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Superstrings in General Backgrounds

In der vorliegenden Arbeit werden einige Aspekte des Superstrings im allgemeinen Hintergrund betrachtet.
Die Arbeit unterteilt sich in drei Teile: Der erste studiert die Vorraussetzungen, unter denen man bosonische
Strukturgleichungen in graduierte (z.B. im Superraum) {ibertragen kann und formuliert diese in einem Satz.
Auf diesen Betrachtungen basierend werden Konventionen verwendet, die graduierungsabhingige Vorzeichen
absorbieren und die als Grundlage der Rechnungen des zweiten Teils dienen.

Der zweite Teil beschreibt den Typ II Superstring mithilfe von Berkovits’ “pure spinor” Formalismus. Die
darin u.a. enthaltene Einbettung in einen Target-Superraum ermdglicht im Gegensatz zum iiblichen Ramond-
Neveu-Schwarz Formalismus eine direkte Kopplung des Strings an Ramond-Ramod-Felder. Er eignet sich damit
gut fiir ein Studium des Superstrings in allgemeinen Hintergriinden. In der Arbeit wird der Formalismus fiir
eine sorgfiltige Rekapitulierung der “Supergravity Constraints’-Herleitung aus der klassischen BRST-Invarianz
verwendet. Diese wurde vor einigen Jahren von Berkovits und Howe beschrieben. Die Herleitung in der vor-
liegenden Arbeit wird sich jedoch in einigen Punkten unterscheiden. So bleibt die Betrachtung im Unterschied
zur urspriinglichen Rechnung vollsténdig im Lagrange Formalismus und zur besseren Strukturierung der Vari-
ationsrechung wird ein kovariantes Variationsprinzip eingesetzt. Hinzu kommt die Anwendung des im ersten
Teil formulierten Satzes. Auch die Reihenfolge, in der die Constraints erzielt werden, weicht von Berkovits und
Howe ab. Als neues Resultat werden die BRST Transformationen aller Weltflachen-Felder hergeleitet, die bisher
nur fiir den heterotischen Fall bekannt waren. Ein entscheidender neuer Schritt ist schlieflich die Herleitung
der lokalen Supersymmetrie-Transformation der fermionischen Targetraum-Komponenten-Felder.

Dies liefert einen Ankniipfungspunkt zur sogenannten verallgemeinerten komplexen Geometrie (GCQ), die
Bestandteil des letzten Teiles der Arbeit ist. Die vierdimensionale effektive Supersymmetrie innerhalb einer
zehndimensionalen Typ-II Supergravitation bedingt eine “verallgemeinerte Calabi Yau Mannigfaltigkeit” als
Kompalktifizierungsraum, welche wiederum mit Methoden der GCG beschrieben werden kann. In der vorliegen-
den Arbeit wird gezeigt, dass Poisson- oder Antiklammern in Sigmamodellen auf natiirliche Weise sogenannte
“derived brackets” im Targetraum induzieren, darunter auch die Courant Klammer der GCG. Weiters wird
gezeigt, dass der verallgemeinerte Nijenhuis Tensor der GCG bis auf einen de-Rham geschlossenen Term mit
der “derived bracket” der verallgemeinerten Struktur mit sich selbst iibereinstimmt, und eine neuartige Koor-
dinatenform dieses Tensors wird prasentiert. Der Nutzen der gewonnenen Erkenntnisse wird dann anhand von
zwel Anwendungen zur Integrabilitit verallgemeinerter komplexer Strukturen demonstriert.

Der Anhang der Arbeit enthilt eine Einfiilhrung in einige Aspekte von GCG und “derived brackets”. Des-
weiteren werden u.a. das Noether Theorem, Bianchi Identitdten, WZ-Eichung und I'-Matrizen in zehn Dimen-
sionen besprochen.
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Superstrings in General Backgrounds

In the present thesis, some aspects of superstrings in general backgrounds are studied. The thesis divides
into three parts. The first is devoted to a careful study of very convenient superspace conventions which are a
basic tool for the second part. We will formulate a theorem that gives a clear statement about when the signs
of a superspace calculation can be omitted. The second part describes the type II superstring using Berkovits’
pure spinor formalism. Being effectively an embedding into superspace, target space supersymmetry is manifest
in the formulation and coupling to general backgrounds (including Ramond-Ramond fields) is treatable. We
will present a detailed derivation of the supergravity constraints as it was given already by Berkovits and Howe
some years ago. The derivation will at several points differ from the original one and will use new techniques like
a covariant variation principle. In addition, we will stay throughout in the Lagrangian formalism in contrast to
Berkovits and Howe. Also the order in which we obtain the constraints and at some points the logic will differ.
As a new result we present the explicit form of the BRST transformation of the worldsheet fields, which was
before given only for the heterotic case. Having obtained all the constraints, we go one step further and derive
the form of local supersymmetry transformations of the fermionic fields. This provides a contact point of the
Berkovits string in general background to those supergravity calculations which derive generalized Calabi Yau
conditions from effective four-dimensional supersymmetry. The mathematical background for this setting is the
so-called generalized complex geometry (GCG) which is in turn the motivation for the last part.

The third and last part is based on the author’s recent paper on derived brackets from sigma models which
was motivated by the study of GCG. It is shown in there, how derived brackets naturally arise in sigma-
models via Poisson- or antibrackets, generalizing an observation by Alekseev and Strobl. On the way to a
precise formulation of this relation, an explicit coordinate expression for the derived bracket is obtained. The
generalized Nijenhuis tensor of generalized complex geometry is shown to coincide up to a de-Rham closed term
with the derived bracket of the structure with itself and a new coordinate expression for this tensor is presented.
The insight is applied to two-dimensional sigma models in a background with generalized complex structure.

The appendix contains introductions to geometric brackets and to aspects of generalized complex geome-
try. It further contains detailed reviews on aspects of Noether’s theorem, on the Bianchi identities (including
Dragon’s theorem), on supergauge transformations and the WZ gauge and on important relations for I'-matrices
(especially in ten dimensions). A further appendix is devoted to the determination of the (super)connection
starting from different torsion- or invariance constraints.
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Some remarks in advance

e The part about the superspace conventions is interesting in itself and was a significant part of my research
work. This is why it was not put into the appendix. However, you can read the other parts without this
one. Only if you want to follow some calculations in detail, you might miss some signs. Latest at this
point you should study the part about the superspace conventions before you assume that you have found
a mistake.

e Capital indices M in the part about derived brackets and generalized geometry contain tangent and
cotangent indices, while in the context of superspace they contain bosonic and fermionic indices. In the
latter case we have M = {m, u, 1}. The two fermionic indices are sometimes collected in a capital curly

index M = {p, 1}.

e The thesis-index at the end contains also a list of most of the used symbols. So in case you start somewhere
in the middle of the document and would like to know, where some symbols or notations were introduced,
have a try to look at the index. Unfortunately, it is not really complete.

e There are a couple of propositions contained in this thesis. They simply contain more or less clear
statements that one could have given in the continuous text as well. In particular, their formulations
and proofs are mostly not of the same rigorousness as one would expect it in mathematical literature. In
addition, there is no clear rule which statements are given as proposition and which are only given in the
text. The ones in propositions are important, but the ones in the text can also be ...

e Everything in this thesis has to be understood as graded. Graded antisymmetrization will just be called
"antisymmetrization’ and the square brackets [...] will be used to denote this, no matter if the graded
antisymmetrized objects are bosonic or fermionic. Likewise, the supervielbein will often just be called
’vielbein’. Only at some points the terms 'graded’ or ’super’ will be explicitly used.

e It is a somewhat strange habit to desperately avoid the word “I” in articles, in order to express ones
own modesty. Writing instead “the author” seems unnecessary long and writing instead “we” resembles
the pluralis majestatis, and T don’t see how this can possibly express modesty (although one then calls
it pluralis auctoris or even pluralis modestiae). Nevertheless, T got used myself to use frequently (and
without thinking) the word “we”. Understanding it as pluralis modestiae is probably only possible if one
can replace “we” with “the reader and myself”, for example in “we will see in the following ...”. However,
you, the reader, would probably loudly protest when I write things like “we think ...” or “we have no
idea why...” and claim that the reader is included. Nevertheless, I am afraid that sentences like this will
appear quite frequently and in order to avoid inconsistencies, they have to be understood as the pluralis
magestatis ...

e The symbol ¢ marks the end of a footnote. If this mark is missing, it means that the footnote is continued
on the next page or that I simply forgot to put it . (This remark was simply copied from my diploma
thesis, but at least I have changed the footnote symbol and the language)

e This document was created with Iy’X which is based on ETEX.

vi
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This thesis is devoted to superstrings in general backgrounds, but it will of course restrict to only some
aspects, leaving out many important areas.

Apart from a few other simple cases, the quantized superstring is well understood only in a flat background
where the worldsheet fields have basically free-field equations of motion. The physical spectrum of a string in flat
background, however, contains itself fluctuations around this background. A huge number of strings therefore
can sum up to a non-vanishing mean background field, for example a curved metric or even Ramond-Ramond
bispinor-fields. The worldsheet dynamics for the individual strings then has to be adjusted. In other words,
it is very natural to study the superstring in the most general background. Consistency conditions from the
worldsheet point of view implement constraints and /or equations of motion on the background fields. On the
worldsheet level, the form of the consistency conditions depends very much on the formalism one is using to
describe the superstring. In general, the gauge symmetries or alternatively BRST symmetries of the action in
flat background should be present in some form also for the deformed action (string in general background),
especially after quantization. For the Ramond-Neveu-Schwarz (RNS) string, with worldsheet fermions, this
boils down to the quantum Weyl invariance of the action, which also yields the critical dimension. For the
Green Schwarz (GS) string and for the Berkovits pure spinor string (to be explained later), there are instead
additional conditions. For the Green Schwarz string, the so called x gauge symmetry has to be preserved, while
for the Berkovits pure spinor string one has to guarantee the existence of a BRST operator which has the form
Q = §dzA%d,o in the flat case. In fact, in the latter two cases, the BRST symmetry and the x-symmetry
are already strong enough to implement the background field equations of motion at lowest order in o/, i.e.
supergravity, such that quantum Weyl invariance does not give additional constraints at this order.

There are of course backgrounds which are more interesting than others for phenomenological reasons. First
of all, as we are observing four spacetime dimensions, we expect to live in a solution to the background field
equations where 6 of the 10 dimensions are compactified on a small radius, such that they are effectively not
visible. This compactification has to be compatible with the supergravity equations, but without restrictive
boundary conditions there are infinitely many possibilities. For a long time, people where hoping that there is
a dynamical mechanism, preferring precisely the compactification (or 'vacuum’) that corresponds to our world.
By now it seems more and more likely that there is no such mechanism or at least not such a strong one.
Instead, the picture might be that we are simply sitting in a huge ’landscape’ of possible vacua, where some of
them are more probable than others. As there is such a huge number of effective four dimensional theories, it
seems improbable that ’our world’ is not contained in them. Of course, being able to derive the real world from
string theory is a necessary requirement, if this theory is supposed to be more than just interesting mathematics.
By now there exists a huge model building machinery. People are considering orbi- and orientifolds and are
putting intersecting D-branes into the compactification manifold. The number of possibilities is huge. Quite
a lot of models come reasonably close to the standard model, but none of them really matches. But even if
there might be a lot of justified criticism to string theory, this particular problem of finding the real world is
rather a matter of time. So far, only a very tiny, mathematically treatable subset, of solutions has been studied
and it would have been a lucky coincidence to find a suitable vacuum in a simple setting. The bigger problem
might show up only after finding a vacuum which effectively reproduces the standard model: there might be
a still big number of different models which likewise reproduce the standard model. Without knowing all of
them and their common properties, one cannot really make predictions about so far unknown physics. This is,
however, not an argument against string theory. If there is another theory, unrelated to string theory, which
also describes correctly the standard model and gravity, then this model simply has to be added to the set of all
models which describe the so far observable physics consistently. There is no reason to throw out the ones that
might have been obtained from string theory. Any approach that can consistently describe the so far observable
physics is of course admissible.

It is not the immediate aim of this thesis, however, to describe observable physics, but to study the string
in a general background in ten dimensions. As argued above, one can be optimistic that someone will find real
physics within string theory. But sometimes it is easier to recognize simplifying structures in the general setting
and not in some particular cases. Moreover, considerations like this should survive changes in the communities
opinion of what is an interesting model to look at. This was the idea, but in the end, not everything in this
thesis is as general as it should be. First of all, mainly classical closed strings in a type II background are
considered. At some places we keep boundary terms for later studies of open strings. Secondly a whole part
of the thesis is inspired by generalized complex geometry. This in turn is related to a not very special but still
special type of compactifications. Let us recall this in the following lines:

Again for phenomenological reasons, in particular the hierarchy problem, it is reasonable to expect that the
four dimensional effective theory resulting from compactification is N = 1 supersymmetric. For that reason,
Candelas, Horowitz, Strominger and Witten introduced in 1985 [I] Calabi Yau manifolds into string theory.
These manifolds are Ricci flat and obey therefore the Einstein field equations in vacuum. The supersymmetry
constraint then corresponds to the existence of a covariantly conserved (w.r.t. Levi Civita) Spin(6)-spinor.
Soon after, Strominger realized in [2] that a background B-field, in combination with a non-constant dilaton, is
also consistent with supersymmetric compactification. Nevertheless, there has been very little activity on this
more general case while the Calabi-Yau case was intensively studied. This intensive study lead to invaluable
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insights concerning dualities and the form of the landscape in the Calabi-Yau case.

Only quite recently the importance of the general case including fluxes was properly noticed. It was realized
that the Calabi-Yau condition gets replaced by a “generalized Calabi-Yau” condition, which brings the so-called
generalized complex geometry into the game. See the introduction to part on page for the relevant
references. The derivation of this is mainly based on supergravity calculations. Starting from ten dimensional
type II supergravity one demands effective N = 1 supersymmetry in four dimensions after compactification
[3, 4]. The results could in general be modified by string corrections. In order to study this, one has to set up
the problem in the worldsheet language. In other words, the superstring has to be placed into a general type I1
background.

The first, striking fact is that there is so far no treatable way to couple the RNS string to Ramond-Ramond
fields. Ramond-Ramond fields can be either seen as bispinors (fields with two spinorial indices) or equivalently
(expanding in I'-matrices) as a collection of differential p-forms. Pullbacks of p-forms with p bigger than two
vanish on the worldsheet. Likewise we do not have elementary fields with spacetime spinor indices in the RNS
description. This is in short the reason why coupling to the RR-fields is an open issue in the RNS formalism.
The natural alternative is the GS string which is basically an embedding of the string into a target superspace.
The fermionic superspace coordinates or their momenta provide natural candidates for the coupling to the
RR-bispinor-fields. This formalism, however, happens to have a fermionic gauge symmetry whose constraints
are infinitely reducible and would require an infinite tower of ghosts for ghosts in the standard BRST covariant
quantization procedure. It can be quantized in flat space in the light cone gauge and shown to be equivalent to
RNS, but higher loop calculations are difficult because of the lack of manifest covariance.

The problem of covariant quantization of the GS superstring was bothering people for many painful years
without real progress until Berkovits came up in 2000 with an alternative formalism [5], based on commuting
pure spinor ghost variables, which can be covariantly quantized in the flat background. It is similar to the GS
string in that the target space is a supermanifold, but the origin of the pure spinor ghost is still a bit mysterious.
This ghost field and the corresponding BRST operator are related to the k-symmetry of the GS string, but the
relation is not very transparent. In addition, the pure spinor condition is a quadratic constraint on the spinorial
ghosts, which seemed in the beginning not very attractive. For this reason there where several attempts to get
rid of this constraint or at least to explain its occurrence. The beginning of my PhD research was devoted to
a promising approach by Grassi, Porrati, Policastro and van Nieuwenhuizen[6, [7, 8, @] and T will give a few
remarks about this at a later point. By now the need for an alternative formalism has decreased, as Berkovits
managed to give a consistent multiloop picture in [I0]. In any case the pure spinor formalism seems to provide
the adequate tool to study the superstring in curved background. On the classical level this has already been
done in [II]. It was shown that classical BRST invariance of the pure spinor string in general background
already implies the supergravity constraints on the background fields.

