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Chapter 1

Conformal field theory

Conformal field theory is concerned with quantum field theories that are invariant under con-

formal coordinate transformations. Most of the known results refer to two dimensions, where

the conformal group is infinite dimensional so that Ward identities strongly constrain the struc-

ture of quantum fields and correlation functions. Much of the interest in conformal field theory

comes from string theory, but there are also important applications in statistical mechanics

and solid state physics, like second order phase transitions of two-dimensional systems and the

(fractional) quantum Hall effect [DI97,ga99,cr99].

We first discuss the conformal group in arbitrary dimensions and the Wick rotation with

the field content of string theory, which provides the basic examples of free fields. We evaluate

the 2-point correlations and discuss the appropriate vacuum states and then proceed to more

general concepts and techniques of Euclidean conformal field theory.

1.1 The conformal group

A conformal transformation is an angle-preserving diffeomorphism (or coordinate transforma-

tion, if one prefers a ‘passive’ point of view) of a Riemannian manifold. In two-dimensional

Minkowski space such transformations arise as the residual gauge symmetry of general coordi-

nate and Weyl invariance in the ‘conformal gauge’ gmn = ηmn, i.e. as coordinate transforma-

tions whose effect on the metric can be compensated by a Weyl transformation. We consider

a constant pseudo-metric ηmn with arbitrary signature. In order to obtain the component

of the identity of the conformal group in flat space we consider infinitesimal transformations

xm → xm + ξm, for which we have to solve the conformal Killing equation

hmn := ∂mξn + ∂nξm + 2Ληmn = 0. (1.1)
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Contracting with the inverse metric ηmn and taking the double divergence we obtain

ηmnhmn = 2(∂ξ + dΛ) = 0 ⇒ ∂m∂nhmn =
(
2− 2

d

)
�∂ξ = 0. (1.2)

For d > 1 dimensions this implies �Λ = �∂ξ = 0. (In one dimension there is, of course, no

restriction on ξ.) Now we compute the symmetrized derivative of the divergence of hmn,

∂l∂
mhmn + ∂n∂

mhml = �(∂lξn + ∂nξl) + 2∂l∂n∂ξ + 4∂l∂nΛ = 2
(
1− 2

d

)
∂l∂n∂ξ = 0, (1.3)

where we used �(∂lξn + ∂nξl) = −2ηln�Λ = 0. In more than two dimensions this implies that

all second derivatives of Λ vanish, i.e.

d > 2 ⇒ Λ = −1
d
∂ξ = 2 bx− λ (1.4)

for some constants λ and bm. In order to solve for ξ we still need the antisymmetric part of

∂mξn, whose derivative is

∂l(∂mξn − ∂nξm) = ∂m∂lξn − ∂n∂lξm = 2(ηlm∂nΛ− ηln∂mΛ) = 4(ηlmbn − ηlnbm). (1.5)

Integrating this equation we find

1
2
(∂mξn − ∂nξm) = ωmn + 2xmbn − 2xnbm (1.6)

with an antisymmetric integration constant ωmn = −ωnm. Putting the pieces together

∂mξn = ωmn + 2xmbn − 2xnbm + ηmn(λ− 2bx) (1.7)

and thus

ξn = an + xmωm
n + λxn + x2bn − 2bx xn. (1.8)

a, ω, λ and b generate translations, Lorentz transformations, dilatations and ‘special conformal

transformations’, respectively.

The finite form of the special conformal transformations is xn → yn = (xn+x2 bn)/(1+2bx+

b2x2). They form a subgroup, as can be seen by writing the transformation as a combination

of two inversions and a translation: Since x2/y2 = 1 + 2bx+ b2x2 we find ~y/y2 = ~x/x2 +~b. The

inversion ~x → ~x/x2 itself is also a conformal map, but it changes the orientation (the radial

direction is reversed) and hence is not continuously connected to the identity. The Jacobi

determinant for a special conformal transformation is |∂y
∂x
| = ( y

2

x2 )
d and for the scale factor we

find ηmn ∂yi

∂xm
∂yj

∂xn = ηij/(1 + 2bx + b2x2)2. Note that a special conformal transformation has

a singular point ~x = −~b/b2. A proper representation of the conformal group thus requires

an extension of space-time that adds points at infinity. Evaluation of the Lie brackets of all

generating vector fields shows that the conformal group is isomorphic to SO(p+ 1, q + 1) for a

space with signature (p, q) [DI97].
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The situation in 2-dimensional Minkowski space is best analyzed in light-cone coordinates

x± = x0 ± x1 where the metric is off-diagonal. Then h++ = 2∂+ξ+ = 0 shows that ξ± is

independent of x∓ and h+− = 0 only fixes Λ in terms of ∂ξ. The conformal group thus consists

of arbitrary reparametrizations of the light cone. In string theory the topology of space-time is

a cylinder and a complex basis for 2π-periodic infinitesimal transformations with vector fields

ξ+
n = einx

+
∂+ yields the Lie brackets [ξ+

m, ξ
+
n ] = i(n − m)ξ+

m+n. The quantum version of this

infinite dimensional Lie algebra is the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0, (1.9)

which has a central extension in case of conformal anomaly c 6= 0, with a second copy of the

same algebra for the second light cone coordinate.

In Euclidean space we use complex coordinates z = x+iy and the conformal Killing equation

turns into the Cauchy-Riemann equation ∂zξ(z, z) = 0 so that the conformal transformations

correspond maps z → ξ(z) that are holomorphic (or anti-holomorphic, if we admit a change

of orientation). Riemann’s mapping theorem states that every simply connected complex one-

dimensional domain with at least two boundary points can be mapped holomorphically onto

the interior of the unit disc |z| < 1, which in turn is conformally equivalent to the upper half

plane Im z > 0.1 The case of one boundary point corresponds to the complex plane C and

Riemann’s number sphere, the complex projective space P1 = {z : w}, has no boundary point.

Global conformal transformations of the compactified complex plane P1 coincide with the

structure of the conformal group in d > 2, i.e. with finite-dimensional group generated by

translations z → z+ c, rotations and dilatations z → λz and special conformal transformations

z → z/(z + d) because regularity of a holomorphic vector field at infinity restricts ξ = ξ1 +

ξ0z + ξ−1z
2 to a quadratic polynomial.2 The resulting group is the group

z → az + b

cz + d
,

(
a b
c d

)
∈ PSL(2,C) (1.10)

of Möbius transformations. Its Lie algebra corresponds to the subalgebra {Ln} with |n| ≤ 1 of

the Virasoro algebra.

1.2 Wick rotation and Euclidean fields

In quantum field theory it is often useful to make an analytic continuation to Euclidean

time. The direction of the Wick rotation in the complex time plane is fixed by conver-

gence requirements: The field operators (in the Heisenberg picture) at time τ are given by

1 |w| < 1 implies Im u > 0 for u = i(1 + w)/(1− w). This inverse map is w = (u− i)/(u + i).
2ξ(z)∂z =

∑
ξnz1−n∂z = ξ(w)∂w, with w = 1/z we find ∂w = −z2∂z, i.e. regularity at z = 0 for n ≤ 1 and

at w = 0 for n ≥ −1.
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O(τ, σ) = eiτHO(0, σ)e−iτH . Important quantities, like scattering amplitudes, can be expressed

in terms of time ordered correlation functions, which are of the form

〈On(σn, 0)e−i(τn−τn−1)HOn−1(σn−1, 0) . . .O2(σ2, 0)e−i(τ2−τ1)HO1(σ1, 0)〉. (1.11)

For a positive Hamiltonian this is a convergent expression if the time differences τi − τi−1

have negative imaginary part. Thus the time evolution should go into the direction of negative

imaginary time and we set τ = −it, so that σ± = τ±σ = −i(t±iσ) with σ the space coordinate

and t the Euclidean time.

In string theory the world sheet has the topology of a cylinder and the fields are 2π-periodic

in σ. Instead of considering the complex variables ξ = iσ+ = t+ iσ and ξ = iσ− = t− iσ it is

thus useful to map the world sheet onto the punctured complex plane: The map ξ → z = exp(ξ)

automatically implements 2π-periodicity in σ and thus is one-to-one. Hence we define

z = eξ = eiσ
+

, z = eξ = eiσ
−
, σ± = τ ± σ = −i(t± iσ). (1.12)

This transforms the left (right) movers φ(σ±) to (anti) holomorphic fields on the punctured

plane. The puncture at the origin corresponds to the asymptotic past.

Important examples of free conformal fields are provided by the field content of the super-

string with flat target space. For convenience we set the string tension T = 1
2πα′ = 1

4π
. In light

cone coordinates the Lagrangian thus becomes

4πL = ∂+X · ∂−X + b++∂−c+ + b−−∂+c
− + iψ∂−ψ + iψ̃∂+ψ̃ + β∂−γ + β̃∂+γ̃, (1.13)

which contains the D coordinate fields Xµ (free bosons), the ghosts c and the anti-ghosts b of

the bosonic string, the fermions ψ and the superconformal ghosts β, γ.

The general solution of the equations of motion is parametrized by

X(σ, τ) = XL(σ+) +XR(σ+), Xµ
L = 1

2
xµ + pµσ+ +

∑
n6=0

i
n
αµne

−inσ+

, (1.14)

and

c+ =
∞∑

n=−∞
cne

−inσ+

, b++ = 2i
∞∑

n=−∞
bne

−inσ+

(1.15)

for the bosonic string and analogous expressions for the additional fields of the superstring.

Canonical quantization leads to the (anti)commutation relations

[αµm, α
ν
n] = nδm+nη

µν , [P µ, xν ] = iηµν , {bm, cn} = δm+n, (1.16)

{ψµr , ψνs} = ηµνδr+s, [γr, βs] = δr+s (1.17)

Superstrings II / M.Kreuzer — 4 — version June 2, 2009

with pµ = αµ0 = α̃µ0 for the zero mode. This operator algebra can be used to construct a Fock

space representation and the Hilbert space of physical states is given by the cohomology of the

BRST operator on that space. It is convenient to also perform a Wick rotation in target space,

which amounts to ηµν → −δµν in our conventions.

Time ordering on the world sheet now corresponds to radial ordering on the complex plane.

RA(z)B(w) := θ(|z| − |w|)A(z)B(w) + (−)ABθ(|w| − |z|)B(w)A(z). (1.18)

For free bosons Xµ(z, z) = Xµ
L(z) +Xµ

R(z), with the Fubini-Veneziano field

Xµ(z) = 1
2
xµ − ipµ log z +

∑
n6=0

i
n
αµnz

−n, (1.19)

the two-point function 〈RXµ(z, z)Xν(w,w)〉 has contributions from the oscillator modes and

from the 0-modes xµ and pµ. Assuming |z| > |w| the left-movers yield〈 ∑
m>0

i
m
αµmz

−m ∑
n<0

i
n
ανnw

−n
〉

= δµν
∑
m>0

1
m

(w
z
)m = −δµν log(1− w

z
) (1.20)

The definition of the complete two-point function for free bosons is somewhat subtle because

of an infrared divergence. It is convenient to represent the zero mode algebra on momentum

Eigenstates pµ|k〉 = kµ|k〉, which are normalized as 〈k′|k〉 = (2π)DδD(k′ − k). Our normal

ordering amounts to taking p as annihilation operator and x as creation operator. Then the

vacuum is a non-normalizable state |k = 0〉, for which the expectation value of xµ is ill-defined.

If we evaluate 〈xµxν〉 for a Gaussian distribution this expectation value becomes proportional

to (∆X)2δµν with ∆X → ∞ for momentum eigenstates. A rigorous treatment requires an

IR cutoff and only physical correlation functions can be expected to be IR finite (see [GR87,

p.139-149]). Quantities like the Hamiltonian and the Virasoro constraints only depend on

derivatives of X, which are safe. The interpretation of correlation functions along the usual

lines of scattering theory also leads to cutoff-independent results, as will be discussed below.

We can avoid this problem by noting that the vacuum expectation value amounts to a

subtraction of the normal ordered operator product. Normal ordering of the zero modes yields

−δµν log(zz), which combines with the contributions from the oscillators to

RXµ(z, z)Xν(w,w)− : Xµ(z, z)Xν(w,w) : = −δµν log |z − w|2 (1.21)

Because of the symmetry under the exchange of z and w the same result holds for |z| < |w|.

So far we defined our Euclidean (conformal) quantum field theory by analytic continuation

of the quantized fields. An alternative approach is the direct definition of correlation function in

terms of the Euclidean path integral. Here the starting point is the path integral representation

of time-ordered vacuum expectation values

〈φ(x1) . . . φ(xn)〉 ≡ 〈0|T φ̂(x1) . . . φ̂(xn)|0〉 =
1

Z[0]

∫
Dφφ(x1) . . . φ(xn)e

i
~S (1.22)
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where Z[J ] is the generating functional of the Greens functions 〈φ(x1) . . . φ(xn)〉. Wick rotation

leads to a negative definite action so that it is convenient to define the Euclidean action as

SE =
∫
dtELE with LE = −L(τ → −itE). Euclidean field theory is then defined by

〈φ(x1) . . . φ(xn)〉 =
1

Z[0]

∏ δ

δJ(xi)
Z[J ]|J=0

, Z[J ] =

∫
Dφ e−SE/~+

R
Jφ. (1.23)

This formula is reminiscent of correlation functions in statistical mechanics, where Z =
∑
e−βH

is the partition function. SE is thus the analog of the Hamilton operator in the Boltzmann

factor e−βH and ~ is the analog of the temperature T = 1/β. The free energy F = −T logZ

is the analog of the generating functional for connected Greens functions. Euclidean quantum

field theory is thus closely related to statistical mechanics and it is quite common to use the

respective terminology.

