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Chapter 1

Vector bundles

1.1 Vielbein and Lorentz connection

So far we described the tangent space with local coordinates (xm, vn), where the components

vn of a vector at a point with coordinates xm refer to the holonomous basis ∂xm of TM. As a

consequence the transition functions for vn on the overlap of two charts is given by the Jacobi

matrix ∂ym

∂xl , which is a general linear transformation. But the general linear group only has

tensor representations and therefor we cannot describe spinors in this formalism. This problem

can be solved by introducing an orthonormal basis ea = dxmem
a for the cotangent space and

the dual basis Ea = Ea
m∂m with g(Ea, Eb) = ηab for the tangent space, so that

gmnEa
mEb

n = ηab, em
aEa

n = δn
m, gmn = ηabem

aen
b. (1.1)

We will denote Lorentz indices by letters from the beginning of the alphabet and world indices

by k, l,m, . . .; for a Riemannian metric we have ηab = δab and in the pseudo-Riemannian case

the diagonal matrix ηab has entries ±1. In physics em
a is called vielbein,1 and we can use it

to write down a Dirac operator ∂/ = γm∂mγ
aEa

m∂m and an action
∫
e ψ(iD/ −m)ψ for spinor

fields in curved space in terms of the usual γ-matrices satisfying {γa, γb} = 2ηab. The volume

element can be written as e = | det(em
a)| =

√
|g|. The x-dependent γ-matrices in curved space

are linear combinations γm = γaEa
m of constant representation matrices γa of the Clifford

algebra, where Ea
m is determined only up to a local (i.e. x-dependent) Lorentz transformation

on its Lorentz index a.

In order to define the covariant derivative Dψ of spinor fields we introduce the Lorentz

connection (or spin connection) ωa
b = dxmωma

b for objects, like spinors and tensors with Lorentz

indices, that transform in some representation under local Lorentz transformations. Metricity of

1In mathematics ea = dxmem
a is called soldering form since the vielbein provides a soldering of the (principal

bundle of the) cotangent bundle with an orthonormal frame bunde (see below).
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the connection tranlates into antisymmetry in the last two indices ωab+ωba = 0, which preserves

orthonormality of tangent vectors under parallel transport. If we want to use holonomous and

orthogonal bases (i.e. tensors with both types of indices) at the same time we may do so by

defining the total covariant derivative as

D = d+ Γl
m∆m

l + 1
2
ωab l

ab, labvc = ηacvb − ηbcva. (1.2)

with D = dxnDn, Γl
m = dxiΓil

m and ωab = dxiωiab. The constant flat metric ηab is invariant

under lab so that upper and lower Lorentz indices transform with the same sign. On spinors

the algebra

[lab, lcd] = ηaclbd − ηbclad − ηadlbc + ηbdlac (1.3)

of Lorentz transformations is represented as labψ = 1
4
[γa, γb]ψ.

Cartan invented a very efficient calculus by introducing differential forms and orthonormal

bases ea of contangent space: On (co)vector fields v = eava the spin-connection term of the

covariant derivative acts by matrix multiplication Dva = dva + ωa
bvb. Curvature and torsion

can then be defined by Cartan’s structure equations (CSEq)

Ra
c = dωa

c + ωa
bωb

c, T a = dea + ωa
be

b, (1.4)

or, in an even more compact symbolic form,2 R = D2 and T = De. The Bianchi identities

dT + ω ∧ T = R ∧ e, dR + ω ∧R−R ∧ ω = 0. (1.5)

are now a trivial consequence of d2 = 0. The total antisymmetrization that is implicit in these

3-forms replaces the cyclic sum over the respective indices.

In order to relate the spin connection ω to the affine connection Γ we impose that parallel

transport should not depend on which basis we use for tangent space. The vielbein thus has to

be covariantly constant,

Dmen
a = ∂men

a − Γmn
lel

a + ωm
a
ben

b = ∂men
a − Γmn

a − ωmn
a = 0, (1.6)

which provides a relation between Γ and the spin connection (here we use the vielbein and its

inverse to convert the second index of ω and the third index of Γ to the appropriate basis).

Contraction of this equation with dxmdxn leads to dea − dxmdxnΓmn
a − dxmdxnωmb

aen
b =

dea + ωa
be

b − dxmdxnΓmn
a = 0, which shows that the definition of the torsion via the CSEq

agrees with our previous definition. In order to establish the equivalence of the definitions of

the curvature we introduce the symbod (Dω)a
b = δb

ad + ωa
b for the covariant derivative that

only acts on Lorentz indices. Then Cartan’s definition amounts to Rω = (Dω)2 and

(Rω)a
bvb = 1

2
dxidxj(Dω

i D
ω
j v)a = 1

2
dxidxj(DiDjv + Γl

ijDlv)a = El
a(R

Γ)i
j∆j

ivl, (1.7)

2 Derivatives of the vector field components drop out in D2v = d2v + d(ωv) + ωdv + ω2v = (dω + ω2)v.
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where [Di, Dj] = −Tij
lDl + RΓ

ijk
l∆l

k. In a sense, the torsion contribution to [Di, Dj] is thus

taken into account in Cartan’s calculus by contracting the form index of the spin connection

with a differential and having the connection only act on the Lorentz indices.

A formula for the spin connection as a function of vielbein and torsion can be obtained by

using ωma
b = Ea

n∂men
b − Γma

b, gmn = em
aen

bηab and our formula for Γ(g, T ). The same result

can also be obtained directly from the structure equation T a = dea +ωa
be

b if we use the formula

2ω[mn]r =
∑

mnr ωmnr − ωrmn that allows to compute a tensor that is antisymmetric in its last

2 indices from its antisymmetrization in the first two indices:3

−ωmnl = ema∂[nel]
a + ela∂[nem]

a + ena∂[mel]
a + 1

2
(Tmnl + Tlmn − Tnlm) (1.8)

For fixed vielbein the components of spin connection and torsion are thus related by invertible

linear equations, so that it is equivalent to use {em
a, ωma

b} or {em
a, Tmn

a} as independent of

fields. Usually it is more convenient to work with the former set.

Example: The vielbein calculus is very useful for the evaluation of the curvature tensor.

As an example we derive the Schwarzschild metric for a spherically symmetric black hole.

Parametrizing the time dilatation with T (r) and the length contraction in the radial direction

with R(r), where 4πr2 is the surface of the sphere at fixed r:

ds2 = T 2dt2 −R−2dr2 − r2(dθ2 + sin2 θ dϕ2). (1.9)

A convenient choice for the vielbein is therefore

e0 = T dt, e1 = R−1 dr, e2 = r dθ, e3 = r sin θ dϕ. (1.10)

de0 = T ′ dr dt, de1 = 0, de2 = dr dθ, de3 = sin θ dr dϕ+ r cos θ dθ dϕ. (1.11)

Vanishing torsion T a = dea + ebωb
a = 0 thus yields the nonvanishing connection coefficients

ω0
1 = −T ′Rdt, ω1

2 = −Rdθ, ω1
3 = −R sin θ dϕ, ω2

3 = − cos θ dϕ. (1.12)

and the curvatures

R0
1 = (T ′R)′ dt dr, R0

2 = T ′R2 dt dθ, R0
3 = T ′R2 sin θ dt dϕ, (1.13)

R1
2 = −R′ dr dθ, R1

3 = −R′ sin θ dr dϕ, R2
3 = (1 −R2) sin θ dθ dϕ. (1.14)

The vacuum Einstein equations in the orthonormal basis are Rab = Racb
c = Ea

mEc
nRmnb

c = 0.

The Ricci tensor turns out to be diagonal with

R00 = R(T ′R)′/T + 2T ′R2/rT, R11 = −R(T ′R)′/T − 2R′R/r, (1.15)

R22 = R33 = −T ′R2/rT −R′R/r + (1 −R2)/r2. (1.16)

3 The cyclic sum gives the total antisymmetrization of such a tensor, so that both, ω[mn]r and
∑

mnr ωmnr,
are functions of vielbein and torsion. We thus obtain ωmab = Ea

nEb
r(ω[mn]r − ω[nr]m + ω[rm]n) with ω[mn]r =

ηaber
a∂[men]

b − 1
2Tmnr.
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Summation of R00 = 0 and R11 = 0 implies that R and T are proportional and by a rescaling of

t we can set T = cR, where c is the speed of light. R22 = 0 then implies ∂r(ln(1−R2)) = −1/r

and R2 = 1 − 2MG
rc2

, where the choice of the integration constant is parametrized by M times

Newton’s gravitational constant G. We thus obtain the Schwarzschild geometry

ds2 = (1 − 2MG
rc2

) c2 dt2 − 1

1 − 2MG
rc2

dr2 − r2(dθ2 + sin2 θ dϕ2). (1.17)

Exercise 1: Check the above result for the Ricci tensor and clarify the meaning of the inte-

gration constant M by comparison of the acceleration that follows from the geodesic equation

in the Schwarzschild geometry for a test particle that is initially at rest at some large distance

r (i.e. ẋm = (c, 0, 0, 0)) at t = 0) with Newton’s law F = −Gm1m2/r
2 for the attractive force

Fi = mi ẍ between two masses mi at distance r. Note that the force can be attributed to the

variation of the time dilatation factor T =
√
g00. Why is the acceleration decreasing as we

approach the horizon?

Since the Lie derivative of a tensor field is again a tensor field it should be possible to

rewrite it in terms of covariant derivatives. If Lorentz indices are involved this is, however, only

possible if we combine local coordinate and Lorentz transformations to a total transformation

δ := Lξ + 1
2
Λabl

ab = ξlDl − (Diξ
k + ξlTli

k)∆k
i + 1

2
Λ̂abl

ab, Λ̂ab := Λab − ξlωlab. (1.18)

The same ξ-dependent redefinition of the Lorentz transformation has to be used if we want to

write the variation of the spin connection under such a transformation in a manifestly covariant

form:

δΓnl
m = DnDlξ

m +Dn(ξkTkl
m) + ξkRknl

m, δωna
b = DnΛ̂a

b + ξlRlna
b. (1.19)

To derive these formulas we can use [δ,Dn]vj = (δΓnl
m)∆m

lvj and [δ,Dn]vc = 1
2
(δωnab)l

abvc.

1.2 Fiber bundles

The tangent space of a manifold can itself be regarded as a manifold, which may have an

interesting and non-trivial topological structure. There exists, for example, no smooth non-

vanishing tangent vector field on a sphere (‘you cannot comb the hair on a sphere’). This is

the motivation for defining vector bundles and more general fiber bundles.