One major subject of the thesis is to rederive this important result with different techniques. All steps will
be carefully motivated and the calculations given in detail. Most importantly the calculation given in this thesis
can be seen as an independent check, as it is done entirely in the Lagrangian formalism in contrast to [I1].
Moreover, a covariant variational principle will be established and used to calculate the worldsheet equations
of motion. Some results are obtained in a different order but match in the end. One new result is the explicit
form for the BRST transformations of the worldsheet fields of the type II string in general background, which
where so far only presented for the heterotic string in [12]. After the derivation of the constraints, we go one
step further and derive the supergravity transformations of the fermionic fields. The transformations are in
principle well known, but the idea is to obtain them in the parametrization of the fields in which they enter
the pure spinor string. The supersymmetry transformations of the fermionic fields are the starting point for
the derivation of the generalized complex Calabi-Yau conditions for supersymmetric compactifications. Having
a closed logical line from the pure spinor string to generalized geometry hopefully opens the door for the study
of quantum or string corrections to this geometry. There is still a part missing in this line from the Berkovits
string to generalized complex geometry, as we will end with the presentation of the supergravity transformations
and not proceed with the derivation of the generalized Calabi-Yau conditions. Again, this calculation would
not deliver new results (following [3], 4]), but it would be important to have everything in the same setting and
with the same conventions. One might expect in addition that the superspace formulation will give additional
insight to the geometrical role of the RR-fields. They are so far only spectators in generalized geometry. A
bispinor is from the superspace point of view just a part of a rank two tensor, and it seems natural to include it
into geometry by establishing some version of generalized supergeometry. See also in the conclusions for other
possible extensions.

Another new feature of the re-derivation of the supergravity constraints from the pure spinor string is
the rigorous (and in some sense very unusual) application of some powerful superspace conventions. To be
more precise, we are going to use conventions where all the signs which depend on the grading are absorbed
via the use of a graded summation convention and a graded equal sign. This a not a completely new idea and
northwest-southeast conventions (NW) or northeast-southwest conventions (NE) already reflect this philosophy.
Nevertheless most of the authors still write the signs and take the rules of NW and NE only as a check. Only
in [I3], T have found an example where the signs where likewise absorbed. However, a careful study, under
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which circumstances this is possible seemed to be missing. This is the subject of part [ on page [6] This
part is more than just the declaration of the used conventions. The upshot is the formulation of a theorem
about when the grading dependent signs may be dropped. The application to supermatrices shows that the
underlying ideas lead to slightly different definitions of e.g. supertraces or some matrix operations. Using these
definitions, all equations take exactly the form they have for bosonic matrices. In particular the equation for
the superdeterminant reduces to an equation which holds in the very same form for purely bosonic matrices.

Applying this philosophy to the Berkovits string calculation has some strange effects. Most importantly,
the commuting pure spinor ghosts are treated as anticommuting objects. And likewise confusing, the chiral
blocks vg of the 10-dimensional I'-matrices are treated as antisymmetric objects although they are in fact
symmetric. This nevertheless makes perfect sense and the confusion is not, because the conventions themselves
are confusing, but because of the difference to what one is used to. It is therefore a very nice confirmation
of the consistency of the conventions that the quite lengthy calculation with the pure spinor string in general
background went through and led to the same results as the original calculation. No single grading dependent
sign had to be used. The part about the superspace conventions — although very interesting in itself — is not
needed to understand the basic steps and ideas of the other parts. Finally it should be mentioned that the
appendix about I'-matrices in ten dimensions is written in ordinary conventions for ’historical reasons’. It is,
however, simple to translate the equations to the other convention where needed.

There is finally part [[ITjon page[7§|of the thesis, which is dealing basically with so called derived brackets and
how they arise in sigma models. This part is based on my paper [14]. The efforts to understand some aspects of
the integrability of generalized complex structures have led to the observation that super Poisson brackets and
super anti-brackets of worldsheet-supersymmetric or topological sigma models induce quite naturally derived
brackets in the target space. A more detailed introduction and motivation for this part is given at its beginning.

The structure of the thesis is as follows: We start in part [[ on page [6] with the discussion of the superspace
conventions. In part [Tl on page [24] we will consider Berkovits pure spinor string. After a short motivation for
the formalism — coming from the Green Schwarz string — the derivation of the supergravity constraints will
be given and the supergravity transformations of the fermionic fields will be derived. In part [[Il] on page
the appearance of derived brackets in sigma models and the relation to integrability of generalized complex
structures is discussed. All parts contain their own small introduction. After the Conclusions on page [104] there
are a number of more or less useful appendices. It starts with notations and conventions in appendix [A] on
page This appendix does of course not contain the superspace conventions which are treated in part[l} Note
also that there is an index at the end of the thesis (page which should contain most of the used symbols.
Appendices[Bon page[109|and [Clon page[I1§ give introductions to some aspects of generalized complex geometry
and derived brackets, respectively. Appendix [D] on page [126] summarizes some important facts and equations
for I'-matrices with an emphasis on the ten-dimensional case. In particular the explicit representation is given
and the Fierz identities for the chiral submatrices are derived. Appendix[E|on page[134] presents the Lagrangian
version of the Noether theorem and the Noether identities. Additional statements which are important for
our BRST invariance calculations of the pure spinor string are likewise given. Appendix [F]on page [140] recalls
the general definitions of torsion, curvature and H-field (valid as well in superspace) . It likewise recalls the
derivation of the Bianchi identities and gives the proof for a slightly modified version of Dragon’s theorem [13]
about the relation of second and first Bianchi identities. Appendix [G]on page [149] contains a general discussion
on how the connection is determined by invariance conditions and certain constraints on torsion components.
The simplest example is of course the Levi Civita connection which is given by invariance of the metric and
vanishing torsion. In ten dimensional superspace there is no canonically given superspace metric. In this
appendix it will be discussed how the connection is reconstructed from more general constraints, like a given
non-metricity or preserved structure constants. In addition the Levi Civita Connection will be extracted from
a given general superspace metric. And finally, in appendix [H] on page the Wess Zumino gauge will be
reviewed in a general setting. This gauge is useful and natural to eliminate auxiliary gauge degrees of freedom.
By fixing part of the superdiffeomorphism invariance, one recovers ordinary diffeomorphism invariance and local
supersymmetry. This will be used in part [Tl on page 24] to determine the supergravity transformations of the
fermionic background fields of the pure spinor string.
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Convenient Superspace Conventions



Chapter 1

The general 1dea and setting

Most bosonic definitions or equations have a natural generalization to superspace. There are, however, always
sign ambiguities in the super-extensions of the definitions. For this reason, bosonic structural equations only
hold up to signs in the superspace or graded case. The information that they hold up to signs is already a useful
qualitative statement, but it can be very cumbersome to determine the correct signs. Rules like northwest-
southeast or northeast-southwest where introduced to fix the sign ambiguities. These rules in principle allow to
reconstruct the grading dependent signs from the structure of the equation. It is then a natural step to drop
all the signs during the calculations and reintroduce them only at the very end. Or in other words, simply take
over the results from a bosonic calculation and decorate it with the appropriate signs. But as usual, there exist
some subtle cases in which a strict application of the sign rules compromises some other philosophy or is simply
not possible. For this reason a large majority of people working in that field prefer to carry along all the signs
and leave them away only in intermediate steps where it is obvious that no problems will occur. A paper by
Dragon [13] is the only example I know, where the parity-dependent signs are left away completely. Nevertheless
a precise formulation of the conditions under which this is possible still seems to be missing. Statements like
“everything works basically the same in the fermionic case, but one has to be careful with the signs” are used
frequently in talks. This is the reason, why we want to find out the precise form of the above conditions. In
addition, this idea can probably be applied to much more applications than it was done so far. In this first part
of the thesis, we try to fill part of this gap.

1.1 Leading principle, graded Einstein summation convention

The leading principle of our conventions is that every abstract calculation looks formally excatly the same as in
the bosonic case. All modifications (signs etc) which are due to the fact that there are anticommuting variables
involved should be assigned only in the very end, to the result of a purely bosonic calculation.

The conventions will be based on either northwest-southeast (NW for short) or northeast-southwest (NE
for short) conventions, which we will explain a bit below. The NW convention is used for example in standard
references as [15], [16]. It is important, however, that we will in the end have a formalism which looks exactly
the same for NW and NE.

Our considerations will mainly treat objects with indices, for example - but not necessarily - coordinates
or tensor components. We assume that there is an associative product among the objects being distributive
over a likewise present abelian group structure (the sum). Sometimes we have even several of such products
(tensor product or wedge product, product of components, ... ), which all will be treated in the same way. The
described setting simply forms a general associative algebra. But let us start with the motivating example.

Let 2™ Dbe the coordinates in a local patch of a supermanifold. Assume that the first components are bosonic
and the following are fermionic (anticommuting).

M = (@™ ™M) = (™, M) (1.1)

The somewhat unusual choice of a curley capital letter for the fermionic indices will be convenient for part [l on
page There we have two different spinorial indices that we combine in the capital curled one: z™ = (z#, 2#).
As usual, we assign a grading to the indices according to the split into bosonic and fermionic variables.

Mo _ 0 for M =m
|z™ |=| M| = {1f0rJVIM (1.2)

For grading-dependent signs we use the shorthand notation

(DM = ()M (1.3)
(=)EMEN) = () IKI(MIFIND (1.4)
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A general object of interest is an object with r, upper and r; lower indices (e.g. a rank (r,,r;)-tensor, but
our conventions should also extend to non-tensorial objects like connection-coefficients). The overall grading of
such an object is

[T | = T+ M e | M |4+ | N4t | NG (15)

where a nonvanishing grading | T | of the “body” of the object (let us call it the rumpf, in order not to mix it
up with the body of a supernumber) makes sense when there are ghosts involved, i.e. objects, with the same
index-structure as the coordinates, but opposite grading.

1for M =m
0for M =p

c is a ghost

M =le|+| M| =t 1+|M|:{ (1.6)
Also forms will have a nonvanishing grading without indices.

Before we come to our conventions, let us quickly remind the existing ones which already have the basic
idea inherent. The generalization of definitions from the commuting (bosonic) case to the graded commuting
case is not unique. A very simple example is the interior product which has in local coordinates the form
Ly = Zm V"W, = Zm wmv™. If one wants to extend this definition to vectors and forms that have graded
components as well, the order makes a difference. In the northwest-southeast convention (NW for short)
the extension is chosen in such a way that there is no additional sign if the contraction of the indices is from the
upper left (northwest) to the lower right (southeast), i.e. 1w = >, vMwy = 3 ,,(—)MwpoM. Within the
northeast-southwest convention (NE for short) instead, there is no sign when contracting from the lower
left to the upper right: 1,w = > ,, wpv™ =3, ()M vMw)y,.

It is also possible and sometimes very convenient to use a mixed convention with different summation
conventions for different index subsets. One could for example define 1,w = 3, (V™wp, + vHwy, + (=) Pofwg).

The above definitions are ’definitions by examples’. There will be additional examples in what follows. In
any case, the philosophy of NW and NE is that for every new definition, possible ambiguities are fixed by the
contraction directions. This should give a unique way of generalizing bosonic equations and already implies
the possibility that one can calculate purely bosonic and reconstruct the signs at the very end, at least under
certain conditions.

In our convention, we will completely omit those signs which are encoded in the structure of the terms. NW,
NE or mixed conventions then formally look the same, and there is no reason to decide a priori for one of them.
During the derivation and motivation we will always give the signs for NW and only in important cases for NE.

One of the main ingredients of our conventions will be what we call the graded Einstein summation
convention: repeated indices in opposite positions (upper-lower) are summed over their complete range, taking
into account additional signs corresponding to either NW, NE or mixed conventions.

My = >oa (=) MaM by for NW v_ [ (=) aMby for NW
i { S (=)PMFEMgMpy for NE baa™ = S (—)PMEM M for NE (1.7)

Or in a more complicated case which should clarify the general treatment:

M M. N3N LNy

A NN, AN BT v, = (1.8)

Z (,)1\41(K+N2+A12+B)+IV12(B+N1)+N1(1+N2+B)+N2(1+B+L)+N3(1+B)A1Wl 3N LN,
My,M2,N1,N2,N3

Mo BN
K NNy N3 My Mo
(_)Ml(1+K+N2+J\42+B)+IWQ(1+B+N1)+N1(N2+B)+N2(B+L)+N:SBA1\41 IWQN BNsN1 LN»
3

M ,M2,N1,N2,N3 KNiN» My M

The terrible signs in the lower line of are exactly those which we want to omit during calculations. So
we will define every calculational operation in such a way that it is consistent with this graded summation
convention, s.th. one can calculate only with expressions as in the upper line of and assign the signs only
in the end of all the calculations.

There are by definition two important properties of the graded summation:

e The result is independent of the order of the summations

e The sum is compatible with graded commutation in the sense that signs, depending on the grading of the
dummy-indices, disappear in the equations. From (1.7) it simply follows

a™byr = (=)bara™ (1.9)

a+M)(

This is in contrast to naked indices, where we have a™by = (—)( b+N)pya™. The same simplification

occurs for terms with several contracted indices, like in (1.8):

M- N3N
zNgB 31,

’thLNQ — (_)(A+K)(B+L)BN3N1 M1A12LN2AM1 M, (1.10)

M-
A NN, KNiN2  ~Nj

Using ordinary summation conventions, we would have obtained instead the full
sign factor (_)(A+M1+K+N1+N2+]\/[2+N3)(B+N3+N1+1W1+]\/[2+L+N2)_
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1.2 Graded equal sign

The graded summation convention takes care of all dummy indices. But we can still be left with naked indices
and/or graded rumpfs, which likewise produce inconvenient signs. Also the summation convention on its own
might be dangerous. To show this, look at the following example: Consider graded commutative variables
a™ bM M and dM with bosonic rumpfs. Then the following equations, which are obviously correct (using our
graded summation convention)

a]ubNCNd]\,{—azubNd]\,[CN = 0 (1.11)

= aMbN (CNdM — d]\,[CN) = 0 (1.12)

could lead to the — in general — wrong assumption
endy —dyey = 0 (not true in general!) (1.13)

We therefore introduce a graded equal sign =,, which states that the equality holds if for each summand a
mismatch in some common ordering of the indices is taken care of by an appropriate sign factor:

endy — dyen =g 0 <= endy — (—)JWNdMCN =0 (114)

If we imagine objects like in , the graded equal sign allows one to write down quickly correct equations
without bothering all the involved signs. And it will also lead as a guiding line for all definitions of new objects,
which should all be writable in terms of the graded equal sign, in order to make them compatible with the
graded summation convention.

The idea of how to define the graded equal sign should be clear from , but in order to be able to write
down a definition for the general case, we have to be a little more careful. For practical purposes it should be
enough to have a look at the examples following the general definition, to convince yourself that everything is
very natural and intuitive.

Let us introduce the graded equal-sign for the most general case in two steps. At first we look at equations
with only bosonic rumpfs, like in (1.8).

