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Thinking about what may be the ‘most general theory’ that one can write down we always

have to start from some reasonable set of assumptions. In flat space we usually describe

the dynamics of local fields (or first-quantized point particles) by a Lorentz invariant and

renormalizable local action. In curved space Lorentz invariance will refer to tangent space

indices and is supplemented by the requirement of general coordinate invariance; in 4 dimensions

renormalizability can only be imposed on the matter part of the action since, with the Einstein-

Hilbert action S = 1
16πGN

∫ √−gR, the gravitational coupling constant κ =
√

16πGN has

negative mass dimension.1

It is a well-known fact in group theory that, in addition to vector and tensor representations,

the Lorentz algebra has an irreducible spinor representation s and its conjugate c = sc; all

representations are contained in (Kronecker) products of tensors of SO(1, D − 1) – i.e. tensor

products of the vector representation – with possibly one additional factor of s or c. Therefore

we construct a field theory out of tensor fields ta1...an
b1...bm and spinor fields ψαa1...an

b1...bm , where

α can be α for the spinor representation or α̇ for its conjugate.2 General tensors of this form

correspond to reducible representations. One can project to irreducible representations either

by setting contractions with invariant tensors to 0 or by making them redundant via gauge

symmetries. In 4 dimensions renormalizable Lorentz-invariant interactions exist only for scalar,

spinor, and vector fields; consistent couplings to gravitons gmn and gravitinos γm
α require local

coordinate invariance and local supersymmetry, respectively.

The reason for the split into tensor and spinor representations is that SO(1, D−1), and more

generally SO(p, q), is not simply connected but has a double covering group, which is called

Spin(p, q). The spinor representations are the double valued ‘representations’ of SO(p, q). We

will discuss the properties of spinors of the Lorentz group using representations of the Clifford

algebra, which will provide us with a realization of the double covering group Spin(p, q). Then

we turn to some elementary aspects of supersymmetry and supergravity. Since D = 2, 4, 10

dimensions are all important in string theory, we discuss the situation as far as possible for an

arbitrary (even) number of dimensions. Eventually we explicitly construct the so-called (1,1)

supergravity in 2 dimensions and its (0,1) restriction, which is relevant for heterotic strings.

1 In perturbation theory we use gmn = ηmn+κhmn with κ =
√

16πGN =
√

2M
(1−D/2)
Pl and expand in powers

of h, so that we obtain a κ-independent quadratic term (with second derivatives) and corrections proportional
to h2(κh)n; in D = 4 dimensions the mass dimension of GN is 2 −D = −2. More generally, physical bosonic
fields φ have 2 derivatives in their kinetic terms, while fermions have a Dirac operator D/ = γmDm, so that the
mass dimensions of these fields are dim(φ) = (D − 2)/2 and dim(ψ) = (D − 1)/2. Higher derivative kinetic
terms for physical fields usually spoil unitarity (or positivity of the energy): Since ((� + m2

1)(� + m2
2))

−1 =
(m2

2 −m2
1)

−1((� +m2
1)

−1 − (� +m2
2)

−1), we always have some kinetic term of the wrong sign.

2 Since the vector representation is contained in s⊗ c we also could use fields with only spinor indices, but
in more than 4 dimensions this is not very economic since the dimensions of the spinor representations become
too large.
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Chapter 1

Spinors

1.1 Clifford algebras, representations and spin

With any vector space with a non-degenerate scalar product there comes a Clifford algebra

that is constructed in the following way: We consider a basis in which the metric has the form

ηab = diag(+, . . . ,+,−, . . . ,−) with p positive and q = D − p negative entries and objects γa

that satisfy the relations

{γa, γb} = 2ηab1, Γa1...ai := γa1 . . . γai (1.1)

where 1 is the identity operator. Then the products ±Γa1...ai with a1 < a2 < . . . < ai (together

with ±1) form a finite group with 2
∑D

r=0

(

D
r

)

= 2D+1 elements whose formal linear combinations

with coefficients in some field K form an algebra of vector space dimensions 2D (we will only

be interested in K = R or K = C; we will also write C(p, q) instead of CR(p, q)). This algebra

is called Clifford algebra CK(p, q): Its generators anticommute, p of them square to 1 and the

remaining q generators square to −1. Special cases are the Dirac algebra C(1, 3), the Pauli

algebra C(2, 0), the complex numbers CR(0, 1), and the quaternions H = CR(0, 2), which are the

smallest non-commutative field containing the complex numbers.1

SO(p, q) is the group of linear transformations with det = 1 that leave a (pseudo) metric

tensor ηab invariant. The defining (vector) representation is given by matrices Ωa
b satisfying

Ωa
cΩb

dηcd = ηab. For infinitesimal transformations Ωa
b = δba + ωa

b + O(ω2) this implies that

ωab := ωa
cηcb is antisymmetric. Using the basis (lab)cd = δadδ

b
c − δac δ

b
d of antisymmetric matrices

we can write ωcd = 1
2
ωab(l

ab)cd and obtain the structure constants of the Lie algebra so(p, q) as

[lab, lcd] = −ηaclbd + ηbclad + ηadlbc − ηbdlac, (labv)c = (lab)c
dvd = −ηacvb + ηbcva (1.2)

1 The symbol H refers to Hamilton, who discovered the quaternions in 1844 when he tried to find a group
structure on the 3-sphere. With i := γ1, j := γ2 and k := ij we have 3 different ‘square roots of −1’ that are
related by jk = i and ki = j. Rotations of vectors (x, y, z) are represented by q → uqu−1 where q = ix+ jy+kz
is a ‘pure quaternion’ and u a ‘unit quaternion’ u = a0 + a1i + a2j + a3k with uu =

∑

a2
i = 1. Quaternionic

manifolds appear in extended supersymmetry.
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Our next step is to find a spinor representation of this Lie algebra, i.e. a representation such

that finite transformations provide a double cover of SO(p, q).

To this end we consider antisymmetrized bilinears Σab := 1
4
[γa, γb] = 1

2
(γaγb − ηab), whose

commutator with γc is [Σab, γc] = 1
2
[γaγb, γc] = γaηbc − ηacγb and thus has the same form as

a Lorentz transformation of the vector γa of Clifford algebra generators. This implies that,

for any matrix representation of the Clifford algebra, the Σab’s provide a representation of the

Lorentz algebra,

Σab :=
1

4
[γa, γb], [Σab, γc] = −ηacγb+ηbcγa, [Σab,Σcd] = −ηacΣbd+ηbcΣad+ηadΣbc−ηbdΣac.

(1.3)

To see that we actually constructed a double cover of SO(p, q) we perform a rotation by an

angle ϕ in the ij-plane, where we assume that both directions are ‘space-like’ (γi)
2 = (γj)

2; this

is, of course, not possible for SO(1, 1), whose fundamental group is trivial (for (γi)
2 = −(γj)

2

we would consider boosts and thus get hyperbolic sines and cosines). Since Σij = 1
2
γiγj squares

to (Σij)2 = −1
4
1 for i 6= j we find in the spinor representation

ωij = −ωji = ϕ ⇒ exp(ω) = exp(1
2
ωabΣ

ab) = exp(ϕΣij) = cos ϕ
2

+ (γiγj) sin ϕ
2
, (1.4)

so that only a rotation by 4π leaves a spinor, i.e. a vector in the representation space of

the Clifford algebra, invariant. In other words, the spinor representation is a double valued

representation of SO(p, q).

In order to understand that the properties of spinors and Clifford algebras are independent

of a particular matrix representation we now recall some elementary facts of group theory: A

representation R of a group G is a map R : G → End(V ) from G into the group of linear

transformations on a vector space V over a field K that is consistent with the group structures,

i.e. R(g) ◦ R(h) = R(gh) for all g, h ∈ G. The dimension n of the vector space is called

dimension of the representation. A choice of a basis in V provides an identification of End(V )

with the matrix group GL(n,K).

Complex representations, where K = C, always come in quartets R, R∗, (RT )−1, and (R†)−1,

where R∗ is the complex conjugate representation and (RT )−1 is called contragradient or

dual representation. Note that RT is not a representation of the group G and that all of these

representations live in different vector spaces. An intertwiner between two representations

R1 and R2 is a map A : V1 → V2 that is compatible with the representations, i.e. AR1(g) =

R2(g)A ∀g ∈ G (more abstractly, this is a morphism of the category of representations of G,

i.e. a map that is compatible with the ‘relevant’ algebraic structures). The representations

R1 and R2 are called equivalent if there exists an invertible intertwiner (an isomorphism);

for matrix representations this means that there is a matrix A ∈ GL(n,K) such that R2(g) =

AR1(g)A
−1 ∀g ∈ G.
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A representation on a vector space with a hermitian metric is called unitary if all linear

maps R(g) preserve scalar products or, equivalently, if all representation matrices R(g) are

unitary in one (and hence in any) orthonormal basis. For finite groups and for compact groups

it can be shown that all finite-dimensional representations are equivalent to unitary represen-

tations (an appropriate metric can be constructed by averaging an arbitrary hermitian metric

over the group). Furthermore, equivalent unitary representations are unitarily equivalent, i.e.

A can be chosen to fulfill AA† = 1.

A representation R : G→ End(V ) is called irreducible if {0} and V are the only invariant

subspaces. It is called completely reducible if for all invariant subspaces V1 ⊂ V there exists

an invariant complement, i.e. a subspace V2 such that V = V1 ⊕ V2 and all representation

matrices R(g) become block diagonal in a basis consisting of elements of Vi. A representation

is called faithful if R is injective, i.e. if R(g) = 1 implies that g is the unit of the group. The

group ring is the set of formal linear combinations of group elements with coefficients in some

ring K with the natural product operation. If K is a field, then the group ring is an algebra,

since the group ring is a vector space over K. (The Clifford algebra is thus the group algebra

of the finite group that is generated by γa.)

Schur’s Lemma: If A is a homomorphism of a finite-dimensional irreducible representation

R with [A,R(g)] = 0 ∀g ∈ G then A = λ1 is a multiple of unity.

Proof: For finite-dimensional representations A must have some eigenvalue λ. Since A com-

mutes with all representation maps R(g) the kernel of A−λ1 is a non-empty invariant subspace

and must thus be equal to the whole representation space. �

Corrolary: Intertwiners between irreducible representations are unique up to a factor.

Proof: Assume that f : V1 → V2 and g : V1 → V2 are intertwiners between two irreducible

representations R1, R2. Since the kernel of g is an invariant subspace it must be all of V1 or

{0}. Hence we either have g = 0 · f or g is invertible. In the latter case A := f ◦ g−1 : V2 → V2

is an automorphism with [A,R2(g)] = 0 ∀g ∈ G. Hence, A = λ1 and f = λg. �

Theorem: All unitary representations are irreducible or completely reducible.2

(Without proof)

Before turning to the formulation of Lorentz invariant field theories that contain spinors

we should first understand the irreducible representations of the Clifford algebra. We define

γ∗ := Γ12...D and observe that it satisfies

γ∗ := γ1 . . . γD

γ̃ := i[
p−q
2 ]γ∗

, γ∗γ
a = (−)D−1γaγ∗, γ∗

2 = (−)[
p−q
2 ]1 =

{

1 p− q ≡ 0, 1 mod 4
−1 p− q ≡ 2, 3 mod 4

(1.5)

2 An example of a reducible representation that is not completely reducible is given by the Galilei transfor-
mations

(

t
x

)

→
(

1 0
v O

)(

t
x

)

; vectors with t = 0 form a non-trivial invariant subspace.
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because q +
(

D
2

)

= 2pq +
(

p−q
2

)

≡
(

p−q
2

)

≡
[

p−q
2

]

mod 2. The first equation shows that in

odd dimensions there cannot exist an irreducible faithful representation of the Clifford algebra

since γ∗ would have to be proportional to the unit element because of Schur’s lemma. In even

dimensions γ̃ anticommutes with all γa’s and squares to 1. It can therefore be used to define the

helicity projectors P± = 1
2
(1 ± γ̃), which will be important for the construction of irreducible

spin representations since they commute with the generators Σab of spin(p, q).

For D ∈ 2Z the existence of a faithful irreducible representation of dimension 2D/2 can be

shown by explicit construction: For D = 2 we can use any two of the three Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

, σ2
i = 1, σ1σ2σ3 = i1 (1.6)

to represent C(2, 0) and imaginary multiples to get the other signatures. Representations for

larger dimensions can be constructed recursively since

C(p1, q1) ⊗ C(p2, q2) ∼=
{

C(p1 + p2, q1 + q2) if p1−q1
2

is even

C(p1 + q2, q1 + p2) if p1−q1
2

is odd
. (1.7)

To see this, an isomorphism can be constructed in the following way: For given representations

γ(i) of C(pi, qi) we use the matrices γ
(1)
a1 ⊗ 1(2) with a1 = 1, . . . , D1 and γ∗

(1) ⊗ γ
(2)
a2 with a2 =

1, . . . , D2, which all anticommute, e.g. {γ(1)
a1 ⊗ 1(2), γ∗

(1) ⊗ γ
(2)
a2 } = γ

(1)
a1 γ∗

(1) ⊗ γ
(2)
a2 + γ∗

(1)γ
(1)
a1 ⊗

γ
(2)
a2 = {γ(1)

a1 , γ∗
(1)} ⊗ γ

(2)
a2 = 0. Moreover, (γ

(1)
a ⊗ 1(2))2 = η

(1)
aa 1(1) ⊗ 1(2) and (γ∗

(1) ⊗ γ
(2)
a )2 =

(−)
p1−q1

2 η
(2)
aa 1(1) ⊗ 1(2), which establishes the isomorphism.

Corrolary: C(4, 0) ∼= C(2, 0) ⊗ C(0, 2) ∼= C(0, 2) ⊗ C(2, 0) ∼= C(0, 4) implies the isomorphism

C(p, q) ∼= C(4, 0) ⊗ C(p − 4, q) ∼= C(0, 4) ⊗ C(p − 4, q) ∼= C(p − 4, q + 4), so that C(p, q) only

depends on D and p− qmod 8.

For odd dimensions D = p+ q = 2n+ 1 two irreducible representations can be obtained by

using a set of γ–matrices for the case D = 2n and in addition the matrices ±γ∗(2n) or ±iγ∗(2n).

These two representations are inequivalent since the product γ∗
(2n+1) of allD = 2n+1 γ-matrices

is proportional to unity, γ∗
(2n+1) = ±i[ p−q

2 ]1, but with different signs of the proportionality factor

in the two representations. This factor cannot be changed by an equivalence transformation.

If {γa, a = 1, . . . , D} is a representation with γ∗
(2n+1) = +i[

p−q
2 ]1 then {−γa, a = 1, . . . , D}

provides a representation with γ∗
(2n+1) = −i[

p−q
2 ]1. It can be shown that the 2D/2-dimensional

representation for D ∈ 2Z and the two 2(D−1)/2-dimensional representations for D 6∈ 2Z are

unique up to equivalence.3 In the odd-dimensional case the direct sum of the two inequivalent

representations is isomorphic to C(p, q) and thus provides the minimal faithful representation.

