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Chapter 1

Vector bundles

1.1 Vielbein and Lorentz connection

So far we described the tangent space with local coordinates (2™, v™), where the components
v™ of a vector at a point with coordinates x™ refer to the holonomous basis 0,m of TM. As a
consequence the transition functions for v™ on the overlap of two charts is given by the Jacobi
matrix aay—;, which is a general linear transformation. But the general linear group only has
tensor representations and therefor we cannot describe spinors in this formalism. This problem
can be solved by introducing an orthonormal basis e* = dz™e,,* for the cotangent space and

the dual basis E, = E,™0,, with g(E,, Ey) = 14 for the tangent space, so that
gmnEamEbn = Tab, emaEan — 6:;7 Imn = nabemaenb- (1]->

We will denote Lorentz indices by letters from the beginning of the alphabet and world indices

by k,l,m,...; for a Riemannian metric we have 7,, = d4 and in the pseudo-Riemannian case

a 1

the diagonal matrix 7., has entries =1. In physics e,,* is called wvielbein,” and we can use it
to write down a Dirac operator ¢ = y"9,,7*E,™0,, and an action [e ¥(iI) — m)i for spinor
fields in curved space in terms of the usual y-matrices satisfying {7, ~1*} = 2n?. The volume
element can be written as e = | det(e,,*)| = 1/]g|- The z-dependent y-matrices in curved space
are linear combinations 7" = ~%E,™ of constant representation matrices 7v* of the Clifford
algebra, where F,™ is determined only up to a local (i.e. z-dependent) Lorentz transformation

on its Lorentz index a.

In order to define the covariant derivative D of spinor fields we introduce the Lorentz
connection (or spin connection) w,® = dx™w," for objects, like spinors and tensors with Lorentz

indices, that transform in some representation under local Lorentz transformations. Metricity of

n mathematics e® = dz™e,,® is called soldering form since the vielbein provides a soldering of the (principal
bundle of the) cotangent bundle with an orthonormal frame bunde (see below).
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the connection tranlates into antisymmetry in the last two indices wq, +wp, = 0, which preserves
orthonormality of tangent vectors under parallel transport. If we want to use holonomous and
orthogonal bases (i.e. tensors with both types of indices) at the same time we may do so by

defining the total covariant derivative as
D=d+T/"A,' + % Wap 122, lapVe = MacVh — NpeVq- (1.2)

with D = daz"D,,, I} = dx'Ty™ and wy, = dr'w;e. The constant flat metric 7, is invariant
under [, so that upper and lower Lorentz indices transform with the same sign. On spinors
the algebra

[lab, leal = Naclba — Mbelad — Nadlve + Mdlac (1.3)

of Lorentz transformations is represented as lyt) = 1[Va, 6]

Cartan invented a very efficient calculus by introducing differential forms and orthonormal
bases e of contangent space: On (co)vector fields v = e®v, the spin-connection term of the
covariant derivative acts by matrix multiplication Dv, = dv, + w,’v,. Curvature and torsion

can then be defined by Cartan’s structure equations (CSEq)
RS = dw, + wbwp,t, T = de® + wed, (1.4)
or, in an even more compact symbolic form,> R = D? and T = De. The Bianchi identities
dT'+w AT = R Ne, dR+wAR—-—RAw=0. (1.5)

are now a trivial consequence of d*> = 0. The total antisymmetrization that is implicit in these

3-forms replaces the cyclic sum over the respective indices.

In order to relate the spin connection w to the affine connection I' we impose that parallel
transport should not depend on which basis we use for tangent space. The vielbein thus has to

be covariantly constant,
Dmena - amena - anlela + wmabenb - amena - ana - ujmna - 07 (16)

which provides a relation between I' and the spin connection (here we use the vielbein and its
inverse to convert the second index of w and the third index of I" to the appropriate basis).
Contraction of this equation with dz™dz" leads to de® — dx™da"Tpn® — dx™dz"wype,’ =
de® + we® — dz™mdx"T,,,* = 0, which shows that the definition of the torsion via the CSEq
agrees with our previous definition. In order to establish the equivalence of the definitions of
the curvature we introduce the symbod (D¥),* = 6°d + w,’ for the covariant derivative that

only acts on Lorentz indices. Then Cartan’s definition amounts to R = (D*)? and

(R*)o"vy = $da'da? (DY D), = da'da’ (D;Djv + T, D), = EL(R")? Aj'v, (1.7)