A bundle is a triple (E,B, π) consisting of two topological spaces E and B and a continuous

surjective map π : E → B. B is called base space, π is the projection of the total space E to

the base space, and Fx = π−1(x) is the fiber at x. Usually we will be interested in the situation

where all fibers Fx are homeomorphic, in which case we call F ∼= Fx the typical fiber. In the
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case of vector bundles the typical fiber is a vector space. Locally the tangent bundle looks

like a product space M× V with V ∼= TxM, but globally there may be a twist: For a trivial

bundle S2×V over the sphere, for example, any constant vector would provide a non-vanishing

‘vector field’. Similarly, the Möbius band is a twisted line bundle over S1, whose topology

differs from the trivial bundle S1 × R. The twist is generated by the way the fibers are glued

together globally, but locally these bundles look like a product. The gluing involves a smooth

group action on the fiber. The corresponding topological group is called the structure group of

the bundle. This leads to the following definition of fiber bundles, which are also called twisted

products.

A fiber bundle (E,B, π, F,G) is a bundle (E,B, π) with typical fiber F and a covering of B

by a family of open sets {Ui} such that there are homeomorphisms ϕi : π−1(Ui) → Ui ×F with

π = pr1◦ϕi, where pr1 projects to the first component of (x, f) ∈ Ui×F , i.e. a point in Fx with

x ∈ Ui has to be mapped to (x, f) with f ∈ F . The maps ϕi are called local trivializations.

The gluing data are given by maps gij : Ui ∩ Uj → G into the structure group such that the

transition functions t(g)ij(x) = ϕi ◦ ϕ−1
j correspond to the action g(x) → tg(x) : F → F of

gij(x) on the typical fiber F for each point in x ∈ Ui ∩ Uj.

The essential data of a fiber bundle are the transition functions, which need to satisfy the

cocycle condition gij ◦ gjk = gik on the overlap of three coordinate patches. The gluing data

can be used to reconstruct the fiber bundle E = X/ ∼ as the disjoint union X =
⋃

(Ui × F )

with the identification (xi, fi) ∼ (xj, fj) if xi ∈ Ui and fj = tij(xi)fi. The cocycle condition

guarantees that the gluing of the patches Ui × F of E is well defined.

If E and M are both Ck manifolds then we may consider Ck fiber bundles, in which case we

require that π is a Ck map and that ϕi are Ck diffeomorphisms. In the following we will consider

C∞ bundles, which implies that the structure group is then a Lie group. 4 A (real or complex)

vector bundle is a fiber bundle whose typical fiber is a (real or complex) vector space V and

whose local trivializations ϕi act as linear isomorphims on the fibers, i.e. ϕi : π−1(x) → V is

an invertible linear map and gij(x) : V → V is a general linear transformation. If all transition

function belong to a subgroup G ⊆ GL(n) then we call G the structure group of the vector

bundle. A line bundle is a vector bundle whose fiber is 1-dimensional.

Another typical group action is the (left) action of a group onto itself. Accordingly, the

other important example of the fiber bundle is a principal bundle P (M,G), which is a fiber

bundle E = P whose typical fiber is a Lie group G and whose transition functions correspond

to a left action of the structure group on itself. Since left and right actions commute there is

a canonical right action of G on the total space P of a principal bundle which acts free and

4The transition function always belong to the diffeomorphism group of the fibers, but this is an infinite
dimensional group.
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transitive on each fiber, so that the base space can be identified with P/G.

Given a vector bundle we can use the transition function gij to construct the corresponding

principal bundle with the same structure group. A particular incarnation of this principle

bundle is the frame bundle, whose elements correspond to the space of frames, i.e. over each

point of the base the fiber consists of a certain set of vector space bases and an element of

structure group can be identified with a change of the basis. In the case of the tangent bundle

we can use any metric to construct orthonormal bases so that the structure group can always

be reduced from GL(n) to O(n). If M is orientable we can, in addition, use oriented bases and

thus further restrict the structure group to SO(n).

For a principlalG bundle we can, in turn, use any manifold V with a left action t : G×V → V

of the group we can construct an associated bundle as the orbit space P ×V/G, where G acts

on P ×V by its right action on P combined with the left action of V , i.e. (u, v) 7→ (ug, t−1
g (v)).

For V = G with its left action on itself we get back the principal bundle. For V a vector space

that carries a representation t, i.e. a linear left action, of the structure group G we obtain an

associated vector bundle E, whose principal bundle is P .

Principal bundles can be defined more abstractly using the G action that is inherited from

the right action of the structure group G on itself. Thus, a principal G bundle is a bundle

P with a fiberwise free and transitive right-action of G. If we cover the base by contractible

patches Ui then there exists a global section si : Ui → P over each patch, which trivializes

π−1(Ui) as Ui × G ∋ (x, g)
ϕ−1

i−→ si(x)g ∈ P , i.e. ϕi(si(x)g) = (x, g). The transition functions

gij = ϕi ◦ϕ−1
j are then determined by si(x)gij = sj(x) on the overlap of two fibers because, for

example, the point sj(x) ∈ π−1(x) can be written as sj(x)e = si(x)gije so that the fibers are

glued by left multiplication with gij. For associated bundles P × V we can use the specified

sections to select a representative (si(x), v(x)) in the G-orbit (ug−1(x), tgv(x)). On the overlap

of two patches the change of representative from sj to si requires a right-multiplication with

g−1
ij , which shows that we need a group action t(gij) on the fiber of the associated bundle to

transform the representative on the patch U(j) to the appropriate representative on U(i).

A (global) section of a bundle is a map f : B → E with π ◦ f = 1. A local section satisfies

the same condition, but it is only defined on some subset of the base manifold. A vector field

can thus be defined to be a (smooth) section of a vector bundle. A vector bundle always admits

global section (for example, the 0-secion). But it is easy to show that a principal bundle that

admits a global section is trivial. A simple example is the Möbius strip, whose structure group

is Z2. An example with a continuous structure group is the tangent bundle of the sphere S2,

whose frame bundle has no global section because there is no non-vanishing vector field. This

bundle is related to the Hopf fibration S3 → S2, whose fiber is S1 ∼ U(1) ∼ SO(2). More

generally we can define a projection of any odd-dimensional sphere S2n+1 onto CP
n with fiber

Geometry / M.Kreuzer — 6 — version June 2, 2009



S1 by (x0, . . . , xn) 7→ (x0 : . . . : xn).

Fig. 1: S1 fibers for ϕ ∈ π
6 Z on the tori with θ = π

6 and θ = 5π
6 of the Hopf fibration

viewed with an angle α = 0.62, i.e. with (y, z) = (x2, x3 cos α − x1 sinα).

The case S3 → S2 can be visualized by stereographic projection of the sphere S3 = {(z0, z1) :

|z0|2 + |z1|2 = 1} to R
3 ∪ {∞} with x = (Re z1, Im z1, Im z0)/(1 − Re z0). The ‘north pole’

(1+0i, 0+0i) ∈ S3 is thus mapped to the point ∞ that compactifies R
3. If we relate the sphere

with angles (θ = 2θ′, ϕ) to the affine patch (z0/z1 : 1) ∈ P
1 by another stereographic projection

(z0 : z1) = eiλ(sin θ′, cos θ′/eiϕ) we find

~x =
(Re z1, Im z1, Im z0)

1 − Re z0

=
(cos θ′ cos(λ− ϕ), cos θ′ sin(λ− ϕ), sin θ′ sinλ)

1 − sin θ′ cosλ
(1.20)

with (θ = 2θ′, ϕ) parametrizing S2 and λ parametrizing the S1 fibers. For fixed 0 < θ < π

the angles ϕ and λ parametrize a torus. The decomposition of S2 into an upper and a lower

hemisphere around θ = 0 and θ = π therefore decomposes S3 into two solid tori θ ≤ θ0 and

θ ≥ θ0, respectively. With the above stereographic map to R
3 ∪∞ the S1 fibers wind around

the circle θ = 0 in the 12-plane and around the x3 coordinate line θ = π. The fact that this

principal U(1) ∼ S1 bundle has no global section and thus is nontrivial can be visualized by

noting that S2 cannot be embedded into S3 by a choice of a smooth global section λ(θ, ϕ):

If we drop the north pole θ = 0, for example, then S2 − N can be mapped to a disc that is

bounded by the circle θ = 0, i.e. the fiber over N . But for an embedding of S2 all points of

that circle have to be identified. The Hopf bundle can be interpreted in many different ways.

In particular, it is the principal bundle of the spin bundle over the sphere.

Exercise 2: Use orthonormal frames on the northern and on the southern hemisphere to

compute the transition functions of the tangent bundle of S2 and show that the Hopf bundle

over S2 correspond to the “square root” of the (co)tangent bundle.

Homomorphisms among fiber bundles E → M and F → N are smooth maps f : E → F

that map fibers into fibers homomorphically. Hence f ◦πE = πF ◦f defines an action of f on the
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base, which we denote by the same symbol, and f : Ex → Ff(x) is linear for vector bundles and

a group homomorphism for principal bundles. Generalizing the construction of tensor fields

we can now use the operations of linear algebra to construct many new vector bundles from

elementary building blocks:

• The fiber of the Whitney sum E⊕F of two vector bundles over the same base is the direct

sum of the fibers. The transition functions are block-diagonal matrices gij =
(

gE
ij 0

0 gE
ij

)
,

i.e. the Whitney sum is associated with direct sum representation.

• The transition functions of the tensor product bundle E ⊗ F are given by the tensor

product of the representations. (This differs from the product bundle, whose base would

be M ×M .)

• The fiber of the dual bundle E∨ is the dual vector space E∗
x, which carries the contragra-

dient representation g∨ij = gT
ji, i.e. the transpose of the inverse matrix.

• If F ⊂ E is a subbundle of E we can choose a basis of Ex whose first elements are a basis

of Fx so that the transition functions are of the form gij =
(

gF
ij hij

0 fij

)
. The transition

functions fij then define the quotient bundle E/F .

• The exterior power bundle ΛkE arises by antisymmetrization of the k-fold tensor product

of E with itself. For the maximal value k = rank(E) ≡ dim(Ex) we get the determinant

bundle det(E), which has has rank 1 and thus is a line bundle.

• Given a bundle E → N and a smooth map f : M → N we define the pull-back bundle

f ∗E over M by the trivializations f−1(Ui) and the pull-back of the transition functions.

• The tangent bundle of a submanifold M ⊂ N of dimension m is a subbundle of the

restriction of TN to M , i.e. of the pull back of the embedding iM : M → N . The

quotient N (N/M) = i∗MTN/TM is called normal bundle of M in N . Its rank is n−m.

• If a bundle map f : E → F from E →M to F → N has constant rank on the fibers then

the fiber-wise kernel and image of f define subbundles Ker(f) ⊂ E and Im(f) ⊂ F . A

sequence of vector bundle homomorphisms

E ′ f→ E
g→ E ′′ (1.21)

is called exact if Im(f) = Ker(g). A sequence 0 → E ′ f→ E
g→ E ′′ → 0 is exact iff f is

injective, g is surjective and Im(f) = Ker(g).