Graded equal sign for bosonic rumpfs

Any term T(;y of the equation (which can be a product of a lot of objects with indices) has some nonnegative
integer number k of naked indices (the vertical position of the indices does not play a role for this definition,
so we write them all upstairs, but the very same definition holds for any position). We take the first term
in the equation, call it (1)~ as reference term. Any other term in the equation has to have the same
index set but perhaps with a different order or permutation P(; of the indices. A permutation of an index set
{M,..., M} is defined via a permutation of the set {1,...,k}

P(i)(Ml,...,]ka) = (AIP(,)(I)a"'aMP(,)(k)) (1.15)

We assign a signature to this permutation in the following wayﬂ For any index M; we define a graded commu-

tative object 0™¢ which carries the grading of the index
oMiogMi = (—)MiM; o M; o Mi (1.16)
and define signP;y (M, ..., My) via
01\4P(i)(1> - OAIP(’U(M = SignP(i)(]\/fl, ey ]\/[k)OJul s Ojuk (1‘17)

If M; are just supercoordinate-indices, then the supercoordinates 2 themselves can be taken instead of defining
new variables o™
Using this definition of the signature of a permutation of indices, we now define the graded equal sign for

an equation with general terms (but still bosonic rumpfs) as

ZT(i)Mp(i)(l)...Mp(,i)w) =, 0 N Z(_)sign(Pm(Ml,.,,,Mk))T(i)Mp(i)(l)...Mp(i)(k) =0 (1.18)

In the following sections we will always give definitions and important equations with the graded equal sign and
with the ordinary one. This somewhat long-winded definition should therefore become obvious in the further
sections. But let us first complete our definition to the case involving graded rumpfs. One could get rid of all
graded rumpfs by shifting the grading to the indices (if present), or create a new index with only one possible
value. As this would be notationally not very nice, we stay with graded rumpfs, but we keep in mind that a
graded rumpf is similar to a naked index. Problems for including the rumpfs in the definition of the graded
equal sign appear, when the same rumpf appears several times in one term, which is thus similar to to having
coinciding naked indices:

INote that this signature of the permutation of some given indices does not coincide with the signature of the permuation itself,
which is given by minus one to the number of switches one needs to build the permutation. o
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Problem of coinciding indices:

The graded equal sign above is only well defined if all naked indices can be distinguished. In general
calculations one usually uses different letters for each index, even if they are allowed to coincide, and then there
is no problem. What, however, if one looks at some special case with two coinciding indices. Consider the
following equivalent relations

(a) T(I)J\lN =, T(Q)NM — T(l)MN _ (_)N]\IT(2)NM (1.19)
(b) T(l)MN =g T(Q)JMN — T(l)MN = T(Q)MN (1.20)

For M = N (no sum) this reads

(a) TyMM =, T = T)M" = ()T 5y 1o sum over M (1.21)

1 t= 2" — 1 T =T no sum over .
b T )MM o T )MM T )]\/IM T )MM M 1.92

Now (a) and (b) obviously contradict themselves. There are two options to solve this notational problem. The
first is to always rewrite the equation with an ordinary equal sign before looking at any special case. The second is
to make apparent the original name of the index in the following way (this is also useful to suppress summation
over repeated indices if it is not wanted)

(@) TayMWV=M =) Ty V=AM ey ) MIVEM) — ()M (N=ADM (1.23)

(b) T(l)M(N:M) =, T(2)M(N:M) — T(l)M(N:M) _ T(z)M(N:M) (1.24)

Graded rumpfs

A grading of a rumpf is like a naked index grading at the position of the rumpf. The lesson from above is,
that we can only include the rumpfs completely into the definition of the graded equal sign, if in each term all
rumpfs are different. As we can’t rely that this is the case in all equations of interest, we will include the rumpfs
only partially in the definition of the graded equal sign. Namely, the graded equal sign will not compare the
order of the rumpfs, but the position of the indices with respect to the rumpfs. This is again necessary to stay
consistent with the graded summation convention. Consider therefore the same trivial example as in ,
however, now with graded rumpfs

aMchNdM - (—)CdaMbNdMCN = 0 (125)
= aZV[bN (CNdk[ — (—)CddMCN) = (1.26)

We now want to simply read off
CNdM - (7)CddMCN =g 0 (127)

In order for this to be correct, we have to define =, appropriately. Let us therefore write out the summation
convention in ([1.26) explicitely (in NW-conventions):

Z aMpN <(_)M(b+c+d)+1vchdM _ (_)1\4(b+N)+J\4d+Nd+Nc(_)cddMCN> — 0 (1.28)
M,N
= (_)M(:CNdM _ (_)]LIN—&-Nd(_)cdd]ch = 0 (1.29)
= (_)NdCNdILI o (_)IV[N+]\/IC(_)cddMCN = 0 (130)

Comparing the last line with (1.27)) we get

CNdM — (—)CddMCN =g 0 < (—)NdCNdz\/[ — (—)MN+MC(—)CddMCN =0 (131)
The graded equal sign therefore takes care of the order of the naked indices via (=)™ and of the order of
the indices with respect to the rumpfs, i.e. it puts their grading to the very right of all rumpfs via (—)V? and
(—)Me. Only the order of the rumpfs is taken care of by hand via (—)°?. As stated before, the correct order

cannot a posteriori be figured out, when rumpfes coincide. For d = ¢, the equation is still correct and reads
enem — (—)emeny =40 <= (—)NdCNCM - (—)AINJFAIC(—)CC]wCN =0 (1.32)

The (—)¢ cannot any longer be deduced from the order of the rumpfs and that’s why we did not include it in
the definition of the graded equal sign. However, we got rid of all index-dependent signs! We will in particular
use the graded equal sign to define composite objects of the form

AMN =, BNKCKM — A]\/IN = (_)CN+MNBNKCKM _ (_)CN-HV[N Z(_)KCBNKCKM (133)
K
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This makes sure that the notation AM? is consistent with the position of the gradings. This is again necessary

to guarantee consistency with the graded summation convention. I.e. for every Dy;y we have (ordinary equal
sign, all indices contracted)

AMNDy N = BNECkMDyn (1.34)

AMN = BNE M without the graded equal sign or the appropriate

which would not be true for the definition
signs in front.

For a more general definition of the graded equal sign in the case of graded rumpfs, we can again introduce
graded commuting objects o and define something which we call a grading structure, namely a product of

those objects o with abstract indices of the grading of all involved indices and rumpfs. E.g.

gS(C CNTKL P) = OLOJU'O/(,ONOTOKOLO.LOP ( )(JU—&-T(]\/I—&-N)—&-L(M—&-N—&-K-‘,—L)0(,0/( OTO'L OJ\/IONOKOLOP(I 35)
gS( KAMPNCL) = O:L’OKOAOMOPONOCOL ( )AKJrc K+M+P+N)O:L’OAOC OKOMOPONOL (136)
(_)AK+C(K+A[+P+N ( ) MK o A o¢ OMONOKOLOP (137)

(note that we have to introduce a new graded commuting object (here o’) for every rumpf which appears twice
in a term, as 0°0¢ = 0 for | ¢ |=1). In the grading structure, we can rearrange the objects until all the rumpfs
are in the front (with unchanged relative position) and the naked indices have some common order. We call the
resulting sign the relative sign of the grading structures

SigngchTKpr (JJKAMPNCL) — (_)CJVI+T(M+N)+QU(M+N+K+L)(_)AK+C(K+I\1+P+N)(_)J\4K (138)
In order to write down the general definition for the graded equal sign, allowing graded rumpfs, we consider
once some composite onjects T(;) (all terms in an equation of interest) which can contain a lot of naked indices.

Then we define
ign? ;
Y Tiy=g0 = Y (-)" T O, =0 (1.39)
i i

which specializes to (1.18) in the case of bosonic rumpfs. In our example of above, this reads

CMCNTKLJ?P—IKAMPNCL :go : CMCNTKLIP

KAMPNCL) 2K AMPN L _
(1.40)

Remark: Of course the so defined graded equal sign obeys transitivity (X =, Y, Y =, Z = X =, 7) as
well as reflexivity (X =, X) and symmetry (X =, Y =Y =, X) and is therefore an equivalence relation.

In cases where we have a clear notion of what we consider to be elementary objects and composite objects
(e.g. elementary and composite fields in field theory), we can also go further and a big graded equal sign =¢
which also takes care of the order of as many (elementary) rumpfs as possible. As (in contrast to naked indices)
elementary rumpfs are not visible any longer as soon as one defines composite objects, one has to remember the
definitions of the composite objects, when one wants to resolve the big graded equal sign. Alternatively one can
obey some reference order of rumpfs in all definitions of composite objects. Objects like the energy momentum
tensor, however, in which every summand contains different elementary fields, e.g.

— SigHCM cNTKL P (I

Tzz = a’EM@m]w—aC]wsz (1.41)

make it impossible to compare the ordering of the rumpfs in the different terms. A graded equal sign therefore
only can take care of a maximum of common (in each term) an distinguishable (among themselves) terms.
Writing down a general definition of this idea is hard, but let us show some simple examples:

(AB)T =¢ BTAT «— (AB)T = (-)ABBTAT (1.42)

(AB)T =¢ BTAT «— (AB)! = (-)ABBTAT (1.43)

(ab)* =g a*b* <= (ab)* =a"d* (1.44)
A=abe, B=cab: A=gB <= A=(-)p (1.45)
AB=¢ BA <<= AB=(-)"PBA — abccab = (—)@H0+) @0+ capape (1.46)
ab=gcd <+ ab=cd (1.47)
abed =g dc <= abed = (—)*de (1.48)
aMHE N gL = MK LgN = (_)acaMcKaNdL =, (_)2ad+dchaKaLcN — (1.49)
— (_)ac(_)M(c+a+d)+K(a+d)+NdaMcKaNdL _ (_)dC(_)Mc+K(a+c)+Lc+NLdMaKa[(&{%0>
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1.3 Calculating with fermions as with bosons - a theorem

Definition 1 (Gradifiable) We call a naked index or rumpf of an algebra element gradifiable in a given
equation iff it either appears in every term of this equation exactly once or it does not appear in the equation at
all. We call it gradifiable in a set of equations iff it is gradifiable in each of them.

Definition 2 (Gradification) The gradification of an index 'K’ or rumpf ’a’ assigns an undetermined parity
| K| or| a| to it which will enter the graded summation convention and the graded equal sign. The gradification
of a given set of algebraic equations is defined to be a new set of equations with all gradifiable objects gradified,
the equal sign replaced by the big graded equal sign and the sum over dummy indices replaced by the graded sum
(using an arbitrary but well-defined sign rule like NW or NE) over graded dummy indices.

More or less by definition, the following theorem holds:

Theorem 1 If a set of algebraic equations implies a second set of algebraic equations, then the same holds true
for the gradification of the whole system.
Remarks:

e This theorem makes it possible to use existing tensor manipulation packages for e.g. mathematica also
for the graded case!

e It is not excluded a priori that the original equation was fermionic and is made bosonic. However, one
has to make sure that equations like

6-6 = 0 (1.51)
are not contained in the set of equations that where needed to derive something. In the above equation,
0 obviously appears twice in one term and is thus not gradifiable.
e The definitions where chosen excatly in such a way that the theorem holds. A more rigorous proof will
not be provided here.
Counterexamples

In the rest of this part of the thesis we will give a lot of examples and applications of the theorem. There will,
however, also be some rather subtle examples which seem to be counterexamples at first sight. One of those
“counterexamples” is the graded inverse of a matrix with graded rumpf, treated in subsection on page
Another “counterexample” is the derivative with respect to Grassmann variables: the bosonic equation

0

—xz=1 1.52

p (1.52)
suggests to define

o, 2

%9 =1 (1.53)

for fermionic variables. This definition makes perfect sense, but results using this derivative cannot be derived
via the theorem from the bosonic case, as the rumpf theta does not appear excatly once in every term. This
problem can be omitted, if one introduces a new index and puts the grading into the index. We treat such
derivatives in subsection [3.I] on page



Chapter 2

Graded matrices (supermatrices) and

graded matrix operations

Supermatrices are the perfect objects to study the effects of our considerations. We will drop the word ’super’
or 'graded’ in every definition, since everything in has to be understood as graded. The equations of this section
will all be written in two ways: once in the left column with the help of the graded equal sign and the implicit
graded summation conventions and once on the righthand side with ordinary equal sign, and the sum written

out explicitely (in NW conventions), in order to make the reader familiar with the new conventions.

Within this chapter, we will always consider four different kinds of matrices, which differ in their index-

positions:

2.1 Transpose and hermitean conjugate

MN M N
A 7B NaCM 7DIWN

(2.1)

Let us start with the definition of a transposed matrix and a hermitean conjugate matrix in each of the four

cases. The simple rule is to take the bosonic definition and replace the equal sign by a graded one:

(ATYMN = = gNM
g
(BT)MN :g BNM
(CT)MN :g CN]\/[
(DYun =, Dnum
(AT)MN _g (ANJ\I)*
BHYMY = (BYu)*
(CHMy =, (CyM)
(DYun =, (Dyum)*

Clearly we have

for all matrices M, which is a simple confirmation of the theorem.

2.2 Matrix multiplication

(7"

o o Lo N
NN EN SN

© o N o
Lx22dJde

We meet a first deviation from usual definitions when we consider matrix multiplications. The definition of the
matrix multiplication will depend on the index structure of the matrix. Both, graded equal sign and the graded

summation convention have an influence now:

12
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(AC)]VIN =, A]VIKCKN (AC)MN = (_)]MCAMKCKN _
N:VV (_)I\IC Z(—)KCAMKOKN (212)
K
(AD)MN =, AMKDKN (AD)I\/IN = (_)IVIDAJVIKDKN —
N:VV (7)1\/ID Z(*)KDAMKDKN (213)
K
(ABT)MN =, AMK(BT)KN (ABT)MN = (_)MBAJ\JK(BT)KN _
—  AMKRBN —  ()MBAMKBN
N:VV (_)A{B Z(_)K(B+N)AA1KBNK (2.14)
K
(BA)MN =, BM AKN (BA)MN = (_)MABJ\IKAKN _
N:VV (7)ILIA Z(*)KJrKABMKAKN (215)
K
(B1B2)]\4N =, Bll\/IKBQKN (BlB2)MN = (_)MB2BlMKBQKN _
_ (7)1\/132 Z(*)K+KBzBlMKBQKN (216)
K
Associativity

Up to now, we have used the graded equality and summation mainly for definitions (appart from (2.10) and
(2.11)). Now we can apply our theorem by stating that the (graded) matrix multiplication as defined above is
associative

((BiB2)B3)Y v = Bi(BaB3)My (2.17)
(C1C2)Ca) Y = Ci(CaCa) ™ (2.18)
This is guaranteed by the theorem, because the bosonic equation is true and all conditions to replace indices and
rumpfs by graded naked indices and rumpfs are fulfilled, namely every naked index and every rumpf appears

excatly once in each term and the graded matrix multiplication could be defined with the same conditions
fulfilled. For this example it is still quite simple to check the validity explicitly, e.g. in NW

(_)M33 Z(_)LBg—i—L ((_)MBQ Z(_)KB2+KBlMKBQKL> B3LN —

L K
= (_)M(Bg—‘rBs) Z(_)K(32+B3)+KBlMK ((_)KBg Z(_)L33+LB2KLB3LN> (2.19)
K L

Unit matrix

The definition of the unit matrix is
M1 = M (2.20)

which implies via associativity for the matrices of type B and C
1M = M (2.21)

For the different types of matricies A, B,C and D, we have in fact different types of unit matrices:

(ALY = MG N L gy (ALY LS g N Ly ()
K
y ! y NW !
(B)My =  BM6%y L BM (BI)M y "2 Z(i)KBMK(SKN LoBMy (223
K
CcnuN = CuforN = oV (1) NEWZC'MK(sKN = o (2.24)
K

!
(D)yn = Durd N = Dun (D) N NEWZ(—)KDMKéKN L Dun (2.25)
K
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From the righthand side we can see

53 for NW
N M
o = { (—)MN g, for NE (2:26)

with §1 being the numerical Kronecker §, and

oMy =4 oM (2.27) My = (—)MNgyM (2.28)
This graded Kronecker (the lefthand side shows that both versions are graded equal anyway) of course also fullfils
its task for vectors and arbitrary rank tensors{l]

aoyN = aV (2.29)
Tatyont, k05N = Toanon, N (2.30
2.3 Transpose and hermitean conjugate of matrix products

2.3.1 Transpose of matrix products

Another simple application of the theorem are the transpose and the hermitean conjugate of a matrix product:

(A =¢ (cTAT)YMY (2.31) (A = (o)A (cTATYMY (2.34)
(AD)")YY v =¢ (DTATYMy  (2.32) (AD)YY y = ()AP(DTATYM y (2.35)
(BATY™ =g (ATBT)MN  (2.33) (BT = ()ABATBT)MN (2.36)

Let us again verify explicitl}; that this is indeed true for e.g. the first line (in NW conventions):

((AC)T)MN _ (7)MN(AC)NM _

_ (_)MN(_)NC Z(_)CKANKCKM —
K
— (o)MN+NC Z(_)CK+(C+K+M)(A+N+K)CKMANK _
K

_ Z(_)CA+KA+KN+K+MA+MKCKMANK _

— (_)AC(_)MA Z(_)KA+K(CT)IVIK(AT)KN —

_ (_)AC(_)MA(CT)]WK(AT)KN _

= ()¢ (CcTamy™™ (2.37)

2.3.2 Complex conjugation of products of (graded) commuting variables

Before we come to the hermitean conjugate, we will have a short look at complex conjugation of graded
commuting variables (we will often call it graded number, or just number) and products of them. The reason
to do so, is that the complex conjugate of a product of two Grassmann variables is often defined differently
to our way, and we therefore want to motivate it carefully. Consider the (graded) commuting variable a and
decompose it into its real part R(a) and its imaginary part S(a), defined by (use of a graded equal sign makes

LIf the capital index combines two subsets of (small) indices with different position, we might insist on NW (or any other
convention) for the small indices which leads to different definitions for the Kronecker delta:

aA/I = (am7 a.U«)
a]\/IJA/IN — amémN 4 a#(;HN —
mixed conv. !
= am e N 4+ 3 () apet N = o
m w
™ = s

N
s = (—)HsH o
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no difference here)

Ra) = — (2.38)
S(a) = a;i“* (2.39)

Both are real
R = Ra), @) =3a) (2.40)

and we have
¢ = Ra)+iSa) (2.41)
@ = R(a)-iSa) (2.42)

We thus can seperate any number in a real and imaginary part, and complex conjugation flips (as usual) the
sign of the imaginary part. Consider now the complex conjugation of the product of two graded numbers

(ab)* = [R()R(D) - I(a)I(D)) +i(R(a)I(b) + I(a)R(D))]" =
= (R(a)R(D) — S(a)S(b)) — i(R(a)I(b) + S(a)R(b)) (2.43)
a'b* = (R(a) — i) (R(a) — iS(b)) =
= (R@RD) — 3(@)SO)) — i(R(a)I(b) + S(a)R(b)) (2.44)
= (ab)* = a"b* 2.45)

From our definitions of real and imaginary part in and , which are just graded versions of the
bosonic case, we could have deduced as well via our theorem. We just want to stress that in our context
this is the only natural complex conjugation, while in the literature one can often find a complex conjugation
with the property (ab)* = b*a* = (—)%a*b* which would not fit at all into the philosophy. The same is true
for the hermitean conjugation of the product of graded matrices in the next subsection (as well as of graded
operators in the infinitedimensional case).