) 2

2 Derivatives of the vector field components drop out in D?v = d?v + d(wv) + wdv + w?v = (dw + w?)v.
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where [D;, D] = =T;;'D; + R, 'A%, In a sense, the torsion contribution to [D;, D;] is thus

taken into account in Cartan’s calculus by contracting the form index of the spin connection

with a differential and having the connection only act on the Lorentz indices.

A formula for the spin connection as a function of vielbein and torsion can be obtained by

b

USIing Wine” = E"0men’ — Tima®s Gmn = €m®en’nay and our formula, for ['(g,T). The same result

can also be obtained directly from the structure equation 7% = de® +w®e’ if we use the formula
2Winlr = O nr Wmnr — Wrmn that allows to compute a tensor that is antisymmetric in its last

2 indices from its antisymmetrization in the first two indices:®
—Wmnl = emaa[nel]a + elaa[nem}a + enaa[mel}a + %(Tmnl + Tinn — Tnlm) (18>

For fixed vielbein the components of spin connection and torsion are thus related by invertible
linear equations, so that it is equivalent to use {€,%, wWma’} or {em®, Tmn?} as independent of

fields. Usually it is more convenient to work with the former set.

Example: The vielbein calculus is very useful for the evaluation of the curvature tensor.
As an example we derive the Schwarzschild metric for a spherically symmetric black hole.
Parametrizing the time dilatation with 7'(r) and the length contraction in the radial direction

with R(r), where 47r? is the surface of the sphere at fixed 7:
ds®> = T?dt* — R 2dr* — r*(d6* + sin® 0 dy?). (1.9)
A convenient choice for the vielbein is therefore
e’ =T dt, el = R 'dr, e? =rdé, e3 =rsinf dp. (1.10)
de® =T’ dr dt, de! =0, de? = dr db, de® = sinfdr dy + rcos 0 df de. (1.11)
Vanishing torsion 7% = de® + e¢’w,® = 0 thus yields the nonvanishing connection coefficients
wo! = —T'Rdt, wi?=—Rdb, wi® = —Rsinfdoy, wy® = —cos de. (1.12)
and the curvatures
Ro' = (T'R) dt dr, Ry* = T'R*dt db, Ry® = T'R*sin 0 dt dy, (1.13)
Ry* = —R'dr db, R® = —R'sinfdrdp, Ry®>=(1— R*)sinfdfde. (1.14)

The vacuum Einstein equations in the orthonormal basis are R, = Ry’ = E,"E." Ry = 0.

The Ricci tensor turns out to be diagonal with

Roo = R(T'R) /T + 2T'R?/rT, Ry = —R(T'R)'/T — 2R'R/r, (1.15)
RQQ :R33 = —T/RQ/TT—R/R/T—F(l—RQ)/’f’z. (116)

3 The cyclic sum gives the total antisymmetrization of such a tensor, so that both, Wimnpr a0d ) Wi
are functions of vielbein and torsion. We thus obtain wiap = Eo" Ep" (Winnjr — @Wnejm + Wirmjn) With Whnnpe =

b 1
Naber” 8[771 €n]” — §Tmn7' .
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Summation of Ry = 0 and Ry; = 0 implies that R and T" are proportional and by a rescaling of
t we can set T' = cR, where c is the speed of light. Rey = 0 then implies 9, (In(1 — R?)) = —1/r

and R? =1 — 2%20 , where the choice of the integration constant is parametrized by M times

Newton’s gravitational constant G. We thus obtain the Schwarzschild geometry

ds* = (1 — MGy 2 gt —

rc2

dr® — r2(d6* + sin® 0 dp?). (1.17)

—2MG
1 rc?