• Spin bundles are vector bundles whose structure group is the spin group Spin(n), i.e. the

double cover of SO(n). The structure group can be reduced to SO(n) iff the manifold
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is orientable. An orientable manifold is said to admit spin structures if the orthogonal

transition functions can be lifted to Spin(n). Since there is a Z2 ambiguity in the lift

SO(n) → Spin(n) on each patch, there may be a global topological obstruction to the

existence of such a lift, which, more or less by definition, is the second Stiefel-Whitney

class. A problem can only occur with compatibility on tripple overlaps so that spin

structures always exist in two dimensions.

• A complex vector bundle is a vector bundle whose fibers are complex vector spaces and

whose transition functions are in GL(k,C). A holomorphic vector bundle is a complex

vector bundle whose total space is a complex manifold with bi-holomorphic trivializations

ϕi : π−1(U) → U × C
k. The base space of a homolorphic vector bundle is a complex

manifold. Since tensor products and duals of line bundles are again line bundles the

equivalence classes of holomorphic line bundles form an abelian group, which is called the

Picard group Pic(M) of a complex manifold.

1.3 Lie groups and Lie algebras

A Lie algebra h is a (non-associative) algebra, i.e. a ring with a vector space structure and a

bilinear multiplication, whose product is antisymmetric and satisfies the Jacobi dentity

[X,Y ] = −[Y,X],
∑

[X, [Y, Z]] := [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (1.22)

A super Lie algebra is defined by the Z2-graded version of these conditions.

A Lie group G comes with two natural actions on itself, namely the left multiplication Lg

and the right multiplication Rg, whose differential maps Lg∗ and Rg∗ define two different global

transports of tangent vectors,

Lg : h→ gh, Rg : h→ hg, Lg∗ : ThG → TghG, Rg∗ : ThG → ThgG (1.23)

with g, h ∈ G. The tangent vectors X(e) ∈ TeG at the unit element e ∈ G thus are in one-

to-one correspondence with left-invariant vector fields X ∈ TG, which by definition satisfy

X(g) = Lg∗X(e). The Lie bracket commutes with the push-forward und thus closes on the

linear space g of left-invariant vector fields. This gives g, which is naturally identified with the

tangent space at the unit element g ∼= TeG, the structure of a Lie algebra. Choosing some basis

Ta ⊂ G we conclude that

[Ta, Tb] = fab
cTc,

∑

abc

fab
dfdc

e = 0. (1.24)

Of course there is an analogous construction with right-invariant vector fields, which would

merely invert the sign of the structure constants fab
c. Dual to the left-invariant vector fields Ta
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there is a basis θa of left-invariant one-forms, θa(Tb) = δa
b . The formula dω(X,Y ) = X(ω(Y ))−

Y (ω[X])−ω([X,Y ]) for the exterior derivative of a one-form thus implies (dθc)ab = dθc(Ta, Tb) =

−fab
dθc(Td) = −fab

c. With the coordinate independent Lie-algebra valued Maurer–Cartan form

θ = θcTc this yields the Maurer–Cartan equation

dθ + 1
2
[θ, θ] = 0, [θ, θ] = [Ta, Tb] θ

a ∧ θb (1.25)

where θ can be interpreted as a global transport that maps a tangent vector at g to a tangent

vector at the origin. Every group manifold is thus parallelizable, which implies that the curva-

ture of the respective affine connection vanishes (for a parallel basis DTa = 0 of tangent space

R(Ta, Tb)Tc = [DTa
, DTb

]Tc −D[Ta,Tb]Tc = 0). The torsion of the left-invariant connection on a

group manifold is also easily evaluated,

Tab
c = θc(DTa

Tb −DTb
Ta − [Ta, Tb]) = −fab

c. (1.26)

The connection coefficients are obtained by writing the structure equation in terms of the

cobasis, dθc + 1
2
fab

cθa ∧ θb = 0. For matrix groups we can write θ = g−1dg, which obviously

satisfies (1.25) because d(g−1dg) = −(g−1dgg−1)dg.

A Lie group can be reconstructed from its Lie algebra (at least) locally by the exponential

map

exp : g → G, X → x(1) with x(0) = e, ẋ(t) = Lx(t)∗X (1.27)

which is given by the integral curve through e of the left-invariant vector field X ∈ g at curve

parameter t = 1. For matrix groups the exponential map clearly coincides with the exponential

function. The Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2
[A,B]+ 1

12
([A,[A,B]]−[B,[A,B]])+ multiple commutators (1.28)

shows that the group structure can be reconstructed from the commutators. It can be shown

that the exponential map is surjective for compact connected groups.

Example: For the non-compact group SL(2,R) the exponential map is not surjective. Its Lie

algebra sl(2,R) consists of traceless real matrices X, whose eigenvalues λi must be imaginary

(complex conjugate) or real. X is diaganolizable except for λ1 = λ2 = 0. The possible

eigenvalues of exp(X) are therefore real positive or complex conjugate on the unit circle. The

exponential map therefore misses all SL(2,R) matrices with negative eigenvalues λi 6= −1 and

the non-diagonalizable matrices with Jordan normal form
(
−1 a

0 −1

)
.

For connected “simple” groups like SL(2,R) one can show that each group element can be

written as a product of two exponentials. The image of the exponential map is thus not

necessarily a subgroup, but it generates the group. Since BCH formally allows us to express

any product eAeB by a single exponential we conclude that in general the BCH formula cannot
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have infinite radius of convergence. For infinite-dimensional Lie algebras it may happen that

there exists no corresponding Lie group.

Lie groups and Lie algebras can be represented on themselves by the adjoint actions adg =

LgR
−1
g : G → G and adX : g → g with adX Y = [X,Y ]. Moreover, the restriction of the tangent

map of adg to the tangent space TeG at the unit e defines an adjoint action Adg : g → g of G
on its Lie algebra g,

adg h = ghg−1, adX Y = [X,Y ], Adg X = Lg∗XR
−1
g∗ (1.29)

For g = exp(X) we find Adg Y = exp(adX)Y because left- and right-multiplication commute.

1.4 Connections on fiber bundles

A connection on a vector bundle E → M is a linear map ∇ : C∞(E) → C∞(E ⊗ T ∗M) that

satisfies

∇(fv) = f∇(v) + v ⊗ df (1.30)

for smooth functions f ∈ C∞(M) and smooth sections v of E. When evaluated on a tangent

vector field X ∈ TM a connection thus defines a pointwise linear map on the fibers, the

covariant derivative

DX := iX∇, ⇒ DfXv = fDXv, DX(fv) = X(f)v + fDXv. (1.31)

It can be checked that [DfX , DgY ](hv) −D[fX,gY ](hv) = fgh([DX , DY ](v) −D[X,Y ](v)) so that

R(X,Y )v = DXDY v −DYDXv −D[X,Y ]v (1.32)

defines an End(E)-valued 2-form, i.e. a 2-form of linear maps on the fibers, which is called

curvature R (or field strength F ≡ R) of the connection. Given local coordinates xi on the base

M and a local basis ea(x) of the fibers we can define the covariant derivative of the component

functions v = vaea in terms of the connection coefficients

∇ea = Aa
beb, Aa

b = dxiAia
b, Div

a = ∂iv
a + Aia

bva. (1.33)

and the components of the curvature can be written as R(∂i, ∂j) = Rij
IδI where δI is a basis

for the linear transformations of the fibers. We can also expand Aa
b = AI(δI)a

b in such a basis.

In physics the one-forms AI are called gauge connections.

It is often useful to define connections on principal bundles, from which connections on the

associated bundles can be deduced. To motivate the abstract definition of such a connection we

observe that the kernel of the push forward π∗ : TE → TM defines a natural vertical subbundle
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V (E) ⊂ TE of the tangent space TE of (the total space of) a vector bundle. The fibers of

V (E) can be identified with the fibers of the vector bundle E by linearity. Locally E can be

parametrized by (xi, va) and for each tangent vector, i.e. at each point in E, there are dimM

tangent vectors Di = ∂i + Aia
bvaeb that project onto a basis ∂i of TM . These vectors span a

subbundle H(E) ⊂ TE, called the horizontal subbundle, and TE = H(E) ⊕ V (E). It is easy

to see that the connection data can be uniquely recovered from a choice of such a horizontal

subbundle and that this correspondence is independent of a choice of the basis, which was only

used to write down the geometrical objects more explicitly. Note that the horizontal subbundle

H(E) ⊂ TE has to satisfy some linearity condition along the fibers of E in order that the map

(X, v) → DXv with DXv defined as the unique vector in H(E)|v ∩ π−1
∗ (X) for X ∈ Tπ(v)M is a

connection on E.

On a principal bundle P (M,G) the vertical subbundle V (P ) ⊂ TP is defined as the image

of the Lie algebra g under the right action of the structure group on the bundle space, V (P ) =

Rg∗g ⊂ TP . At each point p ⊂ P we can thus identify vertical vectors Y #
p ∈ Vp with vectors

Y ∈ g, and thus generate V (P ) by right-invariant vector fields Y # that are naturally identified

right-invariant vector fields Y on the structure group G.

A connection on a principal bundle P (M,G) is now defined as a choice of a G-invariant

horizontal subbundle H(P ) ⊂ TP such that TP = H(P ) ⊕ V (P ). This data can equivalently

be encoded in the Ehresman connection ω, which is a right-invariant Lie algebra valued 1-form

on P that corresponds to the identity on V (P ) via the identification with g [NA90,eg80]

R∗
gwug(X) = wug(Rg∗X) = g−1wu(X)g, ω(A#) = A ∀A ∈ g. (1.34)

Choosing a local section σi : Ui → P we can define the gauge connection Ai = σ∗
i ω on Ui as the

pull-back of ω to the coordinate chart along σ. The Ehresmann connection can be recovered

as the pull-back to the bundle space along projection π plus the Maurer-Cartan form on the

fiber, which is isomorphic to the structure group:

Ai = σ∗
i ω, ω = γ−1

i π∗(Ai) gi + γ−1
i d gi, (1.35)

where gi parametrizes the fiber in the local trivialization Ui ×G defined by the section si, i.e.

σigi = p ∈ P , and d is the exterior derivative on P . The gauge transformation

Aj = g−1
ij (Ai + d)gij (1.36)

for a change σj = σigij of the local trivialization is the compatibility condition ω|Ui
= ω|Uj

for

a consistent definition of ω.

A curve γ̃ : [0, 1] → P is a horizontal lift of a curve γ in the base space M if it projects onto

that curve π(γ̃) = γ and if all tangent vectors to the lift γ̃ belong to the horizontal subspace
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H(P ). Since tangent vectors to γ ∈M are lifted to vectors in H(P ) the lifts are integral curves

to the lifted tangent vectors and unique for each choice of an initial point on the fiber π−1γ(0).