3 The proof uses some results about the dimensions of irreducible representations of finite groups: The group
ring of a finite group carries the regular representation, which has dimension |G| and whose representation ma-
trices correspond to permutations of the group elements. The number of inequivalent irreducible representations
(irreps) of a finite group is equal to the number Ncc of conjugacy classes (i.e. classes of group elements h that
are related by equivalence transformations h → ghg−1 for some g ∈ G). The regular representation contains

each irrep Rλ of dimension dλ of the group exactly dλ times, so that |G| =
∑Ncc

λ=1 d
2
λ. In our case |G| = 2D+1

Supersymmetry / M.Kreuzer — 5 — version June 6, 2010



Note that the tensor product of representations corresponds to ‘matrices of matrices’ (like

e.g. 2×2 matrices whose entries are lower-dimensional γ-matrices). We can obtain, for example,

a purely imaginary (Majorana) representation of the Dirac algebra C(1, 3) ∼= C(1, 1) ⊗ C(0, 2)

using (σ2, iσ1) and (iσ1, iσ3) with γ∗
(1) = σ2(iσ1) = σ3, so that, inserting the left factor into the

right factor,

γ0 =

(

σ2 0
0 σ2

)

, γ1 =

(

iσ1 0
0 iσ1

)

, γ2 =

(

0 iσ3

iσ3 0

)

, γ3 =

(

iσ3 0
0 −iσ3

)

. (1.8)

We will see later that a representation of C(1, 3) with real matrices cannot exist.

Another non-commutative algebra that comes with any vector space is the exterior algebra

Λ =
∑D

0 Λp, which also has dimension 2D. There is, in fact, a natural one-to-one correspondence

of k-forms and Clifford algebra elements which is given by ω 7→ ω/ := 1
k!

Γa1...akωa1...ak
[co82,

CH54]. The Clifford product and the exterior product differ by terms of lower ‘form degree’.

The Clifford algebra is therefore not a Z-graded algebra. Since the defining anticommutation

relation (1.1) has a term of degree 0 on the r.h.s. there is, however, a Z2 grading left that

we can use to define the decomposition C(p, q) = C+(p, q) ⊕ C−(p, q), where C+(p, q) contains

all linear combinations of products of an even number of γ matrices and C−(p, q) contains all

products of an odd number of γ factors.

Obviously C+(p, q) is a subalgebra, which is again isomorphic to a Clifford algebra. To see

this we use, for some fixed a0, the products γa0γa with a 6= a0 as generators of C+(p, q). Since

{γa0γa, γa0γb} = −(γa0)2{γa, γb} this gives us an isomorphism to C(q, p − 1) or to C(p, q − 1),

depending on whether (γa0)2 is positive or negative. We thus find the chain of isomorphisms

C+(p, q) ∼= C(p, q − 1) ∼= C(q, p− 1) ∼= C+(q, p). (1.9)

Note that Spin(p, q), the Lie group corresponding to the Lie algebra generated by Σab, resides in

the even part C+ of the Clifford algebra. This implies that the dimension dependent properties of

the spin representations are just reversed as compared to those of the Clifford algebra: There are

two inequivalent spinors in even dimensions, and in odd dimensions there is a unique irreducible

representation. In fact, we already found the projectors P± that decompose the Clifford algebra

representation forD ∈ 2Z into the two inequivalent irreducible spinor representations of so(p, q),

which are of dimension 2D/2−1 and whose elements are called Weyl spinors. Spinors in odd

dimensions have 2(D−1)/2 components. The symmetry of C+(p, q) under the exchange of p and

q should have been expected since the properties of spin representations of so(p, q) should not

depend on which sign convention we choose for the indefinite metric.

and Ncc = 2D +s with s = 1 (s = 2) for D even (odd): All products Γa1...ap of different γ matrices are combined
into conjugate pairs ±Γ except for p = 0 (and p = D if D is odd, because then {±1} and {±γ∗} are classes that
contain only one element). Since we already have dimension

∑

d2
λ = 2D from 1 (2) irreps for D even (odd), all

other irreps must be 1-dimensional.
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1.2 Dirac adjoint and charge conjugation

From now on we assume, without loss of generality, that our representations of γ-matrices are

unitary:

(γa)† = (γa)−1 = γa. (1.10)

This will be useful for constructing real Lorentz tensors that are quadratic in spinor fields, the

stuff we need as building blocks of Lagrange densities, and it allows us to use group theoretic

results on unitary representations. We also restrict our discussion to the even-dimensional

case D ∈ 2Z, where we have a unique irreducible representation. Analogous results for the

odd-dimensional case can then be derived, for example, by using what we know about the γ

matrices in dimension D − 1.

In addition to the contragradient and the complex conjugate representations the structure

of the Clifford algebra provides us with a host of other representations for any given one. We

may, for example, flip the sign of any number of γ matrices, consider transposed matrices,

or even linear combinations γa → Ωa
bγ
b with arbitrary SO(p, q) transformations Ωa

b. In the

latter case, we loose unitarity of the representation if Ωa
b contains boosts and does not just

mix space-like and time-like directions among themselves. In any case we are guaranteed

the existence of an intertwiner (as we only consider even dimensions). The physically most

important equivalences [gl76,Re84] are listed in the following table:

γa† = AγaA† A = A† = (i
q
2γ∗)

p−1
∏p

1 γ
a ψ := ψ†A, AA† = 1

−γa∗ = B†γaB B = bBT = CAT =
∏

γa
real

(γ∗γ
a) ψc := Bψ∗, BB† = 1

−γaT = C†γaC C = cCT = BA∗ = bcA†B ψc = Cψ
T
, CC† = 1

Ωa
bγ
b = ΛγaΛ−1 Λ = 1 + 1

8
ωab[γ

a, γb] +O(ω2) Λ∗ = B†ΛB, Λ† = AΛ−1A†

Here ψ is the Dirac adjoint spinor, which transforms contragradient so that it can be used

to write down Lorentz invariant scalar products. The matrix B allows us to impose Lorentz-

invariant reality conditions ψc = ψ on spinors. The explicit formula that we gave for B assumes

that we use a representation with all γ matrices either being real or imaginary (tensor products

of Pauli matrices, which we used for our recursive construction of representations, obviously

are of this type). The charge conjugate spinor ψc is usually defined in terms of the Dirac

adjoint spinor and the charge conjugation matrix C. Eventually we recover the existence of a

Lorentz transformation Λ(Ω) on spinors. After imposing reality and normalization conditions

Λ becomes unique up to a sign. This remaining ambiguity cannot be removed since we are

dealing with a double valued representation.
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Before we discuss the various equivalences and the entries in the above table in more detail

let us first elaborate on what spaces and intertwiners we are talking about. With any vector

space V over a field K there comes its dual space Ṽ which is the space of all linear functionals

a : V → K. The elements of Ṽ are also called covectors. We define (a, v) := (v, a) := a(v)

for all a ∈ Ṽ , v ∈ V . Ṽ ∗ denotes the complex conjugate dual space which is the space of all

antilinear functionals on V, a∗(v) := (a, v)∗. The complex conjugate vector space V ∗ is the

space of all antilinear functionals on Ṽ , v∗(a) := (a, v)∗ (this is not a perfect notation, but we

want to reserve the ‘∗’ symbol for complex conjugation). If we have a (semi) linear operator

L : V → W intertwining two complex representation spaces, then we have its transposed map

LT : W̃ → Ṽ (defined by (LT b, v) := (b, Lv)(∗)), the complex conjugate map L∗ : V ∗ → W ∗

(defined by (L∗v∗, b) := (v∗, LT b)(∗)) and the hermitian conjugate map L† : W̃ ∗ → Ṽ ∗ (defined

by (L†b∗, v) := (b∗, Lv)(∗)).

From the left column of the above table we observe how A : V → Ṽ ∗, B : V ∗ → V

and C : Ṽ → V intertwine the various representations. Hence AT : V ∗ → Ṽ , and if we

use lower (upper) indices α for (dual) spinors and indices α for the complex conjugate spaces

we have the index pictures Aαβ, Bα
β, Cαβ, and (AT )αβ (we underline spinor indices and

reserve α for Weyl spinors; see below). Hence C−1 plays the role of a bilinear metric in spinor

space. A and B are antilinear on spinors ψ, i.e. linear on ψ∗. Implicit in our formulas is

that we fix the real subspace of V and a hermitian metric (having the same index picture as

A), which allow us to define unitary matrices and transposed and conjugated vectors. With

these intertwiners, whose existence in even dimensions is guaranteed by the uniqueness of the

irreducible representation, we can now define the Dirac adjoint spinor4 ψ = ψ†A ∈ Ṽ and the

conjugate spinor ψc = Bψ∗ = Cψ
T

= CATψ∗, which requires a choice of normalizations that

is compatible with B = CAT .

Unitarity of our representation of γ matrices implies that γa and γa† = (γa)−1 are related

by a unitary matrix A. It is easy to see that for p odd (even) the product of all γ matrices

with positive (negative) square can be used. Since A† does the same job as A, Schur’s lemma

implies that A† and A are, in fact, proportional. With an appropriate choice of the phase

of A, which is not fixed by unitarity, we may choose A = A†, as is done in the formula

for A in the table. With the matrix A we can define the Dirac adjoint spinor ψ = ψ†A,

which transforms contragradient to ψ under Lorentz transformations because ψ → Λψ implies

ψ → ψ†Λ†A = ψ†AΛ−1. This allows us to construct Lorentz-invariant real scalars ψψ, as

well as antisymmetric tensors ψΓa1...apψ. The job of A is to compensate the non-unitarity

of the spinor representation in the non-compact case (i.e. for boosts). Note that we define

hermitian and complex conjugation for anti-commuting fields such that (XY )† := Y †X† and

4 More precisely we should write ψ := ATψ∗ because ψ := ψ†A only makes sense after a choice of basis,
which allows us to write bilinears in terms of matrix multiplications (there is no natural map ψ → ψ† ∈ Ṽ ∗).

Supersymmetry / M.Kreuzer — 8 — version June 6, 2010



(XY )∗ := (−)|X||Y |X∗Y ∗. In the case of Minkowski signature p = 1 we have A = γ0.

Charge conjugation should change the sign of the coupling of the gauge field to the

fermion in the Dirac equation, i.e. we want to transform (i∂/− eA/−m)ψ = 0 into the equation

(i∂/ + eA/ −m)ψc = 0 for the wave function of the charge conjugate particle. Such an equation

can easily be obtained by transposition of the Dirac equation ψ(−i
←
∂/ −eA/ −m) = 0 for the

adjoint spinor provided that there exists an intertwiner C that transposes the γ matrices,

(

(−γm)T (i∂m + eAm) −m
)

ψ
T

= C−1(i∂/ + eA/ −m)Cψ
T

= 0, ψc := Cψ
T
. (1.11)

Putting the pieces together we find that ψc = Bψ∗ with B := CAT . We should indeed expect

that ψc is proportional to ψ∗ since wave functions transform with phases ψ → e−ieΛψ under

gauge transformations A→ A+ dΛ.

Unitarity of the γa implies unitary equivalence, so that C can be fixed up to an irrelevant

phase by CC† = 1. Furthermore, the transposed equation −γa = CTγaT (CT )−1 of −γaT =

C−1γaC shows that CT does the same job as C so that these intertwiners must be proportional

C = cCT with c = ±1. The constant c can be computed if we observe that the matrices

Γa1...arC, which span the representation space, are all either symmetric or antisymmetric:

γC = −CγT ⇒ Γa1...arC = (−)rC(−)(
r
2)(Γa1...ar)T = c(−)(

r+1
2 )(Γa1...arC)T . (1.12)

The number of symmetric minus the number of antisymmetric matrices is the dimension of the

representation, hence

2D/2 = c

D
∑

r=0

(

D

r

)

(−)(
r+1
2 ) = c

D
∑

r=0

(

D

r

)

Re((1 + i)ir) (1.13)

= cRe(1 + i)D+1 = cRe((1 + i)(2i)D/2) = c2D/2(−)(
D/2+1

2 ). (1.14)

Note that C ′ := γ∗C intertwines γa and +γaT . Since C−1(γ∗C) = (−)(
D+1

2 )γ∗
T = (−)[D+1

2
]γ∗

T =

(−)D/2γ∗
T we obtain

CT = C(−)(
D/2+1

2 ), (γ∗C)T = (γ∗C)(−)(
D/2

2 ) (1.15)

For the chiral projector P± we thus find C−1P±C = P T
± if D ∈ 4Z and C−1P±C = P T

∓ if

D ∈ 4Z + 2. The metric C thus mixes chiralities in 2 mod 4 dimensions and preserves chirality

in 4 mod 4 dimensions: In a Weyl basis, in which P± is diagonal, C must be block-(off)diagonal

for even (odd) D/2. The same is true for C ′.

In the odd-dimensional case D = 2n + 1 there cannot exist intertwiners between γa and

both +γaT and −γaT (otherwise γaT would be equivalent to both γa and −γa in contradiction

to the inequivalence of γa and −γa). Recall that γ-matrices in D = 2n + 1 dimensions can

be constructed from those in D − 1 = 2n dimensions. The first D − 1 matrices γa (a =
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1, 2, . . . , D − 1) are taken to be those in D − 1 dimensions. The last matrix γD is taken to be

±γ∗(2n) or ±iγ∗(2n), depending on whether a = D is a space-like or a time-like direction. Then

the intertwiners C,C ′ used in D − 1 dimensions satisfy

C−1γaC = −γaT , C ′−1γaC ′ = +γaT , a = 1, . . . , D − 1, (1.16)

C−1γDC = C ′−1γDC ′ = (−)(
D−1

2 )γDT (1.17)

Hence, if (−)(
D−1

2 ) = −1 ((−)(
D−1

2 ) = +1) we can use C (C ′) to intertwine γa and −γaT (+γaT ).

Formally, we can define the intertwiner C ′′ = 1
2

(

C ′ + C + (−)(
D−1

2 )(C ′ − C)
)

satisfying

C ′′−1γaC ′′ = (−)(
D−1

2 )γaT , a = 1, . . . , D, (1.18)

(C ′′)T = (−)(
(D−1)/2+1

2 )C ′′. (1.19)

Note that the symmetry properties of the linear intertwiner C only depend on D; reality

properties, like the symmetry of B, will depend on the signature p− q.