From the path integral representation it is easily seen that the 2-point correlation, or prop-

agator, is the Greens function for the differential operator A that occurs in the free action

S = 1
2

∫
d2xφAφ because, with a shift φ→ φ+ A−1J of the integration variable, we find

Z[J ] = Z[0]e
1
2

R
d2xd2y J(x)K(x,y)J(y), 〈φ(x)φ(y)〉 = K(x, y) (1.24)

with AK(x, y) = δ(x− y). For the free boson the Euclidean action is

S =
1

4π

∫
d2z ∂X(z, z)∂X(z, z), ∂ := ∂/∂z, ∂ := ∂/∂z (1.25)

with dxdy = d2z/2 and A = − 1
2π
∂∂. The Green function for this operator indeed (up to a

constant) is − log |z − w|2, because

∂∂ log |z|2 = πδ(x)δ(y) = 2πδ(2)(z), z = x+ iy. (1.26)

This can be seen, for example, with the regularization

∂∂ log(|z|2 + ε) = ∂
z

zz + ε
=

ε

(|z|2 + ε)2
→ πδ(x)δ(y) = 2πδ(2)(z), (1.27)

since, with |z| = √εr and for the test function 1, we find dxdy = rdrdϕ and
∫∞
0

r dr
(r2+1)2

= 1
2
;

∂ := ∂z = 1
2
(∂x − i∂y),

∂ := ∂z = 1
2
(∂x + i∂y),

∂x = ∂ + ∂,

∂y = i∂ − i∂,
d2z := 2dxdy = idzdz,

δ2(z) := 1
2
δ(x)δ(y)

(1.28)

are the relations between real and complex coordinates; formally, δ(x)δ(y) = −2iδ(z)δ(z). A

direct evaluation of the propagator from its Fourier transform 1/k2 shows the IR divergence,

which could be regularized with a mass term. The form of the propagator − log z − log z is

quite typical for CFT correlations because it decomposes into purely holomorphic and anti-

holomorphic contributions, which are, however, not single valued on the complex plane. The

individual contributions can be analysed with holomorphic operator product techniques, which

we are going to develop next. Eventually these building blocks (the conformal blocks) have to

be combined to yield the single-valued correlations of the complete theory.
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1.3 Tensors, energy–momentum, and correlations

A general conformal tensor field has h holomorphic and h antiholomorphic covariant indices so

that the (h, h) form φh,h = φ(z, z)(dz)h(dz)h is coordinate independent,

φ(z, z) = (∂ξ
∂z

)h(∂ξ
∂z

)hφ(ξ, ξ). (1.29)

Vector indices are counted negative and spinor representations amount to half-integral h. For

a pure left-mover with Fourier expansion φ =
∑
φne

−inσ+
the conformal map ξ → z = eξ from

the cylinder to the punctured plane has dz = zdξ and thus leads to the Laurent expansion

φ(z) =
∞∑

n=−∞

φn
zn+h

, φn =

∮
dz

2πi
zn+h−1φ(z), (1.30)

which we use as the definition of a meromorphic field φ(z) in terms of the modes φn. (In order

to simplify the formulas we drop the factors ih from the Jacobian for σ+ = −iξ.) For general

conformal fields that depend on z and z we need a double expansion

φ(z, z) =
∑
m,n

φm,n z
−m−h z−n−h, φm,n =

∮
dz

2πi

∮
dz

2πi
zm+h−1 zn+h−1φ(z, z), (1.31)

Our z contour will be oriented clockwise so that
∮
dz/z = 2pi, but we will mostly suppress

the z-dependence to make the formulas more transparent and rather explicitly mention the

restriction to meromorphic fields when this is not clear from the context.

In order to take full advantage of the conformal symmetry we want to construct a Fock

space based on a vacuum state that is invariant under Möbius transformations, i.e. L0|0〉 =

L±1|0〉 = 0. Actually, Ln|0〉 = 0 for n ≥ −1 would still be consistent with a central term in

the Virasoro algebra, but we don’t need this yet. Recall that L0 ± L0 are the generators of

time and space translations on the cylinder. After the conformal map z = et+iσ to the complex

plane L0 ± L0 generate dilatations (a shift in t) and rotations (a shift in σ). This is why h± h
are called conformal weight and spin, respectively. For meromorphic fields, which have h = 0,

spin and conformal weight coincide.

We normalize the Euclidean energy momentum tensor T (z) =
∑
Lnz

−n−2, and analogously

all other Noether charges, such that a conformal transformation δξ is generated by the com-

mutator with
∮

dz
2πi
ξ(z)T (z) =

∑
ξ−mLm. Infinitesimal global conformal transformations are

generated by the global vector fields ξ(z) =
∑
ξnz

1−n = ξ1 + ξ0z+ ξ−1z
2. Infinitesimal transla-

tions z → z + ξ1 and special conformal transformations z → z + ξ−1z
2 are therefore generated

by L−1 and L1, respectively. For finite transformations we find

eλL−1φ(z) = φ(z + λ), eλL0φ(z) = φ(eλz), eλL1φ(z) = φ( z
1−λz ), (1.32)

Superstrings II / M.Kreuzer — 7 — version June 2, 2009



with the adjoint action of Ln (more explicitly, eλL−1φ(z)e−λL−1 = φ(z + λ) etc.).

The energy momentum tensor itself transforms with an anomalous inhomogeneous term

δξT (w) = [Tξ, T ] =
∑
m,n

ξ−n[Ln, Lm]w−m−2 (1.33)

=
∑
m,n

ξ−nLm+nw
−m−2(n−m) +

c

12

∑
n

ξ−nwn−2n(n− 1)(n+ 1) (1.34)

= ξ(w)∂T (w) + 2∂ξ(w)T (w) + c
12
∂3ξ(w). (1.35)

with Tξ =
∑
ξ−m Lm; in the double sum we used n−m = −(m+ n+ 2) + 2(n+ 1). For finite

transformations z → w(z) this leads to

T (z) =
(
∂w
∂z

)2
T (w) + c

12
S(w, z), S(w, z) :=

∂w ∂3w − 3
2
(∂2w)2

(∂w)2
. (1.36)

S(w, z) is called Schwartzian derivative of w with respect to z. As usual the result for the finite

transformation can be established by checking the group property and the correct infinitesimal

form. Indeed, S(w, z) can be shown to be the unique object of conformal weight h = 2 such

that S(w(f(z)), z) = (∂zf)2 S(w, f) + S(f, z) [Gi89]. For the transformation of T (z) from the

cylinder to the complex plane this leads to a shift of the zero mode3 Lplane0 = Lcyl.0 + c/24.

Returning to the discussion of the vacuum we note that a local operator φ(z) should be a

regular function of z except for singularities at the position of other operators. For a Möbius

invariant vacuum state there should be nothing special about z = 0. Hence φ(z)|0〉 should be

analytic for small times |z| → 0. Briefly, the vacuum state should be a state with ‘nothing at

the origin’. The contour integrals for fixed times t = log ε,∮
|z|=ε

dz

2πi
zmφ(z)|0〉 = φm−h+1|0〉, (1.37)

thus have to vanish for m ≥ 0. We conclude that φn|0〉 = 0 for n ≥ 1 − h, i.e. φn should be

annihilation operators for these values of n.

Local fields φ(z, z) in a CFT that have a tensorial transformation law (dz)h(dz)hφ(z, z) =

(dw)h(dw)hφ(w,w) under conformal transformations z → w(z) are also called primary fields.

Quasi-primary fields are local fields that transform as tensors under global conformal trans-

formations. The advantage of the SL(2)–invariant vacuum is that all correlation functions of

quasi-primary fields transform covariantly under the Möbius group. For 2-point functions of

quasi-primary fields covariance implies

〈φi(z)φj(w)〉 =
Cij

(z − w)hi+hj
, (1.38)

3The central charge can thus be related to the Casimir energy due to the finite size of the cylinder.
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because invariance under translations and rotations implies that the l.h.s. only depends on z−w
and dilatations fix the exponent. Under a special conformal transformation z′ = z/(1−λz) the

coordinate difference becomes z′ − w′ = z−w
(1−λz)(1−λw)

. Covariance of (1.38) requires

(∂z
′

∂z
)hi(∂w

′
∂w

)hj = ( z
′−w′
z−w )hi+hj (1.39)

with ∂z′
∂z

= 1
(1−λz)2 , which implies that Cij can be different from zero only if h1 = h2.

An analogous calculation for 3–point correlations yields

〈φi(zi)φj(zj)φk(zk)〉 =
Cijk

raijr
b
jkr

c
ik

, rij = zi − zj (1.40)

with a+b+c = hi+hj+hk. Invariance under special conformal transformations further implies

a = h1 + h2 − h3, b = h2 + h3 − h1 and c = h1 + h3 − h2, i.e.

〈φi(zi)φj(zj)φk(zk)〉 =
Cijk

rh1+h2−h3
ij rh2+h3−h1

jk rh1+h3−h2
ik

. (1.41)

It is no surprise that we need 4 operator insertions to get a non-trivial coordinate dependence

because 3 points can always be fixed to, say, z1 = 0, z2 = 1 and z3 = ∞ by a Möbius trans-

formation. For N -point functions we hence expect a parametrization by an analytic function

depending on N − 3 independent complex coordinates. 4-point functions, for example, can be

parametrized by

〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉 = F ( r12 r34
r13 r24

)
∏
i<j

(rij)
h/3−hi−hj (1.42)

with h =
∑
hi, where the Möbius invariant combination r12 r34

r13 r24
= 1 − r14 r23

r13 r24
is called cross

ratio or anharmonic ratio. Since we only used global conformal invariance analogous results

are valied for conformal field theories in arbitrary dimensions: N -point functions with N > 3

can be shown to depend on N(N − 3)/2 independent cross ratios (rijrkl)/(rikrjl) [Gi89,DI97].

In two dimensions the number of independent functions is smaller because any 4 points have

to lie on a common plane. Before we discuss the implications of the full conformal invariance

in two dimensions we will first have to develope some powerful operator product techniques.

1.4 First order systems and ghosts

Except for the coordinate fields Xµ all fields of the superstring have a first order action of the

form

S = 1
2π

∫
d2z (B∂C +B∂C), Tbc = −hB∂C + (1− h)∂BC (1.43)

where h = hB is the conformal weight of B and hC = 1 − h. For ghosts (B,C) = (b, c) and

superghosts (B,C) = (β, γ) we thus have h = 2 and h = 3/2, respectively. For real free
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fermions B = C = ψµ there is an extra factor 1/2 in the action. The Euclidean convention for

the normalization of T (z) will be discussed presently.

For the first order (B,C) system in eq. (1.43) we thus obtain Cm|0〉 = Bn|0〉 = 0 for m ≥ h

and n ≥ 1− h and consistency with the (anti)commutation relations

[Cm, Bn]± = δm+n,0 (1.44)

requires that the operators Cm≤h−1 and Bn≤−h are creation operators. This fixes the definition

of the Fock vacuum for single valued tensor fields. For fermions and for supersymmetry ghosts

in the Ramond sector, however, the action of ψµ0 , β−1 and γ1 is not yet specified. The complete

definition of the Ramond vacua is therefore more subtle and will be discussed later.

In order to evaluate correlation functions with insertions of B and C we need to normal

order the product C(z)B(w) ≡ RC(z)B(w). We first use a general ansatz for the normal

ordering by declaring Cm and Bn to be annihilation operators for m ≥ q and n ≥ 1 − q with

q−m ∈ Z, i.e. q is half-integral for spinors in the Neveu-Schwarz sector and integral for tensors

and for spinors in the Ramond sector. With Q ≡ q − h and θz/w ≡ θ(|z| − |w|) we find

C(z)B(w) − :C(z)B(w) : = θz/wC(z)B(w) + θw/z(−)BCB(w)C(z) − :C(z)B(w) :

= θz/w
∑

m=n≥q
[Cm, B−n]±z

h−1−mwn−h + (−)BCθw/z
∑

m=n≤q−1

[B−n, Cm]±z
h−1−mwn−h

= θz/w
∑
n≥q

1
z
(w
z
)n−h − θw/z

∑
n≤q−1

1
w
( z
w
)h−n−1 = (w

z
)Q

1

z − w. (1.45)

If the fields B(z) and C(w) are single valued, i.e. for tensors and for spinors in the NS sector,

we can take Q = 0 and observe that the result obeys the cluster decomposition property, i.e.

it goes to 0 if the distance between the positions of the operators goes to infinity. For other

values of Q the correlations blow up at the origin and at infinity, which perfectly matches

with our previous result for the vacuum state with ‘nothing at the origin’. The states that are

annihilated by Cm and Bn for m ≥ Q+ h and n ≥ 1−Q− h are called Q-vacua. The normal

ordering term (w
z
)Q/(z − w) is a Greens function of ∂ for all values of Q, but with boundary

conditions that do not obey cluster decomposition for Q 6= 0. Correlators involving B and C

would thus blow up if one of the operators approaches the origin, which we interpret as a signal

for the presence of an operator at z = 0 that creates a state from the true vacuum. For the

ghost system of the bosonic string Q = 1 and Q = 2 correspond to the down-vacuum |↓ 〉 = |1〉
and the up-vacuum |↑ 〉 = |2〉, respectively, and |0〉 = b−1|↓ 〉. Note that the conformal vacuum

|Q = 0〉 is not a state with minimal energy H = L0 + L0 for h 6= 0.

In the Ramond sector there are two possible ‘vacua’ |Q = ±1
2
〉 that obey cluster decom-

position and one usually takes the symmetric superposition for the definition of the normal
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ordering subtraction

: C(z)B(w) :
(R)

= C(z)B(w)− 1
2

√
z
w

+
√

w
z

z − w (1.46)

In any case there is a singularity at the origin and the ‘true vacuum’ is the one in the NS sector.