Horizontal lifts of closed curves define a map γ → G from loops in M to the structure group

because γ̃(0) and γ̃(1) belong to the same fiber and hence differ by a right-action of a unique

group element g ∈ G, i.e. γ̃(1) = Rgγ̃(0). For each connection ∇ on a fiber bundle over M the

image of the space of all loops in the base space with base point x forms a subgroup Holx(∇) ⊆ G

of the structure group, called the holonomy group of the connection. The holonomy group

thus describes the possible action of parallel transport along closed loops on the fibers of a

bundle. If M is arcwise connected then Hol(∇) is independent of the choice of the base point

(up to conjugation by some group element). If a loop in the base M is contractible then its

image is continuously connected to the identity in Hol(∇). It can be shown that the image

Hol0x(∇) ⊂ Holx(∇) of all contractible loops, which forms a subgroup, is equal to the connected

component of the identity in Hol(∇).

The Riemannian holonomy group Hol(g) of a Riemannian manifold (M, g) is the holonomy

group of the Levi-Civita connection on the tangent bundle. Since this connection is torsion free

the curvature tensor has extra symmetries. This can be used to classify all possible holonomy

groups Hol(g), which turn out to characterize different types of geometries:

Theorem (Berger): Let (M, g) be a simply connected irreducible (i.e. no product) and not

locally symmetric (i.e. DR is not identically 0) Riemannian manifold. Then the possible

holonomy groups are contained in the following table [JO00]:

(i) Hol(g) = SO(n) dim(M) generic

(ii) Hol(g) = U(m) ⊂ SO(2m) n = 2m complex Kähler

(iii) Hol(g) = SU(m) ⊂ SO(2m) n = 2m Calabi–Yau (Ricci flat Kähler)

(iv) Hol(g) = Sp(m) ⊂ SO(4m) n = 4m hyperkähler (RF=Ricci flat)

(v) Hol(g) = Sp(m) · Sp(1) ⊂ SO(4m) n = 4m quaternionic–Kähler (Einstein)

(vi) Hol(g) = G2 ⊂ SO(7) n = 7 RF, related to imaginary octonions

(vi) Hol(g) = Spin(7) ⊂ SO(8) n = 8 RF, related to octonions

Note that quaternionic–Kähler manifolds are not Kähler. They are Einstein spaces Rmn ∼ gmn,

but not Ricci flat. (Locally) symmetric spaces are defined, for example, on p. 50-55 in [JO00].
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Chapter 2

Lie algebras and representations

An ideal h of an algebra g is a subalgebra [h, h] ⊆ h ⊆ g for which [g, h] ⊆ h, where operations

on sets are defined as the set of results of the respective operations on elements of the sets.

Ideals of algebras are important because the quotient space g/h, which consists of the cosets

x + h for x ∈ g, again form an algebra (the product is independent of the representative x of

the class [x] = x+ h). Ideals thus can be used to decompose algebras into building blocks.

The derived algebra g′ = [g, g], the derived series g{i} = [g{i−1}, g{i−1}] and the lower central

series g{i} = [g, g{i−1}] with g{1} = g{1} = g′ are all ideals of g. A Lie algebra (LA) is called

solvable (nilpotent) if the derived (lower central) series terminates with {0}. Nilpotency implies

solvability (one can think of elements of a solvable Lie algebra as upper triangular matrices

and of the nilpotent ones as strictly upper triangular, i.e. with zeros on the diagonal). The

radical grad of g is the maximal solvable ideal which exists (and is unique) because the sum of

two solvable ideals is again a solvable ideal.

The center of a Lie algebra is the ideal consisting of all elements that commute with all

others, Z(g) = {x ∈ g | [x, y] = 0 ∀y ∈ g}. The centralizer in g of a subalgebra h is the

subalgebra Cg(h) = {x ∈ g|[x, h] = 0} of elements that commute with all elements of h. The

normalizer Ng(h) = {x ∈ g|[x, h] ⊆ h} of h in g is the largest subalgebra of g that contains h

as an ideal.

A Lie algebra is called simple if it is nonabelian and has no proper ideal. It is called

semisimple if it contains no solvable ideal. Semisimple Lie algebras can be shown to be direct

sums of simple Lie algebras. A Lie algebra is reductive iff its radical is equal to its center Z(g).

A reductive Lie algebra therefore is a direct sum of a semisimple and an abelian part. For any

Lie algebra the quotient s = g/grad is semisimple, which implies the Levi decomposition of g

into the semidirect sum g ∼= s⋉ grad of a solvable ideal and a semisimple quotient.

The Cartan-Killing form κ(x, y) = tr(adx ◦ ady) is a symmetric bilinear form on g that is
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adx-invariant due to the Jacobi identity, i.e. adx(κ([y, z]) := κ([x, y], z) + κ(y, [x, z]) = 0 or

κ([x, y], z) = κ(x, [y, z]). (2.1)

It is common to rescale the components of κ with respect to a basis T a of g by a factor Iad,

called the Dynkin index of the adjoint representation, which will be defined later:

κab :=
1

Iad
tr(adTa

◦ adTb
) =

1

Iad
fae

cfbc
e. (2.2)

The Cartan criterion states that a Lie algebra is solvable iff κ(x, x) = 0 ∀x ∈ g′ and that

it is semisimple iff κ is non-degenerate. The Killing form can then be used to define fabc =

fab
dκdc, which is proportional to κ([Ta, Tb], Tc) and hence antisymmetric in all indices. While

no canonical form of the structure constants is known for the solvable case, the (semi)simple

Lie algebras have been enumerated completely by E. Cartan.

The first step in the classification of simple Lie algebras is the choice of a Cartan subalgebra

(CSA) g0, which is a maximal abelian subspace consisting of ad-diagonalizable elements. (We

first work over the complexified Lie algebra. Possible real forms can be classified straightfor-

wardly once we know the complete list of complex algebras. Likewise, the independence of the

various choices that will be made is easily varified a posteriori, and we will then be able to

parametrize these choices in a useful way.) A basis of g0 is denoted by H i with i = 1, . . . , r.

The dimension r = dim(g0) of the CSA is called the rank of the Lie algebra. Since the H i

commute their adjoint actions can be diagonalized simultaneously and we can choose a basis

{Ta} of the form

[H i, Eα] = αiEα, {Ta} = {H i| i ≤ r} ∪ {Eα| α ∈ Φ}, (2.3)

which is called a Cartan-Weyl basis or a root decomposition of g. The vectors αi of eigenvalues

are called root vectors. The set of all roots is denoted by Φ. We will see that the generators

E±α, which are called step operators or ladder operators, are uniquely determined by the roots

α up to a choice of their normalization.

Ad-invariance of the Killing form for H i implies that κ(Eα, Eβ) vanishes if α + β 6= 0.

Non-degeneracy therefore implies that Φ is symmetric with respect to the origin, i.e. for

each root Eα there is a root E−α. For the same reason κ is blockdiagonal and restricts to

a nondegenerate metric κij = κ(H i, Hj) on the CSA. Since each Eα defines a linear map

g0 ∋ h→ adhE
α = hiadHiEα = αiEα → hiα

i ∈ C we can identify the root space with the dual

space g∗
0 of the CSA, which is thus naturally equipped with the dual metric (α, β) = αiκijβ

j.

Since the H i eigenvalues add up for the entries of a commutator we know that [Eα, E−α] =

α̃iH
i is an element of g0. The coefficient vector α̃i can be computed using the Killing form

κ([Eα, E−α], Hj) = κ(α̃iH
i, Hj) = αjκ(Eα, E−α) = α̃iκ

ij, (2.4)

Hα = [Eα, E−α] = κ(Eα, E−α)αjκjiH
i, [Hα, E±α] = ±κ(Eα, E−α)αjκjiα

iE±α. (2.5)
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We thus observe that every root vector Eα yields an sl(2) subalgebra spanned by E±α and Hα,

which decomposes g into representations of that subalgebra. We will reduce everything to the

representation theory of sl(2), whose generators are often denoted by J± and J3. Using the

notation of quantum mechanics (but with ~ = 1) all finite dimensional irreducible represetations

of dimension 2j + 1 are labeled by j ∈ Z/2. In a basis |j,m〉 with −j ≤ m ≤ j and j −m ∈ Z

[J3 , J±] = ±J±
[J+, J−] = 2J3

⇒ J3|j,m〉 = m |j,m〉
J±|j,m〉 =

√
j(j + 1) −m(m± 1) |j,m± 1〉 . (2.6)

We want to identify E±α with J± and Hα with 2J3, so that the eigenvalues of Hα will be integer.

This can be done if we normalize the generators of the root spaces such that κ(Eα, E−α) =

2/(α, α). It is convenient to define the coroots vectors (α∨)i = 2αi/(α, α) so that our result

takes the form Hα = (α∨, H) = α∨iκijH
j = α∨

i H
i.

For any root α we can now use the fact that the adjoint action of E±α decomposes the Lie

algebra into representations of sl(2), which are called root strings {Eβ+nα} through Eβ. The

eigenvalues ofHα on these strings are given by the scalar products (α∨, β+nα) for n− ≤ n ≤ n+,

which are integers. The spin of the representation is j = (n+−n−)/2. In particular, we conclude

that (α∨, β) = 2(α, β)/(α, α) ∈ Z. Moreover, if we choose κ(Eβ, Eβ) > 0 positivity holds for

the complete root string and, due to simplicity of the algebra, for all root vectors.

The next step is to split the root space into a positive part Φ+ and a negative part Φ−,

which is done by a choice of a linear hyperplane that does not contain any roots. The direct

sum of the positive root spaces g+ = lin span({Eα|α ∈ φ+}) is a nilpotent subalgebra because

a non-zero commutator of positive roots is again a positive root.1 The simple roots are now

defined as the minimal set of algebra generators Ei
+ ≡ Eα(i) of g+ or, equivalently, as positive

roots α(i) that cannot be represented as a sum of other positive roots (with respect to the

fixed choice of Φ+) with nonnegative integer coefficients. The properties of root strings imply

that the simple roots are linearly independent so that their number is equal to the rank r, as

our use the labels i suggests. A Chevalley basis of a simple Lie algebra consists of Ei
± and

H i = [Ei
+, E

i
−] where Ei

− = E−α(i) and Ei
± are normalized as above, i.e. [H i, Ei

±] = ±2Ei
±.

Restricting our attention to the root string of a simple root α(i) through a simple root α(j) it

is clear that n− = 0 and that there are two alternatives: Either n+ = 0 so that [Ei
+, E

j
+] = 0 and

(α(i), α(j)) = 0, i.e. the roots commute and the root vectors are orthogonal, or the corresponding

off-diagonal entry of the Cartan matrix

Aij := (α(i)∨ , α(j)) = 2
(α(i), α(j))

(α(i), α(i))
(2.7)

is a negative integer. The diagonal entries are Aii = 2 and the symmetric matrix Aij(α(i), α(i))

1Its direct sum with the CSA g0 ⊕ g+ is a Borel subalgebra, i.e. a maximal solvable subalgebra of g. The
decomposition g = g+ + g0 + g

−
is called triangular (or Gauss) decomposition of g.
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of scalar products of simple roots has to be positive definite. We will now show that these

conditions are sufficient to determine all possible Cartan matrices of simple Lie algebras. The

Cartan classification is then completed by the reconstruction of the complete algebra from Aij.