Exercise 1: Check the above result for the Ricci tensor and clarify the meaning of the inte-
gration constant M by comparison of the acceleration that follows from the geodesic equation
in the Schwarzschild geometry for a test particle that is initially at rest at some large distance
r (ie. 2™ = (c,0,0,0)) at t = 0) with Newton’s law F' = —Gmmy/r? for the attractive force
F; = m; & between two masses m; at distance r. Note that the force can be attributed to the
variation of the time dilatation factor T = |/goop. Why is the acceleration decreasing as we

approach the horizon?

Since the Lie derivative of a tensor field is again a tensor field it should be possible to
rewrite it in terms of covariant derivatives. If Lorentz indices are involved this is, however, only

possible if we combine local coordinate and Lorentz transformations to a total transformation
5 = ﬁg + %Aablab = lel — (lek + flﬂzk)AkZ -+ %]\ablab, ]\ab = Aab — flwlab. (118)

The same &-dependent redefinition of the Lorentz transformation has to be used if we want to
write the variation of the spin connection under such a transformation in a manifestly covariant

form:
6T™ = Dy DiE™ + D,y (€5 Ty™) + € Ry™, 0wna” = Dyphg® + €' Ry (1.19)

To derive these formulas we can use [6, D, Jv? = (6T ™) Ay o7 and (8, D,]ve = 1 (0wpap) 100"

1.2 Fiber bundles

The tangent space of a manifold can itself be regarded as a manifold, which may have an
interesting and non-trivial topological structure. There exists, for example, no smooth non-
vanishing tangent vector field on a sphere (‘you cannot comb the hair on a sphere’). This is

the motivation for defining vector bundles and more general fiber bundles.

A bundle is a triple (E, B, 7) consisting of two topological spaces F and B and a continuous
surjective map 7 : E — B. B is called base space, 7 is the projection of the total space E to
the base space, and F, = 7~ () is the fiber at x. Usually we will be interested in the situation

where all fibers F}, are homeomorphic, in which case we call F' = F, the typical fiber. In the
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case of vector bundles the typical fiber is a vector space. Locally the tangent bundle looks
like a product space M x V with V = T, M, but globally there may be a twist: For a trivial
bundle S? x V over the sphere, for example, any constant vector would provide a non-vanishing
‘vector field’. Similarly, the Mobius band is a twisted line bundle over S!, whose topology
differs from the trivial bundle S* x R. The twist is generated by the way the fibers are glued
together globally, but locally these bundles look like a product. The gluing involves a smooth
group action on the fiber. The corresponding topological group is called the structure group of
the bundle. This leads to the following definition of fiber bundles, which are also called twisted

products.

A fiber bundle (E, B, 7, F,G) is a bundle (E, B, 7) with typical fiber F' and a covering of B
by a family of open sets {U;} such that there are homeomorphisms ¢; : 7= 1(U;) — U; X F with
7 = prio;, where pry projects to the first component of (x, f) € U; x F', i.e. a point in F}, with
x € U; has to be mapped to (z, f) with f € F. The maps ¢; are called local trivializations.
The gluing data are given by maps g¢;; : U; N U; — G into the structure group such that the

1

transition functions #(g)i;(7) = ¢; 0 ;~ correspond to the action g(z) — t4(x) : F' — F of

gij(z) on the typical fiber F' for each point in z € U; N Uj.

The essential data of a fiber bundle are the transition functions, which need to satisfy the
cocycle condition g;; o g;r = gi1 on the overlap of three coordinate patches. The gluing data
can be used to reconstruct the fiber bundle £ = X/ ~ as the disjoint union X = |J (U; x F)
with the identification (x;, f;) ~ (z;, f;) if z; € U; and f; = t;;(x;)f;. The cocycle condition
guarantees that the gluing of the patches U; x F' of F is well defined.

If £ and M are both C* manifolds then we may consider C* fiber bundles, in which case we
require that 7 is a C* map and that ¢; are C* diffeomorphisms. In the following we will consider
C® bundles, which implies that the structure group is then a Lie group. * A (real or complex)
vector bundle is a fiber bundle whose typical fiber is a (real or complex) vector space V' and
whose local trivializations ¢; act as linear isomorphims on the fibers, i.e. ; : 77 1(z) — V is
an invertible linear map and g;;(z) : V' — V is a general linear transformation. If all transition
function belong to a subgroup G C GL(n) then we call G the structure group of the vector

bundle. A line bundle is a vector bundle whose fiber is 1-dimensional.