2.3.3 Hermitean conjugate of matrix products

From our definition of a hermitean conjugate and of complex conjugation of products of numbers, we get via
the theorem the natural rules for complex conjugation of (graded) matrix products:

(A" =5 (ctaD™ (246 (A" = (oA (crtan™™  (2.49)
(ADYY § =g (DTADMy  (247) (AD)YY x = (9)AP(DTANMy  (2.50)
(BN =5 (ATBHMN  (248) (BAHY = ()ABATBHYMN (251

Similarly we expect for opellétors in the infinite dimensional case
(AB)I =4 BFAf (2.52) (ABYf = (—)APBTAT (2.53)

It is simply a matter of redefining the operator product, in order to make contact to the usual definition without
sign.
2.4 Graded inverse - a nice “counterexample” to the theorem
Consider for the beginning matrices with even rumpf only
|Al=IB|=[C|=|D[=0 (2.54)

We say A is the (graded) inverse of D, By the inverse of B; and C? the inverse of C! iff

Dy AKN = 5N (2.55)
AMEDE Ny = My (2.56)
BMgBENy = My (2.57)
ey ey = o (2.58)
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with
sy = (9)MNeNy (2.59)

The so defined inverses in general do not coincide with the naive inverses[]|
From our theorem we can e.g. deduce that for matrices M N of any type (with even rumpf) we have

(]\/fN)_l - (N—lM—l) (260)
|MI=IN|=0 (MN)™' = (N“'MY (2.61)

This is easily directly verified using associativity of our graded matrix multiplication.

Counterexample

If we however take the rumpfs arbitrarily graded, then we still havdﬂ

(MN)™* = (N'M™'), forany|M |and | N | (2.62)
as (MN)(N"'M~Y) "2 M(NN"HM™'=1 (2.63)
There is no expected prefactor (—)™¥ in the upper line! This looks strange in terms of the big graded equal

sign, which should swallow the rumpf-dependend signs, but produces one here:
(MN)™' =¢ (9)MN(NTTMTY) (2.64)
The theorem thus is not applicable here! What went wrong? Our definition of the inverse
(MM~ = 1 (2.65)

is a non-valid gradification of the bosonic one: The theorem allows us to assign a grading only to rumpfs which
appear excatly once in each term. The rumpf M appears twice on the lefthand side and not at all on the
righthand side. Thus, the theorem does not allow to give M a grading. If we do so nevertheless, we can’t derive
known rules from the bosonic case.

The naked indices in to , however, appear excactly once in each term and can therefore be generalized
to graded indices. We thus cannot base our theorem on definitions like this. As the definition itself is of course
ok, we thus should better give it a new name, like special graded inverse , in order to make clear that the
definition is not simply a gradification of a bosonic one!

2.5 (Super) trace

We know come to another important deviation from usual supermatrix-definitions which will enter an interesting
result for superdeterminants. The trace is the sum of the diagonal entries and makes sense for matrices of type

2To verify this statement, write out the equations 1}1} in NW-conventions, using §y;V = 6]]&:

Y. Dux()FARY = &
S AMEDen (Y = o
Y. BYk()VBI N = &Y
dooooufckN = oy

Only in the last case C? is the naive inverse of C1. o
3Note that although a Grassmann-variable has no inverse, a matrix with fermionic rumpf can have an inverse. Take e.g. z,y # 0

bosonic and ¢ fermionic, then we have
o 1 1 0
[
y _
(y 0><1 C> B (0 1) #)
T Ty

The matrix multiplication above, however, is not according to our graded matrix multiplication rules, which are

(cch N o= ouSCHEN =4 0u"
= (00T, N M S RARMAG, K (O N = 5y Y
K

The following choice of matrices therefore correspond to the equation (#):

o= (5 7)o (

8l= O
l@\

o -

@‘“

N———
<&
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C and B only (matrices with one upper and one lower index, i.e. endomorphisms)
Y BYu  NW
Su(HMBMy NE

M M
trC = C'MMZ{ ZAi(M)CJ\fAAj NgW (2.67)

trB = BMM{ (2.66)

The (—)M is familiar from usual definitions. We have it here, however, either only for NW or for NE. The
reason is that for B-type matrices in NW (where the trace has no sign factor) the (—)* is implemented in the
matrix multiplication of two matrices. In any case, the graded cyclicity property of the trace holds:

tr BlBQ = B{MKBQK]\/[ = (—)BQBltr BQBl (268)
< tr [By,Bs] 0 (2.69)

For matrices of type A and D, we need a metric, in order to define a meaningful trace:

trdA = AMNGJWN (270)
trD = DMNGMN (2.71)

2.6 (Super) determinant

We finally come to the most interesting demonstration of the use of our conventions. Namely the definition of
the superdeterminant. As usual, we start from the definition via the exponential:

detC = etrnC (2.72)

Remember that for a matrix of type C, the definition of the trace matches the usual definition, while the
definition of the matrix product differs. For NE the situation is just the other way round. In any case, our
definition will differ from the usual one.

Consider now the decomposition of C' in bosonic and fermionic blocks:

Omn Cwny anzn bmy
(CMN) = ( C#n C#y ) = ( C'un d'“l/ ) ’ | m |: 07 ‘ H |: 1 (273)

Assuming that the matrix (a) is invertible (implies that a (and thus the rumpf of C) is bosonic, as a matrix with
purely fermionic entries cannot be inverted), one can seperate C in a product of two block-triangular matrices

C = 10y (2.74)
G = < . ) ( 0 (—a;:i)lb > (2.75)
Now we will use two facts. One is that the trace of In factorizes:
oFoG  BCH  F+G+3[F.Gl+.. (2.76)
10y _ eI C1+1n C2+ 3 [In C1,In Ca . (2.77)
= tr In(C1Cy) 222 trInCy + tr InCy (2.78)

And the other fact is that an arbitrary power of a block-triangular matrix stays a blocktriangular matrix with
the powers of the diagonal blocks in the block diagonal:

(10) - (% 2)

a " a” %
(O > = < 0 d”) Va,b,c,d (2.80)

(Cy—1)" = < (e —1)" 8 ) (2.81)

(-1 = ( . (d—ca—olb— 1)" ) (2:82)

o Q
[SUES N )

In particular
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Now we use the power series for the logarithm

1 "
_ L 1a(n) no_ _\n—1%
In(1 + ) ; — ™ (1) ;( ) (2.83)
R S (e D
tr In(Cy) = ;( ) ~ = (2.84)
O (e 0
- Zl e . 0 )= (2.85)
= i (_)n_ltr (a—1)" = (2.86)
n=1 n
= trlna (2.87)
trIn(C;) = trin(d—ca™'b) (2.88)
We thus get
detC = detC;-detCy = (2.89)
= deta-det(d — ca™'b) (2.90)

This result is true for every block-decomposition. a,d do not necessarily have to be bosonic as well as b and
¢ do not have to be fermionic. It differs, however, from what one usually finds in the literature, namely
det C' = deta/det(d — ca™'b).

The reason for this mismatch lies simply in the definition of matrix multiplication (or trace) and thus
of the determinant of a bosonic matrix with two fermionic indices. For NE-conventions, the trace of the
submatrix (d*,) gives an extra minus, which produces the 1/d, if one refers to the naive trace when defining
the determinant. The same is true, if we consider the corresponding submatrices of a matrix of type B in
NW-conventions. For the determinant of a matrix of type C' in NW (or likewise type B in NE), however, the
comparison between our and the usual convention is a bit more subtle. In the following we write terms in the
usual convention in quotation marks. At first, let us define the dimension of a matrix as the trace of the
corresponding unit-matrix:

dim(C) = ™) =7 dim(a) — dim(d)” (2.91)
dim(d) = 7 —dim(d)” (2.92)

I.e., fermionic dimensions are negative dimensions!

d*, = d\d>, = (2.93)
N > dtadr, (-) (2.94)
A
=d" = ?(=1)""'d" = —(—d)™” naive matrix mult in quot (2.95)
o0
(=)t 1=7-17
In(d = d—1)" = 2.96
(d) > - (2.96)
» X \n-—1
]l:: 1 » Z ( ) (*d . ]l)nn (297)
and 1 n
= ” —In(—d)” naive matrix mult in quot (2.98)
det(d) = 1/ det(—d) = (=1)4™ D1/ det d” (2.99)
ail:”afl” .
det(d — ca™'b) e ?(=1)3m( D1/ det(d — ca™b)” (2.100)
det C = ?(—=1)4m(D) det o/ det(d — ca™'h)” naive matrix mult in quot (2.101)

For matrices of type B in NW-convention, the situation is the same as for matrices of type C in NE-convention:

dn — b)) d"l?? ( )

]ld ” ]ld” ( )
Ind = "Ind” (2.104)
trlnd = 7 —trlnd” ( )
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We thus get
B _ iy (=14 det a/ det(d — ca'b)” NW
det C =deta - det(d —ca™"b) = { " det a/ det(d — ca-1b)" NE (2.106)
a b\"
for CM = ( ¢ d ) . (2.107)
and
- " deta/det(d — ca™1h)” NW
p— . J— 1 _= .
det B = deta - det(d — ca™"b) { ?(—1)4m(@ det a/ det(d — ca—'b)” NE (2.108)
a b N
for By N = ( , ) (2.109)
c d ),
al T al T
As a check, let us take B = CT = =7 7 | 7. Then we expect, following our theorem:
bT dT b —d
det C' = det CT (2.110)
Indeed, in naive matrix-notations this reads
7 (—=1)3m@ det(d — ca™b)” = 7 det(—dT — b7 (e )T Ty = (2.111)
= 7det (—d” — (—)%ca'b) 7 = (2.112)
= 7det(—d+ca'b)” = (2.113)
= 7 (=1)4 det(d — ca'b)” (2.114)



Chapter 3

Other Applications and Some Subtleties

3.1 Left and right derivative

Bosonic rumpfs

In the bosonic case we have for a variation of some function

) el
~——
of/0x™
0 = o™ (afmf - 8f/6xm> (3.2)
9 m

There is no difference between left and right derivative here, except that we write it either on the left or on the
right of the function. For the graded case with bosonic rumpfs, the situation is very similar. We define (using
graded summation; no need for graded equal in the beginning, as there are no naked indices, but in the third
equation it is essential)

5f(z) =, 6me%f =, Of/0xMszM (3.4)
= 0 =, o™ (85M f—af/axM> (3.5)
= 0 = w%f—af/aw (3.6)
= 0 = miMf—(—)fMaf/axM (3.7)
For f = 2™ we have
sxM = 5xK&CinM=axﬂf/axKaxK (3.8)
:&Li_K Mo — M (3.9)
oxM oz = Mg (3.10)

In the case of coordinates with bosonic rumpf, we will also use the following symbols for derivatives

of

- ] 11

omf p] (3.11)
9 K

TMN,K = TA{NW = aT]wN/a{E (3.12)

=>Tunkg = (—)K(T+NI+N)3KTMN (3.13)

We will not use this notation, however, for derivatives with respect to ghosts or objects with undetermined
grading, as the rumpf becomes invisible.

20
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Graded rumpfs

For fermionic indices a the above equations imply

0

= (=) o
8x‘¥f (=) of/ox (3.14)
0
B _ _aBio.0_ s B
pel 0x” [0x™ = b, (3.15)

This would for fermionic objects without indices also suggest to define
0
—c
oc

We prefer however the following definition of left derivative and right derivative

L —0c/0c (3.16)

§F(c) = 5C%F(C)58F(c)/8c5c (3.17)
Dre) = () R /o (3.18)
Dre) =t (ror/o (3.19)
%C = 9c/dc=1 (3-20)
%c =4 (—)°c/dc (3-21)

Although and (3.20) seem to be quite intuitive, unfortunately is less intuitive. The factor (—)¢
is expected, because we interchange the order of F' and the derivative with respect to c. The extra factor (—)¢,
however, stems from the fact that in the order of 9/0c and dc is exchanged. Thus for graded rumpfs,
left and right derivative are not the same operation (just written in a different order), but they differ by a sign
depending on the grading of the rumpf. The generalization to the case with indices, however, is straight-forward
again

9 N
OcM ¢
oM jocN =, sM (3.23)

= (5MN (3.22)

The generalization to the case with general indizes is again straightforward:

§F(c) = 5cKaciKF(c) = OF(c)/0ck 6c& (3.24)
DF©) =y () ()R /0 (3.25)
(VKD = () TOR(e) e (3.26)
an No=y ou” = (-)M an N =gy N (N:W 555,) (3.27)

M 0N = BV =, 0N = ()Mo focY = 5y (3.28)
9eM N =, &iNCM e (2)MPM fgeN — (7)5N+NMaciNcMaz/2 (3.29)

3.2 Remark on the pure spinor ghosts

In part we will make frequent use of the presented conventions. There are, however, effects that one needs
to get used to. The formalism contains among others the variables 2™, 6%, 6" and a commuting ghost variable
M. When we want to describe the first three as just components of a supercoodinate ™, we have to assign
all the grading to the indices: 8" — 9 = x#. We call that “rumpf-index grading shift”. The fermionic variable
6" = O can be treated in both ways, either as odd rumpf with even index or as even rumpf with odd index.
The boldface notation should serve as a reminder, which point of view we take. When we are considering the
combining object 2™, we have no choice, because all entries share the same rumpf 'x’. Therefore we have to
assign the grading to the index and have to do the same for the ghost index, because it simply is the same

index:
A M (3.30)
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When we leave away in calculations all index-dependent signs, the pure spinor ghost will effectively be treated
as an anticommuting variable, because the rumpf is anticommuting! Another similar effect is the switch of the
symmetry properties of bispinors. E.g. the chiral v-matrices

VaB) ™ Vs (3.31)

which are symmetric before the grading shift, become effectively antisymmetric afterwards. As an example,
consider the following term

(MON) = A*(,50N = 0A", 5N = (OXY°N) (3.32)

The calculation goes through in the same way after the shift, because the antisymmetry of the y-matrix is
compensated by the “anticommutativity” of the ghosts.

AYEON = A, g 0N = DXy, g AP = OXY°A (3.33)

Nevertheless, in NW as well as in NE, we get an overall minus sign from the switch, due to the graded summation
convention:

AYEOX = —Ay°0A (3.34)



Part 11

Berkovits’ Pure Spinor String in General
Background
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Chapter 4

Motivation of the Pure Spinor String in
Flat background

4.1 From Green-Schwarz to Berkovits

The classical type II Green Schwarz (GS) superstring describes the embedding of a string worldsheet into a
target type II superspace with coordinates 2 = (2™, 8", é“) The bosonic coordinates ™ locally parametrize

the ten-dimensional spacetime manifold, while the fermionic coordinates 8% and 6" have the dimension of
Majorana Weyl spinors and thus have each 16 real components. The Lorentz transformation of spinors is from
the supermanifold point of view a structure group transformation in the tangent space of the supermanifold. In
the flat case, where one can identify the manifold with its tangent space, the 8’s are clearly spinors themselves.
In the context of a curved supermanifold that we will treat later on, this will not be the case a priori. The @’s
then only transform under super-diffeomorphisms and not under structure group transformations. However, the
supergravity constraints will allow to choose a gauge (WZ-gauge) in which the two transformations are coupled
and the 0's likewise transform under a structure group transformation. This is just a remark on the use of
the “curved index” p. Objects that transform a priori under the structure group carry the flat index A or in
particular a.

The cases type ITA and TIB will be treated at the same time via the choice 8 = 6, for TTA and 6" = 6"
for IIB. The supersymmetry transformation in flat superspace reads

56" = e, 50" =éf (4.1)

0z™ = ey"0+ey"o (4.2)
The small y-matrices are discussed in the appendix[D] In order to build a supersymmetric theory, it is reasonable
to consider supersymmetric building blocks, in particular supersymmetric one-forms (vielbeins)

~ O

Er=dMEy” = (& + B0+ B0 , B , B) (4.3)

IIe

Its pullback to the worldsheet will be denoted by
2, =0.:aMEy? (4.4)

We do not distinguish notationally between the coordinates of the superspace and the embedding functions.
The bosonic components II¢ are known as the supersymmetric momentum

2/2 = az/ixa+az/20’7a0+az/ié’7aé (45)

The introduction to the Green Schwarz string and the motivation for the pure spinor formalism will be
rather quick and sketchy. We will be much more careful when we start to discuss the pure spinor string in
general background.