Clearly any submatrix of a Cartan matrix obtained by removing the ith line and column

again fulfills the defining property that Aii = 2, Aij ≤ 0 for i 6= j with Aij < 0 iff Aji < 0,

and positive definiteness of the corresponding scalar product (which implies det(A) > 0). We

therefore commence with the case of rank r = 2 Cartan (sub)matrices. For Aij =
(

2 −a

−b 2

)

with det(A) = 4 − ab > 0 we find four inequivalent integer solutions, where we can choose

|α(1)|2/|α(2)|2 = a/b ≥ 1 for a, b 6= 0. It is convenient to encode the data of Aij in a (Coxeter)

graph, where we draw a node for each simple root and connect two simple roots by a lines

(laces) if a ≥ b > 0. In addition, we need to encode the relative lengths of the roots, which is

conventionally done by adding an arrow pointing to the shorter roots and/or by drawing the

long roots with circles and the shorter ones with full discs. The resulting graphs are called

Dynkin diagrams. For rank two we thus find
(

2 0
0 2

)
≡ 90o

(
2 −1

−1 2

)
≡ 120o

(
2 −2

−1 2

)
≡ 135o

(
2 −3

−1 2

)
≡ 150o

with angles of 90o, 120o, 135o and 150o between the simple roots. The corresponding Lie

algebras will turn out to be the classical Lie algebras2 D2 ≡ A1 ⊕ A1
∼= so(4) ∼= su(2) ⊕ su(2),

A2
∼= su(3), B2 ≡ C2

∼= so(5) ∼= sp(4) and the exceptional G2, respectively.

The Dynkin diagram of a simple Lie algebra is connected because disconnected parts cor-

respond to commuting subsets of generators and thus to a direct sum of the Lie algebras. For

rank r = 3 we find two connected Coxeter graphs, which amount to the three Dynkin diagrams

called A3 = D3, B3 and C3 in the table below. The latter differ by the direction of the arrow.

Other diagrams like the ones with two double lines, one tripple line, or a closed loop are forbid-

den because the angles among the roots would add up to 360o so that the root vectors become

linearly dependent (and the determinant of the Cartan matrix vanishes):
( )

From the result for r = 3 we can proceed with the following observation:

Lemma: A simple lace (i.e. a single line) in a Dynkin diagram of a simple Lie algebra with

rank r can be contracted to a point and two nodes connected by simple laces to the same node

can be replaced by a single node connected with a double line according to the graphs

X Y → X Y X → X (2.8)

In both cases the resulting Cartan matrix of rank r− 1 again fulfills the above critieria [GE82].

2At small rank there are coincidences between the member of otherwise inequivalent series of classical Lie
algebras, which explain the well-known isomorphisms (see the table below).
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Corollary: There can be no closed loops. There can be at most one double line. And there

can be at most one branching point where one node is connected to three other nodes. Since

the only diagram with a tripple line is the rank 2 Lie algebra G2 this also implies that simple

roots can have at most two different lengths.

This reduces the classification to the considerations of the exceptional cases F4, E6, E7 and

E8 (cf. the table of simple Lie algebras), whose Dynkin diagrams cannot be extended because

the following diagrams can be checked to correspond to a Cartan matrix with determinant zero:

( )
(2.9)

Instead of computing the determinant if is faster to directly compute the null Eigenvectors.

Exercise 3: Show that the moves (2.8) generate valid Cartan matrices from valid Cartan

matrices and compute the zero-Eigenvectors of the Cartan matrices corresponding to (2.9).

Putting everything together we are thus left with four infinite series and five exceptionals

cases. The Dynkin diagrams are listed in the following table, which contains additional infor-

mation on the resulting algebras that will be discussed below.

g dual Coxeter labels dim g∨ center Weyl group exponents + 1

Ar
1 1 1 1 1

r2 + 2r r + 1 Zr+1 Sr+1 2, 3, 4, . . . , r + 1

Br
1 2 2 2 1

∨

2r2 + r 2r − 1 Z2 Sr ⋉ (Z2)
r 2, 4, 6, . . . , 2r

Cr
1
∨

1
∨

1
∨

1
∨

1

2r2 + r r + 1 Z2 Sr ⋉ (Z2)
r 2, 4, 6, . . . , 2r

Dr

1 2 2 2 1

1
2r2 − r 2r − 2 Z2×Z2 reven

Z4 rodd
Sr ⋉ (Z2)

r−1 2, 4, 6, . . . , 2r − 2, r

E6 1 2 3 2 1

2

78 12 Z3 |W | = 3 · 4! · 6! 2,5,6,8,9,12

E7 1 2 3 4 3 2

2

133 18 Z2 |W | = 4! · 4! · 7! 2,6,8,10,12,14,18

E8 2 3 4 5 6 4 2

3

248 30 – |W | = 4! · 6! · 8! 2,8,12,14,18,20,24,30

F4
2 3 2

∨
1
∨ 52 9 – S3 ⋉ S4 ⋉ (Z2)

3 2,6,8,12

G2
2 1

∨ 14 4 – D6 2,6

Positive definiteness of the Cartan matrices for the exceptional cases are easily verified. The

existence of the infinite series follows from their representation in terms of the classical Lie

algebras Ar ∼ sl(r + 1), Br ∼ so(2r + 1), Cr ∼ sp(2r) and Dr ∼ so(2r).

The classification of simple Lie algebras is now completed by the reconstruction of g. The

Cartan matrix encodes the structure constants for the commutators of the CSA elements and
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the simple roots, while all other roots can be obtained as multiple commutators. The Serre

relations (adEi
±
)1−Aij

Ej
± = 0 describing the termination of the root strings follow from the

properties of sl(2) representations. Everything is summarized by the Chevalley–Serre relations

[H i, Hj] = 0, [H i, Ej
±] = ±AijEj

±, [Ei
+, E

j
−] = δijH

j, (adEi
±
)1−Aij

Ej
± = 0 (2.10)

(in some books, like [FU97], the transposed convention for the Cartan matrix is used). As an

example we consider the rank 2 cases, for which the root systems look as follows,

α(2)

α(1)

A2 ∼
(

2 −1
−1 2

)

α(2)

α(1)

B2 ∼
(

2 −2
−1 2

)

α(2)

α(1)

G2 ∼
(

2 −3
−1 2

)

For the last case G2 the root 2α(1) + 3α(2) does not belong to a root string through a simple

root, so that the Serre relations are not sufficient to obtain the shape of the diagram. While a

straightforward analysis of further root strings could solve this issue, there is a much simpler

approch: Due to the properties of the corresponding sl(2) representations the root system is

invariant under any reflection Sα on the hyperplane that is orthogonal to a root α. These

automorphisms

Sαβ = β − (α∨, β)α. (2.11)

of the root system are called Weyl reflections. They generate the Weyl group, which is a

Coxeter group, i.e. a finite group generated by reflections (the classification of these groups

is closely related to the Cartan classification; but recall the difference between Coxeter graphs

and Dynkin diagrams). It can be shown that the Weyl group is generated by Weyl reflections

for simple roots si = Sα(i) (called fundamental or simple reflextions). These generators obey

the relations

s2
i = 1, sisj = sjsi if Aij = 0, (sisj)

mij = 1 mij =
π

π − θij

∈ {2, 3, 4, 6}, (2.12)

where θij denote the angles between the simple roots. It can be shown that the Weyl group

generates the complete root system from the simple roots and that different choices of a set

of simple roots (up to a permutation within the set) are related by a Weyl group element. In

particular, the exchange of positive and negative roots corresponds to w = s1 . . . sr, and the

rank r is the maximal number of generators that is required to represent an element of the

Weyl group.3 We can introduce a grading among the roots where we assign height 1 to the

3The minimal number of factors in a representation of w =
∏

si is called the lengths l(w) of the Weyl group
element.
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simple root and height
∑
ci to a root α =

∑
ciα

(i). By now we know that all roots can have at

most two different lengths. It can be shown that there is a unique highest root θ, which always

is a long root. It is standard to normalize the metric such that the hightest root has (θ, θ) = 2.

The highest root can be written as a linear combination θ =
∑
giα

(i) =
∑
g∨i α

(i)∨ of the simple

(co)roots. The unique coefficients are called (dual) Coxeter labels gi (g∨i ). The (dual) Coxeter

number is one plus the sum of all (dual) Coxeter labels. The dual Coxeter labels and the dual

Coxeter number of all simple Lie algebras are given in the table.

We now turn to the discussion of finite-dimensional representations, which clearly have to

decompose into the well-known sl(2) representations for any sl(2) subalgebra H i, Ei
± generated

by a simple root. Let us introduce the root lattice L and the coroot lattice L∨,

L(g) = span
Z
{α(i)}, L(g)∨ = span

Z
{α(i)∨}, (2.13)

as the set of integer linear combination of simple root and coroots, respectively. For the simply

laced Lie algebras ADE, i.e. if the Coxeter graph has simple laces and hence all roots have

equal length, we have L = L∨. Since Hα = α∨
i H

i the pairings (α∨, λ) = λi of Eigenvectors |λ〉
of CSA elements h|λ〉 = λ|λ〉 must be integers. The weight vectors λ therefore belong to the

weight lattice

Λw(g) = (L(g)∨)∗ = span
Z
(Λi), (α∨

i ,Λj) = δij, (2.14)

which is generated by the fundamental weights Λi. The Dynkin basis {Λi} which is dual to the

basis α∨
i of the coroot lattice. The coefficients λi of a weight λ = λiΛi are called Dynkin labels.

All finite dimensional irreducible representations of simple Lie algebras are so-called high-

est weight representations, i.e. they are uniquely characterized by a highest weight |λ〉 with

Ei
+|λ〉 = 0 and the complete representation is generated by the lowering operators Ei

−. The set

of eigenvalues of such a representation form a convex lattice polytope in the weight lattice. λ

is called the dominant weight. The shape of the representation could be worked out from the

properties of its sl(2) building blocks, but, again, the Weyl group helps by generating all the

vertices of the polytope from the fundamental weights. The Weyl reflextions decompose the

weight space into Weyl chambers, and the dominant weight clealy has to be chosen from the

fundamental chamber, which is the cone generated by the fundamental weights.

