New Calabi-Yau 3-folds and their mirrors via conifold transitions / data supplement
 [arXiv:math/0802.3376] data supplements
 V. Batyrev, M. Kreuzer: Constructing new Calabi-Yau 3-folds and their mirrors via conifold transitions

```Results and Hodge data  Picard number:    1     2     3     4     5    6   7   8  9 10 11 12 15
#conifolds:    8871 43080 74570 50863 17090 3540 646 124 41 17  2  4  1
#smooth CYs:    210  3470 11389 10264  3898  815 140  35  9  8  1  1  1
#topologies:     69

Lists with h11=1: Ypic1.sortH.gz Ypic1.sortV.gz
8871 CYs with h12 = 21,23-51,53,55,59,61,65,73,76,79,89,101,103,129
210 smooth: h12 = 25,28-41,45,47,51,53,55,59,61,65,73,76,79,89,101,103,129

Lists with h11=2: Ypic2.sortH.gz Ypic2.sortV.gz
43080 CYs with h12 = 22,24-80,82-90,96,100,102,103,111,112,116,128
3470 smooth: h12 = 26,28-60,62-68,70,72,74,76,77,78,80,82-84,86,88,90,96,100,102,112,116,128

Lists with h11=3: Ypic3.sortH.gz Ypic3.sortV.gz
74570 CYs with h12 = 23-97,99-107,111,112,115,118,121,124
11389 smooth: h12 = 25,27-73,75-79,81,83,85,87,89,91,93,95,99,101,103,105,107,111,115

Lists with h11=4: Ypic4.sortH.gz Ypic4.sortV.gz
50863 CYs with h12 = 20,22-108,111-112,115
10264 smooth: h12 = 24,28,30-76,78-82,84,86,88-98,100,102,104,106,112

Lists with h11=5: Ypic5.sortH.gz Ypic5.sortV.gz
17090 CYs with h12 = 21,23-93,95,97,99,100,108
3898 smooth: h12 = 27,29,30-83,85-93,97

Lists with h11=6: Ypic6.sortH.gz Ypic6.sortV.gz
3540 CYs with h12 = 24-80,82,83,85
815 smooth: h12 = 28,30-32,34-56,58-70,72-76,80,82

Lists with h11=7: Ypic7.sortH.gz Ypic7.sortV.gz
646 CYs with h12 = 21,24-64,66,67,70,76
140 smooth: h12 = 27,29-31,33-35,37-41,43,45,47,49-51,53,55,57,59,61,62,64,76

Lists with h11=8: Ypic8.sortH.gz Ypic8.sortV.gz
124 CYs with h12 = 24-34,36-46,49-53
35 smooth: h12 = 30,32-34,36,38,40,42,44,52

Lists with h11=9: Ypic9.sortH.gz Ypic9.sortV.gz
41 CYs with h12 = 19,24-35,37,38,40,43,44,47
9 smooth: h12 = 31,33,37

Lists with h11=10: Ypic10.sortH.gz Ypic10.sortV.gz
17 CYs with h12 = 23,24,26-28,30,34,36
8 smooth: h12 = 26,30,34,36

Lists with h11=11: Ypic11.sortH.gz Ypic11.sortV.gz
2 CYs with h12 = 23,27
1 smooth: h12 = 27

Lists with h11=12: Ypic12.sortH.gz Ypic12.sortV.gz
4 CYs with h12 = 22,24,26,28
1 smooth: h12 = 28

Lists with h11=15: Ypic15.sortH.gz Ypic15.sortV.gz
1 (smooth) CY with h12 = 23
```

• File lists and HOWTO find the polytopes
```Results: Y.v06.gz Y.v07.gz Y.v08.gz Y.v09.gz Y.v10.gz
Y.v11.gz Y.v12.gz Y.v13.gz Y.v14.gz Y.v15.gz Y.v16.gz
Y.v17.gz Y.v18.gz Y.v19.gz Y.v20.gz Y.v21.gz Y.v22.gz
Y.v23.gz Y.v24.gz Y.v25.gz Y.v26.gz Y.v27.gz

HOWTO find the polytopes: Find the spectra in "Ypic#.sortH", then search for the correct
file(s) in "Ypic#.sortV" (look for "Y.v##.gz" at beginning of line).
FILE FORMATS: rk=rank of relations due to squares <= #sq,  #sq=number of basic squares,
#dp=number of double points,  toric=spec of toric resolution  F=F-vector of M-lattice polytope
dim x #vertices: N-lattice polytope as column vectors,  M: #points #vertices  N: #points #vertices
```

• HOWTO reproduce the results (assuming a UNIX-like environment)
```  mkdir ccy ; cd ccy ; WD=\$PWD                                              # create working directory
wget hep.itp.tuwien.ac.at/~kreuzer/CY/palp/palp-1.1.tar.gz                # fetch and compile PALP
gunzip palp-*.tar.gz; tar -xvf palp-*.tar
cd palp ; make ; cd \$WD
wget http://quark.itp.tuwien.ac.at/~kreuzer/d4/zzdb.info                  # fetch 4d reflexive polytopes:
VL="05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27" # be sure you want to do this,
for NV in \$VL ; do                                                        # these are 4.5 GB !!!
wget http://quark.itp.tuwien.ac.at/~kreuzer/d4/zzdb.v\$NV ;
done
for NV in \$VL ; do                                                        # add "&" for multi-processor:
palp/class.x -b -di zzdb -vf \$NV -vt \$NV | palp/poly.x -vfC1 > CY.v\$NV &
done;

```