)

which is positive in a unitary theory, i.e. for a Hilbert space with positive norm. This implies
that all SUSY generators vanish on (physical) states with vanishing momentum, like a vacuum
with vanishing energy density. If, in turn, SUSY is not spontaneoulsy broken, then the Lh.s.

vanishes and so does the vacuum energy.

The real puzzle is therefore why the cosmological constantant vanishes after SUSY breaking.
Positivity of the vacuum energy is no longer required in SUGRA models, which may lead to
explicit ‘soft’ SUSY breaking terms in the flat limit, but in any case we loose a prediction for the
value of A [ni84,1a87]. Recently Witten had an idea how SUSY could still keep A at 0 without
enforcing the mass-degeneracy in 4 dimensions: In the context of string dynamics non-SUSY
models in 4 dimensions can be related to supersymmetric ones in 3D, where SUSY can then

keep A = 0 and at the same time avoid the troublesome implications in 4 dimensions [wi;95].

An important quantity for the investigation of spontaneous SUSY breaking is the Witten
index [wi82]

Tr (—)VF = Tr ™/, (2.14)

where Np is the fermion number operator and the trace extends over the Hilbert space of a

quantum mechanical system. This index only receives contributions from states with vanishing
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energy and momentum, as can be seen by evaluating the trace
2077 Pudg Tr(—)"" = Te(—)""{Q2, Qsp} = Tr(—)M QuQpp — Tr Qup(—)MQu =0 (2.15)

for a subspace of fixed total momentum. For P,, # 0 all representations thus need to have an
equal number of bosonic and fermionic degrees of freedom. Note that the Hamilton operator
may not exist as an operator in the Hilbert space in a supersymmetric QFT with positive
vacuum energy density. The Witten index can, however, be computed reliably at finite volume,
i.e. in a box with periodic boundary conditions that do not spoil SUSY, since then the energy

eigenvalues are discrete and finitely degenerate.®

Obviously, if the Witten index is non-vanishing then there are states with vanishing energy
and SUSY cannot be spontaneously broken. Being an integer, we may expect that a continous
change in the parameters of a model should not be able to change this index. From quantum
mechanics we know that the low-lying energy spectrum indeed cannot have a discontinuous
behaviour if the asymptotic form of the potential is not changed (discontinuities can arise,
however, for example at A — 0 for V = %qbQ + A¢*). The Witten index can thus be used to
check whether SUSY can be broken by non-perturbative effects [wi82).

This index also makes explicit the relation between SUSY and topology: In the zero-
momentum sector of the Hilbert space the Hamiltonian can be written as an anti-commutator

of two supercharges,

— — 2

H=QQ+QQ, @ =Q =0, (2.16)
which is similar to the situation in Hodge theory, where the Laplacian is the anticommutator of
d and its adjoint § = (—)? *~! d*; in 4 dimensions we can use Q = Q; or Q = Q, with Q = Q*.
For a nilpotent operator all linear represention spaces decomposes into singlets Q|¢) = 0 with

) # Q|¢’) and doublets (1), Q|). For positive energy Q|¢) = 0 implies |¢) = Q(Q|¢)/E) so

that all positive energy states are doublets

6-)= L Qlos), 164 = 25 Qloo). (2.17)

whose contributions to the index cancel as we already know. For E = 0, on the other hand,
we already know that positivity of the Hilbert space norm implies that all states must be
@ invariant and thus must be singlets () commutes with H, so that a Q-exact state would
have to be ) applied to a zero energy state). The states with £ = 0 thus coorespond to
the cohomology classes of (). Singlet states with opposite statistics can in principle pair up

and become doublets with positive energy under perturbations of the model. If Tr(—)"* is

> The definition (—)M* = exp(27i.J,) can still be used: If the Lattice has the appropriate symmetry (—)V#

is, for example, the 4" power of a rotation by 90 degrees. An example where it is important to worry about
the existence of operators is the ‘theorem’ that N = 2 SUSY cannot be broken to N = 1 in flat space [ce84],
which may be spoiled by contact terms in the current algebra [hu86|.
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non-zero, however, then there is an excess of bosonic or fermionic states that can’t pair up
and thus have to stay at zero energy, and SUSY cannot be broken spontaneously. There is
a unique ‘Hodge decomposition’ of the (]3 = 0)-sector of the Hilbert space into a sum of
‘exact’ states |¢,) = Q|p1), ‘coexact’ states |¢_) = Q|pz), and ‘harmonic’ states |@o) with
Q|bo) = Qlgo) = 0. For supersymmetric o models on Riemann surfaces the Witten index turns

out to be given by the Euler characteristic [wi82].

2.3 4D SUSY multiplets and BPS bounds

Before we construct QFTs that actually feature SUSY we first study the representations of
SUSY that can occur for momentum eigenstates in 4 dimensions. We have to treat separately
the cases of massive and massless particles, since in the former case we can go to the restframe
and assume p,, = (M, 0,0,0), whereas for massless particles we can only use spatial rotations
to achieve p,, = (E,0,0, E). The respective stability groups (also called little groups) that leave
this choice invariant are SO(3) = SU(2)/Z, and SO(2) = U(1), respectively.®

We first consider the case of massive particle with vanishing central charges. In the rest

frame the anticommutation relations

{Qa. @5} = 2M5,50% > 0, {Q.Q}={Q.Q} =0, (2.18)

then define the Clifford algebra Cc(4NV), as can be seen by computing the anticommutators
for the set {v*} = {(Q% + Qu4)/V2M} U {i(Q* — Q44)/V2M}. The irreducible faithful
representation of this algebra can be constructed by declaring, for example, that a/! = Q4 / VoM
must annihilate a Clifford vacuum €, with the creation operators ()t = Q4 4/V2M generating

the representation freely up to the anticommutation relations.