Another typical group action is the (left) action of a group onto itself. Accordingly, the
other important example of the fiber bundle is a principal bundle P(M, G), which is a fiber
bundle £ = P whose typical fiber is a Lie group G' and whose transition functions correspond
to a left action of the structure group on itself. Since left and right actions commute there is

a canonical right action of G on the total space P of a principal bundle which acts free and

4The transition function always belong to the diffeomorphism group of the fibers, but this is an infinite
dimensional group.
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transitive on each fiber, so that the base space can be identified with P/G.

Given a vector bundle we can use the transition function g;; to construct the corresponding
principal bundle with the same structure group. A particular incarnation of this principle
bundle is the frame bundle, whose elements correspond to the space of frames, i.e. over each
point of the base the fiber consists of a certain set of vector space bases and an element of
structure group can be identified with a change of the basis. In the case of the tangent bundle
we can use any metric to construct orthonormal bases so that the structure group can always
be reduced from GL(n) to O(n). If M is orientable we can, in addition, use oriented bases and

thus further restrict the structure group to SO(n).

For a principlal G bundle we can, in turn, use any manifold V' with a left actiont : GXV — V
of the group we can construct an associated bundle as the orbit space P x V/G, where G acts
on P x V by its right action on P combined with the left action of V, i.e. (u,v) = (ug,t,'(v)).
For V = G with its left action on itself we get back the principal bundle. For V' a vector space
that carries a representation ¢, i.e. a linear left action, of the structure group G we obtain an

associated vector bundle E, whose principal bundle is P.

Principal bundles can be defined more abstractly using the G action that is inherited from
the right action of the structure group G on itself. Thus, a principal G bundle is a bundle
P with a fiberwise free and transitive right-action of G. If we cover the base by contractible

patches U; then there exists a global section s; : U; — P over each patch, which trivializes
1

N U;) as Uy x G 3 (z,9) iR si(x)g € P, ie. pi(si(x)g) = (x,g). The transition functions
gij = @i o goj_l are then determined by s;(x)g;; = s;(z) on the overlap of two fibers because, for
example, the point s;(z) € 7 !(z) can be written as s;(x)e = s;(x)g;;e so that the fibers are
glued by left multiplication with g;;. For associated bundles P x V' we can use the specified
sections to select a representative (s;(x),v(x)) in the G-orbit (ug=*(z), t;v(z)). On the overlap
of two patches the change of representative from s; to s; requires a right-multiplication with
gzgl, which shows that we need a group action #(g;;) on the fiber of the associated bundle to

transform the representative on the patch U(j) to the appropriate representative on U(7).

A (global) section of a bundle is a map f: B — E with mo f = 1. A local section satisfies
the same condition, but it is only defined on some subset of the base manifold. A vector field
can thus be defined to be a (smooth) section of a vector bundle. A vector bundle always admits
global section (for example, the O-secion). But it is easy to show that a principal bundle that
admits a global section is trivial. A simple example is the Md&bius strip, whose structure group
is Zs. An example with a continuous structure group is the tangent bundle of the sphere S2,
whose frame bundle has no global section because there is no non-vanishing vector field. This
bundle is related to the Hopf fibration S® — S?, whose fiber is S' ~ U(1) ~ SO(2). More

generally we can define a projection of any odd-dimensional sphere S**™! onto CP" with fiber
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St by (x, ... xp) = (T ...

Fig. 1: S! fibers for ¢ € &4 on the tori with § = & and 0 = 5% of the Hopf fibration
viewed with an angle a = 0.62, i.e. with (y,2) = (2, 23 cosa — z1sina).