We can think of the Ramond vacua as being generated from |0〉 by some operator Σ which is

called spin field and which generates a branch cut in the complex plane.

The Virasoro generators for the BC system (1.43) are easily evaluated from the Laurent

expansions of B and C,

Ln = :
∑

(r − n+ nh)Bn−rCr : , L0 =
∑
r≥h

rBn−rCr + (−)BC
∑
r<h

rCrBn−r (1.47)

Invariance of the vacuum under dilatations L0 and special conformal transformations L1 is now

obvious. For translational invariance we observe that the only term without annihilators in the

formula for L−1 has r = h− 1 and its coefficient r − n+ nh vanishes.

Comparison of our result with the normal ordering contribution on the cylinder gives us

an indirect possibility to determine the central charge. From the Casimir effect one gets a

contribution −(−)BC
∑

r≥h r to L0 on the cylinder, whose renormalized (or ζ-regularized) value

has to be compensated by the shift c/24 due to the conformal map to the complex plane. The

generalized Riemann ζ-function is

ζ(s, q) =
∞∑
n=0

1

(n+ q)s
, ζ(−n, q) = −Bn+1(q)

n+ 1
, (1.48)

The Bernoulli polynomials Bn(q) are defined by their generating function text

et−1
=

∑∞
n=0Bn(x)

tn

n!

and

B2(x) = x2 − x+ 1
6
, ζ(−1, q) = 6q(1−q)−1

12
(1.49)

The Bernoulli numbers are Bn = Bn(1) and with B2(1) = 1
6

and B2(
1
2
) = − 1

12
we recover

our previous results for free bosons and free fermions. Putting the pieces together we find

c/24 = −(−)BCζ(−1, h− 1) and

c

2
= (−)BC(1− 6h(1− h)) (1.50)

We will soon derive this result regorously by a direct operator product computation. Inserting

the values h = 1/2, 3/2 and 2 we obtain cψ = 1/2, cbc = −26 and cβγ = 11 (mind the factor 1/2

for a single Majorana fermion). The central charge of the superstring thus becomes c = 3
2
D−15

and the critical dimension is 10, as was required by Lorentz invariance.

In our analysis we only considered meromorphic fields, i.e. periodic boundary conditions

on the punctured plane. We already know that the Casimir energy is shifted by 1/8 in the
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Ramond sector, so that the Ramond vacua are not scale invariant and the spin field Σ(z) gets

a contribution h = 1/8 from each Majorana fermion.

In Euclidean field theory there are different kinds of conjugations that one can define.

Complex conjugation z → z̄ would exchange left- and right-movers and thus differs from its

Minkowski space interpretation. It is therefore natural to define Hermitian conjugation of a

conformal field φ(z) =
∑
φn/z

n+h by φ†n = φ−n, which is the action of complex conjugation on

the Fourier modes of periodic fields on the Minkowski space cylinder. From a slightly different

point of view, complex conjugation in Minkowski space reverses the sign of the Euclidean time

and amounts to z → 1/z̄. To avoid an exchange of left- and right-movers we combine this with a

Hermitian conjugation on the ‘real surface’ z† = z̄ and define the BPZ conjugation [be84,zw93]

of a conformal field by

φT(z, z̄) = z−2hz̄−2h̄ (φ(1/z̄, 1/z))†

z†=z̄
, (1.51)

which implies φTmn = (−)h+h̄φ−n,−m because (−1
z̄2

)h(−1
z2

)h̄φ(1
z̄
, 1
z
) = φ(z̄, z) =

∑
φmnz̄

−m−hz−n−h̄.

Given some Fock space basis of states |φr〉 the conjugate states 〈φcr| w.r.t. the canonical

scalar product are defined by 〈φcs|φr〉 = δsr . In the ghost sector the conjugate of the SL(2)

invariant vacuum 〈0c| differs from the hermitian conjugate 〈0| ≡ (|0〉)† because |0〉 = b−1| ↓ 〉
implies 〈 ↓ |b1 = 〈0| so that

1 = 〈 ↓ |↑ 〉 = 〈0|c−1c0c1|0〉 ⇒ 〈0c| = 〈0|c−1c0c1 (1.52)

A nonvanishing vacuum expectation value therefore requires a ghost number violation by 3 units

(or 6 units, if we include right-movers), which is related via an index theorem to an anomaly in

the conservation law of the ghost number current and to the number of conformal symmetries

of the sphere (see below). For a general BC system the ‘ghost number’ #(C)−#(B) is violated

by 2h− 1 units and therefore is conserved exactly for the case h = 1
2

of free fermions.

1.5 Operator-state correspondence and vertex operators

An important property of conformal field theory is the one-to-one correspondence between

states and local operators [PO98],

φ(z, z) ←→ |φ〉 = lim
z→0

φ(z, z)|0〉. (1.53)

Note that locality is crucial for the isomorphism: Adding a pure annihilation operator to φ

would not change its value on the vacuum, but it can be shown that an operator without any

creation part cannot be a local operator.
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For free bosons it is convenient to work in momentum space for a number of reasons. The

operator that corresponds to a momentum eigenstate |k〉 is the normal ordered exponential of

X and it is called (the) vertex operator,

Vk(z, z) = :eikX(z,z) :, |k〉 = lim
z→0

Vk(z, z)|0〉 (1.54)

Since ekµpµ log(zz̄) = (zz̄)kp, the use of the momentum eigenstates

:eikX(z,z) : = e
ikµ

P
n<0

i
n
αµ

nz
−n+a.h.

eikµxµ

ekµpµ log(zz̄)e
ikµ

P
n>0

i
n
αµ

nz
−n+a.h.

(1.55)

(a.h. denotes the antiholomporphic contributions) instead of the coordinate functions turns

logarithmic short distance singularites into poles. At the massless level of closed strings

hµν :∂Xµ∂̄XνeikX(z, z̄) : ←→ hµνα
µ
−1α̃

ν
−1|k〉 (1.56)

is the vertex operator that creates an incoming asymptotic state with polarization hµν .

Vertex operators are composite operators, and we need the Wick theorem for the evalua-

tion of singularities in operator products. For free fields we therefore define the contraction

A(z)B(w)︸ ︸ = RA(z)B(w) − :A(z)B(w):. Then the radially ordered product can be written as

a sum over normal ordered expressions with all possible contractions like

RABCD = :ABCD : +AB︸ ︸ :CD : +AC︸ ︸ :BD : +AD︸ ︸ :BC : +BC︸ ︸ :AD : (1.57)

+BD︸ ︸ :AC : +CD︸ ︸ :AB : +AB︸ ︸CD︸ ︸ +AC︸ ︸BD︸ ︸ +AD︸ ︸BC︸ ︸
with appropriate signs for fermions. For radially ordered products of composite local operators

contractions within normal ordered expressions have to be omitted:

R :AB : :CD : − :ABCD : (1.58)

= AC︸ ︸ :BD : +AD︸ ︸ :BC : +BC︸ ︸ :AD : +BD︸ ︸ :AC : +AC︸ ︸BD︸ ︸ +AD︸ ︸BC︸ ︸ .
In the following applications the radial ordering symbols R will often not be written explic-

itly. In order evaluate the operator product of Vertex operators we use the series expansion

:eA(z) : :eB(w) : =
∑
m,n≥0

1
m!n!

:Am(z) : :Bn(w) :

=
∑

0≤l≤m,n

l!
m!n!

(
m
l

)(
n
l

)
(A(z)B(w)︸ ︸)l :Am−l(z)Bn−l(w) : = e

A(z)B(w)︸ ︸ :eA(z)eB(w) : , (1.59)

and insert the contraction X(z, z̄)µX(w, w̄)ν︸ ︸ = −δµν log((z − w)(z̄ − w̄)) to arrive at

Vk(z, z̄)Vq(w, w̄) = |z − w|2kq :eikX(z,z̄)+iqX(w,w̄) : (1.60)
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Momentum conservation in 2-point functions implies that 〈0|V−k and Vk|0〉 are conjugate states,

with conformal dimensions h(V±k) = k2/2. With the contraction ∂Xµ(z)Xν(w)︸ ︸ = −δµν

z−w we find

∂Xµ(z)Vk(w, w̄) − :∂Xµ(z)Vk(w, w̄) : =
−ikµ
z − w Vk(w), (1.61)

and ∂Vk(z, z̄) = ikµ :∂XµVk : (z, z̄).

In string theory we have to be more restrictive because only BRST-invariant states and

operators have a physical interpretation. Since |↓ 〉= c1|0〉 = limz→0 c(z)|0〉 the physical states

that are built on the down vacuum
∏

(α†ni
) | ↓ 〉 actually correspond to operators with ghost

number one,

c(z)O(z), O(z) = :P (∂X, ∂2X, . . .)Vk(z) : (1.62)

where P (∂X, ∂2X, . . .) is a polynomial in the derivatives of Xµ (to avoid clumsy notation

we suppress anti-holomorphic dependencies). Since Xµ commutes with the ghosts no normal

ordering is required. If we assume that O(z) is a primary field of conformal weight h, i.e. it

transforms as a tensor [Q,O] = LcO = c∂O + h∂cO, then BRST-invariance requires

[Q, c(z)O(z)] = c∂c(z)O(z)− c(z)
(
c∂O(z) + h∂cO(z)

)
= 0 ⇔ h = 1. (1.63)

No normal ordering is necessary in the ghost sector as long as there are no antighosts. For

the tachyon vertex operator c(z)Vk(z) BRST-invariance thus implies the on-shell condition

k2 = 2 = −m2 for the Euclidean momentum. Physical gravitions tµν∂X
µ∂XνVk and photons

: tmẊ
µVk : have to be massless k2 = 0 with transversal polarization tk = 0. We already know

this from our analysis of the physical state condition Q(O|0〉) = 0, and we will soon confirm this

in the operator language because we will see that the normal ordered photon vertex transforms

as a primary field only if tk = 0.

String scattering amplitudes correspond to a sum over all (gauge equivalence classes of) sur-

faces connecting the asymptotic states. For tree level amplitudes the worldsheet can be mapped

conformally either to the sphere for closed strings and to upper half plane (which is more conve-

nient for calculations but equivalent to the disk) for open strings. Asymptotic states are thereby

mapped to punctures with vertex operator insertion where the vertex operator carries the quan-

tum numbers (momentum, spin, polarization) of the corresponding particles. In the open string

case the punctures are on the boundary, but since closed strings states are always required by

unitarity (they can be regarded as bound states of open strings) one can always insert additional

closed string vertex operators in the bulk (i.e. in the interior of the upper half plane). The

string diagram for photon-graviton scattering, for example, is the upper half plane with two

photon vertices ẊVk = (∂X + ∂X)Vk on the real line and two graviton vertices with Im zi > 0.
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Since all metrics are conformally equivalent on the sphere and on the disk the integral over

world sheet geometries reduces to an integration over the positions of the operator insertions,

some of which can be fixed by global conformal transformations. Classical gauge invariance

thus translates into the independence of physical correlations of such a choice.

As a first example we consider the three tachyon vertex, which corresponds to the correlation

function

〈0| cVk1(z1) cVk2(z2) cVk3(z3) |0〉. (1.64)

where a choice of zi selects a unique Möbius transformation. This expression can either be

interpreted as open string tachyon scattering or as the chiral factor for closed strings. In the

former case the zi are on the real axis and we have to sum over two inequivalent orderings like

z1 < z2 < z3 and z2 < z1 < z3.
4 The correlation function of the vertex operators is easily

evaluated using the Wick theorem,

〈Vk1(z1) . . . Vkn(zn)〉 = (2π)DδD(k1 + . . . kn)
∏
i<j

(zi − zj)kikj

∏
i<j

(z̄i − z̄j)kikj (1.65)

where the vacuum expectation value (VEV) referes to the vacuum of the free boson sector.

The correlation function factorizes and its holomorphic structure is essentially determined by

the short distance singularities: For the 3-point function the on-shell conditions imply k2
i = 2,

hence

kikj = 1
2
((ki + kj)

2 − k2
i − k2

j ) = −1, 1 ≤ i < j ≤ 3. (1.66)

so that the kinematics leads to negative scalar products kikj. The result still has to be multiplied

with the ghost contribution.

It is not a coincidence that the number of ghost insertions is exactly what we need to

compensate the anomaly in the ghost number current. Their contribution is the Vandermonde

determinant

〈0|c(z1)c(z2)c(z3)|0〉 =

∣∣∣∣∣∣
1 1 1
z3 z2 z1

z2
3 z2

2 z2
1

∣∣∣∣∣∣ = (z1 − z2)(z1 − z3)(z2 − z3) (1.67)

4For explicit calculations it is usually better to work with the upper half plane with one of the open string
vertex operators inserted at infinity, but cyclical equivalence of orderings is easier to see if we map the world
sheet to the disk.
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because c(z) = . . . + c1 + c0z + c−1z
2 + . . . and 〈1

2
∂2c∂cc〉 = 〈c−1c0c1〉 = 1. This factor

can be interpreted as a finite Faddeev Popov determinant coming from the gauge fixing of

the SL(2,C) transformations due to the choice of zi. Paramtetrizing z → z′ = az+b
cz+d

with

ad− bc = 1 by a = 1+α/2, b = β, c = γ, d = 1−α/2 the infinitesimal transformation becomes

z′ ∼ z + β + αz − γz2 and∣∣∣∣∂(zi, zj, zk)

∂(α, β, γ)

∣∣∣∣ = (zi − zj)(zj − zk)(zk − zi) (1.68)

is the functinonal derterminant for fixing the positions zi, zj and zk. As it should be, the

ghost contribution removes the coordinate dependence of the tachyon vertex. But only on-shell

amplitudes are coordinate independent in string theory. The choice of the positions of the

insertions can be interpreted as a gauge condition. We are thus reminded of the well-known

fact that also in QFT only S-matrix elements are gauge independent.