1.3 Majorana and Weyl spinors

It will be important to know what Lorentz invariant reality conditions we may impose on

spinors. The Majorana condition requires that a spinor is equal to its charge conjugate ψ =

ψc := Bψ∗, which is possible iff BB∗ = 1, as can be seen as follows: First we note that ψ = ψc

implies (ψc)c = B(Bψ∗)∗ = ψ, i.e. BB∗ should have an eigenvalue 1. Complex conjugation of

−γa∗ = B†γaB yields γa = −BTγa∗B∗ = BTB†γaBB∗ = (BB∗)†γaBB∗, so that Schur’s lemma

implies BB∗ = b1. Using unitarity B−1 = B† we thus find B = b(B∗)−1 = bBT = b2B with

b = ±1. The sign factor b can be computed using the symmetry of C: Since A is the product

of p (q) γ matrices for p odd (even) we find

B = CAT ⇒ BT = ACT = ACc = CAT b ⇒ b = c(−)
s(s+1)

2 with s =

{

p p, q odd
q p, q even

(1.20)

(recall that Γa1...arC = CΓa1...arT (−)(
r+1
2 )). The sign b = (−)σ thus becomes

σ ≡ 1
2
p+q
2

(p+q
2

+ 1) + s2+s
2

≡ 1
2
(( q−p

2
)2 + q−p

2
) + 1

2
(pq + p+ s2 + s) (1.21)

≡ 1
2
q−p
2

( q−p
2

− 1) + 1
2
(pq + q + s2 + s) ≡ [ q−p

4
] mod 2 (1.22)

because for p odd pq + q + s2 + s = (p + 1)(q + p) ∈ 4Z and for p even pq + q + s2 + s =

q(p+1+ q+1) ∈ 4Z. Majorana spinors therefore don’t exist for q− p ∈ {4, 6} mod 8, i.e. in 6

and 8 even dimensions with Minkowski signature. Somewhat puzzling about this result is that

the existence of Majorana spinors depends on the convention that we use for the sign of the
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metric. There is, however, another spin(p, q)-invariant reality condition that we may impose,

namely ψ = B′ψ∗ with B′ = γ∗B. As above we find γ∗B(γ∗)
∗B∗ = b′1 with b′ = ±1,

b = (−)[ q−p
4

] ⇒ b′ = γ∗B(γ∗)
∗B∗ = (−)D(γ∗)

2BB∗ = (−)
p−q
2 b = (−)[ p−q

4
], (1.23)

so that indeed the role of p and q is exchanged in the modified Majorana condition (Majorana

spinors have to be multiplied by γ∗ times some phase to conform with such an exchange).

Sometimes spinors satisfying the modified Majorana condition are called pseudo Majorana

spinors. Note that B′ = γ∗B intertwines γa and +γa∗. Both reality conditions can be imposed

simultaneously iff the chiral projector commutes with B, which happens if p − q ≡ 0 mod 8.

Then we can have Majorana-Weyl spinors, i.e., with an appropriate choice of basis, real Weyl

spinors.

Theorem: There is a basis with B = 1 and all γ matrices imaginary iff b = 1. In this basis

the Dirac equation (i∂/ +m)ψ is real. (There is a basis with real γ matrices iff b′ = 1.)

Proof: As UBUT : V ∗′ → V ′ for U : V → V ′ the intertwiner B transforms into (a phase

times) UBUT under a unitary change of basis γa → UγaU †. Decomposing B into real and

imaginary part B = B1 + iB2 = BT we find BB† = 1 = B2
1 +B2

2 − i[B1, B2]. Hence B1 and B2

are commuting real symmetric matrices, which can be diagonalized simultaneously by a real

orthogonal transformation (which preserves unitarity of the representation). Then B becomes

a diagonal unitary matrix, which can be transformed into B = 1 with U = 1/
√
B. �

For practical calculations it is often convenient to use a Weyl representation in which the

chiral projectors are diagonal and, consequently, the matrices γa (which anti-commute with γ̃)

are block off-diagonal (to see this just make an ansatz for the blocks of γa). In such a basis

we split a Dirac spinor ψα into positive and negative chirality Weyl spinors ψα and ψ̃α̇; this is

called Infeld – van der Waerden notation. We thus have

γ̃ =

(

1 0
0 −1

)

⇒ (γa)α
β =

(

0 σa
αβ̇

(σa)α̇β 0

)

, ψα =

(

ψα

ψ̃α̇

)

, (1.24)

(Σab)α
β =

(

(σab)α
β 0

0 (σab)α̇β̇

)

,
σab = 1

4
(σaσb − σbσa)

σab = 1
4
(σaσb − σbσa)

(1.25)

Since γ̃ is real in a Weyl representation γ∗ is real iff γ2
∗ = 1, so that Bγ̃ = (−)

p−q
2 γ̃B. With an

ansatz for the block entries of B we thus find the following general form of its matrix elements:
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q − p = D − 2 0 ≡ 8 2 4 6

b = BB∗ 1 1 −1 −1

B = bBT

(

B
(s)
+ 0

0 B
(s)
−

) (

0 BT
−+

B−+ 0

) (

B
(a)
+ 0

0 B
(a)
−

) (

0 −BT
−+

B−+ 0

)

Majorana

(

ψ = B+ψ
∗

ψ̃ = B−ψ̃
∗

) (

ψ = BT
−+
ψ̃∗

ψ̃ = B
−+ψ

∗

)

— —

b′ = B′B
′∗ 1 −1 −1 1

B′ = b′B
′T

(

B
′(s)
+ 0

0 B
′(s)
−

) (

0 −B′T
−+

B′−+ 0

) (

B
′(a)
+ 0

0 B
′(a)
−

) (

0 B
′T
−+

B′−+ 0

)

p-Majorana

(

ψ = B′+ψ
∗

ψ̃ = B′−ψ̃
∗

)

— —

(

ψ = B
′T
−+
ψ̃∗

ψ̃ = B′
−+
ψ∗

)

In odd dimensions D = 2n + 1 there cannot exist intertwiners between γa and both +γa∗

and −γa∗. If we take the first D − 1 matrices γa (a = 1, 2, . . . , D − 1) to be those in D − 1

dimensions and γD = ±(i)γ∗
(2n) the intertwiners B,B′ used in D − 1 dimensions satisfy

B−1γaB = −γa∗, B′−1γaB′ = +γa∗, a = 1, . . . , D − 1, (1.26)

B−1γDB = B′−1γDB′ = (−)
p−q−1

2 γD∗ (1.27)

As in the case of charge conjugation, we define B′′ = 1
2

(

B′ +B + (−)
p−q−1

2 (B′ −B)
)

satisfying

B′′−1γaB′′ = (−)
p−q−1

2 γa∗, a = 1, . . . , D, (1.28)

B′′(B′′)∗ = b′′1 = (−)(
(p−q−1)/2+1

2 )1. (1.29)

q − p = D − 2 1 3 5 7

b′′ = B′′(B′′)∗ 1 −1 −1 1

With Minkowski signature (Pseudo) Majorana spinors thus exist in 1 and 3 mod 8 dimensions.

It can be shown that real Clifford algebras are always isomorphic to (the direct sum of two)

‘full matrix algebras’ M(d,K) with d× d real, complex or quaternionic entries [co82]:

p− q mod 8 D[p=1] mod 8 CR(p, q)

1 1 M(2[D/2],R) ⊕M(2[D/2],R)

2, 0 0, 2 M(2D/2,R)

3, 7 7, 3 M(2[D/2],C)

4, 6 6, 4 M(2D/2−1,H)

5 5 M(2[D/2]−1,H) ⊕M(2[D/2]−1,H)

The matrix algebra is real iff the γ matrices can be chosen to be real.
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1.4 Towards actions

Eventually we come to the discussion of Lorentz transformations Ωa
bγ
b = ΛγaΛ−1. Since

Λ cannot be chosen to be unitary this defines Λ up to a factor λ ∈ C
∗ = C − {0}. We next

show that this ambiguity can be resolved up to a sign if we require A and B to intertwine the

Lorentz transformations on the conjugate representation spaces:

−Ωa
bγ
b∗ = Ωa

bB
†γbB = B†ΛγaΛ−1B = −(ΛγaΛ−1)∗ = (Λ∗B†)γa(Λ∗B†)−1 (1.30)

implies that B†Λ and Λ∗B† are proportional, so that we can obtain B†ΛB = Λ∗ by a choice of

the phase of Λ. Similarly,

Ωa
bγ
b† = Ωa

bAγ
bA† = AΛγaΛ−1A† = (ΛγaΛ−1)† = (Λ†−1A)γa(A†Λ†). (1.31)

This implies that Λ†−1A and AΛ are proportional. Now the constant can be fixed to 1 by a

choice of a real factor for Λ. But Λ†−1A = AΛ implies A†Λ−1A = Λ† = AΛ−1A† since A and

A† are proportional, which completes the proof of our proposition.

In particular we have shown now that bilinears i(
r+1
2 ) χΓa1...arψ transform as antisymmetric

tensors under Lorentz transformations (all of them are real for χ = ψ). Since we are in even

dimensions we can insert chiral projectors, which flip chirality r+p times if we pull them through

the r factors of Γ and through the intertwiner A that defines the Dirac adjoint. In Minkowski

space this implies that kinetic terms ∂/ and minimal gauge couplings A/ preserve chirality, while

mass terms ψmψ and anomalous magnetic moments ψF/ψ flip chirality. In 4 mod 4 dimensions

it is, however, still possible to give a mass to a single Weyl spinor by coupling it to its charge

conjugate (charge conjugation changes chirality in D/2 6∈ 2Z + p dimensions, where B is off-

diagonal in a Weyl representation). Such a mass term is called Majorana mass and it violates

fermion number by 2 units.

The Fierz rearrangement formulas, which are crucial for the existence of supersymmetric

actions, follow from completeness of the basis {ΓI} = {Γa1...ar} of the Clifford algebra (for a

faithful representation the corresponding matrices thus provide a basis for the space of linear

maps of the representation space). We define ΓI := (ΓI)−1 = (ΓI)3; (ΓI)2 = ε(I)1 with ε2
(I) = 1.

Lemma: In even dimensions tr ΓI = 0 if ΓI 6= 1, tr1 = 2D/2 and ωI = 1
2D/2 tr(ω/ΓI).

Proof: For all ΓI 6= 1 there exists a ΓJ that anti-commutes with ΓI (in odd dimensions also

Γ∗ has to be excluded). Hence tr ΓI = tr ΓIΓJΓJ = − tr ΓJΓIΓJ = − tr ΓI (in the last step we

used cyclicity of the trace). The rest is obvious. �

Theorem: In even dimensions the following (equivalent) rearrangement formulas hold:

∑

I

(ΓI ⊗ ΓI)
βδ
αγ :=

∑

I

(ΓI)α
β (ΓI)γ

δ = 2D/2δδαδ
β
γ , (1.32)
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(ϕΓAψ) (χΓBη) = (−)ψχ+ψη+χη
∑

IJ

αIJ (ϕΓIΓ
Bη) (χΓJΓ

Aψ), αIJ = ε(I)δ
IJ/2D/2. (1.33)

This means, in particular, that the partners in 4-Fermi terms of a Lorentz-invariant action can

be exchanged. The number of terms that arise in this way, however, grows rapidly with the

dimension.

Proof: First we observe that
∑

I ΓIΓAΓI = ρA1 because it commutes with all elements of the

Clifford algebra (which follows from
∑

I ΓIΓAΓIΓ
B =

∑

I ΓB(ΓIΓ
B)−1ΓAΓIΓ

B =
∑

I ΓBΓIΓAΓI ,

where the sum over all ΓI was replaced by the sum over all ΓIΓ
B for fixed ΓB). Computing

the trace we find ρA = 2D tr ΓA/ tr(1) = 2D/2 tr ΓA. Contracting (1.32) with (ΓA)β
γ the r.h.s.

becomes proportional to δδα. Similarly we find the proportionality to δ
β
γ , and contraction of all

indices gives us the normalization. �

If we decompose the Dirac spinors into their Weyl components completeness of the ΓI

matrices allows us to decompose s ⊗ s and s ⊗ c into irreducible tensor representations of

the Lorentz group. We get the correct position of indices by multiplication with the charge

conjugation matrix (C−1ΓI)αβ. Thus the tensor product of spinors of equal chirality decomposes

into even forms in D ∈ 4Z dimensions (where C is block diagonal), and into odd forms in

D ∈ 4Z+2 dimensions. For c⊗s even and odd forms are exchanged. Comparing the dimension

2D−2 of the tensor products of chiral and/or antichiral fermions with the number of independent

components of the antisymmetric tensors
∑

even

(

D
r

)

=
∑

odd

(

D
r

)

= 2D/2 there seems to be a

mismatch by a factor of 2. This is easily resolved by observing that γ∗ is proportional to unity

on Weyl spinors, so that forms of degree r and D − r have to be identified (multiplication by

γ∗ is analogous to the Hodge ∗ operation on forms, i.e. contraction with the ε tensor, which is

invariant under special orthogonal transformations).

For the middle degree r = D/2 the ∗ operation is an endomorphism of Λr with ∗2 =

(−)Dr+r+q on r forms, which can thus be decomposed into eigenspace. Inserting D = p + q

and r = D/2 we obtain ∗2 = (−)r−q = (−)
p−q
2 = γ∗

2. Therefore the eigenvectors of ∗ are

(real) selfdual ω = ∗ω or anti-selfdual ω = − ∗ ω forms iff p−q
2

∈ 2Z, which coincides with the

signatures where charge conjugation preserves chirality. In particular, s⊗ s contains the scalar

in D ∈ 4Z (C is block diagonal) and the vector in D ∈ 4Z + 2 (C is off-diagonal). This is

in agreement with the result that the center of Dn = Spin(2n) is Z2 × Z2 for even n and Z4

for odd n (the center is related to the conjugacy classes of representations). The conjugate

representation in the group theoretic sense coincides with the complex conjugate iff A is block

diagonal, i.e. iff p is even.

SO(p, q) consists of two connected components if pq > 0 (this is easy to see if p = 1: the first

line of vb = Ω0
b must have length 1, hence (v0)2 = 1+~v2 > 1 and ortochronous transformations

with v0 > 0 cannot be continuously connected to transformations that change the time direc-

tion; in the general case one has to consider the determinant of Ω restricted to a positive definite
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subspace of maximal dimension).5 Transformations that are not in the component SO0(p, q)

of the unit element thus cannot be obtained by exponentiation of the Lie algebra. The above

proof of the existence of Λ and the fixing of its normalization by the intertwining equations

nevertheless apply, even if we consider general orthogonal transformations O(p, q). In the latter

case the normalized Λ’s represent the double covering group Pin(p, q) of O(p, q). All elements

of Pin can be written as Λ ∈ Spin with a possible additional factor of γ0, which implements

the parity transformation in Minkowski space.6 Another group that is sometimes considered

is the Clifford group, which consists of all invertible elements Λ of the Clifford algebra. Since

ΛγaΛ−1 always corresponds to an orthogonal transformation the Clifford group is a (twisted)

product of Pin and the abelian group that corresponds to multiplication by ±λ ∈ C
∗/Z2.

It was discovered in 1956 that parity P and charge conjugation symmetry C are violated

in weak interaction. In 1964 it was observed in kaon decay that even the product CP is not

a symmetry of nature. CPT , however, is respected by any local quantum field theory and, so

far, it seems also by nature. The proof of this theorem uses the transformation behavior of the

building blocks of the Lagrangian. Our interwiners A, B and C are, indeed, related to just

these three discrete transformations: A changes sign of space-like directions, C corresponds to

charge conjugation, and their product B comes with complex conjugation, which is related to

a change of the time direction in the Schrödinger equation.