The case S? — S? can be visualized by stereographic projection of the sphere S* = {(2, 21) :
|20/ 4 |21 = 1} to R* U {oo} with x = (Rez;,Imz;,Im2)/(1 — Rez). The ‘north pole’
(1+0i,0+0i) € S? is thus mapped to the point co that compactifies R3. If we relate the sphere
with angles (6 = 26, ¢) to the affine patch (zy/z; : 1) € P! by another stereographic projection
(20 : 21) = e (sin @', cos @' /e¥¥) we find

(Rezy,Im 2z, Imzp)  (cos® cos(A — @), cos @ sin(A — ¢),sin @ sin \)

7 = = 1.20
. 1 — Re 2z 1 —siné cos A ( )

with (0 = 26, ¢) parametrizing S? and \ parametrizing the S! fibers. For fixed 0 < 6 < 7
the angles ¢ and A\ parametrize a torus. The decomposition of S? into an upper and a lower
hemisphere around § = 0 and # = 7 therefore decomposes S® into two solid tori # < 6, and
0 > 0, respectively. With the above stereographic map to R?® U oo the S* fibers wind around
the circle # = 0 in the 12-plane and around the z3 coordinate line § = w. The fact that this
principal U(1) ~ S! bundle has no global section and thus is nontrivial can be visualized by
noting that S? cannot be embedded into S® by a choice of a smooth global section (6, p):
If we drop the north pole # = 0, for example, then S? — N can be mapped to a disc that is
bounded by the circle § = 0, i.e. the fiber over N. But for an embedding of S? all points of
that circle have to be identified. The Hopf bundle can be interpreted in many different ways.

In particular, it is the principal bundle of the spin bundle over the sphere.

Exercise 2: Use orthonormal frames on the northern and on the southern hemisphere to
compute the transition functions of the tangent bundle of S? and show that the Hopf bundle

over S? correspond to the “square root” of the (co)tangent bundle.

Homomorphisms among fiber bundles ¥ — M and F' — N are smooth maps f: F — F

that map fibers into fibers homomorphically. Hence forg = mpo f defines an action of f on the
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base, which we denote by the same symbol, and f : E, — Ff(,) is linear for vector bundles and
a group homomorphism for principal bundles. Generalizing the construction of tensor fields
we can now use the operations of linear algebra to construct many new vector bundles from

elementary building blocks:

e The fiber of the Whitney sum E @& F' of two vector bundles over the same base is thEe direct
sum of the fibers. The transition functions are block-diagonal matrices g;; = (géj ;E ),
i.e. the Whitney sum is associated with direct sum representation. N

e The transition functions of the tensor product bundle E ® F are given by the tensor
product of the representations. (This differs from the product bundle, whose base would

be M x M.)

e The fiber of the dual bundle EV is the dual vector space E, which carries the contragra-

dient representation givj = ngi, i.e. the transpose of the inverse matrix.

e If ' C E is a subbundle of E we can choose a basis of £/, whose first elements are a basis
Fop
of F, so that the transition functions are of the form g;; = <gij i ) The transition

0 fi
functions f;; then define the quotient bundle E/F. ’

e The exterior power bundle A*E arises by antisymmetrization of the k-fold tensor product
of E with itself. For the maximal value k = rank(E) = dim(E,) we get the determinant
bundle det(E), which has has rank 1 and thus is a line bundle.

e Given a bundle ¥ — N and a smooth map f : M — N we define the pull-back bundle
f*E over M by the trivializations f~!(U;) and the pull-back of the transition functions.

e The tangent bundle of a submanifold M C N of dimension m is a subbundle of the
restriction of TN to M, i.e. of the pull back of the embedding iy, : M — N. The
quotient N'(N/M) = ¢4, TN/TM is called normal bundle of M in N. Its rank is n — m.

e [f a bundle map f: E — F from EF — M to F' — N has constant rank on the fibers then
the fiber-wise kernel and image of f define subbundles Ker(f) C E and Im(f) C F. A

sequence of vector bundle homomorphisms
FLESE (1.21)

is called exact if Im(f) = Ker(g). A sequence 0 — E’ L E % E" — 0is exact iff fis

injective, g is surjective and Im(f) = Ker(g).

e Spin bundles are vector bundles whose structure group is the spin group Spin(n), i.e. the

double cover of SO(n). The structure group can be reduced to SO(n) iff the manifold
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is orientable. An orientable manifold is said to admit spin structures if the orthogonal
transition functions can be lifted to Spin(n). Since there is a Z, ambiguity in the lift
SO(n) — Spin(n) on each patch, there may be a global topological obstruction to the
existence of such a lift, which, more or less by definition, is the second Stiefel-Whitney
class. A problem can only occur with compatibility on tripple overlaps so that spin

structures always exist in two dimensions.