The evaluation of the photon-tachyon vertex can be found in section 6.5 of [PO98] and we

next turn to the three gauge boson vertex. We thus consider three massless vertex operators

with polarization tensors t
(i)
µi and the correlation function

t(1)µ1
t(2)µ2

t(3)µ3
〈0| :∂Xµ1Vk1(z1) : :∂Xµ2Vk2(z2) : :∂Xµ3Vk3(z3) : |0〉 (1.69)

The result can also be interpreted as the holomorphic contribution to the three graviton vertex

in the closed string context. Since any surviving ∂X in a normal ordered expression annihilates

the amplitude we only have to consider contractions that include all three ∂X. The overall

factor
∏

i<j(zi − zj)kikj can be dropped on shell because the kinematics now implies kikj = 0.

We thus find a contribution with contractions of derivative terms ∂Xµi∂Xµj︸ ︸ = −δµiµj/(zi−zj)2,

f∑
t(1)µ1

t(2)µ2
t(3)µ3

−δµ1µ2

(z1 − z2)2

( −ikµ3

1

(z3 − z1)
+
−ikµ3

2

(z3 − z2)

)
, (1.70)

and two types of terms that only involve the contractions ∂Xµi(zi)Vkj
(zj)︸ ︸ = −ikµi

j Vkj
/(zi− zj).

If two contractions involve the same vertex we obtain

f∑ −ikµ1

3

z1 − z3

−ikµ2

3

z2 − z3

( −ikµ3

1

z3 − z1

+
−ikµ3

2

z3 − z1

)
(1.71)

and if all contractions go to different exponentials

−ikµ3

1

z3 − z1

−ikµ1

2

z1 − z2

−ikµ2

3

z2 − z3

+
−ikµ3

2

z3 − z2

−ikµ1

3

z1 − z3

−ikµ2

1

z2 − z1

. (1.72)

Defining kµij = 1
2
(kµi − kµj ) and using transversality of the polarizations t

(i)
µ k

µ
i = 0, momen-

tum conservation we observe kµ3

1 = −kµ3

2 = kµ3

12 . Since 1
z3−z1 − 1

z3−z2 = z1−z2
(z3−z1)(z3−z2)

the first

contribution (1.70) yields the well-known 3-gluon vertex

i(δµ1µ2kµ3

12 + δµ2µ3kµ1

23 + δµ3µ1kµ2

31 ) (1.73)
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where the z-dependence again is cancelled by the ghost contribution. For the second type of

contributions (1.71) we get an overall factor −ikµ3

12k
µ1

23k
µ2

31 and a z-dependent expression

f∑ 1

z1 − z3

1

z2 − z3

(
1

z3 − z1

− 1

z3 − z2

)
= f∑ z1 − z2

(z1 − z3)2(z2 − z3)2
=

d∑(z1 − z2)
3

(
∏

i<j(zi − zj))2
. (1.74)

But d∑(z1 − z2)
3 = 3 d∑(z1z

2
2 − z2

1z2) is −3 times the Vandermonde determinant of the ghost

contribution so that the contribution of (1.71) becomes 3ikµ3

12k
µ1

23k
µ2

31 . Together with (1.72) the

complete result becomes

i(kµ1

23 δ
µ2µ3 + kµ2

31 δ
µ3µ1 + kµ1

23 δ
µ2µ3) + iα

′
2
kµ1

23k
µ2

31k
µ3

12 (1.75)

times an overall kinematical factor gs(2π)DδD(k1 + k2 + k3) (the coupling constant gs appears

linearly because of the Euler number of the disk. We thus find the gauge invariant renormal-

izable interaction term for gauge bosons plus an additional non-renormalizable, interaction for

which we reinserted α′ = 2 in order to display the mass dimension.

For closed strings we have to multiply our result with the contribution from the right-movers

to obtain the 3-graviton vertex (plus dilaton and B-field interaction terms). For open strings

we have to add the graph contribution with reversed cyclic ordering of the vertices. Since the

3-point function is antisymmetric the complete result vanishes. This should not come as a

surprise: There is no 3-photon vertex because the photon has no charge. In open string theory

there is, however, a simple way to introduce non-abelien gauge fields that has been known since

the time when dual models were designed as a model for strong interactions. And this is even

more natrual if we think about the colour strings of QCD: The end-points of open strings may

carry a charge, which means that we asign to them so-called Chan Paton labels i and j. An

open string state is therefore labelled by |k, ij〉 (possibly with additional quantum number) and

can be expanded in some matrix basis T aij. The corresponding vertex operator Oij = OaT aij
has to be inserted at the boundary of the world sheet. We can think of the Chan Paton labels

as labels for different boundary conditions with the open string vertex operators changing the

boundary condition from i to j. An open string n-point function thus obtains an additional

trace factor tr(T a1 . . . T an) that is due to the sum over all possible boundary conditions for

the boundary segments that join the vertex operators. For the 3-point function the sum over

cyclic orderings, together with the antisymmetry of (1.75), yields a nonvanishing result that is

proportional to the structure constants trT a1 [T a2 , T a3 ] ∼ fa1a2a3 . We thus recover the correct

Yang-Mills interaction (plus a nonrenormalizable trF 3-interaction that should be reproduced

by the non-abelian version of the Born-Infeld effective action).

If we think about the Chan Paton degrees of freedom as quarks sitting at the ends of the

string then i and j should label the fundamental and complex conjugate representations of the

gauge group U(n). The ends of the strings thus are different and they can only join and split
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in an orientable way. If we consider unoriented strings then i and j must belong to the same

representation and the orientation reversion operator Ω : X(σ) → X(π − σ) has to act in an

appropriate way on the matrices T aij. It can be shown that the only consistent possibilities

correspond to the orthogonal or the symplectic group, which are the possible gauge groups

for unoriented strings [PO98]. Additional consistensy condidtions come from loop amplitudes:

Anomaly cancellation for D = 10 N = 1 super Yang-Mills theory is know to work only for

certain gauge groups with rank 16 and dimension 496. While E8 × E8, which is realized by

the so-called heterotic string, is also a solution, the only suitable Chan-Paton gauge group

is SO(32). Type I string theory, which is the unique consistent open string theory in 10

dimensions, thus has unoriented strings and gauge group SO(32). This can also directly be

derived from string theory by requiring cancellations of IR divergences among loop amplitudes

like the annulus and the Möbius strip.

For amplitudes with more than 3 particles we expect an integration over the world sheet

and the additional vertex insertions must not increase the ghost number because otherwise

the correlation function would be zero. An additional possibile insertion would therefore be a

so-called integrated vertex, whose BRST variation is an integral of a total derivative,

Q

∫
d2z O(z, z̄) = 0, sO(2) = −dO(1) (1.76)

where O(2) = d2zO is a two-form whose BRST variation we denote by s. Since s2 = {s, d} = 0

the Poincaré lemma implies that sO(1) = −dO(0) is again a total derivative. This chain of

descent equations

sO(n) + dO(n−1) = 0 (1.77)

clearly terminates at form degree zero: For sO(0) the Poincaré lemma would allow a constant

r.h.s., which, however, has to be vanish in the field theory context. From our solution of the

BRST cohomology we already know that all solution are given by the on-shell vertex operators

ccO with primary fields O of conformal weight (1, 1). Since the generator L−1 = {b−1, Q} of

translations is BRST–exact, b−1 can be used as a homotopy to integrate the descent equations

(such a homotopy exists in every generally coordinate invariant theory [br90]). Introducing

formal fermionic coordinates θ = dz and θ̄ = dz̄ the solution to the descent equations can now

be written as a superfield

O(z, z̄, θ, θ̄) = eθb−1+θ̄b̄−1O(0) = O(0) + θO(1,0) + θO(0,1) + θθO(2), (1.78)

(with (s + d)O(z, z̄, θ, θ̄) = 0) or, in more mathematical terms, as an element of the exterior

algebra. The integrated Vertex thus becomes

O(2) = d2z b−1b̄−1(cc̄O(z, z̄)). (1.79)
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Focusing on the holomorphic part we can insert the contour integral for b−1 to obtain

b−1(c(z)O(z)) =

∮
dw

2πi
b(w)c(z)O(z) = O(z). (1.80)

Tree level amplitudes are therefore obtained by inserting 3 BRST-invariant vertex operators

c(z)O(z) and BRST-invariant integrals
∫
dzO(z) for the remaining external legs. Since the

amplitude is invariant under global conformal transformations we are free to fix 3 positions of

the insertion to some arbitrary values.

For the simplest example of tachyon scattering, with O = Vk and k2 = 2, the resulting

n-point function

〈
3∏
i=1

c(zi)Vki
(zi)

n∏
i=4

Vki
(zi)〉 (1.81)

is proportional to ∏
i<j≤3

(zi − zj)
∏
i<j

(zi − zj)kikjδ(
∑

ki), (1.82)

where the first factor comes from the ghost insertions. Fixing z1 = 0, z2 = 1, z4 =∞ and using

the on-shell conditions we thus obtain the Virasoro–Shapiro amplitude

A =

∫
d2z|1− z|2p2p3 |z|2p3p1 (1.83)

for the scattering of two tachyons. For open strings the same calculation leads to the Veneziano

amplitude

A =

∫ 1

0

dz(1− z)p2p3zp3p1 + non-cyclic permutations (1.84)

The on-shell kinematics of any 4-point function is a function of two of the three relativistic

invariants s = (p1 +p2)
2, t = (p1 +p3)

2 and u = (p1 +p4)
2, which are constrained by s+ t+u =

−∑
m2
i with m2

i = −p2
i in our Euclidean conventions. (This easily follows from momentum

conservation p2
4 = (p1 +p2 +p3)

2, where we take all momenta as incomming for simplicity.) The

kinematical invariants s, t, and u correspond to the energy of the exchanged particle in the s,

t, and u (crossed) channel, respectively

p1 p3
s

p2 p4

p1 p3

t

p2 p4

p3p1
u

p4p2

The duality hypothesis, which lead to the discovery of string theory (then called ‘dual models’),

states that s, t and u channel contributions alone should yield the same scattering amplitude

A(s, t, u) via analytic continuation. If we follow Veneziano and Virosoro and postulate a dual
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Fig. 3: Commutators and contour integration
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amplitude, then the particle masses are recovered by the positions of the poles due to the ex-

change of on-shell particles in the respective channels. A string diagram clearly has duality

built in. For a CFT that is not defined via an action integral over the world sheet but ab-

stractly in terms of the operator algebra duality (called crossing symmetry in that context) is

an important constraint.

1.6 Operator product expansion

For a conformal field theory with meromorphic quantum fields Oi(z) and conformal weights hi

we expect that radially ordered operator products can be expanded into a Laurent series

Oi(z)Oj(w) =
∑
k

(z − w)hk−hi−hjCijkOk(w). (1.85)

In general conformal fields depend on z and z̄ and the operator product expansion (OPE)

has a more complicated form, but we will mostly suppress antiholomorphic dependencies if

they are not essential. Moreover, as we have seen in the calculation of the 2-point correlation,

radial ordering is essential for obtaining well-defined analytic short distance singularities and

we should think of the expansions as inserted into expectation values. With these caveats in

mind, we can use these expansions as powerful computational tools: We will see that the full

mode algebra is encoded in the short distance singularities. Deformation of integration contours

thus enables simple and rigorous manipulations of infinite sums.

Consider, for example, a conformal tensor field φ(z) of weight h. The conserved quantities

Tξ =
∮

dz
2πi

ξ(z)T (z) generate infinitesimal conformal transformations z′ = z+ξ(z) via the equal

time commutator with φ,

[Tξ, φ(w)] =

∮
dz

2πi
ξ(z)[T (z), φ(w)] = δξφ(w) = ξ∂φ+ h∂ξφ. (1.86)

Since lines of equal time correspond to circles around the origin and as integration contours

can be deformed as long as no singularities are encountered we can express the commutator in
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terms of a contour integral as shown in Fig. 3:∮
dz

2πi
[ξ(z)T (z), φ(w)] =

∮
|z−w|=ε

dz

2πi
ξ(z)RT (z)φ(w). (1.87)

Comparing the last two equations and expanding ξ(z) around w we conclude that the short

distance singularity of the OPE RT (z)φ(w) must be given by

T (z)φ(w) =
hφ(w)

(z − w)2
+
∂φ(w)

z − w + regular terms (1.88)

We will usually omit the radial ordering symbol and the symbol ∼ will mean equality up

to regular terms. In order to obtain the OPE of T (z) with itself we recall the conformal

transformation (1.35). The non-tensorial contribution c
12
∂3ξ corresponds to a forth order pole

in the OPE and we conclude that

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w , (1.89)

where the relative factor 2/12 = 1/(3!) in the anomalous term comes from the Taylor expansion

of ξ(z) around w.

The operator product expansion provides an efficient tool to define a normal ordered product

also for interacting and for composite fields. Consider the product of local fields A(z) and B(w),

A(z)B(w) =
∞∑

n=−n0

[AB]−n(w)(z − w)n, (1.90)

where the locality axiom assumes that the pole order is bounded by some (integer) number n0.

The singular part of this expansion is called the ‘contraction’ of A and B [FU92,bo93]:

A(z)B(w)︸ ︸ =

n0∑
n=1

[AB]n(w)

(z − w)n
(1.91)

We further assume that the operator algebra is associative and closed in the sense that all

coefficients [AB]n of the OPE, as well as the derivatives of all operators, belong to the algebra.