The state with the highest spin in a multiplet is found by symmetrizing in as many spinor
indices as possible. If 2 is an SU, singlet then we obtain the fundamental massive multiplet
whose dimension is 22. Since the creation operators anti-commute the index pairs (4, &) have
to be anti-symmetrized. Symmetrization in ¢ thus requires anti-symmetrization in A, so that
we can symmetrize at most N spinor indices and the maximal spin in the fundamental multiplet
is N/2. If Q itself transforms as a spin j representation then the dimension of the representation
becomes (25 +1)2*Y and its maximal spin is j+ N/2. The detailed spin content of such a SUSY
multiplet is obtained by decomposing the tensor products of the spin j representation €2 with
the components of the fundamental massive multiplet into irreducible SU; representations. The

result of this straightforward exercise is given in the table below.

6 Tt was observed by Wigner that the difference between the representation theories for on-shell states and
for local Lorentz—invariant fields is the reason for the necessity of gauge invariance for a covariant description
of massless fields with spin 1 (and 2) [wi39,bi82].
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Spin | N.=1110) | |3) | [1) [ I3} || N=2{10) | |3) | [1) | N=3|]0)|]3) | N=4] [0)
0 2 |1 5041 14 | 14 42

: 1|21 416 | 4 14 | 20 48

1 121 1416 6 | 15 27

4 1| 2 1|4 1|6 8

2 1 1 1 1
npy=nj 2 1 41]6]8 8 | 16 | 24 32 | 64 128

Table: Spin content of massive SUSY multiplets for extended SUSY in 4D.

Since we are dealing with representations of a Clifford algebra we have a compact SO(4N)
symmetry acting on these multiplets (the relevant symmetry groups are compact since they
have to respect the norms of the Hilber space states). Under SO(4N) the fundamental massive
multiplet decomposes into two irreducible representations, which consist of the bosonic states
and the fermionic states, respectively. The SO(4N) transformations do not change the masses
of particles, but they transform among states of different spins, so that it is useful to consider
smaller invariance groups that are direct products with SU(2). An obvious invariance group
of the N extended SUSY algebra is U(N).” Whereas @ and @ transform under inequivalent
representations of SO(1,3), they are equivalent as SO(3) representations (in arbitrary dimen-
sions the same arguments apply to @, and Q4, i.e. the representations s and ¢). This suggests
that it may be possible to extend U(N) to a group that also transforms Q’s into @Q’s. Since ¢

intertwines the SO(3) representations® Q and Q@ = Q' we choose a basis

G=ag, a =) cla)t = (@) =T (@7 =g (219)
B
With A = ¢ ® 1 the operator algebra can be written in the compact form

r e rs s r s rs 0 1
(ah)" = eA"q5,  {dh, a5} = —eash™, A= (_1 o) , (2.20)

which is manifestly invariant under® USp(2N) ® SU(2). It can be shown that states of equal
spin transform irreducibly under this USp(2N).

7 In the case N = 1 this is the R symmetry that corresponds to multiplication of @ and @ by complex
conjugate phases, which plays some role in the construction of the SUSY standard model.
8 As we go to the little group we leave away v°. In 4D £*? intertwines & and —&* since

0 -1 A B\ (D -C 0 -1
1 0 C D) \-B A 1 0)°
Thus Q, and @, transforming in complexe conjugate representationsof SO(3), are intertwined by &.

9 USp(2N) is the compact real form of the classical Lie group Cy = Sp(2N).
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The massless representations can now be analyzed in a similar way. We start with the

operator algebra

@@ =27 ) 1eheh=@uTm =0 )

The operators Q; and @, are totally anticommuting and must be represented by 0 (just as
totally commuting operators of an operator algebra can be replaced by numbers in an irreducible
representation). The representation spaces can therefore be built on some Clifford vacuum of
helicity h_ by acting with the N creation operators ag = ﬁ@1 1 They are of dimension 2V
and range up to helicity h, = h_ + N/2; at helicity h_ + n/2 the degeneneracy is (]X ) In
general it is, however, necessary to add a representation with the CPT conjugate states, which

have opposite helicity. The representations with h, = —h_ = N/4 are CPT complete.

For the multiplets of states that carry central charges [na78,fe81] we denote the antisym-
metric matrix of eigenvalues of the charges by Z42. This matrix can be block-diagonalized by
a unitary transformation Q — UQ, Z — UZUT = ¢ ® D with a diagonal positive matrix D
and blocks of anti-symmetric 2 x 2 matrices (if N is odd then we have to append a row and
a line with entries 0 to ¢ ® D). The invariant information thus consists of [IN/2] positive real

eigenvalues Z;, and the algebra in the block-diagonal basis reads

{Qam (5N} = 2M 35,07, {Q, QF'} = cape™d™ Zn,  {(QE™M)T(QF)T} = e catbmnZn
(2.22)
with a,b = 1,2 and m,n = 1,..., N/2. The operators Q%™ and (Q™)" can now be linearly

combined to operators

ol = Q" +eapl Q). B = (@Y = enal @3 (2:23)

that satisfy the following algebra:
{a, (a})'} = 050" (2M + Zy,), {02, (b)) = 0apd™" (2M — Z,), (2.24)
{a, (05)"y =0 {a, af} = {a7, b5} = {03, 03} = 0. (2.25)

Positivity of norms implies that 2M > Z,, for all eigenvalues Z, of central charges. This
yields a Clifford algebra with 2(N — r) creation and annihilation operators if 0 < r < N/2
of the central charges are equal to 2M. If r = N/2, i.e. all if charges are equal to 2M, then
the size of the representation is the same as for a massless multiplet. The stability group is
SU(2)spin @USP(2N — 21) ¢, in the massive case and U(1)pe. @ SU(N );pe. in the massless case.