e A complex vector bundle is a vector bundle whose fibers are complex vector spaces and
whose transition functions are in GL(k,C). A holomorphic vector bundle is a complex
vector bundle whose total space is a complex manifold with bi-holomorphic trivializations
@;  mHU) — U x C*. The base space of a homolorphic vector bundle is a complex
manifold. Since tensor products and duals of line bundles are again line bundles the
equivalence classes of holomorphic line bundles form an abelian group, which is called the

Picard group Pic(M) of a complex manifold.

1.3 Lie groups and Lie algebras

A Lie algebra b is a (non-associative) algebra, i.e. a ring with a vector space structure and a

bilinear multiplication, whose product is antisymmetric and satisfies the Jacobi dentity
XY= -V, X, BIX 2] = (X 2]+ VX 4 2KV =0 (122)
A super Lie algebra is defined by the Z,-graded version of these conditions.

A Lie group G comes with two natural actions on itself, namely the left multiplication L,
and the right multiplication R,, whose differential maps Ly, and Ry, define two different global

transports of tangent vectors,
Ly:h— gh, Ry :h — hg, Ly ThG — Ty, Ry : ThG — TheG (1.23)

with g,h € G. The tangent vectors X(e) € T.G at the unit element e € G thus are in one-
to-one correspondence with left-invariant vector fields X € TG, which by definition satisfy
X(g) = Ly X(e). The Lie bracket commutes with the push-forward und thus closes on the
linear space g of left-invariant vector fields. This gives g, which is naturally identified with the
tangent space at the unit element g = T.G, the structure of a Lie algebra. Choosing some basis
T, C G we conclude that

[Ta7 Tb] = fabCTC7 E fabdfdc6 = 0. (124)

abc

Of course there is an analogous construction with right-invariant vector fields, which would

merely invert the sign of the structure constants f,,°. Dual to the left-invariant vector fields T,
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there is a basis % of left-invariant one-forms, 8*(7},) = J3. The formula dw(X,Y) = X(w(Y)) —
Y (w[X])—w([X,Y]) for the exterior derivative of a one-form thus implies (d6),, = d0°(T,, Ty,) =
— fa0¢(Ty) = — fup°. With the coordinate independent Lie-algebra valued Maurer—Cartan form
0 = 0°T, this yields the Maurer—Cartan equation

do + 3[0,6] =0, [0.0] = [T, Ty) 0° A 0" (1.25)

where 6 can be interpreted as a global transport that maps a tangent vector at g to a tangent
vector at the origin. Every group manifold is thus parallelizable, which implies that the curva-
ture of the respective affine connection vanishes (for a parallel basis DT, = 0 of tangent space
R(T,,Ty)T, = [Dz,, Dy, T, — Dz, 1,)7c = 0). The torsion of the left-invariant connection on a

group manifold is also easily evaluated,
T’ = 0°(Dr, T, — DT, — [T, T]) = — fup" (1.26)

The connection coefficients are obtained by writing the structure equation in terms of the
cobasis, df° + % Fap0% A 6° = 0. For matrix groups we can write # = g~ 'dg, which obviously
satisfies (1.25) because d(g~'dg) = — (g 'dgg~")dg.

A Lie group can be reconstructed from its Lie algebra (at least) locally by the exponential
map
exp:g— G, X — (1) with 2(0)=e, @(t) = Ly X (1.27)

which is given by the integral curve through e of the left-invariant vector field X € g at curve
parameter t = 1. For matrix groups the exponential map clearly coincides with the exponential

function. The Baker-Campbell-Hausdorff formula

eAeB _ 6A+B+%[A,BH—%([A7[A7B]]—[B»[A»B”)+ multiple commutators (128)
shows that the group structure can be reconstructed from the commutators. It can be shown

that the exponential map is surjective for compact connected groups.