Now the normal ordered product (NOP) can be defined by subtracting the singularity,

[AB](w) ≡ :A(w)B(w) : := lim
z→w

(
A(z)B(w)− A(z)B(w)︸ ︸

)
=

∮
|z−w|=ε

dz

2πi

A(z)B(w)

z − w , (1.92)

i.e. [AB] = [AB]0. This method of defining a finite part is also called ‘point splitting’, because

we first seperate the positions of the fields A and B by a small distance ε and then take the

regular part of the operator product in the limit ε→ 0. In terms of modes this means

[AB](w) =
∑
n

Cnw
−n−hA−hB , Cm =

∑
n≤−hA

AnBm−n +
∑

n>−hA

Bm−nAn (1.93)
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as can be seen by inserting A(z) =
∑
Anz

−n−hA and B(w) =
∑
Bnw

−n−hB and deforming the

integration contour into the difference between the two circles |z| = |w| ± ε as in Fig. 3. Then

1/(z − w) has a convergent expansion in w/z and in z/w, respectively. In the first integral

the lower limit 0 ≤ n + hA on n arises from the requirement that the pole orders must not

be too high to produce a residue; in the second integral the condition is that we need a pole

to get a non-zero contribution, which is the case for n + hA ≥ 1. For free fields we recover

our previous definition of contraction and normal ordering. For general local fields the value

on n for which An has to be put to the right agrees with what we found for annihilators of

the translation invariant vacuum in (1.37). The NOP (1.93) is, however, not commutative:

[BA] 6= [AB]. Obviously, the non-commutativity comes from the expansion of the operator

product at w rather than at
√
zw. We can derive a formula that expresses [BA]n − [AB]n in

terms of derivatives:

[BA]n =

n0−n∑
l=0

(−1)n+l

l!
∂l[AB]n+l. (1.94)

Proof: Expand RB(z)A(w)=
∑

[BA]n(w)(z − w)−n=RA(w)B(z)=
∑

[AB]n(z)(w − z)−n at w. �

Note that the NOP is commutative if the contraction of A and B is a C-number!

In general the NOP is also not associative. But the non-associativity problem can be

administrated nicely with the rearrangement lemma

[A[BC]]− [[AB]C] = [B[AC]]− [[BA]C]. (1.95)

Proof: We insert the partial fraction decomposition of 1
x−z

1
y−z into the definition of [A[BC]],

[A[BC]](z) =
∫

|x−z|=2ε

dx
2πi

A(x)
x−z

∫
|y−z|=ε

dy
2πi

B(y)C(z)
y−z =

∫ ∫
|x−z|>|y−z|

dx dy
(2πi)2

(
1

x−z − 1
y−z

)
A(x)B(y)C(z)

y−x . (1.96)

For [[AB]C] we deform the integral of x around y into the difference of two contours around z,

[[AB]C](z) =
∫

|y−z|=2ε

dy
2πi

∫
|x−y|=ε

dx
2πi

A(x)B(y)
x−y

C(z)
y−z =

(∫ ∫
|x−z|>|y−z|

dx dy
(2πi)2

−
∫ ∫

|x−z|<|y−z|

dx dy
(2πi)2

)
A(x)B(y)C(z)
(x−y)(y−z) . (1.97)

Then the difference [A[BC]]− [[AB]C] is symmeytric under the exchange A(x)↔ B(y). �

To memorize eq.(1.95) observe that the product of a commuator with another operator is

associative. The commutator has to be on the l.h.s.; the field on the right cannot be moved

away. For more than two fields we fix a default ordering by the recursive definition

[A1A2 . . . An] := [A1[A2 . . . An]]. (1.98)

Note that the contraction operation commutes with differentiation

∂A(z)B(w)︸ ︸ = ∂z A(z)B(w)︸ ︸, A(z)∂B(w)︸ ︸ = ∂w A(z)B(w)︸ ︸, (1.99)
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so that the first order pole in such contraction vanishes: [∂AB]1 = [A∂B]1 = 0. It is also easy

to check that the Leibniz rule is valid for NOPs:

∂[AB] = [∂AB] + [A∂B] (1.100)

(inserting into the definition of ∂[AB], the term [∂AB] arisies after partial integration).

With our formalism we can avoid manipulations with infinite normal ordered sums or with

(operator valued) distributions by encoding everything in OPEs of (operator valued) meromor-

phic fields. To see explicitly how the OPE encodes the δ-functions consider the equal time

anti-commutator

{b(z), c(w)} =
∑
m,n

zn−2w1−m{b−n, cm} =
1

z

∑
n∈Z

( z
w

)n
(1.101)

with z = exp(t+ iσ) and w = exp(t+ iσ′). The sum on the r.h.s. of this equation is the Fourier

representation of δ(σ−σ′) (the factor 1/z comes from the transformation to the complex plane).

More generally, the OPE poles in an expansion

Oi(z)Oj(w) =
∑
k

Cij
k

(z − w)∆
Ok(w), ∆ = hi + hj − hk (1.102)

can be related to the equal time commutator by exploiting the radial ordering of the operator

product. With z± = et+iσ±ε and w = et+iσ
′
we thus find

[Ôi(t+ iσ), Ôj(t+ iσ′)] ∼ lim
ε→0

(
(z+/w)hk−hj

(1− w/z+)∆
− (z−/w)hk−hj

(1− w/z−)∆

)
i∆Cij

kÔk(t+ iσ′) (1.103)

where we define Ôl(σ+) := (iz)hlOl(z), which coincides with Ol(σ+) for primary fields with our

convention z = eiσ
+
. The “∼”–symbol is used because the time ordering in the limit ε→ 0 will

turn out to be somewhat delicate. Since 1− w/z± ≈ i(σ − σ′ ∓ iε) the formula

lim
ε→0

(
1

(x+ iε)n
− 1

(x− iε)n
)

= 2πi
(−)n

(n− 1)!
∂n−1
x δ(x) (1.104)

shows that the leading singularity in the coefficient of Cij
kOk(σ′) is −2πiδ(∆−1)(σ−σ′)/(∆−1)!.

But for ∆ > 1 the limit ε→ 0 has to be evaluated more carefully. We thus define

δ(∆,hi)(σ − σ′) := (∆−1)!
2πi1−∆ lim

ε→0

(
(w/z−)∆−hi

(1−w/z−)∆
− (w/z+)∆−hi

(1−w/z+)∆

)
(1.105)

with δ(1,h) = δ(σ − σ′) independent of h. For ∆ > 1 we can use the recursion formula

δ(∆+1,h) = ∂σδ(∆,h) + i(∆− h)δ(∆,h) (1.106)

that is obtained by differentiation of (1.105), where we used the definition ∂σz± = iz±. Hence

δ(2,h) = δ′ + i(1− h)δ , δ(3,h) = δ′′ + i(3− 2h)δ′ − 2
(
h−1

2

)
δ ,

δ(4,h) = δ′′′ + 3i(2− h)δ′′ − (11− 12h+ 3h2)δ′ + 6i
(
h−1

3

)
δ , (1.107)
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which is consistent with δ(∆+1,h) − δ(∆+1,h+1) = i∆δ(∆,h). We thus obtain

1
2πi

[Ôi(σ+), Ôj(σ′+)]|t = −
∑
k

Cij
k

(∆−1)!
δ(∆,hi)Ôk(σ′+) (1.108)

The lower derivative terms in δ(∆,hi) should eventually go away on dimensional grounds for the

proper conformal fields O(σ+) on the cylinder. We check this for the energy momentum tensor,

where ∆ = hi = 2 so that δ(22) = δ′ − iδ and δ(4,2) = δ′′′ + δ′. Putting everything together,

the shift T (σ) = T̂ (σ) − c
24

in L0 by the Schwinger term in (1.36) compensates the δ′-term

from δ(4,2), but, alas, the imaginary and symmetric contribution from δ(22) does not go away.

Inserting the Fourier series and the Virasoro algebra one finds

1
2πi

[T (σ+), T (σ′+)] = c
12
δ′′′ − 2T (σ′+)δ′ − ∂T (σ′+)δ , (1.109)

which is an odd function of σ−σ′. This differs from (1.108) by an even and imaginar term 2iT δ

of wrong scaling dimension. Presumably the problem is related to the precise definition of time

ordering, which sometimes requires contact terms at equal times, where it is ill-defined, in order

to produce Lorentz covariant contractions and normal ordered operator products in canonical

quantization. This was well-known in the 50s, when the modified time ordering was called

T ∗-product (in [IT80], eq. (6-60), it is denoted by T̂ ). In [BO59] renormalization was based

on the interpretation of counterterms as contact terms in (time ordered) Greens functions. In

any case, an OPE with bounded pole order corresponds to local equal time commutators and

is thus called “locality axion” in some axiomatic approaches to CFT.

In (1.87)–(1.89) we observed that the information of the singular part of the OPE is equiv-

alent to the commutation relations of the modes of the respective operators. This is true for

the Laurent modes of arbitrary local fields:

[Am, Bn] =
(∮
|x|>|y|

dx
2πi

∮
dy
2πi
−

∮
|y|>|x|

dy
2πi

∮
dx
2πi

)
A(x)B(y) xm+hA−1 yn+hB−1 (1.110)

We can, therefore, define an operator algebra of meromorphic fields by stating the contractions

of a complete set of elementary fields. The integrand on the r.h.s. of eq. (1.110) has poles

only at the origin and at x = y. Thus the total integration contour can be deformed into∮
0
dy

∮
y
dx = − ∮

0
dx

∮
x
dy. We can describe this contour by a formal commutator [

∮
dx,

∮
dy]

with an implicit ‘time ordering’ of circles, i.e. the integral on the left encloses the origin at a

later time. For conformal primary fields of weigth h we find

[Ln, φ(z)] = zn (z∂ + (n+ 1)h)φ(z), [Ln, φm] = (n(h− 1)−m)φn+m (1.111)

for the transformation properties in terms of the Virasoro generators Ln. For non-tensorial

fields (descendents) we have to expect additional non-linear terms like in

[Ln, T (z)] = c
12

(n3 − n)wn−2 + 2(n+ 1)wnT (w) + wn+1∂T (w), (1.112)
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which is equivalent to the Virasoro algebra.

Consisteny of the operator algebra requires that the Jacobi identity for the commutators

(1.110) is satisfied. This translates into an identity for integration contours in a tripple integral.

Together with the associativity of the operator algebra5 the following equation encodes the

relevant criterion, called associativity of the operator product algebra [bo91]:∮
0

dz

2πi

∮
z

dy

2πi

∮
y

dx

2πi
A(x)B(y)︸ ︸C(z)︸ ︸ f(x, y, z) +∮

0

dx

2πi

∮
x

dz

2πi

∮
z

dy

2πi
B(y)C(z)︸ ︸A(x)︸ ︸ f(x, y, z) +∮

0

dy

2πi

∮
y

dx

2πi

∮
x

dz

2πi
C(z)A(x)︸ ︸B(y)︸ ︸ f(x, y, z) = 0 (1.113)

for all functions f(x, y, z) that are analytic on the punctured complex plane C∗ = C− {0}. It

is straightforward to check (1.113) for a given set of contractions: The first two integrals are

evaluated by Taylor–expanding f to the appropriate order (we may assume that f(x, y, z) =

f(x)g(y)h(z)). Then the integrand for the final integral must be a total derivative.

1.7 The Wick theorem

The important rule for computing OPEs of composite operators is the Wick theorem:

A(z)[BC](w)︸ ︸ =

∮
w

dv

2πi

A(z)B(v)︸ ︸C(w)

v − w + [B(w)A(z)C(w)︸ ︸] (1.114)

Proof: The singularities of the operator product A(z)B(v)C(w) as a function of z near v and w are
given by the contractions of A(z) with B(v) and C(w). Integrating dv/(v − w) around w,

A(z)[BC](w)︸ ︸ =
∮
w

dv

2πi

A(z)B(v)︸ ︸C(w)+(−)ABB(v)A(z)C(w)︸ ︸
v − w

, (1.115)

we obtain the Wick theorem. �

The last term in (1.115) can be simplified to give the normal product of B with the contraction

of A and C, but the integral with the contraction of A and B has to be evaluated carefully: If

A(z)B(v)︸ ︸ and C(w) have a short distance singularity then terms in the expansion of 1/(z− v)n
around w,

1

(z − v)n =
1

(z − w)n
+

(
n

1

)
(v − w)

(z − w)n+1
+

(
n+ 1

2

)
(v − w)2

(z − w)n+2
+ . . . (1.116)

5 Note that the identity R (A(x)B(y)) C(z) = R (B(y)C(z)) A(x) involves some analytic continuation.
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can combine with poles 1/(v − w)m to produce a residue in the v integration.

In terms of the operator product coefficients the Wick theorem thus reads

[A[BC]]q = [B[AC]q] +

q−1∑
l=0

(
q−1
l

)
[[AB]q−lC]l q > 0 (1.117)

(we always omit the obvious sign factors in case of fermions). For q = 0 the rearrangement

lemma tells us that there is an additional normal ordered commutator on the r.h.s. of this

expression: [A[BC]] = [B[AC]] + [([AB] − [BA])C]. If the contraction A(z)B(w)︸ ︸ is a C-

number function, i.e. if all [AB]q are proportional to the identity for q > 0, so that only l = 0

contributes in the above sum, then the Wick theorem reduces to the usual expression for free

fields: A[BC]︸ ︸ = [AB︸ ︸C] + [BAC︸ ︸]. In particular, by iteration of this equation,

A(z)Bn(w)︸ ︸ = nA(z)B(w)︸ ︸Bn−1(w), A(z)eB(w)︸ ︸ = A(z)B(w)︸ ︸ eB(w). (1.118)

whenever A(z)B(w)︸ ︸ ∈ C.