Example: For A2 ≡ SU(3) the Dynkin labels (1, 0), (0, 1) and (1, 1)
correspond to the fundamental 3, the conjugate 3̄ and the adjoint
reprensentation 8, respectively. The decomposition 3 ⊗ 3̄ = 8 ⊕ 1
is quite obvious. Since weights at the boundary of an irreducible
representation have multiplicity 1 and Λ2 = ρ + σ = σ + ρ with
ρ = Λ1 and σ = Λ1 − α(2) we find 3 ⊗ 3 = 6 ⊕ 3̄, where 6 denotes
the representation with highest weight (2, 0). 3 ≃ {ρ, σ,−Λ2} and 3
are indicated by dashed and dotted lines. 6 is the symmetric tensor
representation and 3 is the antisymmetric tensor. For sun ≃ An−1

all HWR are (anti)symmetrizations of tensors (Young tableaux).

α(2)

α(1)

Λ2

Λ1

(2,0)

Geometry / M.Kreuzer — 20 — version June 2, 2009



Since the root system of g corresponds to the adjoint representation the root lattice L(g) is

a sublattice of the weight lattice Λw(g) and thus decomposes the weight lattice into a finite set

of equivalence classes λ+L(g), called conjugacy (or congruence) classes. The conjugacy classes

form a finite abelian group Λw(g)/L(g) that can be shown to be isomorphic to the center Z(G)

of the universal covering group G̃ (the Lie group G̃ is unique if we choose the compact real form).

The relation to the center can be obtained by comparing the exponentiations in the adjoint

representation and in a representation that contains weights generating all conjugacy classes,

respectively. Since the shift operators Ej
± change the weights by roots all weights in a hightest

weight representation (HWR) belong to the same conjugacy class. Moreover, all highest weights

of representations that are contained in the tensor product are in the conjugacy class of the

sum of the highest weights of the factors. Together with the dimensions of the representations

this information is often sufficient to uniquely determine the decomposition.

For each HWR RΛ there is the conjugate representation R+
Λ which contains −Λ as its

lowest weight and whose tensor product with RΛ always contains the trivial representation

1 as a direct summand (in physics this implies the existence of an invariant bilinear term for

fields in conjugate representations). The corresponding highest weight can be obtained by Weyl

reflection at the hightest root Sθ, i.e. Λ+ = −SθΛ. A representation is self-conjugate if Λ+ = Λ

(the adjoint representation is always self-conjugate because its hightest weight is Λad = θ).

Another important quantity is the Weyl vector ρ = 1
2

∑
α>0 α, which is half the sum of the

positive roots and can be shown to be equal to

ρ =
1

2

∑

α>0

α =
r∑

i=1

Λi (2.15)

It is related to the dimension of the Lie algebra by the so-called strange formula

(ρ, ρ) =
1

24
g∨(θ, θ) dim g (2.16)

and it enters the Freudenthal recursion formula

multΛ(λ) =
2

(Λ + ρ,Λ + ρ) − (λ+ ρ, λ+ ρ)

∑

α>0

∑

m>0
λ+mα∈R(Λ)

(λ+mα,α) multΛ(λ+mα) (2.17)

for the multiplicity of a weight λ in a representation R(Λ). These multiplicities are encoded in

the character χΛ of R(Λ), which is a functional on g0 defined by

χΛ(h) = tr exp(R(Λ)(h)) =
∑

λ∈R(Λ)

multΛ(λ)e(λ,h) (2.18)

with R(Λ)|λ〉 = (λ, h)|λ〉. They can be computed efficiently in terms of sums over Weyl group

elements σ ∈ W by the Weyl-Kac character formula

χΛ(h) =

∑
σ∈W sign(σ) exp[(σ(Λ + ρ), h)]∑

σ∈W sign(σ) exp[(σ(ρ), h)]
(2.19)
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where sign(σ) = ±1 for elements σ of even/odd length. For conjugate representations χΛ+(µ) =

χΛ(−µ) and for direct sums and products

χΛ1⊕Λ2 = χΛ1 + χΛ2 , χΛ1⊗Λ2 = χΛ1 · χΛ2 . (2.20)

This can be used to construct algorithms for the reduction of tensor products (see, for example,

section 1.7 in [FU92]).

The universal enveloping algebra U(g) is the associative algebra that is generated by g with

the Lie algebra relations. Its center is related to numerically invariant tensors with adjoint

indices. It can be shown that the center Z(U(g)) is generated by r Casimir operators Cl =

ca1...alTa1 . . . Tal
, corresponding to the invariant tensors ca1...al . The numbers of indices of these

tensors by definition differ by 1 from the exponents of the Lie algebra, as listed in the last column

of the table. All invariant tensors can be obtained as symmetrized traces in some representations

of the Lie algebra. The Harish-Chandra theorem [HU72] implies that HW representations are

uniquely characterized by the eigenvalues of the Casimir invariants. The Dynkin index IΛ

of a representation is related to the second Casimir CΛ = κabTaTb in a representation RΛ of

dimension dΛ by IΛ = dΛ

d
CΛ.

For each simple Lie algebra there are two standard real forms: The normal real form

is the real span of the Cartan–Weyl basis (which is called the normal real form), while the

compact form is generated by {iH i,

√
(α,α)

2
(Eα − E−α), i

√
(α,α)

2
(Eα − E−α)} so that again all

structure constants are real and κab = −δab. The signatures σ of other possible real forms

gd|σ are restricted by the condition that the number 1
2
(d − σ) of negative eigenvalues must be

the dimension of a simple Lie algebra. (E6, for examples, has real forms with five different

signatures: E6|−78 E6|−26 E6|−14, E6|2, E6|6. The lists of all possible real forms can be found in

section 8.4 of [FU97].)
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Chapter 3

Complex manifolds

3.1 Vector bundles on complex manifolds

Since any complex manifolds M also has the structure of a real manifold we can consider

different types of tangent spaces. Using local complex coordinates zj = xj + iyj we define the

complex tangent bundle, TM whose fibers are complex linear combinations of ∂xi and ∂yi . It is

the direct sum

TM = T ′M ⊕ T ′′M (3.1)

of the holomorphic tangent bundle T ′M , whose fibers are spanned by ∂i ≡ ∂zi , and the anti-

holomorphic tangent bundle T ′′M that is generated by ∂i ≡ ∂ ı ≡ ∂zi ,

∂
∂zi = 1

2
( ∂

∂xi − i ∂
∂yi ),

∂
∂zi = 1

2
( ∂

∂xi + i ∂
∂yi ). (3.2)

The analogous decomposition of the complex cotangent bundle T ∗M = T ∗′M ⊕ T ∗′′M leads to

a decomposition of the exterior algebra into (p, q) forms

Λ(M) = ⊕Λ(p,q), Λ(p,q) = T ∗(p,q) = ΛpT ∗′ ∧ ΛqT ∗′′ (3.3)

The canonical bundle KM = detT ′∗M = Λ(n,0) of a complex manifold M is the determinant

bundle of the holomorphic cotangent bundle. Its dual is the anti-canonical bundle K∗
M .

The exterior derivative d decomposes into a sum of ∂ and ∂,

d = ∂ + ∂, ∂ = dzi∂zi , ∂ = dzi∂zi , ∂2 = ∂
2

= {∂, ∂} = 0, (3.4)

which increase the holomorphic and the anti-holomorphic degree, respectively. Let Zp,q

∂
(M)

and Bp,q

∂
(M) be the space of ∂-closed and ∂-exact (p, q) forms, respectively.

The Dolbeault cohomology groups are defined as the quotient groups

Hp,q

∂
(M) = Zp,q

∂
/Bp,q

∂
. (3.5)
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For polydiscs ∆, i.e. products of open discs ∆i ⊂ C, they are trivial except for Hp,0, which

consists of holomorphic p-forms with holomorphic coefficient functions. This follows from the

∂ Poincaré lemma: Hp,q(∆) = 0 for q ≥ 1 and polydiscs ∆ [GR78].

As a warm-up for the proof of this lemma we derive the Cauchy integral formula for smooth

functions f ∈ C∞(∆) on the closure of some open disc ∆ = ∆0 = ∆ − ∂∆ ⊂ C. To simplify

notation we drop the explicit z-dependence of smooth function f(z, z) ∼= f(Re z, Im z) ∼= f(z),

i.e. f(z) is now not assumed to be holomorphic. For z ∈ ∆0 and with the parametrization

w − z = reiθ Stokes’ theorem for the 2-form d (f(w)dw

w−z
) = ∂f

∂w
dw∧dw
w−z

implies

∫

∆′=∆−∆ε(z)

dw dw
2πi

∂wf(w)
w−z

+

∮

∂∆

dw
2πi

f(w)
w−z

=

∮

∂∆ε(z)

dw
2πi

f(w)
w−z

=

∫ 2π

0

deiθ

2πi

f(εeiθ)
eiθ = f(z) + O(ε). (3.6)

∆ε(z) ⊂ ∆ is a disk of radius ε around z so that r = ε on its boundary ∂∆ε(z). Since
dw dw
z−w

= 2ir dr dθ
reiθ the surface integral is regular at w = z. Hence we can take the limit ε→ 0 and

obtain the Cauchy integral formula

f(z) =

∮

∂∆

dw

2πi

f(w)

w − z
+

∫

∆

dw ∧ dw
2πi

∂f(w)

w − z
(3.7)

In the holomorphic case ∂f = 0 this yields f(z) in terms of its boundary values. Next we

observe that 1/z is a Green’s function for ∂z, i.e. ∂z(1/z) = 2πδ2z, which follows from (3.7)

if we interpret f as test function and take ∆ large enough to contain the support of f . This

implies the ∂ Poincaré lemma in one variable:

∂z (1
z
) = 2πδ2(z) ≡ πδ(Re z)δ(Im z), g(z) =

∫
dw dw
2πi

f(w)
w−z

⇒ ∂zg(z) = f(z), (3.8)

i.e. every smooth function f on ∆ can be written as a ∂-derivative.

Now we are ready to prove the ∂ Poincaré lemma: To simplify notation we use multi-

indices like I = i1 . . . ip with |I| = p and the symbol εI(j) that is 0 if j 6∈ I and ±1 according

to dzI = εI(j)dz
j ∧ dzI′j with |I ′j| = |I| − 1 otherwise. εI(j) therefore removes the terms for

which dzj is not a factor of dzI and takes care of the sign that is necessary to pull out dzj on

the left hand side otherwise. For q = |J | > 0 the cocycle condition ∂ω with ω = ωIJdz
I ∧ dzJ

now implies ∂Ω = ω for Ω = 1
q

∑
j≤n tjω with

tjω(z1, . . . , zj, . . . , zn) =
∑

|I|=p

|J|=q

(−)IεJ(j)

∫
dw dw

2πi

ωIJ(z1, . . . , w, . . . , zn)

w − zj

dzI ∧ dzJ ′
j (3.9)

because dzl∂zl anticommutes with tj for l 6= j and vanishes on ωIJdz
I ∧dzJ if εJ(j) 6= 0 so that

only ∂ 1
w−zj

contributes to ∂Ω, which proves the lemma. �

It can be shown that the ∂ Poincaré also holds for ∆ = C
n [GR78]. Note that the Dolbeault
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cohomology groups Hp,0 are not even finite-dimensional in the non-compact case. In the com-

pact case, however, the vector bundles Λ(p, 0) have only a finite number of linearly independent

holomorphic sections so that the Hodge numbers hp,q = dimHp,q

∂
(M) are finite.