The classical Green Schwarz superstring in flat background consists of the square of this momentum plus a
Wess-Zumino term which establishes a fermionic gauge symmetry. This gauge symmetry, called x-symmetry,
guarantees the matching of the physical fermionic and bosonic degrees of freedom. The GS action has in
conformal gauge the following form:

1
SGS = /d2z iﬂgv)abﬂg +Lwz (46)

Lwz = fénzm (owée - éwéé) + %(ewae)(éyméé) —(z < 2) (4.7)
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It is covariant and almost manifestly spacetime supersymmetric. In this last feature it differs from the RNS
string, where space time supersymmetry only comes in after GSO projection. The problem for the Green
Schwarz string on the other hand is that a covariant quantization with the standard BRST procedure does
not work. The reason for this misery is a set of 16 mixed first and second class constraints d,, that cannot
be split easily into first and second class type in a covariant manner. The conjugate momentum p,, of 6
can be entirely expressed in terms of other phase space variables and the corresponding fermionic phase space
constraint is just d,,. It has the following explicit form (the form of conjugate momentum to ™ was already
plugged in)

1 1. o
dio = Do — (Va0)a (895“ - 507“80 - 207“’80) (4.8)

Half of these constraints are first class and correspond to the above mentioned fermionic x gauge symietry.
The fact that they have a second-class part can be seen in a non-closure of the Poisson-algebra, which has the
following schematica form:

{d.o(0),d.5(c")} o QVgﬂHm(S(UfJ') (4.9)

Siegel [17] had the idea to make d., part of a closed algebra by just adding the generators that arise via the
Poisson bracket, which leads to a (centrally extended), but otherwise closed algebra

{dz0, 0} o 279, (w@@ﬁ(s(a —o’) (4.10)
{Hza7 sz} X nab(sl(a - 0'/) (411)
{d.q,00°} o 688 (0c— o) (4.12)

The important observation is now that the same chiral algebra can be obtained from a free-field Lagrangian,
where the variable p,, is independent and cannot be integrated out:

1 = ~ ~ &
Stree = /d2Z iﬁxmnmnax" +06%p,, + 00 Ii)m = (4.13)
1 ~ G
_ / Po TG + Ly +00° oo + 00"z (4.14)
Las

In the second line we have used the original definition for d,,. Remarkably, this action coincides with the
Green Schwarz action for do = ds = 0. In the above free theory, however, d., is a priori not a Hamiltonian
constraint, but still a generator of a chiral (not local) symmetry. In any case, the reformulation does not remove
the mixed first-second class property of d,,, but it provides a simple free-field Lagrangian. Berkovits [5] had
the idea to implement the constraints cohomologically with a BRST operator disregarding its non-closure. The
corresponding current (Q = § dzj ) for the left-moving and the right-moving sector take respectively the simple
form

jz = )‘adzou .2 =0 (415)
J: = Ndea, 3.=0 (4.16)
where A% is a commuting ghost. For first class constraints the BRST cohomology can be built, because the
BRST operator is nilpotent due to the closure of the algebra. For second class constraints, however, the non-

closure implies a lack of nilpotency of the BRST operator. To overcome this problem, Berkovits put a constraint
on the ghost field A and A, the so called pure spinor constraint

MA=0, M°A=0 (4.17)

This enforces nilpotency of the BRST operator and provides a well-defined theory. The pure spinor constraint
and the ghost kinetic term have to be added to the original free action:

Spe = / 2z %&cmnnmgx" +00%p., + 00" pos + Lon (4.18)
- / %H‘;nabﬂg + Ly +00%d0 + 00 dea + Ly (4.19)

¢ = 9z 4 96+°0 + 06~°9 (4.20)
de = P.o— (mB)a (83;7" - %077”60 — ;é’ym(?é) (4.21)
Lwz = —%Hm (oymée — éyméé) + %(owae)(é%ﬁé) — (2 7) (4.22)
Lo = Nup+ 005+ %nga(wx) + %im(w&) (4.23)
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The pure spinor constraints seem like a replacement of one problem by another. The constraints turn now out
to be first class but infinitely reducible. They generate antighost gauge symmetries of the form

5(;1,)Wzoc = Hza (p)/a)\)aa 6(u)w2d = ﬂia(’}/aA)a (424)

accompanied by some transformation of the Lagrange multipliers. We will discuss this in more detail in the
general background-case. In spite of this, the pure spinor constraint can be better handled than the original
constraint. One can solve the pure spinor constraint explicitely in a U(5)-parametrization and calculate operator
products. Although the U(5) coordinates break manifest ten-dimensional Lorentz-covariance, the resulting
gauge-invariant OPE’s all have a Lorentz covariant form and the quantization is effectively Lorentz covariant.
Berkovits showed in the above cited papers the equivalence to the ordinary string. In [10] he presented a
consistent description for the calculation of higher loop amplitudes. There are still many conceptual problems.
The pure spinor formalism starts in the conformal gauge and does not have worldsheet diffeomorphism invariance
any longer. Attempts to construct a composite b-ghost (as homotopy for the energy momentum tensor) always
involved inverse powers of the gost field. In [I8], Berkovits recovered a N = 2 algebra by the introduction of
additional worldsheet fields, which is now known as “non-minimal formalism”. Multiloop calculations where
described or performed by Berkovits, Mafra, Nekrasov and Stahn in [19, 20, 2], 22]. However, there is still a
clear picture of the origin of the pure spinor constraint missing. Attempts to relate the pure spinor string to
the Green Schwarz string via similarity transformations and redefinitions where successful in [23], but not very
enlightening. An additional task is the resolving of the tip-singularity of the pure-spinor-cone. These questions
were adressed in [24] and [25].

We should finally mention that the pure spinor approach of Berkovits differs significantly from the hybrid
formalism[26], which was developped by the same author and shares only some of the properties of the pure
spinor approach. Two recent presentations of this formalism including the numerous relevant references can be
found in [27][28].

4.2 Efforts to remove or explain the pure spinor constraint

There where plenty of efforts to get rid of the pure spinor constraint in the years after Berkovits presented
his approach the first time. A quite natural ansatz was followed by Chesterman|29] 30], who implemented the
first-class pure spinor constraint cohomologically, via a second BRST operator. Due to the infinite reducibility
of this constraint, there arises an infinite number of ghost for ghosts. Nevertheless he was able to extract the
most important information and avoided solving the pure spinor constraint explicitly.

Somehow related are the considerations of Aisaka and Kazama[31l 32, [33]. They were able to construct a
BRST operator with five additional ghost fields and no pure spinor constraint, using however U(5) parametriza-
tion and breaking manifest Lorentz invariance. The relation to Chesterman’s approach can be established
as follows: The infinitely reducible pure spinor constraint can be replaced by an irreducible one in an U(5)
parametrization. This constraint can be implemented cohomologically via a second BRST operator in a relative
cohomology, and via homological perturbation theory one can replace the two operators by a single one. Within
their ’doubled spinor formalism’, they provided in [34] a derivation of the pure spinor string from the Green
Schwarz String on the quantum level.

Another enlightening approach by Oda, Tonin et al.[36] was the interpretation of the pure spinor formalism as
a twisted and gauge fixed version of the superembedding formalism. This led to a slightly modified version of the
pure spinior formalism, the Y-formalism, and to new insight about the missing antighost b-field[37, 38| 39, [40].

There was finally yet another approach by Grassi, Policastro, Porrati and van Nieuwenhuizen, at that time
most of them in Stony Brook, which we will discuss shortly in a seperate section, as it was subject of my early
PhD studies.

4.3 Some more words on the Stony-Brook-approach

In a series of papers [6, 43, 44} [7], 8] [45] 46] Grassi, Policastro, Porrati and van Nieuwenhuizen have removed
the pure spinor constraint by adding additional ghost variables. They realized in [8] that their theory has the
stucture of a gauged WZNW model with the complete diagonal subgroup gauged. It is based on the chiral
algebra above. A current can be set to zero by gauging the corresponding symmetry and thus making it a first
class constraint. However, d,, does not form a subalgebra and thus cannot be gauged on its own. So if one
starts gauging d., and tries to make the resulting BRST-operator nilpotent by adding further ghosts,
one automatically arrives at a BRST operator that corresponds to a theory where also I1,,, and 00% are gauged
(see e.g. [T, p.7] or [8, p.4]; this fact was later also used to describe a topological model in [47]). In the gauged
WZNW description this means that the complete diagonal subgroup is gauged. Therefore a grading or filtration
had to be introduced, in order to obtain the correct cohomology. In [46] it was argued that for any (simple)
Lie algebra one can in general gauge a coset (in our case the algebra that corresponds to d.,, modding out
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the subalgebra) by gauging the complete algebra and later undo the gauging of the subalgebra by building the
relative cohomology with respect to a second BRST operator. This corresponds to the former grading. Despite
its elegance there are some puzzling points about the WZNW action:

o For the heterotic string one starts with a chiral algebra and gets from the WZNW model a chiral as well
as an antichiral algebra. Somehow one has to get rid of the antichiral one.

e For the type II string one starts with a chiral and antichiral algebra. Both of them double and the Jacobi
identity forces one to mix those algebras. Thus it has not been possible yet to produce a WZNW model
for the type II string.

e The classical WZNW theory is not a free field theory which might cause problems for calculating OPEs.

For those reasons, we avoided in [9] the WZNW action. Although the cited paper contains the work of the early
stage of my PhD, it will not be presented in this thesis in detail. The reason is that it would open yet another
field, whereas the presented parts share some common aim. Let me therefore just sketch the results: We started
in [9] with the free field action of above, discussed its off-shell symmetry algebra generated by the current d.
and gauged it, in order to turn d,, into a constraint. Before actually gauging the algebra via the Noether
procedure, we had to make it close off-shell. To this aim we introduced auxiliary fields P.,,, and Ps,,. There
still remained double poles in the current algebra, which caused trouble in the gauging procedure. They were
be eliminated by doubling all fields as it was done in []], in order to establish nilpotent BRST transformations.
Gauge fixing leads to the BRST-transformations as they are given in [§].

Finally, we had a closer look at the final BRST operator proposed in [§], which includes diffeomorphism
invariance by adding a topological ghost quartet. We came to the conclusion that this operator has to be
modified via a second quartett of ghost fields in order to become nilpotent.

A last major progress was achieved in [48] by establishing an N = 4 algebra in this formalism.



Chapter 5

Closed Pure Spinor Superstring in general
type 11 background

The pure spinor string in general background was first studied by Berkovits in [II]. The one-loop conformal
invariance of the heterotic version was studied in [49]. The classical worldsheet BRST transformations of the
heterotic string in general background were derived in [I2]. The one-loop conformal invariance of the type II
string finally was shown in [50] where also the derivation of the supergravity constraints was reviewed. In the
following we will present again the derivation of the supergravity constraints as it was done in [I1],[50] but we
will explain in more detail several steps and also we will use a different method to derive the constraints. In
particular we will not go to the Hamiltonian formalism in order to derive the BRST transformations as generated
via charge and Poisson bracket but we will stay in the Lagrangian formalism and will use what we call “inverse
Noether”. In addition we will use a spacetime covariant variation in order to derive the classical equations of
motion in a spacetime covariant manner and we will present the BRST transformations of all the worldsheet
fields for the type II string in general background. This has so far been done only for the heterotic string in [12].
Having derived the Supergravity constraints we will finally go to the Wess Zumino gauge and derive the local
supersymmetry transformations of at least the fermionic fields in order to make contact to generalized complex
geometry.

Note that there was a carefull study in [51] of how to construct type II vertex operators in the pure spinor
formalism. This is at least for massless fields directly related to the deformations of the action that we are going
to study now.

5.1 Ansatz for action and BRST operators and some EOM’s

In the following we will consider the closed pure spinor string coupled to general background fields. One
can either add small perturbations (integrated vertex operators) to the action or simply consider the most
general classically conformally invariant action with the given field content and the same antighost gauge
symmetry (generated by the pure spinor constraint). The action, however, is not enough to specify the string
completely. In addition, we need two (one left-moving and one right-moving) BRST operators in the general
background. The existence of two such BRST operators which have to be nilpotent and conserved (holomorphic
and antiholomorphic respectively) turns out to be equivalent to supergravity constraints on the background
fields. The important steps of this calculation will be carefully motivated in the following.

The idea is to start from the most general renormalizable action with the given field content. It is convenient
to throw away immediately the tachyon term which is allowed by renormalizability, but which is not even BRST
invariant for the undeformed BRST transformations, at least for a non-constant tachyon field. The starting
point then reduces to the most general classically conformally invariant action. In order to write down a
classically conformally invariant action (ghost number zero in each sector), we have to combine elementary
fields to terms with conformal weight (1,1). There are no fields with negative conformal weight. The a priory
possible elementary building blocks of ghost number (0,0) are thus

weight (0,0) M
1

(
(1,0 2™ s A% w3
(
(

weight )
weight (0,1) dxM (igd, 5\0‘(;)23
)

?

weight (1,1)  900™, OA*w.5,0A @4, 0d.c, Ddza
We now can combine an arbitrary function of 2 (background field) with either a (1,1)-building block or with

one (1,0) combined with one (0,1) building block. Via partial integration, a 90z -term with an arbitrary z-
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dependent coefficient can always be rewritten as a 9z™ 0z —ter Before writing down the resulting action, let
us note that we will immediately absorb the z-dependent coefficient coming with OA®w,g in a reparametrization
of w.g so that we simply get the free ghost kinetic term OA*w .. Likewise for the hatted variables.

The most general classically conformally invariant (or renormalizable, adding Tachyon term) action with the
same field content (including the pure spinor constraint on the ghosts) with independently conserved left and
right ghost number now reads

1 . .
S = / 500 (G (&) + B ()92 + 0™ Ex™(8) dua + 02M Eyy™(2) de + d:a PP () o +

EOA[N(?)
FAYCPY(F) wopdey + A CaP(7) G_gdiy + A A" Saa®P () wp@.; +

(6A’3+A°‘8zMQMa (z )) w.p + 8)\ﬁ+>\ 0zM Ve (5«’)) @5+

=VaAP =V.AB

1 1. PN
+§Lz2a(A7a>\) + 7Lizd(>\'ya>\) (51)

[\

Note that we denote with z the complete set ™ of superspace coordlnates while z will only denote the
bosonic subset 2™. As stated already above, the kinetic ghost term OAP w.3 can always be brought to this
simple form by a redefinition of w. We will discuss this and other worldsheet reparametrizations below in detail.
The motivation for the definition of the covariant derivative VAP will also be given at a later point. For
the moment, Q7o () is just an arbitrary coefficient function or background field. Like in the flat case, we
implement the pure spinor constraints via two Lagrange multipliers.

In order to complete the theory, we need two BRST operators which reduce to the well known ones in the flat
case. Their nilpotency and (anti)holomorphicity will be checked later and lead to the supergravity constraints.
For the moment, let us just write down the most general ansatz of their currents, which have to be of conformal
weight (1,0) and (0,1) and ghost number (1,0) and (0,1) respectively

j. = A% (dm + T<2>QM(5E) d.aM + mr<3>a7ﬂ(z)wzﬁ) , §:=0 (5.2)
5. = A% (&Ed + 1), () 0.a™ + N TEB(E )wzﬁ) . 3.=0 (5.3)

Like for the ghost kinetic term, we have immediately absorbed any z-dependent coefficient Y1) ,#( ) coming
with A*d.3 and its hatted version in a redefinition of d.g and dZB Of course one can further redefine d., and

cfgd, such that we arrive at the standard form j, = A%d,, and j; = j\adgd. This does not change the general
form of the action. We will discuss the reparametrizations more carefully in the next section.
The following observation is important to reduce the computations one has to do. Let us first define

OMN = ONM; (G=G7B=—B,H:—H) (54)
P = prY (5.5)
gdaéﬁ = Sadﬁé (56)

Then — rather obviously — the following statement holds

Proposition 1 (left-right symmetry) The complete theory (action +BRST operators) is invariant under
the exchange of hatted and unhatted objects if at the same time their indices are flipped from hatted to unhatted
and from z to Z and vice verse, and O is exchanged with O:

d<—>d,)\<—>5\,wH@,LHﬁ,OHO7P<—>’ﬁ,S<—>.§',C<—>C‘,Q<—>Q,V<—>@7Tm<—>T(i),j<—>j

0« 0, indices: o — &,z < 2 (5.7)
In particular the replacement O — O implies due to that
Beo-B,  GoG (5.8)

1 This, however, contributes to the surface term. In the case of open strings, adding a 0z -term is therefore equivalent to the
modification of the boundary part of the action. o

21f one wants to study degenerate limits of the theory, one should remember and reintroduce the coefficients Y, T(1 and the
one coming with the ghost kinetic terms. ¢
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Simple eom’s Before we close this section, let us quickly give the equations of motion of those worldsheet
variables (all but 2%) which can be seen from the target superspace point of view as tangent or cotangent
vectors. This refers to the form of their reparametrizations that will be discussed on page Their equations
of motion are comparatively simple:

08

= = eMEw P ey + NP6, (5.9)
2y
0 ; N .
A—S = 0zMENY + AP + )\O‘C’aﬁ'ywzﬁ (5.10)
5d=,
) 5 & 5
- _ _\B o BY .. — BB . =_D.)\°
oy = (VZ)\ +A (Ca dzy — A" Sua wm)) = _D.X (5.11)
5w53
0S8 ~
- _ o o I . N _ a — 7 B a
o (Vewsa = (CaMdzy = A"Saa.5) wep) + Laza(r*Na = ~Dswia + Leza(1" Ve (5:13)
1) N A - R A -
= (Vibia— (CaP ey A"9000.5) 6. ) + Ly Ve = ~Detiia + Lzalr" N (5.14)
A
38 1, ., 65 1 .
SL.za - §(>‘7 )‘)7 (5.Z/z§a - 5()‘7 )‘) (515)

In 1}1} we have introduced yet two other “covariant derivatives” Dz and D.:

DA = ONP 4 ALLPAY, AP = 05M e + CuPVdas — S\dsadﬁ%gﬁ (5.16)

1525\5 = 85\5 +Azdi’5\d, Azd'é = axMQMdB + éd37d27 — )\aSa&,Bszﬁ (5.17)

These covariant derivatives are introduced simply for calculational convenience and we do not give a geometric
interpretation — although this might be interesting. For the covariant derivatives V3 and V. defined in
instead, there exists a simple geometric interpretation. They are pullbacks of the covariant target super tangent
space derivatives with connection coefficients Q2 e and QO ma? to the worldsheet. The reason why these two
background fields can be seen as connections will be given in the following.