Example: For the non-compact group SL(2,R) the exponential map is not surjective. Its Lie
algebra sl(2,R) consists of traceless real matrices X, whose eigenvalues \; must be imaginary
(complex conjugate) or real. X is diaganolizable except for A\; = Ay = 0. The possible
eigenvalues of exp(X) are therefore real positive or complex conjugate on the unit circle. The

exponential map therefore misses all SL(2,R) matrices with negative eigenvalues \; # —1 and
-1 a

0 —-1)°
For connected “simple” groups like SL(2,R) one can show that each group element can be

the non-diagonalizable matrices with Jordan normal form

written as a product of two exponentials. The image of the exponential map is thus not
necessarily a subgroup, but it generates the group. Since BCH formally allows us to express

any product e“e? by a single exponential we conclude that in general the BCH formula cannot
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have infinite radius of convergence. For infinite-dimensional Lie algebras it may happen that

there exists no corresponding Lie group.

Lie groups and Lie algebras can be represented on themselves by the adjoint actions ady =
LQR;1 :G — G and adx : g — g with adx Y = [X,Y]. Moreover, the restriction of the tangent
map of ad, to the tangent space 7.G at the unit e defines an adjoint action Ad, : g — g of G

on its Lie algebra g,
ad, h = ghg™*, ady Y = [X,Y], Ad, X = LQ*XRQ_*1 (1.29)

For g = exp(X) we find Ad, Y = exp(adx)Y because left- and right-multiplication commute.

1.4 Connections on fiber bundles

A connection on a vector bundle F — M is a linear map V : C*(E) — C*°(E @ T*M) that

satisfies

V(fv)=fV(v) +v®df (1.30)

for smooth functions f € C*°(M) and smooth sections v of E. When evaluated on a tangent
vector field X € T'M a connection thus defines a pointwise linear map on the fibers, the

covariant derivative
Dx :=ixV, = D¢xv = fDxv, Dx(fv)=X(f)v+ fDxv. (1.31)
It can be checked that [Dyx, Dgy|(hv) — Disx gvi(hv) = fgh([Dx, Dy|(v) — Dix,yj(v)) so that
R(X,Y)v = DxDyv — DyDxv — Dix yv (1.32)

defines an End(£)-valued 2-form, i.e. a 2-form of linear maps on the fibers, which is called
curvature R (or field strength F' = R) of the connection. Given local coordinates z* on the base
M and a local basis e,(x) of the fibers we can define the covariant derivative of the component

functions v = v%, in terms of the connection coefficients
Ve, = Alep, Al = dxt A, Dv® = 0,0 4+ A; 0% (1.33)

and the components of the curvature can be written as R(0;,0;) = Rl-jl 0r where 97 is a basis
for the linear transformations of the fibers. We can also expand A,” = A’(d7),% in such a basis.

In physics the one-forms A’ are called gauge connections.

It is often useful to define connections on principal bundles, from which connections on the
associated bundles can be deduced. To motivate the abstract definition of such a connection we

observe that the kernel of the push forward 7, : T — T'M defines a natural vertical subbundle
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V(E) C TE of the tangent space TE of (the total space of) a vector bundle. The fibers of
V(E) can be identified with the fibers of the vector bundle E by linearity. Locally FE can be
parametrized by (z°,v*) and for each tangent vector, i.e. at each point in E, there are dim M
tangent vectors D; = 0; + A;"v%, that project onto a basis d; of TM. These vectors span a
subbundle H(E) C TE, called the horizontal subbundle, and TE = H(FE) & V(F). It is easy
to see that the connection data can be uniquely recovered from a choice of such a horizontal
subbundle and that this correspondence is independent of a choice of the basis, which was only
used to write down the geometrical objects more explicitly. Note that the horizontal subbundle
H(FE) C TFE has to satisfy some linearity condition along the fibers of E in order that the map
(X,v) — Dxv with Dxv defined as the unique vector in H(E),, N7, ' (X) for X € Tr,yM is a

connection on F.

On a principal bundle P(M, @) the vertical subbundle V(P) C TP is defined as the image
of the Lie algebra g under the right action of the structure group on the bundle space, V(P) =
R,.9 C TP. At each point p C P we can thus identify vertical vectors Yp# € V), with vectors
Y € g, and thus generate V(P) by right-invariant vector fields Y# that are naturally identified

right-invariant vector fields Y on the structure group G.