An important set of holomorphic bundles can be constructed on P
n. Every homogeneos

polynomial p(z) of degree d defines functions pi(z) = p(z)/zd
i on the affine patches Ui = {(z0 :

. . . : zn) | zi = 1}. These functions provide global sections of a line bundle O(d) that is defined

by the transition functions1 gij = (zj/zi)
d. While global holomorphic sections only exist for

nonnegative degrees d the line bundles O(d) are defined for arbitrary integers d. It can be

shown that every line bundle on P
n is isomorphic to O(d) [GR78], i.e. the Picard group of P

n is

generated by O(1) and hence isomorphic to Z. The line bundle O(1) is called universal bundle.

Another special case is the tautological line bundle, which is constructed as follows: The

projection (z0, . . . , zn) → (z0 : . . . : zn) from C
n+1 −{0} to P

n defines a C
∗-bundle over P

n with

C
∗ ≡ C − {0}. The tautological bundle is obtained by extending the fibers to C

n. In other

words, the tautological bundle is the subbundle of the trivial C
n+1 bundle over P

n whose fiber

over (z0 : . . . : zn) is the line (λz0, . . . , λzn) with λ ∈ C.

Exercise 4: Show that the tautological bundle is O(−1) and that the canonical bundle is equal

to O(−n− 1). The tangent bundle of P
1 is thus equal to the anti-canonical bundle O(2).

Show that the Hopf fibration of S3 is dual to the principal bundle of O(1), which is the spin

bundle because its square is the tangent bundle.

Hint: Use the local parametrization λ(i)

zi
(z0, . . . , zn) for the fibers of the tautological bundle.

A convenient choice of coordinates on patches Ui with zi 6= 0 is xj =
{−zj−1/zi for j ≤ i

zj/zi for j > i
.

Expressing the coordinates xi on Ui in terms of, say, the coordinates yj = zj/z0 on U0 it is

easy to compute the determinant of the Jacobian matrix ∂x/∂y and thus obtain the transition

functions g0i for the determinant bundle. The other transition functions follow from the cocycle

condition. The transition functions for the Hopf fibration along the equator |z0| = |z1| are easily

found by representing the U(1) fiber as zi/|zi| on the patch Ui.

Let M be a compact complex manifold and L ∈ Pic(M) a holomorphic line bundle. Then

it can be shown that the space Γ(L) of global holomorphic sections is a vector space V of

finite dimension, say, m + 1 (in the language of sheaf cohomology the space of global sections

Γ(O(L)) of the ‘sheaf’ O(L) is denoted by H0(M,O(L)) [GR78], which coincides with the space

of holomorphic functions H00
∂

in the case of the trivial line bundle). It may happen that there

are points p ∈ M for which all sections v ∈ V vanish. Then p is called a base point of L, and

the set of all such points is the base locus. If a line bundle has no base point then, by choosing

some basis vi of V , we can define a map M ∋ p → (v0(p) : . . . : vm(p)) ∈ P
m. We need to

1Strictly speaking, O(d) denotes the sheaf of local holomorphic section of the line bundle that is defined by
these transition functions.
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consider the projectivisation P (V ) ∼= P
m because vi are sections of a line bundle and only ratios

vi(p) : vj(p) are meromorphic functions on M . A base-point free line bundle L is called very

ample if this map defines an embedding of M into P
m. L is called ample if some positive power

Lk is very ample.2 Chow’s theorem states that every compact complex submanifold of P
n is

algebraic, i.e. the vanishing set of a finite number of homogeneous polynomials.3

Our final step in this section into the realm of algebraic geometry is the relation between

divisors and line bundles. We first define a hypersurface in a complex manifold M as a subset

N such that for each p ∈ N there is a neighbourhood U and a nonzero holomorphic function f

on U with N ∩U = {u ∈ U |f(u) = 0}. A hypersurface is thus a possibly singuar ’submanifold’

of codimension 1. It is called irreducible if it is not the union of two distinct hypersurfaces.

Irreducible hypersurfaces are also calle prime divisors, and a divisor is a locally finite formal

sum

D =
∑

aiNi, ai ∈ Z (3.10)

of prime divisors Ni. D is an effective divisor if all ai ≥ 0. Any prime divisor N is thus locally

defined by equations fα = 0 with gαβ = fα/fβ nonvanishing on the overlap Uα ∩ Uβ. The gαβ

obviously satisfy the cocycle condition and thus can be used to define a line bundle L = [N ].

In turn, the collection f = {fα} of local defining functions of the hypersurface N evidently

defines a global holomorphic section of the corresponding line bundle [N ]. We can thus associate

a prime divisor, denoted by (f), to any holomorphic section of a line bundle that has only single

zeros. More generally, if we take into account multiplicities of zeros and poles, we can associate

a divisor D = (f) to every meromorphic section f of a given line bundle L: Locally the

meromorphic functions fα can be written as quotients fα = gα/hα of holomorphic functions,

where gα has zeros of constant order ordg on its vanishing set Vg and hα has zeros of constant

order ordh on its vanishing set Vh. The associated divisor (f) is then locally defined by

(f)α = (f)0 − (f)∞ = ordg Vg − ordh Vh, f = g/h on Uα. (3.11)

(f)0 and (f)∞ are called divisor of zeros and divisor of poles, respectively. The ratio of two

nonzero meromorphic sections of a line bundle is a meromorphic section of the trivial bundle,

i.e. a meromorphic function. The corresponding divisors are called principal divisors. The

map D → [D] from the linear group of divisors to the Picard group is a surjective group

homomorphism because every line bundle can be reconstructed from one of its meromorphic

sections. Since the ratio of two sections is a meromorphic function on M the kernel of this map

is given by the subgroup of principal divisors Div0 and we obtain an isomorphism

Div /Div0 ∋ DmodD0 ↔ [D] ∈ Pic(M), D ∼ D +D0 (3.12)

2The Kodeira embedding theorem gives a simple criterion for this: L is ample iff it is positive, i.e. first Chern
class c1(L) is a positive element of H2

DR [GR78].
3Such theorems are called GAGA theorems, named after an article by J.-P. Serre: ’Géometrie Algébrique et

Géometrie Analytique’ (1956).
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between the Picard group and group of divisor classes that consists of the equivalence class of

divisors modulo principal divisors. Divisors in the same class are called linearly equivalent.

The above correspondence gives a one-to-one relation between meromorphic sections of line

bundles and divisors. In particular, the effecitive divisors correspond to holomorphic sections.

As an example consider hyperplanes H in P
n, which are solutions of linear equations and thus

correspond to sections of O(1). As divisors all hyperplanes are linearly equivalent. The line

bundle O(1) = [H] it therefore called hyperplane bundle. The line bundle [VD] of a hypersurfaces

Vd ⊂ P
n that is defined by a homogeneous polynomial equation of degree d is O(d) = [dH].

The Bertini theorem implies that a generic section of O(d) defines a smooth hypersurface in

P
n, and, more generally, r generic polynomials of degrees di intersect transversally and so that

the common zeros define a smooth complete intersection submanifold of codimension r [GR78].

An important application of the above is a formula that relates the canonical bundle of a hy-

persurface to the one of the ambient space. For complex manifolds we define the (holomorphic)

normal bundle of a hypersurface V as the quotient bundle

NV = T ′M|V /T
′V ⇔ 0 → T ′V → T ′M|V → NV → 0, (3.13)

where we also gave the equivalent definition of the quotient by a linear subspace A ⊂ B in

terms of the ‘short exact sequence’ 0 → A → B → B/A → 0 (the first two maps are the

obvious embeddings and the projection onto B/A makes the sequence exact). For a smooth

hypersurface defined by fα = 0 the differentials dfα vanish on all tangential vectors v ∈ T ′V and

thus locally are elements of the conormal bundle N ∗
V . On the overlap Uα ∩ Uβ of two patches

dfα = d(gαβfβ) = fβ dgαβ + gαβ dfβ, (3.14)

where gαβ are the transition functions of the line bundle [V ]. Since fβ = 0 on V we observe

that dfα transforms like fα when restricted to V . The collection {dfα} thus provides a section

of N ∗
V ⊗ [V ] that is nonvanishing because the equations fa = 0 have single zeros. This implies

that N ∗
V ⊗ [V ] is a trivial line bundle and N ∗

V = [−V ]. In terms of local coordinates (f, ~x)α,

with ~xα parametrizing V ∩Uα, we arrive at the same result by computing the relevant block of

the Jacobi matrix (
∂fβ

∂xβ

)
=

(
∂(gαβfβ)

∂fβ

∂(gαβfβ)

∂xα

0
∂xβ

∂xα

)(
∂fa

∂xα

)
(3.15)

for the transition functions of T ′M in the holonomic basis. The vector components transform

contragradient to the basis. Hence the transition functions for g
(N )
αβ : Uβ → Uα of NV are

∂(gαβfβ)/∂fβ and agree with those of [V ] on the hypersurface fβ = 0. Using the canonical

bundle formula KV = KM |V ⊗ detN (M/V ) we thus derive the

Adjunction formula:

KV = (KM ⊗ [V ])|V (3.16)
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for a smooth hypersurface V ⊂ M . For a hypersurface in P
n this implies that the canonical

bundle is trivial iff the defining equation has degree n + 1. A trivial canonical bundle is one

of the possible definitions of a Calabi–Yau manifold. The first non-trivial example is a cubic

in P
2, which defines a torus. A genic cubic in 3 variables has

(
5
3

)
= 10 coefficients, but these

can be redefined by 32 independent linear transformations without changing the hypersurface.

This leaves one relevant parameter for the deformation of the complex structure of the torus.

The simplest family of K3 surfaces are quartics in P
3 with

(
7
4

)
− 42 = 19 relevant parameters

that deform the complex structure. The most prominent Calabi–Yau 3-fold is the quintic in P
4.

In the 3-dimensional case it can be shown that the Hodge numbers h11 and h12 are related to

(Kähler) metric and complex structure deformations, respectively, and that the Euler number is

χ = 2(h11−h12). In applications to the simplest case of supersymmetric string compactifications

the Hodge numbers are related to the numbers of massless generations and anti-generations,

whose net number thus becomes4 |χ|/2. The quintic in P
4 has h12 =

(
9
5

)
− 52 = 101 complex

structure deformation and one Kähler parameter, which comes from the size of the ambient P
4.

These data are conveniently summaries as P
4[5]1,101

−200 with the degree of the equation in brackets,

the Hodge data as superscripts and the Euler number as subscript. The generation number 100

is way too large to be realistic, but it can be cut down by taking free quotients, which reduce

the Euler number by a factor of the group order. For the Fermat quintic z5
0 + z5

1 + . . .+ z5
4 = 0

there exist two (projectively) commuting free Z5 actions, namely the phase symmetry zi → ρizi

with ρ a 5th root of unity and the cyclic permutation z0 → z1 → . . .→ z4 → z0 (for both group

actions the only fixed point that satisfies the equation is zi = 0, which is not in P
n). We thus

obtain a ‘four generation model’ with χ = −8.