As an example we consider the case N = 4: Here the short multiplet with Z; = Zy = 2M
consists of 1 spin=1, 4 spin=1/2 and 5 spin=0 representations with 1 -3 +4-2+5 = 16

degrees of freedom. In the massless limit this turns into the massless multiplet, which has
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the same size, but this time decomposing into helicities h = 41, 4 times h = j:% and 6
times h = 0. Giving, in turn, a vacuum expectation value (VEV) to a scalar in the massless
multiplet we must arrive at a short multiplet via the Higgs mechanism that saturates the so-
called Bogomol’'nyi bound Z = 2M; such states are called BPS states and their mass formula is
protected under (sufficiently well-behaved) deformations by the same mechanism that requires
the pairing of all massless states to break SUSY spontaneously. For N = 4 we can also have
an intermediate multiplet with Z; < Zy = 2M and 1 spin=3/2, 6 spin=1, 14 spin=1/2 and 14
spin=0 representations. The size of this SUSY representation is 4 +6-3+ 14 -2+ 14 = 64, in
coincidence with the fundamental massive N = 3 multiplet; the fundamental massive N = 4

multiplet is also called long multiplet in this context.

2.4 Supersymmetric field theories

Having discussed the multiplets of momentum eigenstates that we can expect in a physical
Hilbert space we now turn to the construction of local quantum field theories whose symme-
try algebras contain SUSY generators. What we actually want to construct is local actions
depending on some set of elementary fields that transform into total derivatives under SUSY
transformations. In this context it is useful to think in terms of jet bundles, which means that
we consider the fields ¢' and their formal partial derivatives [¢!] = {¢", 0,,¢", 0, 0n @', ...} as
independent variables; local functionals like actions are then (formal) space-time integrals over

analytic functions in the [¢?] that are polynomials in [9,,¢].

Conceptually it is important to distinguish between the supercharge (), the supersymmetry
transformation D, that should act linearly on the elementary fields, the implementation Q,, of
SUSY transformations in terms of a superspace differential operator acting on superfields, and
the covariant derivative D, that also acts in superspace. Denoting the canonical coordinates
by ¢' and a symmetry transformation by d;¢" = f;(q,q) the time derivative of the Noether
charge is Q; = 0;¢' (6L/5q"). Using the Poisson brackets

0AOB | 0405
dq* Op; Op; 0¢°

{A, B}pp = (—)" ( ) . Api.d}pe = =067 (2.26)

with the Noether charge we can, in turn, recover the symmetry transformation

- 0L

0rA ={Qr,A}ps, {Qr,H}pp =0, Qr = 0;q" e (2.27)

If the elementary fields transform in some linear representation then it is natural to consider

right multiplication with the representation matrices
010 ={Qr1,¢'Ypp = (=)' T1;" = —(=) (I7)';¢’, (2.28)
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where the matrices T; describe the right-action of the group and T¢ = —T7 denote the
corresponding contragradient representation matrices. This is only possible if the structure
functions f7;%([¢]) of the symmetry algebra [6;,8,] = f1,50k are constants, and we find
[Ty, T = f1,5Tk for the graded commutator. (With a left action of the representation matri-

ces we would have obtained a negative sign for the structure constants.)

Upon quantization Poisson brackets are replaced by ¢/h times commutators
it{pi, @ Ypp — [P, Q] = —ihd/, 61 A =1 [Qr, Al (2.29)

The Schrodinger equation i) = Htb implies the time evolution O = i[H, O] of Heisenberg

operators. This is consistent with

{Pn,d}pp = —Om, [Py, @) = —i0p o, {Qa, Qs} = 2075 P, (2.30)
{Qa, ¢} pp = —Duo, [Qu, ¢] = —iD,0, {Dy,Ds} = 2i@,, = 2i0050p, (2.31)
{@w ¢}PB = _5d¢v [@dﬂ gb] = _iﬁdgb’ [DOM am] = [Eéw am] =0 (2'32)

because {Douﬁd}(b = Z[QCMJZ[QOU(b}} + Z[@aul[Qa7¢}} = _[{Qom@o}}’(b] = QiO-ngamu where
[A, B} :== AB — (—)"®BA denotes the graded commutator. We also use the abbreviation

L om . . . .
Vag = ¢a & "= OaqUm to write vectors in terms of spinor indices.