If we want to have spinor fields in curved space we need a vielbein field em
a, which provides

an orthonormal basis ea = dxmem
a of cotangent space and whose inverse Ea

m allows us to define

the Dirac operator ∂/ := γaEa
m∂m. Globally we also need a spin structure: On an (orientable)

manifold the structure group of the tangent bundle can always be reduced to the (special) or-

thogonal group. For a spin structure we need to lift this to a bundle with structure group

(S)Pin. The (s)pin structure, if it exists, need not be unique: On compact orientable Riemann

surfaces, for example, there are 22g spin structures (which are combined into two classes, the

even and the odd spin structures, whose elements are mixed by modular transformations). The

Klein Gordon operator for spinors in torsion-free curved space is (iD/ +m)(iD/ −m) = −�−m2,

where we defined the Laplace operator on spinors as � := D/ 2 = D2 − 1
4
R.

Proof: Since (γm) is a Lorentz-invariant tensor D/ 2 = (γ(mγn) + γ[mγn])DmDn and D[mDn] =
1
2 [Dm, Dn]. Inserting the Lorentz generator in the spin representation we find γ[mγn][Dm, Dn] =

γ[mγn] 1
2Rmn

ijΣij = −1
2R because γ[mγn]γ[iγj] = AΓmnij −B(Γmiηnj − Γniηmj − Γmjηni + Γnjηmi) −

C(ηmiηnj − ηmjηni) with A = B = C = 1, as can be seen by inserting mnij = 0123, 0112 and 0110

into this ansatz. �

With this definition one finds for integrals over compact manifolds that 〈�φ, ψ〉 = 〈φ,�ψ〉.

5 It can be shown that Spin0(p, q) is simply connected for D > 2. SO(2, 0) is the infinitely connected circle
and the components of the hyperbola SO(1, 1) already are simply connected.

6 Any orthogonal transformation can be generated by at most D reflections on hyperplanes orthogonal to
vectors n, which can be realized as v/ → n/v/n//n2; SO(p, q) transformations correspond to an even number of
reflections.
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Chapter 2

Supersymmetry

We call a symmetry that (linearly) transforms physical Bose fields into physical Fermi fields

a supersymmetry (SUSY). Because of the spin–statistics theorem this implies that a SUSY

generator Qα transforms as a spinor under Lorentz transformations and is an odd element of a

Z2–graded symmetry algebra (assuming that Q and its hermitian conjugate act on a positive

definite Hilbert space it can be shown that Q must have spin 1/2 in 4 dimensions [WE83]).

The main constraint on the form of the supersymmetry algebra comes from the Coleman-

Mandula theorem [co67], which states that the most general Lie algebra of symmetries of the

S-matrix is the direct sum of the Poincaré algebra and a reductive compact Lie algebra if

1. the S-matrix is based on a local relativistic quantum field theory in 4 dimensions,

2. there are only a finite number of particles associated with one particle states of a given mass,

3. and there is a mass gap between the vacuum and one particle states.

In other words: Space-time symmetries and internal symmetries don’t mix. When it was

realized that this no-go result can be circumvented by supersymmetries (which are not part

of a Lie algebra), Haag, Lopuszanski and Sohnius [ha75, WE83] used the Coleman-Mandula

theorem to analyze the general structure of graded symmetry algebras. The bosonic part of

such algebras must be of the form that is predicted for Lie algebras of symmetries.

To take advantage of our knowledge about irreducible spin representations we will mostly

use a special type of Weyl basis for our analysis of SUSY algebras: Restricting our attention to

Minkowski signature p = 1 we can construct a Weyl representation in even dimensions using

a set {σi} of γ matrices that generate an irreducible representation of C(D − 1, 0), i.e. the

dimension of this representation is 2D/2−1 and σD−1 is proportional to the product σ1 . . . σD−2.

Then we define

(γa)α
β =

(

0 (σa)αβ̇
(σa)α̇β 0

)

, γ0 =

(

0 1
1 0

)

, γi =

(

0 σi

−σi 0

)

, (2.1)

so that σ0 = σ0 = 1 and σi = −σi. It is easily checked that these matrices obey {γa, γb} =
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−2ηab. Changing, for example, the sign of σa (but not of σa) we obtain an analogous basis

for the other sign convention in the Clifford algebra, as is used in the book of Wess and

Bagger [WE83]. In the Majorana–Weyl case D ≡ 2(8) the matrices σi can be chosen to be real,

so we automatically obtain a real Weyl basis (which could be modified into a Majorana–Weyl

basis by σa → iσa and σa → −iσa).

Symmetries can always be assumed to be real, because real and imaginary part of a sym-

metry transformation acting on the real action must vanish individually. SUSYs are therefore

often written in terms of Majorana spinors, which may cause some headache if we think about

6 dimensions, where no Majorana spinors exist. What matters, however, is that there always

exist real representations (take R ⊕ R∗ for a Weyl representation R). As far as counting of

SUSYs is concerned there is thus no difference between 4 and 6 dimensions. What is different

is that complex conjugation does not flip chirality in 6 dimensions, so that R ⊕ R∗ cannot be

written in terms of a single Dirac spinor. In 2, 6 and 10 dimensions extended SUSYs thus exist

with various distributions of chiralities: For N = 2 theories in 6D and 10D the names IIA and

IIB are used for the non-chiral and the chiral case, respectively; in 2D one talks about (p,q)

SUSYs (where N = p+ q).

To make chiralities more explicit it is useful to rewrite complex conjugates in terms of Dirac

adjoints (intertwiners can be used to write everything with indices α and α̇, which correspond

to the two inequivalent spinor representations). To write ψ = ATψ∗ in terms of (ψα)∗ we

observe that complex conjugation of AC = bcB gives aATC∗ = bc(BT )−1, where A∗ = aAT .

To pull down the index of ψ we multiply by C and use BC∗ = BB∗A = a∗bA−1 to arrive at

ψ
α

= ψ∗βA
βα = a∗bc ψβ∗B†

β

α, ψα = Bα
βψ∗β = a∗bA†

αβ
ψβ∗. (2.2)

In Minkowski space bc = −1 is independent of the dimension and A = γ0 implies a = 1 as

(γ0)2 = 1. Putting the pieces together we obtain the complex conjugation formula

(ξαQα)
∗ = abc(−)ξQ ξ

α
Qα = ab(−)ξQ ξαQ

α
(2.3)

(recall that ξαQα = ξαCT
αβC

−1βγQγ and CTC−1 = c1, with c = (−)[
D/2+1

2
] being negative in

2, 4, 10, 12, . . . dimensions, so that the position of indices is relevant in exactly these dimensions).

One might expect that the intertwiner C should transform covariantly, i.e. that its indices can

be raised with C−1. The fact is that (C−1)αγ(C−1)βδCγδ = (C−1)βα = (C−1T )αβ. This motivated

to two different conventions for the charge conjugation matrix with upper indices: Penrose and

Rindler [PE84], among others, insist that Cαβ should be the result of pulling indices up, so

that C with upper indices is equal to C−1T . Wess and Bagger [WE83], however, and most other

books on SUSY insist that Cαβ and Cαβ should be inverse, so that all indices are shifted by

left multiplication with C, except for the indices of C itself in the dimensions where c = −1.

To compare our results with the usual spinor gymnastics in 4 dimensions we define the
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proper position for index contractions to be ξαQα if Q is chiral and ξα̇Q
α̇ if it is antichiral. B

must be proportional to the product of all γ∗γ
a with γa real. In 4D and with σi being the Pauli

matrices we thus find B ∝ γ2. Choosing a phase of B such that C = BA∗ = ±iγ2γ0∗ is real

the charge conjugation matrix becomes

(

εαβ 0

0 εα̇β̇

)

= C = − iγ2γ0∗ =

(

−iσ2 0
0 iσ2

)

, ε ∼ iσ2 =

(

0 1
−1 0

)

(2.4)

Using the conventions of Penrose and Rindler this is consistent with ε21 = ε21 = 1 = ε1̇2̇ = ε1̇2̇,

and εα̇β̇ = −εαβ with εαβε
βγ = −δγα. To recover those of Wess and Bagger,

ψα = εαβψ
β, ψα̇ = ψ∗α = εα̇β̇ψ

β̇
, ε12 = ε21 = 1 = ε1̇2̇ = ε2̇1̇, εαβε

βγ = δγα, (2.5)

we have to change the sign of εαβ and of εα̇β̇.

For our choice of basis and with A = γ0 we find in even dimensions

ψ∗α = ψα̇, (ψα)∗ = bψ
α̇
, ψ∗α̇ = bψα, (ψα̇)∗ = ψ

α
. (2.6)

Note that in D = 2, 6, 10, . . . dimensions with Minkowski signature charge conjugation preserves

chirality and Cαβ is offdiagonal, so that (ξαQα)
∗ = (−)ξQb ξ

α̇
Qα̇ is somewhat misleading and

should rather be written as (−)ξQbc ξ
α
Qα = −(−)ξQ ξ

α
Qα (in this case the parameter ξα for a

chiral SUSY transformation Qα is antichiral). We thus obtain the real BRST transformations

D = 4, 8, . . . : (ξαQα)
∗ = (−)ξQb ξ

α̇
Qα̇ = (−)ξQbc ξα̇Q

α̇
,

s = ξαQα = ξαQα − ξα̇Q
α̇
, (2.7)

D = 2, 6, . . . : (ξαQα)
∗ = (−)ξQbc ξ

α
Qα, (ξα̇Q

α̇)∗ = (−)ξQbc ξα̇Q
α̇

sc. = ξαQα − ξ
α
Qα, sa.c. = ξα̇Q

α̇ − ξα̇Q
α̇
. (2.8)

In D = 2 mod 8 dimensions the negative terms in schical and santichiral should be omitted with

Qα = Qc
α = Bα

βQ∗β and ξα∗ = ξβBβ
α, i.e. Qα and iξα̇ = iC α̇

βξ
β should be Majorana spinors

since ξα∗ = ξβBβ
α implies ξα̇ = C α̇

βξ
β = (CB−1TC−1∗)α̇β̇ξ

β̇∗ with CB−1TC−1∗ = C(BC−1)∗ =

C bcB−1C = bc CA−1T = bcCA∗ = abcCAT = abcB and abc = −1. In case of extended super-

symmetries we have a sum of such terms. There are, of course, terms for all other symmetries

to be added to the BRST transformation, which at this point is only a convenient device to

collect all symmetries into a single real operator. Here the ξα are just commuting parameters.

In supergravity the superghosts ξα will become coordinate dependent bosonic fields that are

essential for covariant quantization.
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2.1 SUSY algebra and central charges

We make the following ansatz for the anti-commutator of supercharges in flat space:

{QI
α, Q

J
β} = 2δIJ(γaC)αβPa +

∑

p≥0

(Γa1...apC)αβZ
IJ
a1...ap

, (2.9)

where the indices I, J = 1, . . . , N label the spinor representations of the supercharges in case

of extended SUSY. The term proportional to the momentum on the r.h.s. is characteristic

for the algebra of supercharges, which are sort of square roots of momenta. The degrees and

symmetries of p-form charges ZIJ
a1...ap

that may occur depend on the dimensions and chiralities

of the spinors in the anti-commutator.

In 4 dimensions only scalar central charges ZIJ
a1...ap

are allowed by the Coleman–Mandula

theorem,1 so that the sum over p is restricted to 0 and 4. In both cases ZIJ must be antisym-

metric because c(−)[ r+1
2

] = (−)[
D/2+1

2
]+[ r+1

2
] is negative. This allows for N(N − 1) independent

real central charges. Writing the algebra in terms of Weyl spinors and using the Jacobi identities

it can be shown [ha75,WE83,ly96] that2

{QA
α , Qβ̇B} = 2σm

αβ̇
Pmδ

A
B, {QA

α , Q
B
β } = εαβa

i[AB]Ti, [QL
α, Tl] = Sl

L
MQ

M
α , (2.10)

[Tl, Tm] = iflm
kTk, {Qα̇A, Qβ̇B} = εα̇β̇a

∗
i[AB]T

i, [T l, Qα̇L] = S∗lL
MQα̇M (2.11)

is the most general form of the symmetry algebra, where al intertwines the representations Sl

and −S∗l in which Q and Q transform under the Lie algebra generators T l (all other graded

commutators vanish except for those with the angular momenta, which are fixed by the Lorentz

transformation properties).

To arrive at this result (see chapter 1 of [WE83] for details) one expands the central charges

Z ± iεabcdZabcd in terms of the internal bosonic generators Tl with complex coefficients al[AB].

Odd (even) form degrees, i.e. momenta (central charges), occur in the tensor products of spinors

with opposite (equal) chirality. Since [QA
α , Tl] is a chiral fermionic symmetry generator it must

be proportional to QB
β , i.e. [T,QA

α ] = −SABQB
α . and [T,Qα̇A] = S∗A

BQα̇B. This fixes the form

of eqs. (2.10) and (2.11).

Evaluation of the Jacobi identities (JI) implies the hermiticity and intertwining properties

of a and S: Since [Pm, Tl] = 0 the JI for {T,Q,Q} implies that S∗lM
L = Sl

L
M , i.e. S = S†.

The JI for {T,Q,Q} implies that [T, Z] is proportional to Z’s, so that because of the JI for

{Q,Q,Q} implies [Q,Z] = [Z,Z] = 0. Since a reductible Lie algebra is a direct product of

simple and abelian factors, the Coleman Mandula theorem now implies [T, Z] = 0, which, when

inserted back into the JI for {T,Q,Q} implies that a intertwines S and −S∗.
1 In principle the Lorenz generators could provide a 1-form contribution on the r.h.s., but this is inconsistent

with translational invariance of the SUSY charges [WE83].
2 Here we use the somewhat cryptic convention of [WE83] that complex conjugation shifts the index position.

Supersymmetry / M.Kreuzer — 19 — version June 6, 2010



The simplest example of a solution to these constraints is the case N = 2, where flm
k

are the structure constants of an SU2 in whose fundamental representation the supercharges

transform, the representation matrices are Sl = σl and −S∗l = −σ∗l , and εAB is the l-independent

intertwiner so that

{QA
α , Q

B
β } = εαβε

AB(c1Z1 + ic2Z2). (2.12)

This N = 2 algebra in 4 dimensions can be obtained by dimensional reduction from D = 6

dimensions, in which case the momenta in the two ‘internal’ dimensions can be interpreted as

the two central charges.