The situation is more complicated if there is a composite operator on the left. As an

example we compute the central charge of a free boson. For the current J = ∂X we have

J(z)J(w)︸ ︸ = −1/(z − w)2 and T = −J2/2. Expanding J(w)T (z)︸ ︸ about w we find

T (z)J(w)︸ ︸ =
J(w)

(z − w)2
+
∂J(w)

z − w , (1.119)

i.e. J is a primary field of weight 1. The contraction of T with itself becomes

T (z)T (w)︸ ︸ = −1

2

∮
w

dv

2πi

(
J(v)

(z − v)2
+
∂J(v)

z − v
)
J(w)

v − w −
1

2
[J(w)T (z)J(w)︸ ︸] (1.120)

= −1

2

∮
w

dv

2πi

( −1

(v − w)3
+
J2(w)

v − w
) (

1

(z − w)2
+ 2

v − w
(z − w)3

+ 3
(v − w)2

(z − w)4

)

−1

2

∮
w

dv

2πi

(
2

(v − w)4
+

[J∂J ](w)

v − w
) (

1

z − w + . . .+
(v − w)3

(z − w)4

)

−1

2

(
J2(w)

(z − w)2
+

[J∂J ](w)

z − w
)

(1.121)

=
3/2− 2/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w , (1.122)

so that a free boson has central charge is c = 1. Note that the short distance singularity of

J(v)J(w), together with the expansion of 1/(z−v) around w, produces the central term. With

the Wick theorem (1.57) for free fields the forth order pole comes from the double contraction.

Simlarly, the OPE of T (z) with Vk(w) = :eikX(w): can be evaluated with the result

T (z)Vk(w)︸ ︸ =
k2/2

(z − w)2
Vk(w) +

∂Vk(w)

z − w (1.123)
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confirming our expactation from (1.60) that the vertex operator is a primary field with h = 1
2
k2.

For the massless vertex operator we find

T (z) [∂XµVk](w)︸ ︸ =
−ikµVk(w)

(z − w)3
+

k2

2
+ 1

(z − w)2
[∂XµVk](w) +

∂[∂XµVk](w)

z − w (1.124)

whose contraction with a transversal polarization tensor is a primary field, as we anticipated

from the operator-state correspondence.

Eventually we compute the central charge of a first order system with energy–momentum

tensor

Tbc = (1− j)[∂bc]− j[b∂c], b(z)c(w)︸ ︸ = ε c(z)b(w)︸ ︸ =
ε

z − w (1.125)

with ε = 1 for fermions (like the ghosts bc with j = 2) and ε = −1 for bosons (like the

superconformal ghosts βγ with j = 3
2
). Then

Tbc(z)b(w)︸ ︸ =
jb(w)

(z − w)2
+
∂b(w)

z − w, Tbc(z)c(w)︸ ︸ =
(1− j)c(w)

(z − w)2
+
∂c(w)

z − w. (1.126)

Trusting that the OPE of Tbc with itself is of the correct form for an energy–momentum tensor,

we only need to compute the central term. So we use (1.117) to directly evaluate the 4th order

pole term. Only the last term on the r.h.s. of that equation can contribute, hence

c

2
= [TbcTbc]4 = (1− j)[Tbc[∂bc]]4 − j[Tbc[b∂c]]4 (1.127)

= (1− j)
3∑
l=1

(
3
l

)
[[Tbc∂b]4−lc]l − j

3∑
l=2

(
3
l

)
[[Tbcb]4−l∂c]l (1.128)

= 6(1− j)j [bc]1 + 3(1− j2) [∂bc]2 + (1− j) [∂2bc]3 − 3j2 [b∂c]2 − j [∂b∂c]3 (1.129)

= 6(1− j)j ε+ 3(1− j2) (−ε) + (1− j) 2ε− 3j2 ε− j (−2ε) (1.130)

= ε(6j(1− j)− 1), (1.131)

where we used

Tbc(z)∂b(w)︸ ︸ =
2jb(w)

(z − w)3
+

(j + 1)∂b(w)

(z − w)2
+
∂2b(w)

z − w , b(z)c(w)︸ ︸ =
ε

z − w. (1.132)

The dependence on the statistics of b is only through an overall sign and we confirm the result

(1.50), which implied the critical dimension D = 10 for the superstring.

With the Wick theorem it is straightforward to compute any OPE of composite operators

in terms of elementary contractions that define the CFT, but in practice this can become very

tedious and it is easy to make mistakes. For free fields it is often much faster to sum over

multiple contractions. But fortunately there is the Mathematica package ‘OPEdefs.m’, written

by K. Thielemans [th91], which does the job for us. The above calculation of the central charges

for free bosons and for a bc system, for example, can be done on a computer by loading the

package into a Mathematica session (with “<<OPEdefs.m”) and by typing the commands that

are listed in table I.
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Bosonic[dX];
OPE[dX,dX]=MakeOPE[{−One,0}];
T=−NO[dX,dX]/2;
OPESimplify[OPE[T,T],Together]

Fermionic[b,c];
OPE[b,c]=MakeOPE[{One}];
T=(1−j) NO[b’,c]−j NO[b,c’];
Factor[ OPEPole[4][T,T] ]

Table I: Calculation of the central charge for the bosonic string with OPEdefs.m

To compute the central charge for a βγ system, we just need to replace Fermionic[b,c] by

Bosonic[B,C] and OPE[b,c]=MakeOPE[One] by OPE[B,C]=MakeOPE[-One].

The zero mode QJ = J0 =
∮

dz
2πi
J(z) of a primary field J(z) with conformal weight hJ = 1

commutes with T (z) (and hence with all Virasoro generators Ln) and thus provides a conserved

charge because

T (z)J(w)︸ ︸ =
J(w)

(z − w)2
+
∂J(w)

z − w = ∂w
J(w)

z − w (1.133)

is a total derivative so that [T (z), QJ ] = (
∮
|z|>|w|−

∮
|z|<|w|)

dw
2πi
T (z)J(w) = 0.

Returning to the bosonic string, i.e. j = 2 and D = 26, we first consider the BRST current

jQ and the corresponding charge QBRST =
∮
jQ. Naively, we would take jQ = cTx + 1

2
cTbc,

whose OPE with T = Tx + Tbc is

T (z)[cTx + 1
2
cTbc](w) ∼ 9c(w)

(z − w)4
+

3∂c(w)

(z − w)3
+

[cTx + 1
2
cTbc](z)

(z − w)2
, (1.134)

so that this expression is not a conformal field. The non-covariant terms, however, are the same

as the ones in the OPE of T (z) with −3
2
∂2c(w). A Noether current is only defined up to total

derivatives, so we can work with the covariant BRST-current

j
Q

:= cTx + 1
2
cTbc + 3

2
∂2c = −1

2
c ∂Xµ ∂X

µ + b c ∂c+ 3
2
∂2c, (1.135)

which is a conformal field with weight 1.

The OPEs of j
Q

with Jc and with b are

j
Q
(z)Jc(w)︸ ︸ = ∂w

−2c(w)

(z − w)2
+
j

Q
(w)

z − w, j
Q
(z)b(w)︸ ︸ =

3

(z − w)3
+

Jc(w)

(z − w)2
+
T (w)

z − w. (1.136)

The OPE of j
Q

with itself is a total derivative in 26 dimensions:

j
Q
(z)j

Q
(w)︸ ︸ = ∂w

2[∂c c](w)

(z − w)2
(1.137)

implying nilpotency of the BRST charge. Note that (∂c)2 = 0, which follows from the identity6

[FF ](w) = −1
2

∑
l>0

(−)l

l!
∂l[FF ]l (F fermionic) (1.138)

for fermionic operators F . This identity, in turn, is a consequence of (1.94)).

6According to ref. [th91], OPEdefs.m uses the rules (1.94), (1.95), (1.100), (1.117) and (1.138).
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1.8 Ghost number anomaly and topology

For each bc or βγ system the ghost number current Jc(z) = −[bc](z) is a classically conserved

current with h = 1. We have seen in the case of the ghost system, however, that expectation

values of operators sandwiched between SL(2,C) vacua vanish unless the ghost number of the

operator is 3 for each chirality. For general spin j this anomaly (i.e. quantum mechanical

violation of the ghost number) will turn out to be proportional to the so-called ‘background

charge’ Q = ε(1− 2j), which shows up in the OPE

Tbc(z)Jc(w) ∼ Q

(z − w)3
+

J(z)

(z − w)2
, Q = ε(1− 2j). (1.139)

Like T (z) the quantum current Jc(z) therefore transforms non-tensorial and non-linear under

conformal transformations

δξJc = ξ∂Jc + ∂ξJc + 1
2
Q∂2ξ,

w≈z+ξ
=⇒ Jc(z) =

∂w

∂z
Jc(w) +

Q

2

∂2
zw

∂zw
, (1.140)

where the finite transformation was obtained by an ansatz with a second derivative and an

additional Jacobi matrix factor for the correct global scaling weight. We will use this formula

to relate the background charge Q to the quantum field theoretic anomaly coefficient. The

remaining OPEs of Jc are

Jc(z)c(w) ∼ c(w)

z − w, Jc(z)b(w) ∼ −b(w)

z − w , Jc(z)Jc(w) ∼ ε

(z − w)2
. (1.141)

In terms of Q the cental charge of the BC system is c = ε(12j(1− j)− 2) = ε(1− 3Q2).

The charge QJ = J0 still commutes with T (z) because the third order pole does not con-

tribute to the residue. But current conservation will turn out to be spoiled in curved space

and hence on compact Riemann surfaces of genus g 6= 1. In quantum field theory the action

principle and consistency conditions typically constrain the possible form of chiral anomalies to

a topological densities, whose coefficients can be obtained from index theorems. In the present

context

∂mJ
m
N =

q

2π

√
g R(2), (1.142)

where R(2) is the curvature scalar on the world sheet. Due to the Gauß-Bonnet theorem

1

2π

∫ √
g R(2) = χ = 2− 2g (1.143)

this yields a total ghost number violation by q(2− 2g) units on a Riemann surface of genus g.

Our aim is to show that the anomaly coefficient coincides with the background charge q = Q.

The Euclidean analog of light cone coordinates are conformally flat coodinates z = x+ iy,

g = eφ((dx)2 + (dy)2) = 1
2
eφ(dz ⊗ dz̄ + dz̄ ⊗ dz), √

g = 2gzz = eφ. (1.144)
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The local existence of such coordinates can be shown by using the Beltrami parametrization7

ez = λ(dz + µdz̄)

ez̄ = λ̄(dz̄ + µ̄dz)

λ = ez
z

λ̄ = ez̄ z̄
µ = µz̄

z = ez̄
z/λ

µ̄ = µzz̄ = ezz̄/λ̄
(1.146)

of the vielbein em
a in some reference coordinate system z = x + iy. Now we want to find

complex coordinates Z = Z(z, z) such that

dZ = λ(dz + µdz̄), dZ̄ = λ̄(dz̄ + µ̄dz), (1.147)

where the Beltrami differential µ is invariant under a holomorphic change of variables Z →
Z ′(Z) and thus paramatrizes the complex structure with holomorphic coordinates Z in terms

of the reference coordinates z. Positivity of the metric requires |µ| < 1 and integrability

d2Z = (∂(λµ)− ∂λ)dz dz = 0 of the Z coordinate implies

(∂ − µ∂)λ = (∂µ)λ ⇒ lnλ = (∂ − µ∂)−1(∂µ), (1.148)

which can be solved for the conformal factor |λ|2 because ∂ − µ∂ is an elliptic operator [LE87].

The new coordinate Z is a solution to the Beltrami equation (∂ − µ∂)Z = 0.

In terms of local conformally flat complex coordinates Z the transition functions are con-

formal and therefore holomorphic (or antiholomorphic, if we admit a change of orientation).

Conformal equivalence classes of metrics on an orientable surface are therefore in one-to-one

correspondence to complex structures. The curvature in conformally flat coordinates (1.144) is

easily evaluated using the Weyl transformation formula
√
g R =

√
g′(R′−∆φ) for gmn = eφg′mn.

On the sphere P1 the round (Fubini–Study) metric is a Kähler metric,

gzz̄ = ∂∂̄ log(1 + zz̄) = 1
(1+zz̄)2

= 1
2
eφ ⇒ R(x, y) = 2R(z, z) = −e−φ∂∂φ = 1 (1.149)

Integrating
∫
dxdyeφ = 4π we find agreement with Gauß-Bonnet. Under a conformal transfor-

mation z → f(z) the conformal factor φ transforms as

w = f(z) ⇒ φ(z) = φ(w) + log |∂w
∂z
|2. (1.150)

For a flat metric φ = 0 on the complex plane all curvature is localized at infinity,

w = 1/z ⇒ φ(w) = −2 log(ww), (
√
g R)(w, w̄) = 4πδ(2)(w) (1.151)

again in agreement with Gauß-Bonnet.

7 In terms of µ the action of a free boson can be written as

S(X,µ, µ) =
1

2πα′

∫
d2z

1
1− µµ

(∂ − µ∂)X(∂ − µ∂)X. (1.145)

Beltrami differentials are used, for example, for cohomology calculations because the Becci ghosts C = c+µc lead
to a holomorphic factorization of the (geometrical) gauge degrees of freedom with the BRST transformations
sµ = (∂ − µ∂)C + Cµ and sC = C∂C.
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We can now put the pieces together and first check the integrated anomaly on the sphere.