In order to construct a field theory with a linear realization of supersymmetry we next have
to find representations of the algebra {D,, D4} = 2i0™,,, and then constructions of invariant
actions depending on those fields. The most natural representation is obtained by declaring
Dy, to be ‘annihilation operators’ on some elementary scalar field ¢. Since D,DgD. = 0 the
resulting (scalar) chiral multiplet consists of ¢, the Weyl spinor Yo := Dq$/v/2 and the auxiliary
field F := —D?¢/4 (F is not dynamical in a renormalizable theory since it has mass dimension
2 if ¢ has its canonical dimension 1). Note that ¢ must be a complex field since reality of
¢ would imply that it is also antichiral D,¢ = 0 and thus, because of the SUSY algebra,
constant. The action of D4 on Y, and F is fixed by the SUSY algebra and the definition of
these fields. Denoting the SUSY transformation with constant commuting parameters £ by
s =£&%D, + Zdﬁd we find

Ec’x¢ = 07 Xa = %Da¢7 F= _iD2¢7 (233>
s = V2, $Xa = V2(EF +i0 £ 0,0), sF = /2i0% £ 9,x". (2.34)

as is easily checked using the identities

D? = —"®DoyDy,  DaDs = teasD?, [D? Dy] = 4iD%,,, [Da,D’]=4i@ D", (2.35)

ad?

which follow from our conventions D% = 5“5D5, 5a5557 =), D?:=D°D,, D= D4 D%,
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Invariant Lagrangians can be constructed by observing that D?D’ acting on any (composite)
field and D? acting on a (composite) chiral field always give expressions that transform into
total derivatives. It can be shown [br92] that the most general supersymmetric lagrangian £

that depends on a set {¢'} of chiral fields and the corresponding hermitian conjugate anti-chiral

fields {¢'} is of the form!®
L=-'DL+he, L=2DK(¢, Do D¢, [¢,Dd, D d])+ g(4), (2.36)

where ¢ is called superpotential and K is called Kéahler potential. Note that the superpotential
can be chosen not to contain any derivatives (no d’s and no D’s). A redefinition K — K +
f(¢)+f*(¢), which changes the action only by total derivatives, is called Kiihler transformation.
Such a transformation together with a suitable normalization of the chiral fields can be used to
bring an analytic Kéhler potential into the form K = —% ZZEW + ... if the kinetic energies
are positive. The dots denote terms of dimension 3 or higher. If we demand renormalizability

such terms are forbidden and the superpotential must be cubic, so that
L=—3D? (_%Ez&ﬁ + 9(¢)> the, g=a+ N+ gmyd'e + srigpd Pt (2.37)
¢ intertwines & and —&*, hence also 0 and ()7, so that 5‘155"150; 5= 7% and
[D?,D°] = 4ig, .[D*, D*] = 8iDJD — 160 = 160 — 8D"J, . D* (2.38)

because {Da,ﬁd} = 27" and P = —0O1 with J := "9,, and tr16® = 2. Evaluation of
L= (D’¢D*) +2D¢DD ¢ + DD’ ¢¢) /32 — (D*$'0;9 + Dd D$i9,0,9)/4 + h.c. thus yields

[ — —%DQSZEZ . Z'Xio_a ayi + I_ﬁlfZ + Flalg — %Xlxj&ﬁjg + Fl@g* — %X1Y]813j9*7 (239)

where the kinetic terms and F'F' come from the Kéhler potential. Integrating out the auxiliary

fields by inserting their equations of motion F; = —9;¢g we find the potential

V(9,6%) = D_10ugl* = |F(9) (2.40)

10 Tt is easy to see that all terms are of the form D2?X + c.c and that all terms containing chiral and

antichiral fields can be written as D2D°Y: We define the operator t¢ by t*Dg¢ = §g‘¢i, t*D2%¢p = —2D¢!

and t%¢" = t°¢" = {t*, Dy} = [t*,84] = 0 so that {t*, Dg} = 65E(¢", x", F*), where & is the Euler operator
that counts the degree of homogeneity in the component fields of chiral multiplets (formally one may write
‘t* = 0/9(D,)’ when acting on chiral fields). As ¢t and D act linearly we may decompose the action into terms
L, of definite degree n in (¢, x*, F?). Since [D?t*] = 26D* and [D?,t?] = 4E(tD — &) a supersymmetric
action with Dy L, = 0,X< can be written as £, = — i D2(t°L,,) + 125 0,(1?D* X2 + 4nt*X2) for n > 0, i.e.
L,, can be written as D? acting on some local function up to total derivatives. Similarly it can be shown that

terms depending on antichiral fields can be written as 52(7%21:” /4n?) and terms that depend on both, chiral
and antichiral fields, are of the form D?*D’K.

To show that X can be assumed to depend only on ¢ (without derivatives) is more involved and this result
depends on the ‘QDS-structure’ of the SUSY representation on chiral fields [br92]; note that the linear SUSY
representations on local fields are infinite dimensional because {D, D} contains the partial derivative.
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for the scalar fields. The terms —%Xixj 0;0;9 and their hermitian conjugates are the Yukawa

couplings. (2.38) implies that we can define projection operators

_D'D? D?D’ ~ DD'D  DD®D
8O 8O

m, = =—— _
T 160 160

where I, and II_ project onto chiral and anti-chiral fields, respectively (to see this, evaluate

DD’D = D[D’, D|+D*D” and DD?D = D[D? D]+ D’ D?). Tl is called transversal projector.

2.5 Superspace

In the superspace approach SUSY transformations are interpreted as motions in a space with
anticommuting coordinates 6, and 6, in addition to the space-time coordinates ™. Complete
SUSY multiplets like (¢, x, F') are combined into a single superfield ®(x,6,0). The supersym-
metry transformation acting on a superfield is then represented by a linear combination of an
ordinary partial derivative and a derivative with respect to the anticommuting coordinates.