An interpretation of central charges in terms of ‘internal momenta’ is, however, not possible

for the N = 4 and N = 8 algebras, whose versions without central charges can be obtained by

reduction of N = 1 theories in D = 10 and D = 11: In these cases there can be 12 and 56

independent charges, with a maximum of 6 and 7 internal dimensions, respectively. The missing

pieces cannot come from central charges in the N = 1 algebra in 10- dimensions, which does

not allow for (scalar) central charges. It has been observed, however, a long time ago [ho82]

that this algebra allows, in addition to the momentum, for a self-dual 5-form charge Z+
abcde in

the anticommutator of chiral supercharges (only odd forms occur in s⊗ s and since c = −1 the

matrices Γa1...apC are symmetric only for p = 1, 2, 5, 6, 9).

The way in which the central charges arise in this context is quite non-trivial [ab91]. The

problem with the p-form charges, and the reason why they are forbidden by the Coleman

Mandula theorem, is that they cannot be carried by point particles but only by extended

objects. Recall that the classical coupling of a 1-form gauge field to a 0-form charge can be

written as an integral of the 1-form over the 0 + 1 dimensional world line of the particle. In a

similar way strings may carry a 1-form charge, with the coupling to the corresponding 2-form

gauge field given by its integral over the world sheet, and a p-form charge can be carried by

a p-brane, an object that extends into 1 time-like and p space-like directions. Point particles,

strings and membranes are thus 0-branes, 1-branes and 2-branes, respectively.

These ideas suggest that 10-dimensional super Yang-Mills theory should allow for a solitonic

5-brane solution that could carry the 5-form charge. Such a solution to the non-linear field

equations indeed exists: We just have to recall that there is an instanton3 solution with self-

dual field strength to the 4-dimensional YM/Higgs equations. With a constant extension of

this instanton into 1 time-like and 5 space-like directions this provides us with a 5-brane in 10

dimensions. If we then compactify down to 5 dimensions on a torus we can wrap the 5 trivial

space-like dimensions of the 5-brane around the 5-torus and thus obtain a point-like particle in

3 Instantons are localized in Euclidian time and their action is related to quantum mechanical tunneling
probabilities, whereas solitons are localized wave packets that evolve in time without decay. Instantons in D
dimensions thus give rise to solitons in D + 1. The existence of such solutions is due to non-linearities in the
field equations and they are stable because they carry topological charges (instanton/winding numbers) [eg80].
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4 + 1 dimensions that looks like a magnetic monopole. The maximal dimension in which this

mechanism can provide extra central charges is thus D = 5.

To get down to 4 dimensions we also need to compactify one of the non-trivial dimensions

of the instanton on a circle and deform the selfdual soliton solution to a selfdual configuration

on R
3 × S1. Alltogether we thus have a compactification on the 6-torus T 6 = T 5 × S1. The

N = 4 SUSY multiplet contains a vector field and 6 scalars (these multiplets will be analysed in

the next section; the scalars can be interpreted as the 6 compactified components of the vector

field in D = 10 super-YM). This allows for 6 different types of magnetic charges by using one of

these scalars as the Higgs field for the monopole construction. All of these 6 different charges

can be realized by the different choices of the non-trivial direction in the compactification on

T 6. In this way we find a realization of the maximal number 12 of central charges for the

N = 4 algebra in D = 4. Only half of these charges are electric with the remaining half being

magnetic, so that they cannot be seen in perturbation theory.

The simplest way to understand the non-perturbative nature of magnetic charges is the

Dirac quantization condition: If we couple the field strength to both types of charges we have

to modify the BI dF = 0 into an equation of motion dF = ∗j(m), where j(m) is the magnetic

current 1-form. Of course F can then be written as F = dA only locally and only in source-free

regions of space-time. For a point-like magnetic source the gauge connection A can be defined

outside a ray from the source to infinity, the so-called Dirac string, because the Poincaré

lemma is valid for star-shaped regions.

The charge of a magnetic monopole can be measured by the integral g =
∫

S2 F of the

magnetic flux over a 2-sphere containing the source, just as the electric charge is given by the

integral e =
∫

S2 ∗F over the electric flux. Since F is continuous we can take out an infinitesimal

disk ∆ε of the sphere around the intersection with the Dirac string and let ε→ 0 to compute the

magnetic charge: g =
∫

S2 F ≈
∫

S2−∆ε
dA = −

∫

∂∆ε
A. The Aharonov-Bohm phase that the wave

function of an electrically charged particle of charge e receives when carried around the Dirac

string is exp(2πie
∮

A). Vanishing of this phase thus implies that the product ge ∈ 2πZ must be

quantized for all electric charges e and magnetic charges g in a consistent quantum-mechanical

system [ha962].4 Therefore, as the electric charge goes to 0 in a perturbative expansion the

magnetic one goes to infinity, and so does the mass of any solitonic solution that provides a

magnetic source, for example, in a spontaneously broken GUT.

If we increase the electric coupling the monopoles become lighter and may eventually dom-

inate the physics in the strong coupling regime. This suggests that there may be a dual de-

scription in which the elementary degrees of freedom are magnetic and the electrically charged

4 For dyons that have both types of charges this generalizes to the Dirac–Zwanziger quantization condition
e1g2 − e2g1 ∈ 2πZ with ei and gi being the electric and magnetic charge of the the ith particle.
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particles are solitons. Such a naive duality is spoiled, however, by quantum corrections (one of

the obstacles is the running of the coupling constant). In supersymmetric theories the central

charges imply Bogomol’nyi bounds [bo76] for the masses of charged particles (see below), so

that many classical results are protected against quantum corrections (monopoles that saturate

this bound are called BPS monopoles [pr75]). This lead to the Montonen–Olive conjecture of

a duality in N = 4 super-YM theory. Such a duality that relates a strongly coupled (electric)

theory to a weakly coupled (magnetic) theory is called S duality. This picture has then been

extended to a group of SL(2Z) transformations for τ = θ
2π

+ i4π
e2

, where θ is the coefficient of

the topological term
∫

F ∧ F in the YM action [ol78]. In the N = 2 supersymmetric case the

duality is conjectured to apply to the low energy effective theory of a spontaneously broken

SYM model [se94,bi96].

The analogous story for N = 8 is complicated by the necessity to include gravity since the

minimal N = 8 multiplet in 4 dimensions contains a spin 2 particle. All the allowed central

charges can be realized by compactifications of type IIA or IIB N = 2 supergravities in 10

dimensions or of the N = 1 supergravity in D = 11 [to95]. In the following table we list

the allowed p-form charges and the dimensions of the existing solitonic p-branes [du95,to95],

including their multiplicities in the IIB case. With
(

10
2

)

= 45,
(

10
5

)

= 252,
(

10
6

)

= 210 one finds

D : N Qα degrees ZIJ p-form branes #(charges)

10: 1 s odd sym. 1, 5+ 1, 5 136=10+1
2

(

10
5

)

10: IIA Dirac all sym. 1,2,5,6,9,10 0,1,2,4,5,6 528=10+45+252+210+10+1

10: IIB s⊕ s odd any 1, 3, 5+
3 , 7, 9 12, 3, 52 528=3×10+120+3×126

11: 1 Dirac all sym. 1,2,5 2,5 528=11+
(

11
2

)

+
(

11
5

)

As in the N = 4 case only half of the central charges are electrical, so that 28 = 56/2 is

the maximal number of charges that can be carried by perturbative states. This ‘maximally

democratic’ situation is realized, for example, by the heterotic string [to95].

Note that the electric–magnetic duality applies to field strengths Fp+2 = ∗F ′(D−p−4)+2, so

that p branes that may carry the cooresponding p-form charges are dual to D − p − 4 branes

[ne85,te86]. In particular, point particles are dual to point particles in 4 dimensions and strings

are dual to strings in 6 dimensions and to 5-branes in 10 dimensions. After compactification

D − p − 4 only gives a lower bound since some of the dimensions of the extended object may

be wrapped around non-trivial cycles of the internal manifold.

The wrapping modes of string solitons [st90,du95] have a beautiful application to Calabi–

Yau compactifications on singular manifolds: It has been known for some time that conifold

singularities occur at finite distance (with respect to the Zamolodchikov metric of the σ model

CFT) in the moduli spaces of Calabi–Yau spaces. At these singluarities correlation functions
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of the CFT diverge, which leads to conceptual problems. Strominger observed that these

singularities can be explained by taking into account non-perturbative states that are due to

the wrapping of 5-branes around cycles whose size shrinks to 0 as we approach the singular

locus in moduli space [st95, gr95]. It is conjectured that all moduli spaces of Calabi–Yau

compactification are connected via singular limits [ca89,av95], and that the physics is smooth

at the transition points due to this black hole condensation mechanism. The change in the

Hodge numbers, and in the corresponding numbers of massless matter multiplets, can indeed be

reproduced by a counting of the non-perturbative states that become massless at the singularity.

2.2 Spontaneous SUSY breaking and the Witten index

One of the important motivations for SUSY is the hope for an explanation of the small cosmo-

logical constant. In nature SUSY cannot be realized as an unbroken symmetry since that would

imply, for example, the existence of a scalar particle with the same mass and electric charge

as the electron (Qα commutes with the momentum Pm). It is thus important to investigate

whether SUSY can be broken spontaneously and how this is related to the vacuum energy. For

massive momentum eigenstates we find in the rest frame

{QA
α , Qβ̇B} = 2Mδαβ̇δ

A
B ≥ 0 (2.13)

which is positive in a unitary theory, i.e. for a Hilbert space with positive norm. This implies

that all SUSY generators vanish on (physical) states with vanishing momentum, like a vacuum

with vanishing energy density. If, in turn, SUSY is not spontaneoulsy broken, then the l.h.s.

vanishes and so does the vacuum energy.

The real puzzle is therefore why the cosmological constantant vanishes after SUSY breaking.

Positivity of the vacuum energy is no longer required in SUGRA models, which may lead to

explicit ‘soft’ SUSY breaking terms in the flat limit, but in any case we loose a prediction for the

value of Λ [ni84,la87]. Recently Witten had an idea how SUSY could still keep Λ at 0 without

enforcing the mass-degeneracy in 4 dimensions: In the context of string dynamics non-SUSY

models in 4 dimensions can be related to supersymmetric ones in 3D, where SUSY can then

keep Λ = 0 and at the same time avoid the troublesome implications in 4 dimensions [wi951].

An important quantity for the investigation of spontaneous SUSY breaking is the Witten

index [wi82]

Tr (−)NF = Tr e2πiJz , (2.14)

where NF is the fermion number operator and the trace extends over the Hilbert space of a

quantum mechanical system. This index only receives contributions from states with vanishing
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energy and momentum, as can be seen by evaluating the trace

2σm
αβ̇
Pmδ

A
B Tr(−)NF = Tr(−)NF {QA

α , Qβ̇B} = Tr(−)NFQA
αQβ̇B − TrQβ̇B(−)NFQA

α = 0 (2.15)

for a subspace of fixed total momentum. For Pm 6= 0 all representations thus need to have an

equal number of bosonic and fermionic degrees of freedom. Note that the Hamilton operator

may not exist as an operator in the Hilbert space in a supersymmetric QFT with positive

vacuum energy density. The Witten index can, however, be computed reliably at finite volume,

i.e. in a box with periodic boundary conditions that do not spoil SUSY, since then the energy

eigenvalues are discrete and finitely degenerate.5

Obviously, if the Witten index is non-vanishing then there are states with vanishing energy

and SUSY cannot be spontaneously broken. Being an integer, we may expect that a continous

change in the parameters of a model should not be able to change this index. From quantum

mechanics we know that the low-lying energy spectrum indeed cannot have a discontinuous

behaviour if the asymptotic form of the potential is not changed (discontinuities can arise,

however, for example at λ → 0 for V = 1
2
φ2 + λφ4). The Witten index can thus be used to

check whether SUSY can be broken by non-perturbative effects [wi82].

This index also makes explicit the relation between SUSY and topology: In the zero-

momentum sector of the Hilbert space the Hamiltonian can be written as an anti-commutator

of two supercharges,

H = QQ+QQ, Q2 = Q
2

= 0, (2.16)

which is similar to the situation in Hodge theory, where the Laplacian is the anticommutator of

d and its adjoint δ = (−)p ∗−1 d∗; in 4 dimensions we can use Q = Q1 or Q = Q2 with Q = Q∗.

For a nilpotent operator all linear represention spaces decomposes into singlets Q|φ〉 = 0 with

|φ〉 6= Q|φ′〉 and doublets (|ψ〉, Q|ψ〉. For positive energy Q|φ〉 = 0 implies |φ〉 = Q(Q|φ〉/E) so

that all positive energy states are doublets

|φ−〉 = 1√
E
Q|φ+〉, |φ+〉 = 1√

E
Q|φ−〉, (2.17)

whose contributions to the index cancel as we already know. For E = 0, on the other hand,

we already know that positivity of the Hilbert space norm implies that all states must be

Q invariant and thus must be singlets (Q commutes with H, so that a Q-exact state would

have to be Q applied to a zero energy state). The states with E = 0 thus coorespond to

the cohomology classes of Q. Singlet states with opposite statistics can in principle pair up

and become doublets with positive energy under perturbations of the model. If Tr(−)NF is

5 The definition (−)NF = exp(2πiJz) can still be used: If the Lattice has the appropriate symmetry (−)NF

is, for example, the 4th power of a rotation by 90 degrees. An example where it is important to worry about
the existence of operators is the ‘theorem’ that N = 2 SUSY cannot be broken to N = 1 in flat space [ce84],
which may be spoiled by contact terms in the current algebra [hu86].
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non-zero, however, then there is an excess of bosonic or fermionic states that can’t pair up

and thus have to stay at zero energy, and SUSY cannot be broken spontaneously. There is

a unique ‘Hodge decomposition’ of the (~P = 0)–sector of the Hilbert space into a sum of

‘exact’ states |φ+〉 = Q|φ1〉, ‘coexact’ states |φ−〉 = Q|φ2〉, and ‘harmonic’ states |φ0〉 with

Q|φ0〉 = Q|φ0〉 = 0. For supersymmetric σ models on Riemann surfaces the Witten index turns

out to be given by the Euler characteristic [wi82].

2.3 4D SUSY multiplets and BPS bounds

Before we construct QFTs that actually feature SUSY we first study the representations of

SUSY that can occur for momentum eigenstates in 4 dimensions. We have to treat separately

the cases of massive and massless particles, since in the former case we can go to the restframe

and assume pm = (M, 0, 0, 0), whereas for massless particles we can only use spatial rotations

to achieve pm = (E, 0, 0, E). The respective stability groups (also called little groups) that leave

this choice invariant are SO(3) ∼= SU(2)/Z2 and SO(2) ∼= U(1), respectively.6

We first consider the case of massive particle with vanishing central charges. In the rest

frame the anticommutation relations

{QA
α , Qβ̇B} = 2Mδαβ̇δ

A
B ≥ 0, {Q,Q} = {Q,Q} = 0, (2.18)

then define the Clifford algebra CC(4N), as can be seen by computing the anticommutators

for the set {γa} = {(QA
α + Qα̇A)/

√
2M} ∪ {i(QA

α − Qα̇A)/
√

2M}. The irreducible faithful

representation of this algebra can be constructed by declaring, for example, that aAα = QA
α/

√
2M

must annihilate a Clifford vacuum Ω, with the creation operators (aAα )† = Qα̇A/
√

2M generating

the representation freely up to the anticommutation relations.