Note that the derivation of the still missing variational derivative with respect to ¥ is quite involved and
will only be given in section on page [38| using a covariant variational principle.

5.2 Vielbeins, worldsheet reparametrizations and target space sym-
metries

There are several ways to reparametrize the worldsheet fields in the above action and the BRST currents. One
can use such reparametrizations to simplify the form of the action (as we did already implicitly in order to get
a simple ghost kinetic term) or of the BRST currents.

Before we come to the first convenient reparametrization, let us observe the following: The two background
fields Ey©® and Ejp®, combined to a 42 x 32 matrix EpA,A € {a, &} have maximal rank 32 in a small
perturbation around the string in flat background. Or in other words, the quadratic block Eaq* is invertibl
It can thus be completed by some Ej;® to an invertible 42 x 42 matrix which we can interpret as (super)vielbein.
The only requirement for Fy;® to be a valid completion is that its bosonic sub-matrix F,,* is invertibleﬂ The
“background field” Ej;® does not appear in the action and nothing should depend on it. Let us from now on
use the completed vielbein Ej# and its inverse E4™ to switch from curved to flat indices and vice verse. In
particular we define

Gap = EAMGunEp" (5.18)

For later usage we denote the components of the pullback of the vielbein E4 to the worldsheet as
md = 02MEy? (5.19)
2 = 02MEyA (5.20)

In flat space, I1¢ /s will just be the supersymmetric momentum and the fermionic component will reduce to the

worldsheet derivative of the fermionic coordinates: H;‘tz fag 0, /20’4.

Let us now study the possible reparametrizations of the worldsheet variables systematically.

3 Again it might be interesting to study also degenerate limits. o
En®  Em*

4T'he bosonic supermatrix ( Fpm® EmA

) is invertible, iff its bosonic blocks (Ep, %) and (EMA) are invertible. o
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Possible reparametrizations We denote by ¢Z, the collection of all worldsheet fields. If we make some
reparametrization ¢Z; = f[¢Z;], the Jacobi matrix has to be invertible in order to lead to equivalent equations

of motion:
gS — /d26' 5¢a]l( ) ) (521)
Sy (o) oy (o) <Z5au( )
The following reparametrizations are the most general ones which respect the conformal weight as well as the
left and right-moving ghost numbers (note that the Lagrange multipliers have ghost number (—2,0) and (0, —2)
respectively):

M= pM(F) (5.22)
N R C L D U VT F P (5.23)
La = ZEWP(2)dg+EP am(7)02M +20) 0 % () A w.s (5.24)
o = EWP(F)d5+E0(7)02N +2803()N @ (5.25)

Do = EVP(Flwsp, Gra=EPP(F)0 4 (5.26)

Ezia == E<5)ab( E)inba iiza = éf)b( E)Eizb (527)

fM has to be an invertible function and A, 21 =®* =) and their hatted equivalents have to be invertible
matrices. For a general reparametrization, Ao can be a general invertible matrix, but if we want to leave the
form of the action invariant, it has to be an element of the spin group or a simple scaling. We will discuss that
below. Note also, that we have already used Z(*) and Z() and their hatted versions to get a simple ghost-kinetic
term in the action and a simple first term of the BRST operator.

Shift reparametrization Let us first study the effect of the shift-reparametrizations

doo = doo —EPom(2)02™M 2O 02 )N w,s,  EW P =5, (5.28)
dia = dea —E2(3)02N —E00 ()N 0, EDA = 5,P (5.29)

on the form of the action. Plugging the above reparametrization into (5.1)-(5.3), the form of the action and the
BRST currents does not change if the background fields are redefined accordingly. The shift-reparametrization
thus induces an effective transformation of the background fields:

ExY = ExT—P1EQLENE, By = By — EO aEy AP (5.30)
Qua? = Qua® —Ca ﬁa” ) L En? — Ep7ER) P+ EG) ﬁP“’a"(Z) Ey? (5.31)
Oua? = Qual - CaPe E( JaaBxr? — EyVEEP + 2@ 4 By APevEE)B (5.32)

CuPY = CaPYT - =0 Bp7 (4P = (4P — paﬁégo}tﬁ (5.33)
5.aPP = S.4PP+ @dﬁvgw)wﬁ + Oamé%é _ E@)prﬁp"/’Yéﬁ%B (5.34)
T, = Ty~ Ty =18, -2} (5.35)
TEA = 1B, P26, 8 ~}<3>MB — ng/fa _ ggé (5.36)

Finally we have the transformation of Oy, n = Gy + By which we split after the transformation again into
its symmetric and antisymmetric part:

Gun = Enu®En®x (5.37)
(2) = =(2) o _ =2 = 5=(2)
Gap + 2235 o PYVER, . Gap — E@ gy +25? ( PYTES e Cap ~Zpa Té)ﬂ(z%(a'mw“ﬂap(z)
Gap — = () ) ab + 222 (e "P‘Y‘Y( )‘ ) Gop — o=(2 )(aﬂ)( _;_ QH(2)7(OLI’P‘Y‘Y Mg)) GaB _ E<2)af3< )_EBoc 4 25(2)7(0473'1(7)3_”3)
(2 - (2 - (2 (2 - L2
Gap — +2=(2) (a‘pwwm‘b) Gap — :(Z)ﬁa —Ea5+ 2=(2) ~(a ‘pw S18) Gaé — 9= . 2=(2) ~(a|PYYED,
(& ﬁ) ¥18)
Bun = Eum*EnT x (5.38)
= () = = =(2) = y=(2)
L T R i e Pap + =5 +(2>H(2)”“'W“m1 @
_ 2 2 - (2 - 5 a(2
Bab+:(2()«?b+2~(2) ~lex |7"”( s Bas t2E2®q m(tﬂ 3 PTVES e Bop +E%, 5 ) =, +2E0), [a\m(”):wm
(2 —_ = 2 —_ (2 2
Bap —Z4; +222 [d"P'W_A‘b] Bdﬂ*-:n@)ﬁd Y +223) [d|73"7'7_A| 8] BaﬁfZ (8] +2 =(2) ~+a|P77E 18]

Interestingly, lookmg at ( -, one can bring G4 to the block diagonal form G 45 = diag (Gap, 0,0) at least
for vanishing PYY. For general PY7, this is less clear because the equations become at first sight quadratll

5Note that the matrices in 1} and 5.38 do not_yet correspond to Gap and Bag given by Gun = EpAENBGap and the
equivalent equation for Bpsn, as we have expressed Gy and Bjsn in terms of the untransformed vielbeins. Due to 1} the

AB

AB
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in the transformation parameters. It is thus more convenient to use the shift reparametrization to bring the
BRST-currents to their standard form, i.e. simply shift T(2), T®) and their hatted counterparts to zero. From
now on we will thus use the simple BRST-currents:

j. = A%.a, j.=0 (5.39)
dsas J. = (5.40)

In [II] the authors start with both, the simple form of the BRST currents as well as the above mentioned
special form of Gap and thus a reduced rank of Gj;n. As we cannot reach both at the same time with the
shift reparametrizations, the simplified form of the symmetric two-tensor has to be a result of BRST invariance
or likewise on-shell holomorphicity of the BRST-current. We will discover this result soon. Only then we will
use the freedom of the choice of the auxiliary vielbein components Fjp® (which do not appear in the action),
in order to fix Ggp t0 M4, or at least proportional to it. For the moment, however, we do not assume any
restrictions on Gy, Ep® and G ap apart from the invertability of E,,°.

Local target space symmetries There are still many reparametrizations left and we could try to further
simplify the form of the action. It is, however, convenient not to fix all freedom. As we do not want to destroy
the form of action and BRST currents that we have already obtained, the freedom consists of ’stabilizing’
reparametrizations. I.e. we have to restrict to those reparametrizations out of — which leave the form
of the action and the simple BRST currents and invariant if one transforms the background
fields accordingly. These reparametrizations are in general not symmetries from the worldsheet point of view as
the compensating transformation of the background fields corresponds to a change of the coupling constants.
However, as the action remains formally invariant, all the constraints on the background fields which will be
derived later will also remain formally invariant. From the target space point of view the transformations of the
background fields (going along with the z-dependent reparametrizations) thus correspond to local symmetries
of the target space effective theory. What we have done so far by e.g. eliminating the coefficient fields Y in
the BRST operator, corresponds to a target space gauge fixing of auxiliary background fields.

Residual shift symmetry Any further shift reparametrization of d,, and dsa changes off-shell the form
of the BRST currents and . But we may still allow changes of the current up to the pure spinor
constraint. The pure spinor constraint generates a gauge transformation as we will see in the next section. Any
change of the BRST currents proportional to the pure spinor constraint thus can be compensated by a gauge
transformation. Under the reparametrizations

doa = doa —EP0(2)(VA)awzs, = E, =45,20),° (5.41)
dia = dia —EP%(E)1 A)abrg = EDP = 45,5 (5.42)
the BRST currents change to
j. = A%ia —EP(2) M A)w.s, j.=0 (5.43)
3o = Adea —EP¥H (AP M@ 5. =0 (5.44)

Global symmetries like the BRST transformation can always be redefined by a gauge transformation without
changing their physical meaning. Doing this brings us back to the simple form of the BRST currents. The
transformation of the background fields under this reparametrization is

Qe = Qua® — Ex"5,E®,P (5.45)
Qe = Oual - EM:W.%égS)B (5.46)
CoPY = CoPY = AL ZOBPYY, (B = (P —paiy) 298 (5.47)
5.aP% = 5.a°8 + Cfdﬁ'r,yf;ag(&bﬁ + Camwg/dé}()sm _ 7$a5<3>aﬁpwvgdél<)3>ﬁ (5.48)

This target space gauge symmetry will be fixed at a later point in section on page

vielbeins transformation has the form

5.2 _fPaS é((”;i) _E<2)5C’P‘Sé‘
Ey? = (EMC, En7, Ehﬂ) 0 5y — ’Paséf;) —5(2)57P5d
0 —Pedsl) 5,0 -2 poe

For non-vanishing 777’:/,~ the inverse of this matrix would enter the final form of Gap and make the problem of finding a
reparametrization with Gap = diag (Ggp, 0,0) more complicated. o
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Superdiffeomorphisms  Let us now consider the general reparametrizations (5.22) of the superspace-
embedding functions ™ which correspond to target space super-diffeomorphisms.

M= M) (5.49)
The worldsheet derivatives of the embedding functions transform like target space vectors
oM = 9zM JogN - OxN (5.50)

For the action and the BRST-operators to remain form-invariant, the background fields have to transform

tensorial according to the appearance of the curved index M, e.g. Qua?(x) = QnaP(z) 02N /0zM. All
objects with only flat indices or no indices have to transform like scalars. In this way we observe that the
resulting effective equations for the background fields will be superdiffeomorphism invariant.

Local Lorentz transformations and local scale transformations Next we consider reparametrizations
of the ghost A®. An admissible reparametrizations (5.23) of A® turns the pure spinor term L.z (A7~4%A) into

~T ~
L.zo(A A='2AT =1X). In order to obtain the old pure spinor term also in the new variables, the reparametriza-

tion of the ghosts has to be accompanied by an appropriate reparametrization L.z, = Ay%(x) - L.z, of the
Lagrange multiplier L.z,. The condition for the invariance of the pure spinor term under the reparametrization
then readd]

!

vap = M (ATHaT75s(A )0 (5.51)

For infinitesimal reparametrizations we can rewrite it as

! a . .
2L’ V85 = Iv"vaps  (infini) (5.52)
with Ao® = 0P +LaP, AL =60+L,° (5.53)

6The fact that we use the index structure Ag® instead of A%g is only for later notational convenience. It is not necessarily
related to using NW-conventions, although A = )\'BAgO‘ contains a nice NW-contraction. For us the reason is simply that the
alternative index position would be very inconvenient for the associated connection. The symbol Q3;5% is just much simpler to
type (and looks better) than Q% 3. o
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To obey this, both reparametrizations are restricted to local Lorentz transformations and local scale transfor-
mationﬂ The infinitesimal generators thus have the following explicit form:

La? = LB [We b (Db (L (5.54)
1 1
1P = SLW6f LQP = LS, Ly = L) (5:55)
L) ¢[c L L
JACOLINE (COF LR (COL Y S0 VL L AR JCO (5.56)

The reparametrization so far reads

AP (5.57)
ALz (5.58)

~
N
N
2

Note that in our notation A contains both, Lorentz transformations and scale transformations (dilatations).
In order to maintain the special form of the ghost kinetic term and of the BRST-operator, we likewise have
to transform

oo = (A HaPdop (5.59)
G = (A HaPw.s (5.60)

with infinitesimally (A™1)o? = 6o — La®. The background fields can again be reparametrized in a way that
the complete action plus the BRST operators remain form-invariant: Just transform every background field
with unhatted spinorial indices accordingly. E.g.

CoPY = (A HYAsPCoY, .. (5.61)

Only the field Q5,2 must not transform like a tensor, but like a connection, in order to keep the form-invariance
of the action

Qra® = —0uASL + (A1) AsP0,° (5.62)

This is exactly the reason why we have combined it to a covariant derivative in the ghost kinetic term right
from the beginning. For the effective field equations all this means that they will be invariant under a local
Lorentz transformation and dilatation acting on all the indices of the background fields which are coupled to
the ghosts, the ghost-momenta and the variables d., or in other words, acting on all unhatted flat spinorial
indices.

"The 32 x 32 unity and the antisymmetrized [-matrices T'%1-%» (see appendix@]on page ) form a basis of the vector space
of all 32 x 32 matrices. The 16 x 16 sub-matrices 6%, v*192,9, ..., 4%1:-10,% in the block-diagonal (they vanish for an odd
number p of bosonic antisymmetrized indices, see on page therefore span all the 16 x 16 matrices. And due to the
relations — on page i.e. 'y[p] o =PI already the matrices 0%, v9192 4,9 and %1% ,9 form a complete basis of
all 16 x 16-matrices. We thus can expand the infinitesimal generator La? of the reparametrization matrix (i.e. Aad =609 + La‘s)
as follows:

1 1
La® = S’ + 1L, "1 %0’ 4 Lay a7 0
Plugging this expansion into the condition (5.52)) yields
! 1 @
Lba’ygﬁ = 2L[a|67:51‘,5] = L(D),th;ﬁ + 5[/((11()12 'YalaQ [a‘a’\/gw] +2La1...a4 "Yalma4 [a\67g|/3] (*)
N————— N————

1 8 [3] 5]

*Vept g *Vap] s
—— ——
0 0

Below the curly bracket, we have indicated the schematic expansion of pagem Due to 1j all the v3]’s vanish because

of the graded antisymmetrization. We can thus concentrate on the !/ and 7[5]—part:
(O
ez [a|6'\/g‘ﬁ] = 2yl71 , gnazle
(O
,Yal...a4[a|6,yg‘ﬁ] <zl ,yal...a4aaﬁ

The righthand side of (*) has to be a linear combination of v%’s which is not true with a remaining 'y[‘r’]—term Laq...ag¥® %%, 3.
We thus have to demand

!
Lﬂtl.“a4 = O
With this condition, (*) and therefore (5.52)) are fulfilled and the relation between the reparametrization of the ghosts and of the
Lagrange multipliers is given by

1 1
La5 = 5L<D)5a5 + ZL((llllt)lz,yalagats
Lba = LSV?)(S;JI _,’_Lgél)bc,r]ca o>
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We get an equivalent but in the beginning completely independent local Lorentz transformation and scaling
Adﬁ acting on the hatted indices. In addition we may redefine the bosonic vielbein E* = &M Ey®, which we
introduced by hand. Remember, it is related to Gap via Gy = Ev*GapEn? and we did not yet restrict
G ap. The matrices Ep® (of maximal rank 10) can thus be redefined by an arbitrary GL(10) transformation
on the index a, accompanied by a compensating transformation of G 4. At a later point, we will obtain a
restriction on G4 which then allows only Lorentz and scale transformations Aab acting on the index a of Fj®.
This transformation, acting on bosonic flat indices only, is again independent of the other two local structure
group transformations (acting on the spinorial indices). The relation of the three transformations will in the end
be fixed by a convenient gauge fixing of some torsion components. In contrast to the fermionic transformations,
the bosonic local Lorentz transformation is not coupled to a reparametrization of an elementary field (from the
worldsheet point of view), but only to the transformation of G ;:

Eyn® = AlEn® (5.63)
Gab = (Ail)achd(Ail)bd (564)
The transformation of the background fields is determined by their flat indices. Combining the bosonic and

fermionic flat indices to A = (a, o, &), we have a block diagonal structure group transformation acting on
the target super tangent space:

Al 0 0
AP = 0 AP 0 (5.65)
0 0 AgP

All three blocks are independent. A,° instead, which is acting on the Lagrange multiplier (but on no background
field!), was induced by A,”? via the invariance of Yap- Also keep in mind that A,b is so far not restricted to
Lorentz transformations or scalings. It will be so at a later point.