With w = 1/z and ∂2
zw = 2w3 equation (1.140) implies

∮
dz
2πi
Jc(z) +

∮
dw
2πi
Jc(w) +

∮
dw
2πi

Q
w

= 0,

which shows that the (left-moving) charge is shift by Q units on P1 in accord with the value for

the ghost number violation (
∮

dz
2πi
Jc(z) and

∮
dw
2πi
Jc(w) measure the ghost number on the two

hemispheres).

In order to obtain the local anomaly expression (1.142) we need to take into account the

relation between the standard normalization of the Noether current JmN = 1
4π

√
g gmlblnc

n and

the CFT normalization of holomorphic currents J(z) ≡ Jz = −bc = −4πgzz̄J
z̄
N/
√
g , where

JmN is a vector density and
√
g gzz̄ = 2. Current conservation in complex coordinates thus

reads ∂mJ
m
N = − 1

2π
(∂z̄Jz + ∂zJz̄) = 0, where Jz is a conformal primary field with h = 1.

Since δξφ = ξ∂φ + ∂ξ the anomaly in the ghost current Jc can be compensated by defining

Ĵc(z) = Jc(z) − Q
2
∂φ, which transforms as a tensor and thus is conserved ∂mĴ

m = 0 for an

arbitrary conformal factor φ. But this implies ∂z̄Jz +∂zJz̄ = Q∂∂̄φ = −Q√g R and we find the

anomaly (1.142). Although Ĵ is related to J by a term that is local in φ quantum field theory

tells us that we can preserve general coordinate invariance and it is not possible to remove the

anomaly by a generally covariant local renormalization of the current density Jm.

With a similar calculation we can derive the Liouville action for the conformal φ factor in

non-critical string theory c = D−26 6= 0. Here we observe that covariant conservation DmT
mn

of the energy momentum tensor can be written as ∂z̄Tzz + DzTz̄z = 0 with Γzz
z = ∂φ. The

anomalous term in δξT (z) = c
12
ξ′′′+ . . . can be removed by T̂zz = Tzz− c

12
(∂2φ− 1

2
(∂φ)2), where

the contribution from 1
2
(∂φ)2 is needed to cancel the spurious term ∂2ξ∂φ in δξ(∂

2φ). Now

Dz̄T̂zz = ∂z̄T̂zz vanishes for φ = 0 and transforms covariantly, hence ∂z̄T̂zz = 0 and

DzTz̄z = − c
12
∂z̄

(
∂2φ− 1

2
(∂φ)2

)
= − c

12
(∂z − ∂φ)∂∂φ ⇒ Tz̄z = c

12

√
g R (1.152)

Like in the case of the ghost current the Weyl anomaly Tz̄z ∼ trTmn can be compensated by a

renormalization of the action with a local functional of φ, the Liouville action

LL = c
48π

(1
2
(∂φ∂φ+ µ2eφ). (1.153)

The Liouville potential µ2eφ comes from a cosmological term
∫
µ2√g , which can be added to

the Polyakov action for D 6= 26 when conformal invariance is broken anyway). This action can,

however, not be written as a local functional of the metric with general coordinate invariance

preserved (the corresponding non-local Wess-Zumino action is of the form LWZ ∼ R 1
�R).

The ghost number violation that forces us to insert ghosts into physical correlation functions

can be understood directly from the path integral: Recall that the total gauge fixed action is

L = LP + T
2

∫ √−g bmn(Pc)mn, (Pc)mn = Dmcn +Dncm − gmnDc, (1.154)
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where lagrange multipliers, Weyl ghost and the trace part of the anti-ghost have been integrated

out and the operator P maps vector fields into traceless symmetric tensors. The path integral

over a fermionic variable vanishes if the integrand does not depend on that variable. Therefore

we need to insert an extra ghost for any zero mode of P and an extra anti-ghost for any zero

mode of P †. This implies that the total ghost number violation is equal to the index of P ,

indexP ≡ dim kerP − dim kerP † = −Qχ (1.155)

i.e. the number of zero modes of P minus the number of zero modes of P †. The adjoint is

defined with respect to the natural positive ultralocal scalar product8

||δg||2 =

∫ √
g gklgmnδgkmδgln, (1.156)

on the space of metric deformations, in terms of which the ghost action can be written as a

scalar product

Lc ∼ 〈b|Pc〉 =

∫
Σ

√
g gklgmn bkm(Pc)ln, (1.157)

We thus derived the Riemann Roch theorem, which equates the ghost number violation (1.142)

to the index of the operator P . The zero modes of P correspond to (global) conformal Killing

vector fields and thus to symmetries of the Riemann surface. The zero modes of P †, on the other

hand, are orthogonal to the gauge variations of the metric. Their number is thus equal to the

number of non-trivial metric deformations and hence to the number of moduli (i.e. parameters

of the complex structure) of the Riemann surface.

Counting the number of complex parameters Riemann-Roch thus implies that the number

of conformal symmetries minus the number of moduli of a Riemann surfaces should be given by

3(1 − g). These numbers can be computed directly in terms of the Schottky parametrization,

which constructs a general Riemann surface of genus g by gluing g cylinders with the boundary

compoments of a sphere with 2g holes. This can be done, for example, by choosing local complex

coordinates zi and wi for which the holes are at |zi| = |wi| = 1 with the gluing prescription

ziwi = ti. This shows that the moduli space is itself a complex manifold, parametrized by ti

and the positions zi and wi of the holes, where log |ti| corresponds to the lengths of the handles

and the arguments of the moduli to a twisting of the cylinders by an angle Im log ti. In order to

increase the genus by one we have to add two holes and one cylinder. Together this adds three

complex moduli per handle. The only exceptional cases are genus 0 and genus 1: The sphere

has three (complex) conformal Killing symmetries, which can be used to fix the positions of

the first two holes, and no moduli. Hence the torus has only one modulus, and one symmetry

is left over (if we descirbe the torus as the complex plane modulo the lattice generated by the

complex numbers 1 and τ , then τ is the modulus and the symmetry is the translation symmetry

8A possible additional trace term gkmgln does not contribute to traceless deformations.
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of the plane). For genus g > 1 we have used up all symmetries of the sphere, so there are no

more symmetries and the number of moduli is 3g − 3, in agreement with Riemann Roch.

There is another parametrization of the moduli space in terms of periods, which is mainly

useful at small genera. Here one starts with a canonical basis of 2g homology cycles with

intersection numbers ai∩ bj = δij. We can now introduce a set of g holomorphic 1-forms, called

Abelian differentials, which are normalizes by their periods
∫
ai
ωj = δij. The period matrix

Ωij =
∫
bi
ωj can be shown to be symmetric and to have positive definite imaginary part, i.e.

they map the moduli space into the so-called Siegel upper half plane. Ωij has g(g+1)/2 entries,

which is the correct number of moduli for g ≤ 3. For larger genus the entries of Ωij are therefore

constrained in a complicated way. For genus 1 we can represent the torus by a double periodic

lattice Γ = 〈u, v〉 and ω1 = dz/u with Im τ > 0 for τ = Ω11 = v/u because of the required

orientation of the intersection of the two cycles. The complex structure is thus parametrized

by τ in the upper half plane.

F1/T F

FS

FT

0 1
2 1−1

2−1

τ

So far we only considered the local structure of the moduli space, whose global structure is

quite complicated. We first consider the simplest case g = 1. The parameter space Im τ > 0 is

called Teichmüller space, which is simple connected. There are, however, infinitely many differ-

ent values of τ that parametrize the same torus. Two examples are given by the transformation

T , which sends τ → τ + 1, and S, which sends τ → −1/τ . These transformation generate the

infinite discrete group PSL(2,Z),

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1, (1.158)

which is called the modular group. All conformally equivalent tori are related by (1.158), which

can be used to choose a representative in the fundamental domain F = {τ | Im τ > 0∧ |Re τ | ≤
1
2
∧ |τ | ≥ 1} or in one of its images under a modular transformation.

The case of genus one suggests that it is convenient to construct the moduli space in two

steps. First we take the space {[gmn]}/Diff0 of conformal equivalence classes of metrics modulo

“small” diffeomorphisms, i.e. diffeomorphisms that are continuously connected to the identity.

This is a simply connected complex manifold, called Teichmüller space (for g = 1 this is the
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upper half plane). In a second step we have to divide out the discrete mapping class group

MCG = Diff /Diff0, which consists of homotopy classes of (oriented) “big” diffeomorphisms.

Since such diffeomorphisms do not change intersection numbers this group is effectively rep-

resented by symplectic transformations on the homology lattice H1 ∼= Z2g. For genus 1 this

representation is injective so that the MCG is isomorphic to SL(2,Z). Since the MCG has

fixed points the moduli space is not a manifold but rather has orbifold singularities. For

genus one these are at τ = i, which is a fixed point of S and thus a Z2 singularity, and at

τ = exp(iπ/3) ∼ exp(2iπ/3), the fixed point of TS, which has order 3 (the two neighboring

wedges of the representatives in F cover an angle 2π/3 for the holomorphic coordinate τ).

The moduli space is not compact, with its boundary points corresponding to the pinching

of cycles. For genus 1 there is only one possible degeneration, for which Im τ →∞ so that the

torus becomes infinitely long and, which is conformally equivalent, degenerates into a sphere

with two points identified. For g > 1 there are two types of boundary points because we can

either pinch a non-trivial homology cycle, which removes one handle and leads to a connected

Riemann surface Σg−1, or we can pinch the surface into two disconnected surfaces Σg1 and

Σg−g1 . In CFT we are actually interested in correlation function and thus should consider

moduli spaces of surfaces with punctures, because the positions of operator insertions provide

additional moduli. Inserting a complete set of states at the two punctures of Σg−1 or Σg1∪Σg−g1
that mark the position of the pinched cycle we can sew up the lower genus surfaces and thus

reconstruct certain limits of higher genus correlation functions. Consistency condidtions of

these sums with the correlation functions on Σg are called factorization constraints.

Another construction of Riemann surfaces uses the fact that the Weyl factor can be used

to make the curvature constant on any Σg. The universal covering space has, of course, the

same property. For genus 0 and one this yields the sphere and the plane with positive and zero

curvature, respectivly. For higher genus the universal cover is the upper half plane with the

Poincaré metric d2τ/(Im τ)2, which has constant negative curvature and is invariant under the

group SL(2,R) of real Möbius transformations. For g > 1 Σg is thus obtained from the upper

half plane as a quotient by a discrete subgroup of SL(2,R), called Fuchsian group. This is the

content of the uniformization theorem.

Non-orientable surfaces can be treated by going to the orientable double cover. RP2, for

example, is obtained from the sphere as a quotient by the involution σ : z → −1/ζ̄, which

reverses the orientation and acts freely. A similar trick works for boundaries: If we think about

mirror charges the boundary can be obtained as the fixed point set of an orientation reversing

involution. In the case of the disk we can use, for example, σ : z → 1/ζ̄, which has a fixed circle

at |z| = 1. Every conformal equivalence class of metrics can thus be obtained as a quotient of a

compact orientable Riemann surface, where the boundary corresponds to the fixed-point set of
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an involution. The moduli spaces are, however, restricted by consistency with this involution.

At χ = 0, for example, annulus, Möbius strip and the Klein bottle only have a real modulus,

as is discussed in detail, for example, in [an02,PO98].

In string theory the higher genus correlation functions have to be integrated over the re-

spective moduli space, where the measure can be obtained by the Faddeev Popov procedure.

As usual the gauge fixing determinant is represented by a functional integral with ghost fields,

and a careful analysis indeed leads to the insertions of ghost zero modes that are required for

a non-vanishing result. For g > 1 only antighost insertions play a role. The correct measure

is obtained from the ghost path integral if we insert 1
2π

∫
d2z(µ

(I)
z̄

zbzz + µ̄
(I)
z

z̄ b̄z̄z̄), with the Bel-

trami differentials related to the relevant metric variations by µ
(I)
m

n = 1
2
gnl∂Iglm (this yields the

correct number of zero modes and can also be shown to provide a form of appropriate degrees

to be integrated over the moduli space). At genus one the ghost and the anti-ghost zero modes

are constant so that we can simply insert the left-moving and the right-moving ghost number

currents (with an extra factor 1/2 coming from the symmetry of the torus). For a detailed

derivation of these results see, for example, [PO98]. Some aspects are also discussed in [NA90].

1.9 Ward identities and conformal bootstrap

In the axiomatic approach one tries to construct conformal field theories by prescribing some

set of data that is sufficient to construct, or at least uniquely define, all correlation functions. A

number of axioms has to be imposed on allowed sets of data in order to guarantee a consistent

and sensible definition of the correlators. In applications to statistical mechanics it is a priory

not clear that higher genus surfaces are a necessary ingredient. But it turned out that all known

models can be defined at arbitrary genus, and in string theory this is clearly indispensible. The

general strategy is then as follows: A certain set of local fields, including the energy momentum

tensor, and their OPEs (or some equivalent set of data) define the correlators on the sphere.

Since the operator product singularities of T (z) with primary fields φi(wi, w̄i) fixes all poles

(as a function of z) of the correlation functions of primary fields φi with an additional insertion

of an energy-momentum tensor, the correlations satisfy the conformal Ward identity

〈T (z)φ1(w1, w̄1) . . . φn(wn, w̄n)〉 =
∑
i

(
h

(z − wi)2
+

∂wi

z − wi

)
〈φ1(w1, w̄1) . . . φn(wn, w̄n)〉

(1.159)

(A possible z-independent ambiguity is fixed by the cluster property for z → ∞.) Similar

identities can be derived for multiple insertions of T (zi). Considering various contour integrals

of the Ward identity times meromorphic functions of z we can, therefore, compute correlation

functions of all descendent fields, once the correlation functions of the primaries are known.
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By the independent action of the left-moving Virasoro algebra Vir and of the right-moving Vir

and the corresponding states are organized into representation of Vir ⊗ Vir , which are called

conformal families. Since energy should be bounded from below these families are highest

weight representations, which can be labelled by the Eigenvalues (hi, hi) of the zero modes.