With an appropriate ansatz we find the operators

—+ Zaaﬂgﬁ, Qo} = _i - eﬂaﬂon {Qaa@d} = _Qiggdaa (242>

9
Q= g0 96"

that obey the appropriate algebraic relations (since 0™ = o™T and 9/0¢* = (—)I¥I(0/0)* we
have Q* = Q). A superfield ® is then a function in superspace that satisfies

Q,® = D,®, Q,® = D4, (2.43)

where D and D act on the component fields.!

Lemma: Any superfield F can be written in the form F = F(®) = exp(8D + D) f(¢), where
f(¢) is the #%-independent part of F.

Proof: First we show that exp(0D+60D) f(¢) satisfies (2.43). Evaluating Be = e(B—[A, B]+
UA,[A,B]] —...) with B=Q, — D, and A =D + 6D we find [4, B] = —D, + 2i@ad§d and
[A,[A, B]] = Qi@aéﬁd. Putting everything together QF = DF follows from Q,f = i@d{ﬂad f
and Q = D by complex conjugation.

Next we show that any superfield must have a non-vanishing f#-independent part: Splitting
F = > Fn into terms F,,, of degree m in ¢ and n in  the equations (2.43) imply recursion
relations that allow to express all F,,,, linearly in f = Fyy. Since the difference of the superfields
exp(0D +6D)f and F is again a superfield, this difference must vanishes, which completes the

proof of the lemma. a

' 1Q,Q} = —{D, D} is consistent with this equation because Q® = D® is no superfield.
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Q does not map superfields to superfields since {Q, D} = 0 but {Q, Q} # 0. To impose
the chirality condition on superfields we thus need another differential operator in superspace,

the covariant derivative

0 —6 —
Da == % - ‘5045496, Dd = + zﬂﬁ@ﬁd (244)
which satisfies %
{Da, Dg} = {D., Qs} = {D,,Ds} = {D,,Q,} =0, {D,,Ds} = 2i0%,0., (2.45)
so that it preserves the superfield property. Indeed, the chirality condition Dy® = 0 for a
superfield is equivalent to the chirality of its #-independent part since
D, /00 — IPHD(D, 4 i B + Dy) = e"PH0 (9 + D) (2.46)
The components of a chiral superfield are easily evaluated using the formulas

ID+0D _ ,~i6p8 ,0D 0D _ i6p0 0D oD (2.47)

which follow from [#D, §D] = 2i0*3_ dgd and the Baker-Campbell-Hausdorff formula
cAeB — €A+B+%[A,B]—‘r%([A,[A,B}]—[B,[A,Bﬂ)—k multiple commutators (248)

We thus obtain
O(z,0,0) = e P (2) = 3(y) + ODG(y) — LO2D2(y), Y™ =a™ — 6™ (2.49)

and the analogous formula for anti-chiral fields by complex conjugation. To obtain the 6-
dependent components explicity we just have to formally Taylor-expand ¢(y), x(y) and F(y)

iny—x.

The advantage of the superspace formulation is that we can rewrite the action as a super-
space integral and extend the Feynman rules to a supergraph calculus [WE83,br96|. To this end

we define superspace integration with {z™} = {z™, 0% 6,} and J-functions by

[dbe = 2 [0 = [do?d0', [dB=[dBdD, [d'0= [d0d%F, (2.50)

[db2 = [d*zd®0, [dZ = [d*axd®d, [d°z= [d*zd*0 (2.51)

PO —0)=—-1(6-10)%, §5(z — 2') = 62(0 — 06z — '), (2.52)
PO-0)=-10-9)?2  *EF-7)=060-10)5 (2, (2.53)

(2 — 2') = 6%(0 — 0')8*(0 — §)d*(x — ') (2.54)

Up to total derivatives the action (2.36) can then be rewritten in terms of f-integrations using
/d29 exp(0D + 0D) f(¢) = 1D*exp(D) f(¢) + tot.div., (2.55)

/d40 exp(6D + 0D) f(¢) = iDQEQf(gb) + tot.div. (2.56)

As usual, propagators are most easily obtained by solving the equations of motion for the

sources via evaluation of all possible projections.
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2.6 Supersymmetric Yang—Mills theory

There are two apparently independent approaches to a supersymmetric generalization of Yang-
Mills theory. The first is to look for a superfield containg the gauge fields: We might think
about a real superfield whose highest component is the gauge field. For such a field, however,
we would have to impose complicated constraints to get rid of higher spin components. It is

much easier to start from a superfield that is based on a real scalar field
V=V=C+040+ 160 (D - LoC) + (<9X +6M + 800\ — ig%)) + h.c.> L (257)

which already contains a real vector field A as its #6-component. The linear SUSY represen-
tation that comes with the real scalar superfield is therefore called vector multiplet. To find
the multiplet structure of the component fields we use F(®) = exp(6D + D) f(¢). Expanding

OD+0D _ %(e—wééewe@ + c.c.) we find

LD +8D)* = 16°0°[D,, Ds] — L(6°D*+ 8D, (2.58)
16D +8D)* = 6*(:D°D, —£D%9, )8 +0°6*(—1D°D, — i .D"),  (2.59)
16D +6D)* = 16°0°(L(D*D’ + D’D%) — D). (2.60)

so that the SUSY representation defined by a superfield V7 is

A = 1[Da, Dy)C* = (Do D —id,,,)C = (i@, — DaDa)C, (2.61)
Xi=D,Ci, N, = —1D°D,Ci,  Mi=-1p2Ci, Di=1{D?D’+D’'D}Ci. (2.62)

a

AT,

The component fields x*,, M* and X!, are complex. The real fields D’ transforms into a total
derivative under SUSY (such terms are called Fayet-Iliopoulos or D-terms; they are gauge
invariant and thus can contribute to the action only for abelian factors of the gauge group).
The gauge invariant field strength F’ = 0,,A! — 9, A", of the real gauge connection A,, is
contained in D AP = J'i P +i5° D' (see below).