5.3 Connection

We have seen in equation on the preceding page that Ml and 0 maP transform like connections under
structure group transformations. Let us introduce some auxiliary target space field Q" which transforms like
a connection under the transformation A,° of the bosonic tangent space. As the field Q,7,% does not appear
in the worldsheet action, nothing should depend on it in the end. We can now combine the three objects to a
structure group connection on the target super tangent space (let’s call it the mixed connection)

Qual 0 0
Qua® = 0 Qe 0 (5.66)
0 0 Qma”

The underline will help us later to distinguish this connection from alternative choices. This underline will
decorate all objects referring to this connection. The corresponding superspace connection coefficients L', 5%
are now given via

0 = VyuBEn*=0uEn* —Lyn"Ex® +Qyp?En® (5.67)

Due to the block-diagonal form of the connection, the curvature R, 2 = d2,2 — Q,¢ A Q. is block diagonal
as well

R, 0 0
R,? = 0 R” 0 (5.68)
0 0 RaP

and the upper index of the torsion T4 = dEA — EC A QCA tells us by which block of the connection it is
determined:

T4 = (T°,7%,17%) (5.69)
Remark Although the connection coefficients which act on the spinorial indices have the correct transforma-
tion properties, we did not yet check that they are Lie algebra valued, i.e. that the matrices Q,." and Q,;." are

not general matrices, but are restricted to the structure group algebra of Lorentz and scale transformations. We
will show this partwise below in section when we discuss the antighost gauge symmetry and will complete
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the argument when we study the holomorphicity of the BRST current in section Let us already here give
the result for completeness:

Oire? = 793? 3o + QMGIMWQK Onra’ fQ 548 + QMalaﬂalazdi’ (5.70)
The labels (D) and (L) distinguish the dilatation (or scaling) part from the Lorentz part. The major part of

the covariant derivation of the last equation of motion in section does not refer to a special form of the
connection. Only the variation of the pure spinor term will be affected and this will be discussed carefully.

5.4 Antighost gauge symmetry

The pure spinor constraints Ay*A = 5\7“5\ = 0 are first class constraints at least in the flat case and thus
generate gauge symmetries. The same should be true in the curved case. We can see this fact, however, without
referring to the Hamiltonian language, simply as a consistency condition on the equations of motion.

For the ghost field we have two equations of motion which have to be consistent in order to allow any
solutions:

525 = = (0N 2 (M + CaPrdzy deadﬁ%gﬁ)) = _D.\? (5.71)
203

55 I
il (LSO (5.72)

Every linear combination of the second line, Ee(Ay* ), obviously is still on-shell zero for any set of local
parameters p,. When we act with 0 on this expression, the result still has to vanish on-shell. L.e. for any u,,
we need to have:

! Ha _
= 0 AV Ve (z,z
on-shell ( 2 ) Ha(27)
GE1e) = 1 o o @ 5 5 J& 3 a
= Ot (0N +1a(AN*)p DA A (€ Qi) + Clay ™oy = A Sjaia?0.5) 15 A° (5.73)
H—/ 58
T bwsp Azla®

The first two terms in the last line vanish on-shell, so we may concentrate on the rest. Following footnote [7] on
page |34 (with Ag[a|‘5 taking the role of L[a|‘s) we can expand AZM‘S in antisymmetrized y-matrices and obtain

for the last term in (5.73))

— MaAaAg[ala’yglﬁ]Aﬁ = _,U/a>\a ( A(D) + A(za)ulz’y[ ag]u + A5a1~~~a4’yalma4aarﬁ> AB =
= — (AP + A8 - §(>w“’/\) ~HaAz 4y (A7 1N) (5.74)
—_——
=Az .0 2

Tt is natural to view A:,’ as the connection coefﬁcients corresponding to Dz when acting on bosonic indices.
It is built from the expansion coefficients of Azq B which are in turn built from the exiansmn coefficients of

Qura?, CoPY and Saaﬁﬁ (all seen as matrices in a and 3 — compare again to footnote [7| on page

Detta = Opta— Asltiy,  Aza® = 02M Qe 10V dog — A% S0at? @5 (5.75)
Hcha 4
: D L 1 o 1 (1
with Que’ = Q0+ 0" < Qe = 008 + 100016 + Qurara e (5.76)
——
=0 (later)
. . ) 1 1 . X
Cab7 = C‘Y(Sg + Cﬁyac’f]Cb = Ca'B‘Y = 56’75aﬁ + Zc‘yab’yaba'@ + C‘Yal...a4 ,yal...a4aﬁ (577)
——
=0 (later)
; R ; ‘ . 1 . 1 R .
Sadbﬁ = S&'B(SZ + Saﬁacn(‘b = Sadﬂﬁ = §S&ﬁ5aﬁ + stﬁac'yabals + S&'Ba1ma4 ,yal...a4aﬁ (578)
———
=0 (later)
8The coefficients Q¢ I> and ngzl Lay CAN be extracted from the given Q742 using §o,® = —16 and 1 “2aﬂ%2b1 g% = 326;11;22

(graded version of (D.88) on page[132)

1
Qyp = *gQMaa

1

Q]\/I(Llfl2 = 757(11(12 ﬁaQI\/IaB ¢
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The coefficient Qazq, .4, and the other y[4-coefficients do not enter the definitions of Q7. C,*Y and S.atP.
At a later point we will find that the y[4-coefficients actually have to vanish, which then implies D:vap = 0.
This is the actual motivation for this choice of bosonic connection. It is tempting to argue that

A,Eal..‘a4 = HECQC'al...m; + JE'"YC;Yal...a4 + Xasétﬁal...GA('agé (5‘79)

has to vanish already at this point, in order for all the terms in (5.73) to vanish on-shell. But the condition
will be a bit weaker, as there is yet another equation of motion applicableﬂ We can replace II] (appearing in
((6.79)) and (5.75), and defined in (5.20)) with the equation of motion (5.9):I17 = % — 77'7“7625:, — XQC‘&B'VGJEE
. Putting now all the last equations together, we arrive at

58 55
- — = f1aSvay ag (AN ——
5L Sy Hathma Ny J5a, "

—Ha [ch,’?}ﬂ{cﬁ}al...aéi + CZZ'AY (C;Yalu.a4 - ,PW;YQ'yal...tm) +

3 (%MGA) — Dipg- f1a (A7)

+5\é‘ (Sdéal...(m _ CﬁﬁVQ‘mlmw) aiﬁ} (Aryar--asay) (5.80)

The dummy indices in curly brackets {c,4} in the second line simply should indicate a sum over ¢ and 4
only, and not over «. The first line on the righthand side vanishes on-shell. The next two lines also have to
vanish for every u,, because the left-hand side vanishes on-shell. At this point we cannot make use of further
equations of motion. In particular the equation of motion for ¥, which we have not yet derived, would be of
conformal weight (1,1) (containing terms like 9x) and would therefore not be applicable. For consistency of
the equations of motion, we thus get the following restrictions on the background fields

Qcal...a4 = Q‘/al...a4 =0 (581)
C‘Yal...a4 - ,P‘YWQ'yal...aél (582)
Sdléal...cu = éd[-]’yQ'yal...(M (583)

This condition is weaker as the one given in [11] (see footnote (9)). It coincides exactly iff we impose in addition
Qya;..as = 0 (see the remark at the end of this section). This additional restriction will, however, only be a
result of BRST invariance.

According to Noether, every symmetry transformation corresponds to a divergence free current and vice
verse. For a given current j¢, we can calculate the corresponding transformations by reading of the coefficients
of the variational derivatives of S in the off-shell divergence of the current (see (E.7))):

; 08

all < 7 5.84
11 59253111 ( )

< _
ad(p) = —0(p)®
If we take j. = #5¢(Ay*A), jz =0, the condition (5.73)) tells that the current is on-shell divergence free. We

have chosen a parameter of weight (1,0), in order to get a current of correct weight. From (5.80) we can now
read off the corresponding symmetry transformations:

SpWea = Hza(A7")a (5.85)
5(#)L22a = _Diﬂza (586)
Sy = tzaflyar...as(AY*049N) (5.87)

The current is divergence free for arbitrary (local) u., and we therefore have a gauge symmetry. This is
the antighost gauge symmetry generated by the pure spinor constraint. For a flat background we have
Qya,...a, = 0 and the transformation reduces to the usual form. As stated several times already, we will obtain
Qy4,...a, = 0 also in the curved background, but only later as a result of BRST invariance.

With the same reasoning we get a gauge transformation corresponding to the pure spinor constraint on the
hatted ghost fields. This leads to equivalent restrictions on the hatted connection Q374” and also on (PP

(seen as matrix in & and ,fi) The background field S’adﬁﬁ’ is special, because the hatted version of (5.83)) is
again a condition on S. Once it is seen as matrix in « and 3 and once as matrix in & and (3. This is better
treatable in the special case considered in the remark.

9n the original derivation of the supergravity constraints from Berkovits’ pure spinor string in [I1] it is argued that the action
has to be invariant under the gauge transformation dwa = pa(7*A)a (the gauge symmetry generated by the pure spinor constraint
in flat space). In our notation this implies exactly Aza,...ay = 0. However, there is no reason a priory, why the form of the gauge
symmetry should not be modified in curved space, as long as this modification vanishes for the flat case. We will indeed discover
such a modification in the following, and with this modification the restriction on the background fields is weaker. Nevertheless we
will obtain the same result in the end, as Azq4;...a, = 0 Will be a consequence of BRST invariance later. o
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Remark on Q4. .4, = Q,:,al__,,m = 0: Although we will discover these two additional constraints only later

in (5.148) on page it is nice to have everything at one place. So let us continue the discussion of SadﬁB in
this case. As indicated above, we can expand it in two steps:

N 1 N 1 N
SadﬂB = 5564,850/3 + stﬁa1a27ala2aﬁ =
1/1 5 1 2
= 3 (255645 + 4Sa1a2’7a1a2dﬁ> S +
L (14 B 1 bibs B ajaz B
+1 §Sa1a26& + Zsalagbll&’y & ly [ (588)
Let us summarize the result for all the involved fields:
A~ x 1a R
Qua? = Q(D)5 B4 QS\Z)HGQ araz B Oval = 7Q(D)5 B + QMalag'Yalazdﬁ (5.89)
CoP? = 5075 oy cgm maz B CaPY = fcns Py cgm maz B (5.90)
; 1
Sadﬁla = 15504'8564'8 + gSalag(saﬁ’yalthdﬁ +

aiaz B b1b2&3 (591)

1. R
+§Sa1a27ula2aﬁ5dﬂ + Sa1a2b1b27 a7

16
Seen as a matrix in « and B (or & and B respectively), they are sums of generators of Lorentz and scale
transformations. Remembering the definition of Dz given in (5.16) and its extension to bosonic indices in

(5.75)), it leaves invariant the y-matrices{l|

D:vis = 0, @ﬂgﬁzo (5.92)

The expressions A®w.o and A%y?192,Pw. 5 are the only gauge invariant quantities (on the constraint
surface Ay*X = 0) which are linear in ghost and antighost. The reasoning is as follows: the most general
combination is A* XoPw.g with some general matrix X,? which can be expanded in A0~ and 4. Upon
acting with a gauge transformation on this term, we get the products vy = A0 4RIy o A1 4 4B] - and
A o A1 4 401 As 48] does not vanish when contracted with two ghosts, the 7[4]—part of the expansion
has to vanish and we have shown the above statement. The gauge invariant expression A*w ., is nothing but
the ghost current , while /\0‘7“1“20‘54%5 is part of the Lorentz current, which is discussed in Berkovits’
papers.

5.5 Covariant variational principle & EOM’s

Remember the form of the action (5.1):

1 R ‘o
S = / inf (GAB + BAB) HEB + H’;dzﬁ + szify + dz—y,’)’y’ydf'} +
. —
=O0anB

A CaPhw.gdes + AT CaPr0

1

2Lzm()\7a)\)
In order to check if the BRST currents (5.39) and (5.40) are on-shell conserved (holomorphic and antiholomorphic
respectively), it is first of all necessary to calculate the remaining classical equation of motion, the variation
with respect to 2. Remember, the other equations of motion where given already in (5.9)-(5.15) on page

+V:NPw. g + VA% @.5+ L.za(AYPA) (5.93)

Covariant variation Deriving the variational derivative with respect to % is quite involved if we do not
organize it properly. In the end we want to have equations which transform covariantly under superdiffeomor-
phisms and local structure group transformations. We therefore want to introduce a method where we stay

10

Divap = Oap+ (0M 0 + Codsy — X S16Pa,5) vhe — 2 (02M Qurfa)® + Cla PV dog = A S(a1a®@.5) s ©
——r
=0
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covariant right from the beginning, e.g. a target space covariant variation of the action. In order to motivate the
following definitions, let us consider only the variation of one simple term of the Lagrangian, e.g. the RR-term:

6 (g PTY()dos ) =
= 0der P Vdoy + don 0™ Oy PV oy + don PV 6dg = (5.94)
= (0 = 50N Quiy o) PPVt + dary 00NV 3 PV iy + doy P78y — 02 Qrs i) (5.95)

=dcovdany =0cowPYY =0espdzs

In order to arrive at the target space covariant expression V,,P77, it is thus convenient to group part of the
xX -variation to the variation of d. or dz4 as done above. Of course we could have chosen any connection for
the above rewriting, as long as we use for each contracted index pair the same connection. For the variation of
the complete action, however, it is most convenient to choose the mixed connection, defined in ,

Qua® 0 0
QZVIAB = 0 Q]\Ia's . 0 . (596)
0 0 Qural

Like for the structure group transformation, the connection Qa7 acts on the unhatted fermionic indices and
(1) on L,z,, while QMdﬁ acts on the hatted indices and (!) on Ls.,. The third independent block Q,7,° acts
only on the bosonic indices that appear via the bosonic vielbein and not on elementary fields.

Similar considerations as for the RR-term hold for the other terms of the action. This motivates the definition
of the covariant variation of the elementary fields in the above spirit:

Seood® = A+ 02MQs N, GeoWea = 0w.a — 02 QpraPuw.s (5.97)
Scovlza = O0dea — 02 Quraldp,  Gcovlzza = 6Lzza — 62 Qo Lizy (5.98)
SeonA™ = 0A% 4 02MQ, é*J\A Seonirza = dwsa — 0xM QyraPio_, (5.99)
Seovdza = Odza — 51'MQMB 26> ScovLzza = 0Lz2q — 62 Qs Lissy (5.100)
Seon™ = daF (5.101)

Unfortunately this idea is not completely new. Similar versions of covariant variations have been presented in
[62, B3] which in turn refer to [64, B5]. As already indicated in (5.95), we understand the covariant variation

acting on arbitrary background tensor fields Ty % (z) as

e Tira(x) = 62"V Tis = (5.102)
= T4 +0x" (EKLNT]\L/[% + QTS — " TEA — Qka TMC) (5.103)

In the last line we discover that the covariant variation acts on background fields in the same way as it acts on
elementary fields if the index structure is the same. Note that the covariant variation cannot be understood as
a variation (of e.g. 2€) in the ordinary sense. The covariant variation is simply a derivation which only reduces
to an ordinary variation when acting on target space scalars, e.g. on the Lagrangian.