The state with the highest spin in a multiplet is found by symmetrizing in as many spinor

indices as possible. If Ω is an SU2 singlet then we obtain the fundamental massive multiplet

whose dimension is 22N . Since the creation operators anti-commute the index pairs (A, α̇) have

to be anti-symmetrized. Symmetrization in α̇ thus requires anti-symmetrization in A, so that

we can symmetrize at most N spinor indices and the maximal spin in the fundamental multiplet

is N/2. If Ω itself transforms as a spin j representation then the dimension of the representation

becomes (2j+1)22N and its maximal spin is j+N/2. The detailed spin content of such a SUSY

multiplet is obtained by decomposing the tensor products of the spin j representation Ω with

the components of the fundamental massive multiplet into irreducible SU2 representations. The

result of this straightforward exercise is given in the table below.

6 It was observed by Wigner that the difference between the representation theories for on-shell states and
for local Lorentz–invariant fields is the reason for the necessity of gauge invariance for a covariant description
of massless fields with spin 1 (and 2) [wi39,bi82].
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Spin N = 1 |0〉 |12〉 |1〉 |32〉 N = 2 |0〉 |12〉 |1〉 N = 3 |0〉 |12〉 N = 4 |0〉

0 2 1 5 4 1 14 14 42

1
2 1 2 1 4 6 4 14 20 48

1 1 2 1 1 4 6 6 15 27

3
2 1 2 1 4 1 6 8

2 1 1 1 1

nb=nf 2 4 6 8 8 16 24 32 64 128

Table: Spin content of massive SUSY multiplets for extended SUSY in 4D.

Since we are dealing with representations of a Clifford algebra we have a compact SO(4N)

symmetry acting on these multiplets (the relevant symmetry groups are compact since they

have to respect the norms of the Hilber space states). Under SO(4N) the fundamental massive

multiplet decomposes into two irreducible representations, which consist of the bosonic states

and the fermionic states, respectively. The SO(4N) transformations do not change the masses

of particles, but they transform among states of different spins, so that it is useful to consider

smaller invariance groups that are direct products with SU(2). An obvious invariance group

of the N extended SUSY algebra is U(N).7 Whereas Q and Q transform under inequivalent

representations of SO(1, 3), they are equivalent as SO(3) representations (in arbitrary dimen-

sions the same arguments apply to Qα and Qα̇, i.e. the representations s and c). This suggests

that it may be possible to extend U(N) to a group that also transforms Q’s into Q’s. Since ε

intertwines the SO(3) representations8 Q and Q = Q† we choose a basis

qAa = aAα , qN+A
a =

∑

β

εaβ(a
A
β )† ⇒ (qAa )† = εαβqN+A

β , (qN+A
a )† = −εαβqAβ (2.19)

With Λ = ε⊗ 1 the operator algebra can be written in the compact form

(qrα)
† = εαβΛrsqsβ, {qrα, qsβ} = −eαβΛrs, Λ =

(

0 1
−1 0

)

, (2.20)

which is manifestly invariant under9 USp(2N) ⊗ SU(2). It can be shown that states of equal

spin transform irreducibly under this USp(2N).

7 In the case N = 1 this is the R symmetry that corresponds to multiplication of Q and Q by complex
conjugate phases, which plays some role in the construction of the SUSY standard model.

8 As we go to the little group we leave away γ0. In 4D εαβ intertwines ~σ and −~σ∗ since
(

0 −1

1 0

)(

A B
C D

)

=

(

D −C
−B A

)(

0 −1

1 0

)

.

Thus Qα and Qα̇, transforming in complexe conjugate representationsof SO(3), are intertwined by ε.
9 USp(2N) is the compact real form of the classical Lie group CN = Sp(2N).
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The massless representations can now be analyzed in a similar way. We start with the

operator algebra

{QA
α , Qβ̇B} = 2

(

2E 0
0 0

)

αβ̇

δAB, {QA
α , Q

B
β } = {Qα̇A, Qβ̇B} = 0. (2.21)

The operators Q2 and Q2 are totally anticommuting and must be represented by 0 (just as

totally commuting operators of an operator algebra can be replaced by numbers in an irreducible

representation). The representation spaces can therefore be built on some Clifford vacuum of

helicity h− by acting with the N creation operators a†A = 1
2
√
E
Q1̇A. They are of dimension 2N

and range up to helicity h+ = h− + N/2; at helicity h− + n/2 the degeneneracy is
(

N
n

)

. In

general it is, however, necessary to add a representation with the CPT conjugate states, which

have opposite helicity. The representations with h+ = −h− = N/4 are CPT complete.

For the multiplets of states that carry central charges [na78,fe81] we denote the antisym-

metric matrix of eigenvalues of the charges by ZAB. This matrix can be block-diagonalized by

a unitary transformation Q → UQ, Z → UZUT = ε ⊗ D with a diagonal positive matrix D

and blocks of anti-symmetric 2 × 2 matrices (if N is odd then we have to append a row and

a line with entries 0 to ε ⊗D). The invariant information thus consists of [N/2] positive real

eigenvalues Zi, and the algebra in the block-diagonal basis reads

{Qam
α , (Qbn

β )†} = 2Mδβαδ
b
aδ
m
n , {Qam

α , Qbn
β } = εαβε

abδmnZn, {(Qam
α )†, (Qbn

β )†} = εαβεabδmnZn

(2.22)

with a, b = 1, 2 and m,n = 1, . . . , N/2. The operators Qam
α and (Qam

α )† can now be linearly

combined to operators

amα =
1√
2
(Q1m

α + εαβ(Q
2m
β )†), bmα =

1√
2
(Q1m

α − εαβ(Q
2m
β )†) (2.23)

that satisfy the following algebra:

{amα , (anβ)†} = δαβδ
mn(2M + Zn), {bmα , (bnβ)†} = δαβδ

mn(2M − Zn), (2.24)

{amα , (bnβ)†} = 0 {amα , anβ} = {amα , bnβ} = {bmα , bnβ} = 0. (2.25)

Positivity of norms implies that 2M ≥ Zn for all eigenvalues Zn of central charges. This

yields a Clifford algebra with 2(N − r) creation and annihilation operators if 0 ≤ r ≤ N/2

of the central charges are equal to 2M . If r = N/2, i.e. all if charges are equal to 2M , then

the size of the representation is the same as for a massless multiplet. The stability group is

SU(2)spin⊗USp(2N −2r)int. in the massive case and U(1)hel.⊗SU(N)int. in the massless case.

As an example we consider the case N = 4: Here the short multiplet with Z1 = Z2 = 2M

consists of 1 spin=1, 4 spin=1/2 and 5 spin=0 representations with 1 · 3 + 4 · 2 + 5 = 16

degrees of freedom. In the massless limit this turns into the massless multiplet, which has
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the same size, but this time decomposing into helicities h = ±1, 4 times h = ±1
2

and 6

times h = 0. Giving, in turn, a vacuum expectation value (VEV) to a scalar in the massless

multiplet we must arrive at a short multiplet via the Higgs mechanism that saturates the so-

called Bogomol’nyi bound Z = 2M ; such states are called BPS states and their mass formula is

protected under (sufficiently well-behaved) deformations by the same mechanism that requires

the pairing of all massless states to break SUSY spontaneously. For N = 4 we can also have

an intermediate multiplet with Z1 < Z2 = 2M and 1 spin=3/2, 6 spin=1, 14 spin=1/2 and 14

spin=0 representations. The size of this SUSY representation is 4 + 6 · 3 + 14 · 2 + 14 = 64, in

coincidence with the fundamental massive N = 3 multiplet; the fundamental massive N = 4

multiplet is also called long multiplet in this context.

2.4 Supersymmetric field theories

Having discussed the multiplets of momentum eigenstates that we can expect in a physical

Hilbert space we now turn to the construction of local quantum field theories whose symme-

try algebras contain SUSY generators. What we actually want to construct is local actions

depending on some set of elementary fields that transform into total derivatives under SUSY

transformations. In this context it is useful to think in terms of jet bundles, which means that

we consider the fields φi and their formal partial derivatives [φi] = {φi, ∂mφi, ∂m∂nφi, . . .} as

independent variables; local functionals like actions are then (formal) space-time integrals over

analytic functions in the [φi] that are polynomials in [∂mφ
i].

Conceptually it is important to distinguish between the supercharge Qα, the supersymmetry

transformation Dα that should act linearly on the elementary fields, the implementation Qα of

SUSY transformations in terms of a superspace differential operator acting on superfields, and

the covariant derivative Dα that also acts in superspace. Denoting the canonical coordinates

by qi and a symmetry transformation by δIq
i = fI

i(q, q̇) the time derivative of the Noether

charge is Q̇I = δIq
i (δL/δqi). Using the Poisson brackets

{A,B}PB := (−)iA
(

∂A

∂qi
∂B

∂pi
− (−)i

∂A

∂pi

∂B

∂qi

)

, {pi, qj}PB = −δij (2.26)

with the Noether charge we can, in turn, recover the symmetry transformation

δIA := {QI , A}PB, {QI , H}PB = 0, Q̇I = δIq
i δL

δqi
. (2.27)

If the elementary fields transform in some linear representation then it is natural to consider

right multiplication with the representation matrices

δIφ
i = {QI , φ

i}PB = (−)IjφjTI j
i = −(−)j(T cI )

i
jφ

j, (2.28)
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where the matrices TI describe the right-action of the group and T cI = −T TI denote the

corresponding contragradient representation matrices. This is only possible if the structure

functions fIJ
K([φ]) of the symmetry algebra [δI , δJ ] = fIJ

KδK are constants, and we find

[TI , TJ ] = fIJ
KTK for the graded commutator. (With a left action of the representation matri-

ces we would have obtained a negative sign for the structure constants.)

Upon quantization Poisson brackets are replaced by i/~ times commutators

i~{pi, qj}PB → [Pi, Q
j] = −i~δij, δIA = i

~
[QI , A]. (2.29)

The Schrödinger equation i∂tψ = Hψ implies the time evolution Ȯ = i[H,O] of Heisenberg

operators. This is consistent with

{Pm, φ}PB = −∂mφ, [Pm, φ] = −i∂mφ, {Qα, Qβ̇} = 2σm
αβ̇
Pm, (2.30)

{Qα, φ}PB = −Dαφ, [Qα, φ] = −iDαφ, {Dα, Dα̇} = 2i∂/αα̇ := 2iσmαα̇∂m, (2.31)

{Qα̇, φ}PB = −Dα̇φ, [Qα̇, φ] = −iDα̇φ, [Dα, ∂m] = [Dα̇, ∂m] = 0 (2.32)

because {Dα, Dα̇}φ = i[Qα, i[Qα̇, φ}} + i[Qα̇, i[Qα, φ}} = −[{Qα, Qα̇}, φ] = 2iσmαα̇∂m, where

[A,B} := AB − (−)ABBA denotes the graded commutator. We also use the abbreviation

vαα̇ := v/αα̇ := σmαα̇vm to write vectors in terms of spinor indices.

In order to construct a field theory with a linear realization of supersymmetry we next have

to find representations of the algebra {Dα, Dα̇} = 2iσmαα̇∂m and then constructions of invariant

actions depending on those fields. The most natural representation is obtained by declaring

Dα̇ to be ‘annihilation operators’ on some elementary scalar field φ. Since DαDβDγ = 0 the

resulting (scalar) chiral multiplet consists of φ, the Weyl spinor χα := Dαφ/
√

2 and the auxiliary

field F := −D2φ/4 (F is not dynamical in a renormalizable theory since it has mass dimension

2 if φ has its canonical dimension 1). Note that φ must be a complex field since reality of

φ would imply that it is also antichiral Dαφ = 0 and thus, because of the SUSY algebra,

constant. The action of Dα̇ on χα and F is fixed by the SUSY algebra and the definition of

these fields. Denoting the SUSY transformation with constant commuting parameters ξα by

s = ξαDα + ξ
α̇
Dα̇ we find

Dα̇φ = 0, χα = 1√
2
Dαφ, F = −1

4
D2φ, (2.33)

sφ =
√

2ξχ, sχα =
√

2(ξαF + iσaαα̇ξ
α̇
∂aφ), sF =

√
2iσaαα̇ξ

α̇
∂aχ

α. (2.34)

as is easily checked using the identities

D2 = −εαβDαDβ, DαDβ = 1
2
εαβD

2, [D2, Dα̇] = 4iDα∂/αα̇, [Dα, D
2
] = 4i∂/αα̇D

α̇
, (2.35)

which follow from our conventions Dα = εαβDβ, εαβε
βγ = δγα, D

2 := DαDα, D
2

:= Dα̇D
α̇.
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Invariant Lagrangians can be constructed by observing thatD2D
2
acting on any (composite)

field and D2 acting on a (composite) chiral field always give expressions that transform into

total derivatives. It can be shown [br92] that the most general supersymmetric lagrangian L
that depends on a set {φi} of chiral fields and the corresponding hermitian conjugate anti-chiral

fields {φi} is of the form10

L = −1
4
D2L+ h.c., L = 3

8
D

2
K([φ,Dφ,D2φ], [φ,Dφ,D

2
φ]) + g(φ), (2.36)

where g is called superpotential and K is called Kähler potential. Note that the superpotential

can be chosen not to contain any derivatives (no ∂’s and no D’s). A redefinition K → K +

f(φ)+f ∗(φ), which changes the action only by total derivatives, is called Kähler transformation.