Out of a chiral superfield A with lowest component L we can construct a special real
superfield by adding its complex conjugate. This suggests the following supersymmetrization

of gauge transformations:

5C =2RelL, 5y = DL, SM = DL,

= A+ Al
WV =A+AL §Anm = —2Tm ,, L, SA = 0D = §Fpy = 0.

(2.63)

Note that the transversal projector Iy in (2.41) projects onto the gauge invariant content of
the real superfield. For a chiral superfield of charge ¢ the gauge transformation and a gauge

invariant kinetic energy may thus be defined by
d—ed VoS VHAFA, K@ 0 V)=0?". (2.64)
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To complete the action of supersymmetric QED we need to choose a gauge-neutral superpo-
tential and add the kinetic terms for the gauge fields A,, and the gauginos A via the Kéhler
potential K (V) = A*x, + h.c.,

D2D’ (A%Xa) + h.c. ~ D* (A\*A\y) + h.c. ~ (—1anFm” —IAJA + %DQ) : (2.65)

4

In the superspace version polynomials and exponentials in the superfields are rather tedious to
evaluate and we can use supergauge transformations to set C' = x, = M = 0. This is called
the Wess—Zumino gauge, which is left invariant by ordinary gauge transformations, i.e. gauge
transformations with A being #-independent and imaginary (such a restricted A is no longer
a superfield and its non-vanishing component is no linear SUSY representation, except for the
trivial case where it is constant). In the Wess—Zumino gauge the gauge interaction is manifestly

renormalizable.

The generalization to non-abelian gauge theories is now easy to guess: We let & become vec-
tors that transform in some representation of the gauge group and V' = V%;. Then supergauge

transformations are defined by [WE83]
' =, =NVt = V=V +A+AT+ON), (2.66)
and supersymmetric gauge-covariant field strength can be defined by

W, =—1D’"VDee" = W, =e Wy, (2.67)

1
4
which leads to the gauge-invariant supersymmetric action

L= ﬁ tr (D*(WW,) + h.c.) + DD’ (¢'e" ) + (D?Gins () + h.c.) . (2.68)

with additional D-terms p?D? for abelian factors of the gauge group. Since the transformation
law of V starts with the familiar V-independent term A+ AT the non-abelian theory also allows

for a Wess—Zumino gauge with V3 = 0.

2.7 Supercovariant derivatives and Bianchi identities

In an alternative approach to super Yang-Mills we start with the covariant derivatives
Dy=0,+A — Dy=Dy+ ALS; (2.69)
and try to impose reasonable constraints on the covariant field strengths Fl4p defined by

[DA,DB} = —TABCDC + FIZB(SZ‘, [5,, (S]} = fijk5k, Taﬁ'c = Q’L'O';B (270)
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with all other torsion components vanishing. The constrains must be consistent with the Bianchi
identities

> ()" (DaFpe + Tas"Fpe) =0 (2.71)
ABC

that follow from the Jacobi identity for commutators. (The first Bianchi identity, which arises as

the coefficient of D4 in the Jacobi identity, is trivial in flat space with only internal symmetries).

In supersymmetry there are two types of constraints: The first type can be imposed by a
mere redefinition of what we call the covariant derivative. Such conventional constraints are
familiar from Riemannian geometry: There we can absorb the torsion T, into a redefinition
of the spin connection w,,? that determines the covariant derivative and thus replace a general
metric-compatible connection by the Christoffel connection. This is a mere change of basis
of the covariant local coordinates of the jet bundle and the torsion then becomes a particular
tensor field that may (or may not) be set to 0. Computing the field strengths in terms of the
connections we find

Fiy=DoAy+ DAl + AL AL [l — 2i (2.72)

so that F; 5= 0 can be imposed as a conventional constraint.!?

In order to construct gauge invariant interactions for matter fields we want to impose a
covariant chirality condition Dy¢ = 0. Covariantly chiral fields can, however, be charged under

the gauge group only if {D,, D} = F, 3551‘ vanishes. We thus impose the standard constraints
The general form of the gauge algebra, with the non-vanishing commutation relations

(Do, Dy) = Fiy5i, Doy D] = i, (s W 6, {D.,Ds} =2iD,, (2.74)

can then be obtained by solving the Bianchi identities, which also imply

_ 1
DsW =0, D':= éDaWC{, D W = gL 465 DT (2.75)
To derive this result we should first analyse the identities with contributions from torsions:
a a a T/ _5
Y () =08Fp+ 08 Fua=0 = 0%Fp=capWs,  Fua=0,,,W (2.76)
afy

i.e. F,, contains no spin 3/2 component. Except for the complex conjugate of the above the

only other BI with contributions from torsions is

_ 1 — — _
Y () = DoF. s+ DyFen +2i0% Fopy =0 = Fy= —1 DWW = Do, W) (2.77)
afe
12" Then the gauge potential A%, can be written in terms of (covariant derivatives of) A%, and Zf-x, which are

therefore called prepotentials. This is similar to the fact that we can express the spin connection in terms of
the vielbein if we impose T, = 0.
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Antisymmetry of Fj;, thus implies
- 1 —
DW = DW, Fy = é(DaabW — Do, W). (2.78)