The Hilbert space thus decomposes into a sum of representations H = ⊕hi,h̄i
(Vi ⊗ V i), where

Vi = V (c, hi) are representations of the Virasoro algebra with central charge c and conformal

weight hi. A CFT is called rational if this sum is finite, i.e. if there is a finite number of

conformal families.

If we define the character of a conformal family as the trace χi(τ) = trVi
e2πiτ(L0−c/24) over

the representation space then the torus partition function can be decomposed into a finite sum

Z(τ) =

∫
Σ(τ)

Dφ e−SE(φ) = tr e2πi(P Re τ+iH Im τ) = tr e2πi(L
cyl
0 τ−Lcyl

0 τ) =
∑

Mijχi(τ)χj(τ), (1.160)

where we represented the path integral as a trace over the Hilbert space of closed strings with

length 2π and with the double-periodic torus boundray conditions implemented by insertion of

a σ1-translation by 2πRe τ (with momentum P = L0 − L0) and an imaginary time evolution

by σ0 = 2π Im τ . The c/24 in the definition of the character is thus due to the shift in

the Hamiltonian H = L0 + L0 when transformed from the cylinder to the complex plain.

The resulting sum is over all combinations ij of left-moving representations Vi with right-

moving representations V j, which are assumed to occur with a multiplicity Mij. Z(τ) should

be invariant under modular transformations. While the generator T acts diagonally on χi(τ)

because all members of a conformal family have the same weight h modulo integers, the S-

transformation in general mixes the characters,

χi(τ + 1) = Tijχj(τ) = e2πiτ(hi−c/24)χi(τ),
χi(−1/τ) = Sijχj(τ),

T † = T−1 = T ∗,
S† = S−1 = S∗.

(1.161)

A necessary condition for modular invariance of the partition function is therefore that Mij

commutes with the representation matrices,

T tMT ∗ = M, StMS∗ = M ⇔ [M,T ] = [M,S] = 0. (1.162)

Matrices with non-negative integer elements that commute with S and T and for which M00 = 1

(i.e. the multiplicity of the vacuum is 1) are thus called modular invariants. The classification of

such matrices is part of the reconstruction of a conformal field theory from its chiral data. The

relations among the generators S and T of PSL(2,Z) lift to relations among the representation

matrices,

S2 = (ST )3 = C, C2 = 1 (1.163)

where Cij = δij+ is the charge conjugation matrix that maps a conformal family Vj to its

conjugate Vj+ . This follows from the CPT theorem because S2, while leaving τ invariant,
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maps the periodicities (1, τ) to (−1,−τ), i.e. to parity times time reversal, and thus may act

nontrivially on the conformal fields [di88].

The basic building blocks of all correlations functions are the 3-point functions 〈φiφjφk〉.
The dimension of the corresponding space of conformal blocks are called fusion rule coefficients

Nijk because Nijk 6= 0 requires that (the charge conjugate) of φk shows up in the operator

product (fusion) of φi and φj. The charge conjugation matrix is Cij = Nij0 = Nij
0 with

Nij
k = NijlC

lk describing the number of “independent” (i.e. not fixed by Ward identities)

coefficients of elements of the conformal family of φk in the operator product φi(z)φj(w). The

fusion rules Nij
k can be interpreted as the structure constant of a commutative and associative

algebra.

Inserting OPEs of operators we can reduce correlation functions to sums over more elemen-

tary building blocks. The geometrical picture of this process is the cutting of Riemann surfaces

by insertion of a complete set of states. The inverse process is called sewing, and its consistency

amounts to a number of sewing constraints. In a rational CFT the 4-point functions can be

written as a finite sum

〈φi(z, z)φj(0, 0)φk(1, 1)φl(∞,∞) =
∑
m

Cij
mCklmF (m)

ijkl (z)F
(m)

ijkl(z) (1.164)

over chiral conformal blocks F (m)(z). The chiral blocks are multivalued, i.e. sections of non-

trivial bundles over the moduli spaces of punctured Riemann surfaces. Their monodromies

are important characteristics of the conformal field theory (Moore–Seiberg data). The most

elementary sewing constaint, the crossing symmetry or duality of the 4-point functions∑
m

Cij
mCklmF (m)

ijkl (z)F
(m)

ijkl(z) =
∑
n

Cik
nCjlnF (n)

ikjl(1− z)F
(n)

ikjl(1− z) (1.165)

= 1

z2hiz2hi

∑
p

Cil
pCkjpF (p)

ilkj(
1
z
)F (p)

ilkj(
1
z
) (1.166)

derives from the 3 different ways to reduce 4-point functions to 2-point functions by inserting

OPEs for pairs of fields or, equivalently, of cutting the sphere such that each part is left with

2 punctures.

Once the chiral building blocks of a rational CFT are known, factorization or sewing con-

straints and modular invariance (invariance under the mapping class group) have to be imposed

on the full correlation functions. While these are infinitely many constraints it has been shown

by Moore and Seiberg that a finite number of conditions at g ≤ 1 is sufficient to guarantee con-

sistency at all genera. The following list of axioms is essentially taken from their paper [mo89].

1. There is a unique SL2(R)× SL2(R) invariant vacuum with h = h̄ = 0,

2. Operator-state correspondence: For each vector α ∈ H in the Hilbert space there is a

corresponding operator φα and its (charge) conjugate,
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3. Primary fields and energy momentum tensor: The field content consists of primary fields

α = i, with tensorial transformation [Ln, φi(z, z)] = (zn+1∂z + hi(n + 1)zn)φi, and their

descendents (which are obtained from φi by commutation with Ln’s or with the Fourier

modes of other chiral fields).

4. Locality: 〈0|O1(z1, z1) . . .On(zn, zn)|0〉 exist for |zi| > |zi+1| and have an analytic contin-

uation to Cn for zi 6= zj. (The singularities at zi = zj are thus poles of finite order.)

5. One loop correlation functions exist and are modular invariant (actually, duality of four-

point functions on the sphere and modular invariance of the one-point function on the

torus is sufficient).

An analysis of the 1-point functions on the torus lead to the Verlinde formula

Nijk =
∑
n

SinSjnSkn
S0n

(1.167)

which is a remarkable formula for the fusion rule coefficients (which have to be non-negative

integers) in terms of the modular S matrices [ve88, mo88a]. Stated differently, λ
(j)
i =

Sij

S0j

diagonalizes the fusion algebra λ
(n)
i λ

(n)
j = Nij

kλ
(n)
k , which implies S† = S−1 = S∗.

Another interesting approch to the axiomatics can be found in [ga98,ga99]. The discovery

of D-branes stimulated much recent interest in CFT on surfaces with boundaries, which lead

to interesting new progress in the axiomatic approach. In now appears to be more natural to

formulate the factorization and modularity constraints in terms of boundary CFT data [fu02].

1.10 Minimal models and chiral algebras

The construction of the representation spaces Vi is similar to the representation theory of

su(2), where unitarity or finite dimension of representations imply the existence of a state of

vanishing norm, on which a creation operator vanishes. Such states are called null vectors, and

the vanishing norm conditions leads to the quantization of their eigenvalues. In CFT it can be

shown that rationality implies the existence of such null vectors [be84,DI97], i.e. certain formal

descendents of the primary fields that label the conformal families must have vanishing norm.

These descendent states, as well as all their descendents, thus can be identified with the zero

vector in their representation space. There are also important differences to the representation

theory of su(2) because the Virasoro algebra is infinite dimensional: Representations become

inifinite dimensional, while the number of unitary representations becomes finite. In any case

it turnes out that the conformal weights and the possible values of the central charge become

rational in a rational CFT. Most importantly, the correlations functions decompose into finite

linear combinations of products of holomorphic and antiholomorphic factors, called conformal
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blocks, and the condition that all correlations of null states have to vanish provide differential

equations for these conformal block that have finite-dimensional solution spaces.

The first successful implementation of this bootstrap program of directly constructing a

full quantum field theory from its symmetries and its consistency conditions is due to Belavin,

Polyakov and Zamolodchikov (BPZ) [be84], who found that all rational theories, called Virasoro

minimal models, are parametrized by a pair of relatively prime integers p < p′ with central

charge and conformal weights given by

c = 1− 6(p−p′)
pp′ hr,s = (rp−sp′)2−(p−p′)2

4pp′ = hp′−r,p−s, (0 < r < p′, 0 < s < p, sp′ < rp) (1.168)

At about the same time a subset of the theories, the unitary minimal models with p′ = p + 1

and c = 1− 6
p(p+1)

, was constructed by Friedan, Qiu and Shenker [fr84]. In a unitary CFT all

normes are positive (except for the zero vector in the Hilbert space), which implies that c ≥ 0

because

c/2 = 〈0|[L2, L−2]|0〉 = 〈0|L2L−2|0〉 = ||L−2|0〉||2 ≥ 0 (1.169)

where we used scale invariance L0|0〉 = 0 of the vacuum and the hightest-weight condition

L2|0〉 = 0. Simlarly, for highest weight vectors with Ln|h〉 = 0 for n > 0 and L0|h〉 = h|h〉

0 ≤ ||L−n|h〉||2 = 〈h|[Ln, L−n]|h〉 =
(
c
12

(n3 − n) + 2nh
) 〈h|h〉 (1.170)

implies that conformal weights are nonnegative in a unitary theory because the r.h.s. is dom-

inated by the first term for n → ∞. h = 0 is only possible for a translation invariant state,

i.e. for the vacuum. Unitarity is important for the internal sector of a string model in order

to guarantee positivity of physical states. It is, however, clearly violated for unphysical states

with time-like polatizations and in the ghost sector. There are also applications of non-unitary

models in solid state physics.

Since the repertoire of Virasoro rational theories is quite limited it is useful to look for

additional symmetries that allow us to construct more interesting families of models. The

relevant objects are the holomorphic and the antiholomorphic subalgebras of the operator

algebra, which contain the energy momentum tensor and thus extend the Virasoro algebra

to a larger chiral and anti-chiral algebra, often denoted by AL and AR, respectively. These

organize the fields into larger conformal families and rationality is defined as the finiteness of

number of these larger families. In the rational case, Ward identities again are sufficiently to

constrain the conformal blocks to finite dimensional solution spaces of differential equations.

The holomorphic/chiral data are interesting by themselves. In mathematics their study is the

subject of the theory of ‘vertex algebras’. They also have direct applications in physics in

the quantum Hall effect, where the external magnetic field breaks parity and leads to chiral

currents.
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Important examples of chiral algebras A include the current algebras, which are also called

affine Lie algebras and are an subclass of the Kac–Moody algebras (i.e. infinite dimensional Lie

algebras that can be defined in terms of generalized Cartan matrices that violate positivity).

Current algebras are generated by currents Ja(z) and their OPEs are of the form

Ja(z)J b(w)︸ ︸ =
κabK

(z − w)2
− fabcJ

c(w)

z − w (1.171)

with K a central operator, i.e. K = k1 in an irreducible representation. In terms of the Fourier

modes T an =
∮

dz
2πi
J(z)zn+1

[T am, T
b
n] = fabcT

c
m+n +mδm+nκ

abK, Ja(a) =
∑

T anz
−n−1. (1.172)

Jacobi identities imply that fabc are the structure constants of a Lie algebra g, which is ac-

tually contained as the subalgebra of 0-modes T a = T a0 . In turn, affine Lie algebras ĝ can be

constructed as central extensions (quantizations) of loop algebras, i.e. gauge theories on the

circle with gauge group g. κab has to be adTa-invariant and hence, in the compact case, equal

to the Killing metric of g. Unitarity implies quantization of the level k ∈ Z. An interesting

property of affine Lie algebras is that the energy momentum tensor is bilinear in the currents

T (z) =
κab

2(k + g∨)
: Ja(z)J b(z) :, c =

kd

k + g∨
(1.173)

because this composite operator has just the right OPEs with the currents, which can be used

to compute the central charge c in terms of the level k, and the dimension d and the dual

Coxeter number g∨ of the Lie algebra g. An extension A of the Virasoro algebra by fields of

higher conformal weight h ≥ 3 is called a W algebra [bo93].

The N = 1 superconformal or supervirosoro algebra, which emerges in the RNS formalism,

can be regarded as an algebra extension by the supercurrent TF of conformal weight h = 3/2,

TF (z)TF (w)︸ ︸ =
2c/3

(z − w)3
+

2T (w)

(z − w)
, {Gr, Gs} = 2Lr+s +

c

3
(r2 − 1

4
)δr+s, (1.174)

with TF (z) =
∑

r
Gr

zr+3/2 . Strictly speaking this is not a chiral algebra because modular T -

invariance implies that only fields of integral conformal weight can be chiral so that after the

GSO projection only composites of the supercurrent with other fields can belong to A. For

superstring compactifications from 10 to 4 dimensions with a superconformal theory with c = 9

as ‘internal sector’ it has been shown that the supercurrents is actually split into a positive and

a negative part TF (z) = G+(z)+G−(z) by a U(1) current J(z) that extends the superconformal

algebra to an N = 2 algebra [ba88],

{G−
r , G

+
s } = 2Lr+s − (r − s)Jr+s + c

3
(r2 − 1

4
)δr+s, [Ln, G

±
r ] = (n

2
− r)G±

n+r, (1.175)

[Jm, Jn] = c
3
mδm+n, [Jn, G

±
r ] = ±G±

n+r, [Ln, Jm] = −mJm+n (1.176)
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