A connection on a principal bundle P(M,G) is now defined as a choice of a G-invariant
horizontal subbundle H(P) C TP such that TP = H(P) @ V(P). This data can equivalently
be encoded in the Ehresman connection w, which is a right-invariant Lie algebra valued 1-form
on P that corresponds to the identity on V' (P) via the identification with g [NA90,eg80]

Riw,g(X) = wyy(Re X) = g~ wu(X)g, w(A*)=A VAcg. (1.34)

Choosing a local section o; : U; — P we can define the gauge connection A; = ofw on U; as the
pull-back of w to the coordinate chart along 0. The Ehresmann connection can be recovered
as the pull-back to the bundle space along projection 7 plus the Maurer-Cartan form on the

fiber, which is isomorphic to the structure group:
A; = ojw, w =7 7 (A) g+t d i, (1.35)

where g; parametrizes the fiber in the local trivialization U; x G defined by the section s;, i.e.

0:,g; = p € P, and d is the exterior derivative on P. The gauge transformation
Aj = g;; (Ai + d)gi; (1.36)

for

for a change o; = 0,g;; of the local trivialization is the compatibility condition wy, = wj,
i J

a consistent definition of w.

A curve 7 : [0, 1] — P is a horizontal lift of a curve «y in the base space M if it projects onto

that curve 7(5) = ~ and if all tangent vectors to the lift 4 belong to the horizontal subspace
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H(P). Since tangent vectors to v € M are lifted to vectors in H(P) the lifts are integral curves

to the lifted tangent vectors and unique for each choice of an initial point on the fiber 7=7(0).

Horizontal lifts of closed curves define a map v — G from loops in M to the structure group
because 4(0) and 4(1) belong to the same fiber and hence differ by a right-action of a unique
group element g € G, i.e. 4(1) = R,7(0). For each connection V on a fiber bundle over M the
image of the space of all loops in the base space with base point x forms a subgroup Hol,(V) C G
of the structure group, called the holonomy group of the connection. The holonomy group
thus describes the possible action of parallel transport along closed loops on the fibers of a
bundle. If M is arcwise connected then Hol(V) is independent of the choice of the base point
(up to conjugation by some group element). If a loop in the base M is contractible then its
image is continuously connected to the identity in Hol(V). It can be shown that the image
Hol? (V) C Hol,(V) of all contractible loops, which forms a subgroup, is equal to the connected
component of the identity in Hol(V).

The Riemannian holonomy group Hol(g) of a Riemannian manifold (M, g) is the holonomy
group of the Levi-Civita connection on the tangent bundle. Since this connection is torsion free
the curvature tensor has extra symmetries. This can be used to classify all possible holonomy

groups Hol(g), which turn out to characterize different types of geometries:
Theorem (Berger): Let (M, g) be a simply connected irreducible (i.e. no product) and not
locally symmetric (i.e. DR is not identically 0) Riemannian manifold. Then the possible

holonomy groups are contained in the following table [J000]:

(i) | Hol(g) = SO(n) dim (M) generic

(ii) | Hol(g) = U(m) C SO(2m) n=2m complex Kéhler

(iii) | Hol(g) = SU(m) C SO(2m) n=2m Calabi-Yau (Ricci flat Kéhler)
(iv) | Hol(g) = Sp(m) C SO(4m) n=4m hyperkéhler (RF=Ricci flat)
(v) | Hol(g) = Sp(m) - Sp(1) € SO(4m) | n =4m quaternionic-Kéhler (Einstein)
(vi) | Hol(g) = Gy € SO(7) n =7 | RF, related to imaginary octonions
(vi) | Hol(g) = Spin(7) C SO(8) n=38 RF, related to octonions

Note that quaternionic-Kahler manifolds are not Kahler. They are Einstein spaces R,un ~ Gmn,

but not Ricci flat. (Locally) symmetric spaces are defined, for example, on p. 50-55 in [JO00].
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Chapter 2

Lie algebras and representations

An ideal b of an algebra g is a subalgebra [h, h] C b C g for which [g, h] C b, where operations
on sets are defined as the set of r