The only remaining Bianchi identity that contains new information is

D () =DsF3+DyFa=0 = (004Dy+0Da)W* =0, DeW,=0, (2.79)

o'ch
i.e. W, is covariantly chiral (use o¢,5%° = 26007 after contraction with @)%). We can make
contact with our previous results by relating gauge covariant derivatives to ordinary ones via
[dr87, WE83]

Dy = Do+ A =V Doe™, Al =€V [D,,e™], (2.80)

where V% is a real scalar superfield. Covariantly chiral fields are related to chiral fields by
multiplication with e?. It can be shown that V = V§; parametrizes the most general solution
to the constraints, so that the real scalar superfield saves us all the work with the Bianchi

identities in super-YM theory.

In supergravity, however, no such nice magic is known and we have to do it the hard
way by solving the Bianchi identities with constraints. We can either work in superspace
with the supervielbein and super-spin connection, and eventually use a superspace coordinate
transformation to go to a Wess-Zumino gauge when life becomes to tedious, or we may avoid
to introduce the redundant fields that are eliminated by that gauge from scratch and work with

the structure of the gauge algebra. This is the approach that we will follow in the next section.
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Chapter 3

Supergravity

3.1 Symmetry algebras

In this section we analyse the general structure of closed irreducible symmetry algebras (or gauge
algebras) for which the infinitesimal symmetry transformations are implemented by derivations
Vi on tensor fields ¢(p) that are functions of some set of elementary fields ¢ (and their
derivatives). Linear independence of Vj;¢" and the Jacobi identity for graded commutators
(Var, Vit = VuVy — (=)MNV V) imply the Bianchi identities

Var, Vn} = FunVe = D ()M (VuFnp? — Fun"Frp?) = 0. (3.1)
MNP
The structure functions Fynt = —(—)M NFnut are graded antisymmetric and their grading
is given by |FanT| = |[M|+|N|+|P| mod2. The signs in cyclic sums originate from the Jacobi
identity and can be understood from the rule that [A,.} should act like a graded derivation
on the ‘commutator product’, i.e. [A,[B,C}} = [[A, B},C} + (=)4B[B,[A,C}}, which is
equivalent to 3. 5 (—)"“[A, [B,C}} = 0.

In supergravity we split the covariant symmetry transformations V,, into space-time sym-
metries {Da} = {D,,D,} and internal symmetries {6;} = {lw,:, dw,dr}, which generate
Lorentz transformations, Yang—Mills group actions, dilatations and R symmetries (which act
only on D,), respectively. This split implies that the structure functions receive different inter-

pretations:
[Da,Dp} = —Tup®De + Fap'os, (67, Da} = —914"Dp, 61,05} = f™,  (3.2)

with torsions T4g®, field strengths Fap’, representations matrices (gr) 4%, and structure con-
stants f;;%. Note that Fj4,® = 0 since space-time symmetries are inert to gauge transforma-

tions. The field strengths corresponding to Lorentz transformations Rap® := F45% are called
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curvatures. With

Fap® = —Tug® | Fi° = —g18° Fr;¢=0 (3.3)
Fap® = Fap™ Fs¥ =0 Fr = fr™
the Bianchi identities thus become
BI1:  » (=) (DaTuc” + Tap"Toc” — Fap'gic”) =0, (3.4)
ABC
BI2:  » (=) (DaFpc' + Tup”Fpc') = 0. (3.5)
ABC

and the meaning of the remaining identities is that T45¢ and F5™ transform as representations

under §; according to their indices,

01Fap™ = —g1AP Fpp™ + (=) PgisP FpaA™ + (=) B £, (3.6)

61Ta" = —gia”Tpp® + (=)*P 15" Tpa® + Tus” 910, (3.7)

and that the representations matrices g; and the structure constants f;;* are invariant tensors

819742 = 0 (the representation property of ¢g) and d;f;x* = 0 (the Jacobi identity for f).

We assume that the d; are linearly represented on tensor fields and that representation 0,,

of infinitesimal translation is a linear combination of the covariant derivatives

O = —An™(9)V 6. (3.8)

To specify the field content we assume that the connection one forms AV = daz™A,,"N and
their (symmetrized) derivatives can be chosen to be the only non-covariant variables of the
jet bundle. (The formalism can be extended to the case of p-form gauge fields and reducible
gauge algebras, as well as to algebras that only close off-shell [br;96]). With e,,* := —A,,* and

en B, = 0 we define

{AmM} = {_emaa Am'u} - {_emaa 77Z)7T7Jg7 AmI} - {_ema7 1/}mg7 wmab7 -’41%Z + . '}7 (39>
D, = E," (0 + AntV,.) = E.™ (0 + ¥n® Do + 3win®lap + Apdi +..). (3.10)

a

In these equations the vielbein e,,* is assumed to be invertible and vielbein and gravitino

(Rarita—Schwinger field) are interpreted as connections for translations and SUSY transforma-

tions. Commutation of the partial derivatives [0,,,0,] = 0 and independence of Vy ¢ then

imply
am-AnP - 8n-ATrLP - AmMAnN]:NMP = 07 (311>

which can be solved for the field strengths with bosonic indices
em en’Fap" = OmAnY — 0, A" — enf A Fuy 4+ en At Fu + A At Fu . (3.12)
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This equation could again be split into equations for field strengths and torsions in terms of the
various connections to obtain the usual lengthy formulas (the last term with v = j, u =i, N = k,

for example, gives the A%-term in YM).