Such a transformation together with a suitable normalization of the chiral fields can be used to

bring an analytic Kähler potential into the form K = −1
3

∑

i φ
i
φi + . . . if the kinetic energies

are positive. The dots denote terms of dimension 3 or higher. If we demand renormalizability

such terms are forbidden and the superpotential must be cubic, so that

L = −1
4
D2
(

−1
8
D

2
φφ+ g(φ)

)

+ h.c., g = γ + λiφ
i + 1

2
mijφ

iφj + 1
6
κijkφ

iφjφk. (2.37)

ε intertwines ~σ and −~σ ∗, hence also σa and (σa)T , so that εαβεα̇β̇σa
ββ̇

= σaα̇α and

[D2, D
2
] = 4i∂/αα̇[D

α, D
α̇
] = 8iD∂/D − 16� = 16� − 8iD

α̇
∂/αα̇D

α (2.38)

because {Dα, D
α̇} = 2i∂/α̇α and ∂/∂/ = −�1 with ∂/ := σm∂m and tr1δαα = 2. Evaluation of

L = (D
2
φD2φ+ 2DφDD

2
φ+D2D

2
φφ)/32 − (D2φi∂ig +DφiDφj∂i∂jg)/4 + h.c. thus yields

L = −1
2
�φiφ

i − iχiσa∂aχ
i + F iF

i
+ F i∂ig − 1

2
χiχj∂i∂jg + F

i
∂ig
∗ − 1

2
χiχj∂i∂jg

∗, (2.39)

where the kinetic terms and FF come from the Kähler potential. Integrating out the auxiliary

fields by inserting their equations of motion F i = −∂ig we find the potential

V (φ, φ∗) =
∑

i

|∂ig|2 = |F (φ)|2 (2.40)

10 It is easy to see that all terms are of the form D2X + c.c and that all terms containing chiral and

antichiral fields can be written as D2D
2
Y : We define the operator tα by tαDβφ = δα

βφ
i, tαD2φ = −2Dαφi

and tαφi = tαφ
i

= {tα,Dα̇} = [tα, ∂a] = 0 so that {tα,Dβ} = δα
βE(φi, χi, F i), where E is the Euler operator

that counts the degree of homogeneity in the component fields of chiral multiplets (formally one may write
‘tα = ∂/∂(Dα)’ when acting on chiral fields). As t and D act linearly we may decompose the action into terms
Ln of definite degree n in (φi, χi, F i). Since [D2, tα] = 2EDα and [D2, t2] = 4E(tD − E) a supersymmetric
action with DαLn = ∂aX

a
α can be written as Ln = − 1

4n2D
2(t2Ln) + 1

4n2 ∂a(t2DαXa
α + 4ntαXa

α) for n > 0, i.e.
Ln can be written as D2 acting on some local function up to total derivatives. Similarly it can be shown that

terms depending on antichiral fields can be written as D
2
(−t2Ln/4n

2) and terms that depend on both, chiral

and antichiral fields, are of the form D2D
2
K.

To show that X can be assumed to depend only on φ (without derivatives) is more involved and this result
depends on the ‘QDS-structure’ of the SUSY representation on chiral fields [br92]; note that the linear SUSY
representations on local fields are infinite dimensional because {D,D} contains the partial derivative.
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for the scalar fields. The terms −1
2
χiχj∂i∂jg and their hermitian conjugates are the Yukawa

couplings. (2.38) implies that we can define projection operators

Π+ =
D

2
D2

16�
, Π− =

D2D
2

16�
, ΠT = −DD

2
D

8�
= −DD

2D

8�
, Π+ + Π− + ΠT = 1, (2.41)

where Π+ and Π− project onto chiral and anti-chiral fields, respectively (to see this, evaluate

DD
2
D = D[D

2
, D]+D2D

2
and DD2D = D[D2, D]+D

2
D2). ΠT is called transversal projector.

2.5 Superspace

In the superspace approach SUSY transformations are interpreted as motions in a space with

anticommuting coordinates θα and θα̇ in addition to the space-time coordinates xm. Complete

SUSY multiplets like (φ, χ, F ) are combined into a single superfield Φ(x, θ, θ). The supersym-

metry transformation acting on a superfield is then represented by a linear combination of an

ordinary partial derivative and a derivative with respect to the anticommuting coordinates.

With an appropriate ansatz we find the operators

Qα =
∂

∂θα
+ i∂αβ̇θ

β̇
, Qα̇ = − ∂

∂θ
α̇
− iθβ∂βα̇, {Qα,Qα̇} = −2iσaαα̇∂a (2.42)

that obey the appropriate algebraic relations (since σm∗ = σmT and ∂/∂ψ∗ = (−)|ψ|(∂/∂ψ)∗ we

have Q∗ = Q). A superfield Φ is then a function in superspace that satisfies

QαΦ = DαΦ, Qα̇Φ = Dα̇Φ, (2.43)

where D and D act on the component fields.11

Lemma: Any superfield F can be written in the form F = F(Φ) = exp(θD+ θD)f(φ), where

f(φ) is the θα-independent part of F .

Proof: First we show that exp(θD+θD)f(φ) satisfies (2.43). Evaluating BeA = eA(B−[A,B]+
1
2
[A, [A,B]] − . . .) with B = Qα −Dα and A = θD + θD we find [A,B] = −Dα + 2i∂/αα̇θ

α̇
and

[A, [A,B]] = 2i∂/αα̇θ
α̇
. Putting everything together QF = DF follows from Qαf = iθ

α̇
∂/αα̇f

and Q = D by complex conjugation.

Next we show that any superfield must have a non-vanishing θ-independent part: Splitting

F =
∑Fmn into terms Fmn of degree m in θ and n in θ the equations (2.43) imply recursion

relations that allow to express all Fmn linearly in f = F00. Since the difference of the superfields

exp(θD+ θD)f and F is again a superfield, this difference must vanishes, which completes the

proof of the lemma. �

11 {Q,Q} = −{D,D} is consistent with this equation because QΦ = DΦ is no superfield.
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Q does not map superfields to superfields since {Q, D} = 0 but {Q,Q} 6= 0. To impose

the chirality condition on superfields we thus need another differential operator in superspace,

the covariant derivative

Dα =
∂

∂θα
− i∂αβ̇θ

β̇
, Dα̇ = − ∂

∂θ
α̇

+ iθβ∂βα̇ (2.44)

which satisfies

{Dα, Dβ} = {Dα,Qβ} = {Dα, Dα̇} = {Dα,Qα̇} = 0, {Dα,Dα̇} = 2iσaαα̇∂a, (2.45)

so that it preserves the superfield property. Indeed, the chirality condition Dα̇Φ = 0 for a

superfield is equivalent to the chirality of its θ-independent part since

Dαe
θD+θD = eθD+θD(Dα + i∂/αα̇θ

α̇
+Dα) = eθD+θD(∂θα +Dα) (2.46)

The components of a chiral superfield are easily evaluated using the formulas

eθD+θD = e−iθ∂/θeθDeθD = eiθ∂/θeθDeθD, (2.47)

which follow from [θD, θD] = 2iθα∂/αα̇θ
α̇

and the Baker–Campbell–Hausdorff formula

eAeB = eA+B+ 1
2
[A,B]+ 1

12
([A,[A,B]]−[B,[A,B]])+ multiple commutators. (2.48)

We thus obtain

Φ(x, θ, θ) = e−iθ∂/θeθDφ(x) = φ(y) + θDφ(y) − 1
4
θ2D2φ(y), ym = xm − iθσmθ (2.49)

and the analogous formula for anti-chiral fields by complex conjugation. To obtain the θ-

dependent components explicity we just have to formally Taylor-expand φ(y), χ(y) and F (y)

in y − x.

The advantage of the superspace formulation is that we can rewrite the action as a super-

space integral and extend the Feynman rules to a supergraph calculus [WE83,br96]. To this end

we define superspace integration with {zM} = {xm, θα, θα̇} and δ-functions by

∫

dθα = ∂
∂θα ,

∫

d2θ =
∫

dθ2dθ1,
∫

d2θ =
∫

dθ
1̇
dθ

2̇
,

∫

d4θ =
∫

d2θd2θ, (2.50)
∫

d6z =
∫

d4xd2θ,
∫

d6z =
∫

d4xd2θ,
∫

d8z =
∫

d4xd4θ (2.51)

δ2(θ − θ′) = −1
2
(θ − θ′)2, δ6(z − z′) = δ2(θ − θ′)δ4(x− x′), (2.52)

δ2(θ − θ
′
) = −1

2
(θ − θ

′
)2, δ6(z − z′) = δ2(θ − θ

′
)δ4(x− x′), (2.53)

δ8(z − z′) = δ2(θ − θ′)δ2(θ − θ
′
)δ4(x− x′) (2.54)

Up to total derivatives the action (2.36) can then be rewritten in terms of θ-integrations using
∫

d2θ exp(θD + θD)f(φ) = 1
2
D2 exp(θD) f(φ) + tot.div., (2.55)

∫

d4θ exp(θD + θD)f(φ) = 1
4
D2D

2
f(φ) + tot.div. (2.56)

As usual, propagators are most easily obtained by solving the equations of motion for the

sources via evaluation of all possible projections.
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2.6 Supersymmetric Yang–Mills theory

There are two apparently independent approaches to a supersymmetric generalization of Yang-

Mills theory. The first is to look for a superfield containg the gauge fields: We might think

about a real superfield whose highest component is the gauge field. For such a field, however,

we would have to impose complicated constraints to get rid of higher spin components. It is

much easier to start from a superfield that is based on a real scalar field

V = V † = C + θA/θ + 1
2
θ2θ

2
(D − 1

2
�C) +

(

(θχ+ θ2M + θ
2
θ(λ− i

2
∂/χ)) + h.c.

)

, (2.57)

which already contains a real vector field A as its θθ-component. The linear SUSY represen-

tation that comes with the real scalar superfield is therefore called vector multiplet. To find

the multiplet structure of the component fields we use F(Φ) = exp(θD+ θD)f(φ). Expanding

eθD+θD = 1
2
(e−iθ∂/θeθDeθD + c.c.) we find

1
2
(θD + θD)2 = 1

2
θαθ

α̇
[Dα, Dα̇] − 1

4
(θ2D2 + θ

2
D

2
), (2.58)

1
3!
(θD + θD)3 = θ2(1

4
D2Dα̇ − i

2
Dα∂/αα̇)θ

α̇
+ θ

2
θα(−1

4
D

2
Dα − i

2
∂/αα̇D

α̇
), (2.59)

1
4!
(θD + θD)4 = 1

4
θ2θ

2
(1

8
(D2D

2
+D

2
D2) − �). (2.60)

so that the SUSY representation defined by a superfield V i is

A/iαα̇ = 1
2
[Dα, Dα̇]C

i = (DαDα̇ − i∂/αα̇)C = (i∂/αα̇ −Dα̇Dα)C, (2.61)

χiα = DαC
i, λiα = − 1

4
D

2
DαC

i, M i = −1
4
D2Ci, Di = 1

16
{D2D

2
+D

2
D2}Ci. (2.62)

The component fields χiα, M
i and λiα are complex. The real fields Di transforms into a total

derivative under SUSY (such terms are called Fayet–Iliopoulos or D-terms; they are gauge

invariant and thus can contribute to the action only for abelian factors of the gauge group).

The gauge invariant field strength F i
mn = ∂mA

i
n − ∂nA

i
m of the real gauge connection Am is

contained in Dαλ
iβ = F/ i

α
β + iδβαD

i (see below).

Out of a chiral superfield Λ with lowest component L we can construct a special real

superfield by adding its complex conjugate. This suggests the following supersymmetrization

of gauge transformations:

δV = Λ + Λ†,
δC = 2 ReL, δχ = DL, δM = D2L,

δAm = −2 Im ∂mL, δλ = δD = δFmn = 0.
(2.63)

Note that the transversal projector ΠT in (2.41) projects onto the gauge invariant content of

the real superfield. For a chiral superfield of charge q the gauge transformation and a gauge

invariant kinetic energy may thus be defined by

Φ → e−qΛΦ, V → V + Λ + Λ†, K(Φ,Φ†, V ) = Φ†eqV Φ. (2.64)
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To complete the action of supersymmetric QED we need to choose a gauge-neutral superpo-

tential and add the kinetic terms for the gauge fields Am and the gauginos λ via the Kähler

potential K(V ) = λαχα + h.c.,

D2D
2
(λαχα) + h.c. ∼ D2 (λαλα) + h.c. ∼

(

−1
4
FmnF

mn − iλ∂/λ+ 1
2
D2
)

. (2.65)

In the superspace version polynomials and exponentials in the superfields are rather tedious to

evaluate and we can use supergauge transformations to set C = χα = M = 0. This is called

the Wess–Zumino gauge, which is left invariant by ordinary gauge transformations, i.e. gauge

transformations with Λ being θ-independent and imaginary (such a restricted Λ is no longer

a superfield and its non-vanishing component is no linear SUSY representation, except for the

trivial case where it is constant). In the Wess–Zumino gauge the gauge interaction is manifestly

renormalizable.

The generalization to non-abelian gauge theories is now easy to guess: We let Φ become vec-

tors that transform in some representation of the gauge group and V = V iδi. Then supergauge

transformations are defined by [WE83]

Φ′ = e−ΛΦ, eV
′

= eΛ
†

eV eΛ ⇒ V ′ = V + Λ + Λ† +O(Λ2). (2.66)

and supersymmetric gauge-covariant field strength can be defined by

Wα = −1
4
D

2
e−VDαe

V ⇒ W ′
α = e−ΛWαe

Λ, (2.67)

which leads to the gauge-invariant supersymmetric action

L =
1

4k
tr
(

D2(W αWα) + h.c.
)

+D2D
2
(φ†eV φ) +

(

D2ginv(φ) + h.c.
)

. (2.68)

with additional D-terms µ2
iD

i for abelian factors of the gauge group. Since the transformation

law of V starts with the familiar V -independent term Λ+Λ† the non-abelian theory also allows

for a Wess–Zumino gauge with V 3 = 0.

2.7 Supercovariant derivatives and Bianchi identities

In an alternative approach to super Yang–Mills we start with the covariant derivatives

Da = ∂a + Aiaδi → Dα = Dα + Aiαδi (2.69)

and try to impose reasonable constraints on the covariant field strengths FAB defined by

[DA,DB} = −TABCDC + F i
ABδi, [δi, δj] = fij

kδk, Tαβ̇
c = 2iσc

αβ̇
(2.70)
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with all other torsion components vanishing. The constrains must be consistent with the Bianchi

identities
f
∑

ABC

(−)AC
(

DAF
i
BC + TAB

DF i
DC

)

= 0 (2.71)

that follow from the Jacobi identity for commutators. (The first Bianchi identity, which arises as

the coefficient of DA in the Jacobi identity, is trivial in flat space with only internal symmetries).