For complete intersections in P
n the Calabi–Yau condition is obtained by iterating the

adjuction formula: The degrees of the equations have to add up to the degree n + 1 of the

anticanonical bundle. We thus find four more examples [HU92]

P
4[5]1,101

−200, P
5 [4 2]1,89

−176 , P
5 [3 3]1,73

−144 , P
6 [3 2 2 ]1,73

−144 , P
7 [2 2 2 2]1,65

−128 . (3.17)

The series terminats with 4 quadrics in P
7 because a linear equation would only reduce the

dimension of the projective ambient space P
n[1] ∼= P

n−1. Soon after the seminal paper by

Candelas, Horowitz, Strominger and Witten on Calabi–Yau compactification [ca85] Tian and

Yau came up with the first three generation model, which they constructed as a free Z3 quotient

of a codimension 3 complete intersection in a product space P
3 × P

3 and the somewhat more

useful example of a free Z3 ×Z3 quotient of a codimension two complete intersection in P
3 ×P

2

was then analyzed by Schimmrigk. The respective data are

P
3

P
3

[
3
0

0
3

1
1

](14,23)

−18

,
P

3

P
2

[
3
0

1
3

](8,35)

−54

, (3.18)

4It is assumed that only chiral fermion stay approximately massless because their masses are protected [GR87].
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where the colums denote the degrees of the equations and Calabi–Yau condition is that the

lines have to add up to the degrees of the anticanonical bundles. In Schimmrigk’s example a

possible choice of parameters that is compatible with a free Z3 ×Z3 quotient (the group action

is analogous to the above Z5 × Z5 action on the quintic) leads to the equations

W (3,0) = x3
0 + x3

1 + x3
2 + x3

3 = 0, W (1,3) = x0y
3
0 + x2y

3
1 + x2y

3
2 = 0. (3.19)

The Calabi–Yau complete intersections (CICYs) in products of projective spaces were com-

pletely enumerated by Candelas and his collaborators.

Exercise 5: Check that the Hodge numbers h12 = 23 and 35 in the examples (3.18) agree with

the numbers of relevant parameters in the homogeneous equations of appropriate degrees.

Hint: For the Tian–Yau manifold the number of monomial is 56. In addition to the 32 coeffi-

cients of linear coordinate transformations we have to subtract 1 for an overall scaling of the

bilinear equation.

Compact complex manifolds with trivial canonical bundle have a holomorphic n form Ω

that is unique up to normalization. For the above examples Ω can be constructed with the

Poincaré residue map: Consider a (local) meromorphic n form ω = g(z)dzI/f(z) with a

single pole along the irreducible hypersurface V defined by f(z) = 0. We define a map to a

local n− 1 form ω′ by

ω =
g(z) dz1 ∧ . . . ∧ dzn

f(z)
=
df

f
∧ ω′ (3.20)

with df = dzi∂zif (mind the correspondence to the adjuction formula). The relation to the

residue of an integral encirling the hypersurface becomes clear if we think about f as a coor-

dinate for the transversal direction. Due to the transversality condition df 6= 0 for a smooth

hypersurfaces an explicit formula for ω′ can be given by

ω′ = (−)j g(z)dz
I′j

∂f/∂zj
, (3.21)

where we have chosen a coordinate zj with ∂jf 6= 0. The holomorphic n-form on a Calabi–Yau

hypersurface (and, by iteration, also on a complete intersection) in P
n can now be constructed

as follows: We start with an n-form

ω =
∑

j

(−)j z
jdzI′j

f(z)
=
z0dz1 ∧ . . . ∧ dzn − . . .+ (−)ndz0 ∧ . . . ∧ dzn−1zn

f(z)
(3.22)

which is a nonvanishing meromorphic section of the canonical bundle K(Pn) if f is a section of

O(n+1). For f = z0 . . . zn the n form has single poles at all coordinate hyperplanes, so that we

recover the result K(Pn) = [(n+1)H] = O(−n−1). For a generic polynomial the hypersurface

f(z) = 0 is a smooth Calabi–Yau and we can use the Poincaré residue map to construct the

holomorphic n−1 form ω′. Because of the Euler formula
∑
zi∂if(i) = (n+1)f(z) transversality
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implies that on each patch zi = 1 there is at least one other nonvanishing gradient ∂jf 6= 0 at

each point of the hypersurface. Locally we thus find the formula

ω′ = −(−)i+j dz
0 . . . d̂zi . . . d̂zj . . . dzn

∂jf
, zi = 1, (3.23)

where the hats mark the differentials that have to be omitted. For a complete intersection of

codimension r we set f = f1 . . . fr and we have to take r residues to obtain the holomorphic

n−r form on the Calabi–Yau. In string theory the period integrals of Ω play an important role

because they contain, via mirror symmetry, nonperturbative information on instanton correc-

tions to Yukawa couplings and on ‘quantum volumes’ of D-branes. In mathematics these are

related to the Gromov–Witten invariants, which count holomorphic curves and are topological

invariants of the manifold.

Basics of Sheaves and Čech cohomology. Here we only collect some definitions to get

a flavor of the concepts. More can be found, for example, in chapters 0 and 1 of the standard

reference [GR78] for algebraic geometry and in chapters 1 and 2 of the very useful notes by Chris

Peters on “Complex Surfaces (long version, for PhD-students mainly)” that is available on the

internet at his home page http://www-fourier.ujf-grenoble.fr/~peters/.

We start with the definition of a sheaf, which captures the essence of what is necessary for

defining cohomology groups on a topological space, but is way too general for most applica-

tions, where more managable special cases like coherent sheaves are used (coherent sheaves are,

roughly speaking, quotients of possibly singular vector bundles on possibly singular varieties).

Definition: A sheaf F on a topological space X associates to each open set U ⊂ X an abelian

group F(U), whose elements are called sections of F over U and for each pair U ⊂ V of open

sets a restriction map rV,U : F(V ) → F(U) that satisfies the following compatibility conditions:

• For U ⊂ V ⊂ W restrictions are compatible rW,U = rV,UrW,V . We thus write σ|V = rV,U(σ).

• For sections σ ∈ F(U) and τ ∈ F(V ) that agree on a non-empty intersection σ|U∩V
= τ|U∩V

there exists a section ρ ∈ F(U ∪ V ) with ρ|U = σ and ρ|V = τ .

• If σ|U = σ|V = 0 for σ ∈ F(U ∪ V ) then σ = 0.

Examples: O(U) denotes the sheaf of holomorphic functions on U , Ωp(U) is the sheaf of

holomorphic p forms, and O∗(U) consists of nonvanishing holomorphic functions with the mul-

tiplicative group structure.

Definition: Let F be a sheaf on M and U = {Uα} a locally finite open cover. The degree p

cochains Cp(U,F) are defined as

C0(U,F) =
∏

α

F(Uα), C1(U,F) =
∏

α 6=β

F(Uα ∩ Uβ),

Cp(U,F) =
∏

α0 6=α2 6=... 6=αp

F(Uα0 ∩ . . . ∩ Uαp
) (3.24)
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and the coboundary operator δ : Cp(U,F) → Cp+1(U,F) is

(δσ)i0...ip+1 =

p+1∑

j=0

(−)jσi0...ij−1ij+1...ip+1 , (3.25)

which is easily checked to satisfy δ2 = 0. The idea now is to make the open sets small enough to

have trivial local cohomology so that all information is contained in the ‘transition functions’

on the operlaps. Then the cohomology becomes independent of the chosen cover, where, like

for the simplicial complex, different covers can be related by a common refinement. More

precisely, the Čech cohomology groups Hp(M,F) are defined as a direct limit of Hp(U,F) =

Zp(U,F)/δCp−1(U,F) over all appropriate covers U [GR78].

Examples: For the sheaf O(L) of holomorphic sections of a line bundle L over M the group

H0(M,O(L)) consists of collections of local sections σ = {σU} ∈ C0(U,O(L)) that satisfy

(δσ)UV = σV − σU = 0 on U ∩V and thus is the space Γ(O(L)) of global holomorphic sections.

For the cohomology group H1(M,O∗) the group structure should be written multiplicatively

so that (δg)UV W = gV WgUV /gUV = 1 on U ∩ V ∩W is the cocycle condition for a holomorphic

line bundle. Multiplication of the transition data gUV by a δ-exact term (δt)UV = tV /tU

corresponds to a change ϕU → ϕU tU of a local trivializations ϕU : LU → U × C of the bundle,

so that H1(M,O∗) = Pic(M) is the Picard group of M .

A basic tool for the computation of cohomology groups is the Mayer–Vietoris sequence: The

sequence of inclusions U ∩V → U, V → U ∪V gives rise to a short exact sequence of differential

complexes

0 → Ω∗(U ∪ V ) → Ω∗(U) ⊕ Ω∗(V ) → Ω∗(U ∩ V ) → 0 (3.26)

where the second map is defined by the obvious restrictions and the third map yields the

difference of the restrictions to U ∩ V of p-forms in the direct sum.

Now let 0 → A
f→ B

g→ C → 0 be a short exact sequence of differential complexes with

f and g chain maps, i.e. f and g commute with the differentials fdA = dBf and gdB = dCg

where Aq dA→ Aq+1 etc., and we will frequently omit the index of the differentials d.. To every

such sequence we can associate a long exact sequence of cohomology groups

. . .→ Hq−1(C)
d∗−→ Hq(A)

f∗

→ Hq(B)
g∗→ Hq(C)

d∗−→ Hq+1(A) → . . . (3.27)

where f ∗, g∗ are the natural induced maps of cohomology classes and d∗[c] = [a] for some

a ∈ H∗(A) with f(a) = db and g(b) = c, which exists because g is surjectiv and g(db) =

dg(b) = dc = 0. It can be shown that d∗ is independent of the representatives c and a and turns

(3.27) into a long exact sequence. Applying this result to the Mayer–Vietoris sequence we can

relate, for example, the cohomology of a union U ∪ V to the cohomology groups of its subsets.

Another application uses the exponential sequence Z → C
exp→ C

∗ to relate sheaf cohomology
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groups with coefficients in the respective abelian groups (note that the exponential maps sums

to products).

In order to prove the equality of Čech and de Rham cohomology HDR(M) ≡ H(U ,R) for a

‘good cover’ U of M one can apply the above constructions to the doubly graded Čech–de Rham

complex with differential D = δ + dDR (see chapter II of Bott and Tu [BO82]). Similarly, the ∂

Poincaré lemma can be used to prove the Dolbeault theorem Hq(M,Ωp) = Hp,q

∂
(M) [GR78].
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