It is straightforward to set up the BRST formalism for symmetry algebras of this type. The
BRST transformations of the matter fields is defined by replacing the gauge parameters by
ghost fields of opposite grading |C!| = |V;| + 1mod 2, i.e. s¢' = CVVy¢'. For any closed and
irreducible gauge algebra one may check that s?¢* = 0 uniquely fixes the BRST transformations
of the ghost fields.

s¢' = CNVngt = sCF = LOMON Fyy, P (3.13)
s2CT = 0 is then equivalent to the Bianchi identity (3.1).

Anti-commutativity of s and d, which follow from [s, 0,,] = {s,dz™} = 0, may then be used
to define a new nilpotent operator § := s+ d and CN = CN + AN so that s +d = CNVy on
tensor fields. (3.13) implies because of formal identity of the algebras that

(S + d) CYP = %(—)NéNéMfMNP (314)

whose split into parts with ghost number 0, 1 and 2 yields

SCP = %(—)NCNCM.;EMNP, (315)
sAY +dot = OM AN Fyu”, (3.16)
dA” = 1AM AN Fyu”. (3.17)

The first two equations define the BRST transformations of connections and ghost fields. Con-
sistency of the last equation with the tensor transformation law of the field strengths can be

checked by a straightforward computation.

To obtain the more conventional form of this transformation law we use the reparametriza-
tion

§ = CMen, €= OF 4 O™ Ayh = OV + g A (3.18)

&M corresponds to the vector field entering the Lie derivative and we thus obtain

s = (§"0n+E"V,) 0, (3.19)

sen® = £"0hen" + (0n€") e + 5“AmN}"NMa, ( )

s A" = E00AN 4 (0nE") At + O + €V AN F (3.21)

s = 0" + ()T B (3.22)

s& = 10,81 + 3 ()€ (Fpt — Fp B Anl). (3.23)

The CV are called covariant ghosts: The necessity of a redefinition of ghost variables in covariant

equations can already be observed in Riemannian geometry: Since the Lie derivative maps
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tensors into tensors it should be possible to write it in terms of covariant derivatives. But this

works out only if we combine it with a Lorentz transformation and redefine the parameter A:
Lo+ 30l™ = 6D — (D" + M)A + A0l™, Awp = Aap — @i (3.24)

(A and 1% are the GL, and Lorentz generators; for simplicity we avoid any world indices
on tensors by contraction with the vielbein, which is a connection in the present context, or
with differentials in case of field strengths). Using A we also find SWha! = —an\ab — &R,
in analogy with the tensorial property of the variation of the connection coefficients sI',;;”™ =
D D™+ D, (E¥T1™) 4+ € Ryy™. Of course these results are contained in their above extension

to more general algebras of covariant derivatives if world indices are avoided.

Returning to the construction of supergravity theories, the next step is to impose constraints
since the connections we introduced so far yield highly reducible theories that, furthermore,
usually do not allow for matter fields obeying equation of motion of the type that we expect.
First one ones redefinitions Vy; — X/ NVy with XN = 5]\]\2 + HMN(}") of the covariant
derivatives to bring the gauge algebra into a standard form, where we have the conventional
constaints

T =20, Tu=Ty =Ty =T,=0, F.;=0. (3.25)

To allow for chiral matter multiplets one extends this to the following collection of standard

constraints:
T‘abC = 07 TQQa = 2i7;§> Féﬁ = O’ Taﬁ;y‘ <326>

(which of these constraints are conventional slightly depends on whether we gauge R and Weyl

symmetries).

Consistency of the constraints requires that the Bianchi identities are fulfilled, the check of
which is the crucial (and most tedious) step in the construction of a SUGRA theory. These
identities usually imply additional constraints and the general parametrization of the allowed
curvatures and torsions requires the introduction of auxiliary fields that, together with the
vielbein e,,* and the gravitino ,,%, constitute the (off-shell) graviton multiplet. In some
complicated cases, like 10-dimensional SUGRA and N = 4-extended SUGRA in 4 dimension,
it has be shown that our approach cannot lead to a satisfactory theory. In these cases on must

extend our framework and admit open and reducible gauge algebras.

The standard constraints are usually not sufficient and finding a useful complete set of
constraints (i.e. obtaining an irreducible SUGRA theory) requires some experience (educated
guesses and tedious evaluation of the consequences). In 4-dimensions, for example, there are
3 known sets of solutions, called old minimal, new minimal and non-minimal SUGRA. Non-
minimal SUGRA has some ugly features as far as allowed matter couplings are concerned and

new minimal SUGRA is the one that automatically comes out of superstring theory.
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It turns out that not all of the Bls are independent. Some of them can be solved explicitly
for the curvatures in terms of torsions. Inserting these solutions with curvature and torsion
defined in terms of the gauge connections as above, the second Bls become redundant. This is

the content of the following

Theorem (Dragon): The second BI follows from the Ricci identity D? = R and the first set
of Bls [dr79,MU89].

To find the most general local action that is invariant under a given gauge algebra the
BRST formalism can be used to derive the descent equations, which reduce to problem to the

computation of cohomologies of (super) Lie algebra [br92].
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