In supersymmetry there are two types of constraints: The first type can be imposed by a

mere redefinition of what we call the covariant derivative. Such conventional constraints are

familiar from Riemannian geometry: There we can absorb the torsion Tab
c into a redefinition

of the spin connection ωm
ab that determines the covariant derivative and thus replace a general

metric-compatible connection by the Christoffel connection. This is a mere change of basis

of the covariant local coordinates of the jet bundle and the torsion then becomes a particular

tensor field that may (or may not) be set to 0. Computing the field strengths in terms of the

connections we find

F i
αβ̇

= DαA
i

β̇ +Dβ̇A
i
α + AjαA

k

β̇fjk
i − 2iA/iαβ̇, (2.72)

so that F i
αβ̇

= 0 can be imposed as a conventional constraint.12

In order to construct gauge invariant interactions for matter fields we want to impose a

covariant chirality condition Dα̇φ = 0. Covariantly chiral fields can, however, be charged under

the gauge group only if {Dα,Dβ} = F i
αβδi vanishes. We thus impose the standard constraints

F i
αβ = F i

α̇β̇
= 0, F i

αβ̇
= 0. (2.73)

The general form of the gauge algebra, with the non-vanishing commutation relations

[Da,Db] = F i
abδi, [Dα,Da] = iσaαβ̇W

iβ̇
δi, {Dα,Dβ̇} = 2iD/αβ̇ (2.74)

can then be obtained by solving the Bianchi identities, which also imply

Dα̇W = 0, DI :=
1

2
DαW I

α , DαW
Iβ = σabβα F I

ab + iδβαD
I . (2.75)

To derive this result we should first analyse the identities with contributions from torsions:

f
∑

αβγ̇

(...) = σaαγ̇Faβ + σaβγ̇Faα = 0 ⇒ σaαγ̇Faβ = εαβW γ̇ , Faα = σaαβ̇W
β̇

(2.76)

i.e. Faα contains no spin 3/2 component. Except for the complex conjugate of the above the

only other BI with contributions from torsions is

f
∑

αβ̇c

(...) = DαFcβ̇ + Dβ̇Fcα + 2iσa
αβ̇
Fab = 0 ⇒ Fab = −1

4
(DσaσbW −DσaσbW ) (2.77)

12 Then the gauge potential Ai
m can be written in terms of (covariant derivatives of) Ai

α and A
i

α̇, which are
therefore called prepotentials. This is similar to the fact that we can express the spin connection in terms of
the vielbein if we impose Tab

c = 0.
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Antisymmetry of Fab thus implies

DW = DW, Fab =
1

2
(DσabW −DσabW ). (2.78)

The only remaining Bianchi identity that contains new information is

f
∑

α̇β̇c

(...) = Dα̇Fcβ̇ + Dβ̇Fcα̇ = 0 ⇒ (σcαα̇Dβ̇ + σc
αβ̇
Dα̇)W

α = 0, Dα̇Wα = 0, (2.79)

i.e. Wα is covariantly chiral (use σcαα̇σ
β̇β
c = 2δβαδ

β̇
α̇ after contraction with σγγ̇c ). We can make

contact with our previous results by relating gauge covariant derivatives to ordinary ones via

[dr87,WE83]

Dα = Dα + Aiαδi = eiVDαe
−iV , Aiα = eiV [Dα, e

−iV ], (2.80)

where V i is a real scalar superfield. Covariantly chiral fields are related to chiral fields by

multiplication with eiV . It can be shown that V = V iδi parametrizes the most general solution

to the constraints, so that the real scalar superfield saves us all the work with the Bianchi

identities in super-YM theory.

In supergravity, however, no such nice magic is known and we have to do it the hard

way by solving the Bianchi identities with constraints. We can either work in superspace

with the supervielbein and super-spin connection, and eventually use a superspace coordinate

transformation to go to a Wess–Zumino gauge when life becomes to tedious, or we may avoid

to introduce the redundant fields that are eliminated by that gauge from scratch and work with

the structure of the gauge algebra. This is the approach that we will follow in the next section.
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Chapter 3

Supergravity

3.1 Symmetry algebras

In this section we analyse the general structure of closed irreducible symmetry algebras (or gauge

algebras) for which the infinitesimal symmetry transformations are implemented by derivations

∇M on tensor fields φ(ϕ) that are functions of some set of elementary fields ϕ (and their

derivatives). Linear independence of ∇Mφ
i and the Jacobi identity for graded commutators

[∇M ,∇N} := ∇M∇N − (−)MN∇N∇M imply the Bianchi identities

[∇M ,∇N} = FMN
P∇P ⇒ f

∑

MNP

(−)MP
(

∇MFNP
Q −FMN

RFRP
Q
)

= 0. (3.1)

The structure functions FMN
P = −(−)MNFNM

P are graded antisymmetric and their grading

is given by |FMN
P | = |M |+ |N |+ |P | mod 2. The signs in cyclic sums originate from the Jacobi

identity and can be understood from the rule that [A, .} should act like a graded derivation

on the ‘commutator product’, i.e. [A, [B,C}} = [[A,B}, C} + (−)AB[B, [A,C}}, which is

equivalent to d
∑

ABC(−)AC [A, [B,C}} = 0.

In supergravity we split the covariant symmetry transformations ∇M into space-time sym-

metries {DA} = {Da,Dα} and internal symmetries {δI} = {lab, δi, δW , δR}, which generate

Lorentz transformations, Yang–Mills group actions, dilatations and R symmetries (which act

only on Dα), respectively. This split implies that the structure functions receive different inter-

pretations:

[DA,DB} = −TABCDC + FAB
IδI , [δI ,DA} = −gIABDB, [δI , δJ} = fIJ

K , (3.2)

with torsions TAB
C , field strengths FAB

I , representations matrices (gI)A
B, and structure con-

stants fIJ
K . Note that FiA

B = 0 since space-time symmetries are inert to gauge transforma-

tions. The field strengths corresponding to Lorentz transformations RAB
ab := FAB

ab are called
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curvatures. With

FAB
C = −TABC FIB

C = −gIBC FIJ
C = 0

FAB
K = FAB

K FIB
K = 0 FIJ

K = fIJ
K

(3.3)

the Bianchi identities thus become

BI 1: f
∑

ABC

(−)AC
(

DATBC
D + TAB

ETEC
D − FAB

IgIC
D
)

= 0, (3.4)

BI 2: f
∑

ABC

(−)AC
(

DAFBC
I + TAB

DFDC
I
)

= 0. (3.5)

and the meaning of the remaining identities is that TAB
C and FAB

K transform as representations

under δI according to their indices,

δIFAB
K = −gIADFDBK + (−)ABgIB

DFDA
K + (−)IA+IBFAB

JfJI
K , (3.6)

δITAB
C = −gIADTDBC + (−)ABgIB

DTDA
C + TAB

DgID
C , (3.7)

and that the representations matrices gI and the structure constants fIJ
K are invariant tensors

δIgJA
B = 0 (the representation property of g) and δIfJK

L = 0 (the Jacobi identity for f).

We assume that the δI are linearly represented on tensor fields and that representation ∂m

of infinitesimal translation is a linear combination of the covariant derivatives

∂mφ = −Am
N(ϕ)∇N φ. (3.8)

To specify the field content we assume that the connection one forms AN = dxmAm
N and

their (symmetrized) derivatives can be chosen to be the only non-covariant variables of the

jet bundle. (The formalism can be extended to the case of p-form gauge fields and reducible

gauge algebras, as well as to algebras that only close off-shell [br961]). With em
a := −Am

a and

em
aEa

n = δnm we define

{Am
M} = {−ema,Am

µ} = {−ema, ψmα,Am
I} = {−ema, ψmα, ωmab,Am

i + . . .}, (3.9)

Da = Ea
m(∂m + Am

µ∇µ) = Ea
m(∂m + ψm

α Dα + 1
2
ωm

ablab + Am
iδi + . . .). (3.10)

In these equations the vielbein em
a is assumed to be invertible and vielbein and gravitino

(Rarita–Schwinger field) are interpreted as connections for translations and SUSY transforma-

tions. Commutation of the partial derivatives [∂m, ∂n] = 0 and independence of ∇N φ then

imply

∂mAn
P − ∂nAm

P −Am
MAn

NFNM
P = 0, (3.11)

which can be solved for the field strengths with bosonic indices

em
aen

bFab
N = ∂mAn

N − ∂nAm
N − em

cAn
µFµc

N + en
cAm

µFµc
N + An

νAm
µFµν

N . (3.12)
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This equation could again be split into equations for field strengths and torsions in terms of the

various connections to obtain the usual lengthy formulas (the last term with ν = j, µ = i, N = k,

for example, gives the A2-term in YM).

It is straightforward to set up the BRST formalism for symmetry algebras of this type. The

BRST transformations of the matter fields is defined by replacing the gauge parameters by

ghost fields of opposite grading |CI | ≡ |∇I |+ 1 mod 2, i.e. sφi = CN∇Nφ
i. For any closed and

irreducible gauge algebra one may check that s2φi = 0 uniquely fixes the BRST transformations

of the ghost fields.

sφi = CN∇Nφ
i ⇒ sCP = (−)M

2
CMCNFNM

P . (3.13)

s2CP = 0 is then equivalent to the Bianchi identity (3.1).

Anti-commutativity of s and d, which follow from [s, ∂m] = {s, dxm} = 0, may then be used

to define a new nilpotent operator s̃ := s + d and C̃N = CN + AN so that s + d = C̃N∇N on

tensor fields. (3.13) implies because of formal identity of the algebras that

(s+ d) C̃P = 1
2
(−)N C̃N C̃MFMN

P (3.14)

whose split into parts with ghost number 0, 1 and 2 yields

sCP = 1
2
(−)NCNCMFMN

P , (3.15)

sAP + dCP = CMANFNM
P , (3.16)

dAP = 1
2
AMANFNM

P . (3.17)

The first two equations define the BRST transformations of connections and ghost fields. Con-

sistency of the last equation with the tensor transformation law of the field strengths can be

checked by a straightforward computation.

To obtain the more conventional form of this transformation law we use the reparametriza-

tion

ξa := Cmem
a, ξµ := Cµ + CmAm

µ = Cµ + iCAµ. (3.18)

ξm corresponds to the vector field entering the Lie derivative and we thus obtain

s φ = (ξm∂m + ξµ∇µ)φ, (3.19)

s em
a = ξn∂nem

a + (∂mξ
n) en

a + ξµAm
NFNµ

a, (3.20)

sAm
µ = ξn∂nAm

µ + (∂mξ
n)An

µ + ∂mξ
µ + ξνAm

NFNν
µ, (3.21)

s ξm = ξn∂nξ
m + 1

2
(−)µξµξνFνµ

aEa
m, (3.22)

s ξµ = ξn∂nξ
µ + 1

2
(−)νξνξρ(Fρν

µ −Fρν
aEa

mAm
µ). (3.23)

The CN are called covariant ghosts: The necessity of a redefinition of ghost variables in covariant

equations can already be observed in Riemannian geometry: Since the Lie derivative maps
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tensors into tensors it should be possible to write it in terms of covariant derivatives. But this

works out only if we combine it with a Lorentz transformation and redefine the parameter Λ:

Lξ + 1
2
Λabl

ab = ξlDl − (Diξ
k + ξlTli

k)∆k
i + 1

2
Λ̂abl

ab, Λ̂ab = Λab − ξlωlab. (3.24)

(∆i
j and lab are the GLn and Lorentz generators; for simplicity we avoid any world indices

on tensors by contraction with the vielbein, which is a connection in the present context, or

with differentials in case of field strengths). Using Λ̂ we also find sωna
b = −DnΛ̂a

b − ξlRlna
b,

in analogy with the tensorial property of the variation of the connection coefficients sΓnl
m =

DnDlξ
m+Dn(ξ

kTkl
m)+ξkRknl

m. Of course these results are contained in their above extension

to more general algebras of covariant derivatives if world indices are avoided.

Returning to the construction of supergravity theories, the next step is to impose constraints

since the connections we introduced so far yield highly reducible theories that, furthermore,

usually do not allow for matter fields obeying equation of motion of the type that we expect.

First one ones redefinitions ∇M → XM
N∇N with XM

N = δNM + HM
N(F) of the covariant

derivatives to bring the gauge algebra into a standard form, where we have the conventional

constaints

Tαβ̇
a = 2iσa

αβ̇
, Tab

c = Tαβ
γ = Tα̇β̇

γ̇ = Taβ̇
γ = 0, F i

αβ̇
= 0. (3.25)

To allow for chiral matter multiplets one extends this to the following collection of standard

constraints:

Tab
c = 0, Tαβ

a = 2iγaαβ, F i
αβ = 0, Tαβ

γ̇ . (3.26)

(which of these constraints are conventional slightly depends on whether we gauge R and Weyl

symmetries).

Consistency of the constraints requires that the Bianchi identities are fulfilled, the check of

which is the crucial (and most tedious) step in the construction of a SUGRA theory. These

identities usually imply additional constraints and the general parametrization of the allowed

curvatures and torsions requires the introduction of auxiliary fields that, together with the

vielbein em
a and the gravitino ψm

α, constitute the (off-shell) graviton multiplet. In some

complicated cases, like 10-dimensional SUGRA and N = 4–extended SUGRA in 4 dimension,

it has be shown that our approach cannot lead to a satisfactory theory. In these cases on must

extend our framework and admit open and reducible gauge algebras.

The standard constraints are usually not sufficient and finding a useful complete set of

constraints (i.e. obtaining an irreducible SUGRA theory) requires some experience (educated

guesses and tedious evaluation of the consequences). In 4-dimensions, for example, there are

3 known sets of solutions, called old minimal, new minimal and non-minimal SUGRA. Non-

minimal SUGRA has some ugly features as far as allowed matter couplings are concerned and

new minimal SUGRA is the one that automatically comes out of superstring theory.
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It turns out that not all of the BIs are independent. Some of them can be solved explicitly

for the curvatures in terms of torsions. Inserting these solutions with curvature and torsion

defined in terms of the gauge connections as above, the second BIs become redundant. This is

the content of the following

Theorem (Dragon): The second BI follows from the Ricci identity D2 = R and the first set

of BIs [dr79,MU89].

To find the most general local action that is invariant under a given gauge algebra the

BRST formalism can be used to derive the descent equations, which reduce to problem to the

computation of cohomologies of (super) Lie algebra [br92].

Supersymmetry / M.Kreuzer — 41 — version June 6, 2010



Bibliography

[CH54] C.Chevalley, The algebraic theory of spinors (Columbia U.P., New York
1954)

[MU89] M.Müller, Consistent classical supergravity theories, Lecture Notes in Physics 336 (Springer,
Berlin 1989)

[PE84] R.Penrose, W.Rindler, Spinors and space-time, Vol. I:Two-spinor calculus and relativistic
fields, Vol. II:Spinor and twistor methods in space-time geometry (Cambridge Univ. Press,
Cambridge 1992)

[WE83] J.Wess, J.Bagger, Supersymmetry and Supergravity, (Princeton Univ. Press, Princteon 1983)

[Re84] T.Regge, The group manifold approach to unified gravity, in ‘Relativity, Groups and Topology
II’, eds. B.S.DeWitt, R.Stora, Les Houches XL ’83 (North Holland, Amsterdam 1984) p.933

[ab91] E.R.C.Abraham, P.K.Townsend, Intersecting extended objects in supersymmetric field theo-
ries, Nucl. Phys. B351 (1991) 313

[av95] A.C.Avram, P.Candelas, D.Jancic, M.Mandelberg, On the connectedness of the mod-
uli Space of Calabi–Yau manifolds, Nucl. Phys. B465 (1996) 458 [arXiv: hep-
th/9511230]

[bi82] J.J.van der Bij, H.van Dam, Y.J.Ng, Physica A 116 (1982) 307

[bi96] A.Bilal, Duality in N=2 SUSY SU(2) Yang–Mills theory: A pedagogical introduction to the
work of Seiberg and Witten, hep-th/9601007

[bo76] E.B.Bogomol’nyi, Sov.J.Nucl.Phys. 24 (1976) 449

[br92] F. Brandt, Lagrangians and anomaly candidates of D = 4, N = 1 Rigid supersymmetry, Nucl.
Phys. B392 (1993) 428;
Anomaly candidates and invariants of D = 4, N = 1 supergravity, Class.Quant.Grav. 11

(1994) 849 hep-th/9306054
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