From the target space point of view, also objects like VAP (target space covariant worldsheet derivatives
of worldsheet variables) transform tensorial under structure group transformations and diffeomorphisms. The
covariant variation is then simply defined according to their target space transformation properties:

5(301) v z AB

OV:AP 4 02K Qg o PV A (5.104)
P G 2 G T D (5.105)
This is also the reason why the Lagrange multiplier is varied with help of the connection Qara’ (defined in 1)
on page which is induced by Qao, and not with the independent Q;,° that we have introduced to act
on the bosonic vielbein indices: In the reparametrization corresponding to the structure group transformations,
the transformation of the Lagrange multiplier is directly coupled to the transformation of the ghost.

Next we define the covariant variational derivatives 55‘:;“5 via
all
OcovS
5SS = / Seon Ol —2= (5.106)
% 6¢a11

We will soon give a statement about the relation to the ordinary variational derivative. But let us first collect
some tools to calculate it. In order to arrive at the righthand side of (5.106), we need to extract the covariant
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variations of the elementary fields. In expressions like 5COUV5X6 in this would require to commute
e.g. the covariant variation d.,, with the covariant derivative V; and then do some partial integration. It
was probably already noticed by the reader that the covariant variation resembles very much the target space
covariant worldsheet derivative V. ; anyway. In fact the latter can be seen as a special case of it, namely when
we have §¢Z;, = 0, /2¢§11~ Let us therefore consider the commutators of two arbitrary covariant variations which
will contain the desired commutator [d.o,, V| in the mentioned special case:

) = 50,07 s R .
|:5£(1)2175c52)2):| B = {5(1)75(2)} <)0AMB+
4260 K 5(2) 4L (RKLCA()DCJ\IB F R MpAN 5 - RKLBCQOAMC> (5.108)

Here oM 5 is just a representative example for some elementary or composite field which transforms tensorial
under the target space transformations (super-diffeomorphisms and local structure group transformations).

The covariant variation of the complete action coincides with the ordinary one as all indices are contracted.
However, the covariant variational derivative defined in (5.106)), differs from the ordinary variational derivatives.
The important thing is, that nevertheless they define a set of equations of motion which is equivalent the usual
one — and target space covariant. Let us see the equivalence explicitly and reformulate the ordinary variation
into the covariant one:

05 = / M”éili + ddz4 5(;? + 5>\a5‘;—sa +0A 5‘? + 5%5521 + 6@2352; +
+5LZZ“% + 0L 52; oz K(s(iTSK = (5.109)
N / 560”@7522 + deoudes 522 + deon X 55)\5"‘ + 00, A" 5AS,A1 + 5couwzﬁ6‘ii_] + 5cavw2352; +
oL+ a2 008 (4 S iy 2 — s B
_QKBQA ;j + Qg™ wzaéi‘jﬁ +§2Kﬁ”ww 521 + QK“bL“”éiia " QKabizzbiSm) (5.110)

cov

. . . . .. 68 .
We can now read off the covariant variational derivative —7%= w.r.t. ¥ as the coefficient of §z&

OconS oS 08 A~ 55 0S8 08 - B OS
0D = Oyl das o + QP — QN S - a
sk sz dz‘sédm e 24 M oie Q™A e
08 65 A A 6S
+QK['3 wza(s + Q wza 50)2[3 + QKabLzzb 6L22a + QKabinbZ (5111)

All the other variational derivatives (5.9)-(5.15) remain untouched:

5001; 600’”
5dza 5dza 6L22a 6L22a

According to (5.111), 8c0uS/d2% coincides with §5/62% when all the other equations of motion are fulfilled.
This leads to the following obvious but important statement:

Proposition 2 Setting the covariant variational derivatives defined via (5.111) and (5.119) to zero, leads to a
set of equations which is equivalent to the equations of motion obtained by the ordinary variational derivatives:

5CO'US
oy =0 < o =0

s <& A & .

d (xdezaaAavwzodedaA vwédaLzéavLEza) o ($K7dzaaAavwza7 7w2d7L22a7LEza
(5.113)
The covariant variational derivatives in tum are obtained by using the covariant variation defined in -

5.104) and the commutators m and (5.108
H'Note the analogy to the tangent space covariant derivative of some multivector valued form

K(z,e,8) = Kqq...q, 000 (z) - €21 --- %% &, 8,

EémA

written in the following way

VK = amK(x,e,é)fe“ﬂmabiK+éanb“iK o
Oeb ey
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The last equation of motion We are now ready to calculate the last equation of motion, the variation with
respect to 2. Admittedly introducing a new tool like the covariant variation for just one equation seems a bit
of overkill. However, in any case we would have been forced during the calculation to organize the result into
covariant expressions and the covariant variation gives a general recipe how to do that. Although we described
the covariant variation for the Berkovits string, it is a tool which is very useful in any other nonlinear sigma
model. In addition it should be noted that the above concept works for an arbitrary connection and not only
for the connection Q,, 47 or the corresponding L'y, 5. The calculation just simplifies at some points, if one
restricts to connections with special properties, or to connections which are already present in the action. E.g.
only because we are choosing Q,, 47, we can make use of and in order to commute the covariant
variation with the target space covariant worldsheet derivative. In addition we will make use of the fact that
the covariant variation annihilates the vielbein:

Seo Bt () =0 (5.114)
Note also how the antisymmetrized covariant derivative of the B-field can be written in terms of its exterior
derivative H and the torsion:

VB=VyBym=dB — 1B = Hymn — 2L v ™ Brem (5.115)

The important contributions to the (covariant) variation of the action come from the covariant variation of the
(spacetime covariant) worldsheet derivatives of the elementary fields, like §.0, VzA™ and 6MH?/2' For the latter
we have (compare to the equation before (2.12) in [50])

(5@1_[?/2 5MaZ/E$K - Bg4 = (5.116)
Yz/zfsxK - B 4 202MT 3 0. s (5.117)

For the ghost terms we obtain curvature expressions instead of torsion expressions:

Seon VAP V.0eon AP + 260500 Ry 1P A (5.118)
6.V AT B 5 8P L 250K 02t By aPAS (5.119)

As alast ingredient, before we vary the action, we should note a specialty of the pure spinor term. The covariant
variation on the Lagrange multiplier is chosen in such a way that the covariant variation of 754 is almost zero.
But as we discussed at length in section on page |36 the structure group is not yet for all components of
the connection reduced to Lorentz plus scale transformations and we have in general a non-vanishing v*-part
Qrya,y...a,- At least formally we therefore obtain a non-vanishing covariant derivative on y& 8 (with ma” acting

on the spinorial indices and Q7,° of (5.76)) acting on the bosonic one):

a aj...a a -D'71 ajl...aqa
Vuvag = —2Em"Qyay.a7™ 4[04575\;3] = —2Enm"Qnyay..as 7" ap (5.120)

Due to (5.111) and (5.112) we know already that only the variational derivative with respect to z gets
modified while the others remain untouched. We therefore collect the terms which are proportional to the z-
variation only. In particular we do not need to consider the first term respectively of the above two equations.
For completeness, however, we keep the total derivatives coming from the corresponding partial integration.
A

z/z’

Apart from the variation of IT VAP and @25\5 we only have covariant variations of the background fields.
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The (covariant) variation of the action (5.93) thus takes the following form
1 -
5S = / oz’ [innyownf + Aoy VP Vd 54 +

1 1
+3 (V.02 - Ex? +262MT ) y20.2N) O4pTIZ + 5H;‘OAB (V2025 - BxB +262™T ), yPOs2™) +

Scon T2 Scov HE

+ (V02" - Bx” +262™M T 70:0") domy + (V025 - B ¥ +262M T 5 70.2Y) dzsq +

Seonll? 5ﬂnj

z

+ 2(5.%‘1{(E).%‘LRKLOLB)\Ot w.3 + 25$K6$LRK[J&BXQ ngﬁ +

Seon VaAP =V zdeos A2 5es0 VAP 600, A°
—§xKEK7Q., ar.as AYTMON) - Loz — 6;1:KEK'AVQ:Y a1...a4 (S\fyal'”‘“a}\) . Egza +
65 s~ 08 0S <& 08 0S 0S

5covdz <7 6c6'ud2dA7 5COUAQ7 565’UA A (Scov oo ¢ 6061} A Z& o~

+ aédza + 5d2a + 3G + 5A0¢ + w a(swza + w (5(4}2& +
5 .58 B

5cosz2a7 5cévL2zaA7 z (61201))\'3 z ) z 5c6vA vz d21

+ OLora 5i O we) O “zb (5.121)

We finally make a partial integration for the terms in the third and fourth line (keeping again the total derivatives
as a reference for future studies of the open string) and arrive at

1 1
5S = / oxX Ex© [ - 5OCBLHJ; — 5LH;‘OAC +

1
+§Hf (VeOup —V,O0cp —VOac + 2T 4POpp + 2OADICBD) 2 +
*60722@7 - 50:722&5.7 + QICBVHEdZ'r + QICA:YH?‘ZE‘Y +
+2HEBRCBaﬂ)\awZ@ + QHIZARCA&BS\QGJE@ +
+doy NPV dzg + AV o CoTwopdzg + A Vo Ca 0 5dy +

+Aaxazcsadﬁﬁwzﬁa}5ﬁ - 6C’YQ'y ay...aq (A,ya,l...(ua,A) . Lzéa - 6(];)1(2‘} aj...aq (X,ya,l...(uaX) . i/zza +

) s 08 oS ca 08 08 )
5covdza <7 5cfmd26z I — 5cov)\a TN 5c6v)\ 4 6001} zoe s 5061} A Z& T~
H ey T Sde T oA T Ity PNt PR
) A )
+6601)L22a@ + 6661)L22a§ +

1
+0; <5COU)\Bw25 + §H?OAK5$K + 0z’ EK’Ydm> +
~ 1 PN
40, <5Cm,>f’ @5+ 559:KOKBH§ + 6z’ EK“de;,> (5.122)

Now we can read off the covariant variational derivative with respect to 2. But let us note two further relations
first:

VcOup —NV,O0cp —V5Oac =
G119
e 3Hcap — 2T 45" Bpe — 2L 4" Bpp — 2L " Bpa + N oGap — Y 4Gop — VGac (5.123)

and
v.an? =0 vl ottt ,” (5.124)
In addition we define
Tape = Tap”Gpe (5.125)

Note that we use the symmetric rank two tensor G 45 only to pull indices down. Pulling them up again is in
general not possible as G4p might be degenerate. In fact we will learn soon that it has to be degenerate.
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The final result of the variation now reads

/ ox K 6001}5 5covd aﬁ + 5561)&2&5278 +

dxK X d 0 .
+6COU>‘Q 66:1 5561)&&675» + 5covwza£ + (Scévwédfis +
6A 1 6wza 5w2d
oA
6S . 6S
+6covL22a@ + 5351;[/22&2 -|—

1
+03 (6coux\ﬁwz5 + QH?OAK(S.IK + 625 - EK"'dm) +

N 1 .
+0, <(5cov)\ﬂ a5+ §(S$KOKBH§B + sz EK‘YdZA/)

with the following covariant variational derivatives or equations of motion (remember (5.9)-(5.15)):

43

(5.126)

~V. NP +2M0 NPT, 57
—66"Vsdoy — 00V odzsy + 2T T2 ey + 2T 4 T d s +
+dy Y P oy + AV Ol w.pdzy + A"V CaP0_gdoy +

3 1
<~ = Ex%|-V.IP Gpe+ 1 ( SHeas — Tapic + 2Loaip) + 5¥cGas — Y (aGpyc | IF +
N 2 2

+)\a5\azcsadﬁéwzﬁajgﬁ - 66’797 ay...aq (A,yal...a4aA) : ina - 50;10'? ay...aq (X,fu...(ua&) : Liza +

+2HZBRCBQB)\ang + QH?RCA{,BS\QQZB}

05 M Py 4 AN G0

3d-ry @z
{75 = 7 +d P+ A%CoP w3
(Sdg,:,
08 _ NaA (0B —3%s BB ) = _D.AB
fom = (VA? 4 X% (CaPVday = A% SaaPi ) ) = —D:A
s - B & 3 o 83 A B
g = T <vz,\ +A (oa oy — A* o wzﬁ) - DA
05 5 La . a _ a
5}\7& - - (véwza - (Ca di’y - )\ Saa w ,3) wzﬁ) + LzZa('y >\)a = D,%wza + Lzza( A)a
5:9‘; = - (A zajéa - (Ca dz - )\aSaa'B wzﬁ) agé) + -Z/zfa('yak)a = _,[)zd-’éa + i/zza(’yax)a
oA
55 1, 08 1< ue
@ = 50\7 A), 6£z2a = §(>\ A)

(5.127)

(5.128)
(5.129)
(5.130)
(5.131)

(5.132)

(5.133)

(5.134)

Note that we used for the covariant variation an independent connection Qura? for the bosonic subspace. This
connection is a priory not a background field of the string metric. We are free to choose it in a convenient way.

5.6 Ghost current

Let us assign ghost numbers (1,0) and (—1,0) to the fields A* and w,q. The corresponding transformation

(with some global transformation parameter p) is
AT = pA“%, W, = —pWa
For the action to remain unchanged, we also need to transform the Lagrange multiplier
0L 20 = —2pL 24

which therefore has ghost number —2. Varying the action with a local parameter, we arrive at

/ dp - (APw.g) + bdry-terms
b

(5.135)

(5.136)

(5.137)
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According to (E.42) and footnote [4 on page [139] we can read off the ghost current as
jgh =A"w.a (5138)

It has the same form as in flat space.

In section[5.7] we will derive the BRST transformations of the worldsheet fields from the given BRST current
via “inverse Noether” (see ) The idea is to calculate the divergence of the current and try to express it
in terms of the equations of motion. The transformations of the worldsheet fields can then be read off as
coefficients. This avoids switching to the Hamiltonian formalism and using the Poisson bracket to generate the
transformations. It might be instructive to see, how “inverse Noether” works for the simple example of the ghost
current before we come to the BRST current later:

oS 1 =
—5¢Z = 0 )\awza =
i & I
= DZ)\Q cWea T }\apiwza =
58 of 0S8 o )
= _mwza“‘)\ <—W+La(7 /\)a) =
5S ., 08 5S
= wza@ - A W + 2Lzzam (5139)

From this one can read off the transformations with which we had begun.
The ghost current and the corresponding transformations for the hatted variables are obtained via proposi-

tion [I] on page

5.7 Holomorphic BRST current

We now come to the main part of the derivation of the supergravity constraints from the pure spinor string.
The pure spinor string in flat background had two (graded) commuting and nilpotent BRST differentials which
defined the physical spectrum. Putting the string in a curved background is a matter of consistent deformation.
Ie., gauge symmetries and BRST symmetries have to survive. They may be deformed, but the number of
physical degrees of worldsheet variables cannot simply change as soon as there is a backreaction from the back-
ground that was produced by the strings themselves. This is a similar consistency like the demand for vanishing
quantum anomalies. It is therefore legitimate to demand (apart from the two antighost gauge symmetrles ) also
two (graded) commuting BRST symmetries. Remember, we already have simplified in ) and ( - ) the
general ansatz for the BRST currents by reparametrizations to the simple form

J. = XNd.y, ;=0 (5.140)
4: = XNds, §.=0 (5.141)
Instead of deriving the corresponding BRST transformations in the Hamiltonian formalism using the Poisson
bracket, we stay in the Lagrangian formalism and apply Noether’s theorem (see (E.15))) inversely in the sense

that we try to express the divergence of the given currents as linear combinations of the equations of motion in
order to derive the corresponding transformations:

_ 58 SeonS
dj. = —sbf; = — S L — 5.142
"5oT, 5¢all el (S(ball ( )

! 55 Sz00S
9): = —% = &0} 5.143
5oL, 5¢all el 6¢a11 ( )

Here ¢Z, is the collection of all the worldsheet fields. BRST invariance of the action is according to Noether
equivalent to having this special form of the divergences of the currents. These two equations thus do three
things at the same time: The possibility to write the divergence of the currents as linear combinations of the
equations of motion fixes the precise form of the BRST current. At the same time it puts constraints on the
background fields: all terms not proportional to equations of motion have to vanish. And finally it determines
the form of the (covariant) BRST transformations.

After determining the BRST transformation, the nilpotency conditions & = 0,[s§ = 0 and ¢ =0 put
further constraints on the background fields including the torsion. Some torsion components can then be
further simplified by using two of the three local Lorentz transformations and scale transformations which leads
to only one remaining local Lorentz transformation and one local scale transformation. Putting these restrictions
on some torsion components induces via the Bianchi identities further constraints on other components. All
the constraints on the torsion and other functionals of the background fields combine finally to the target space
supergravity equations of motion. Note that our approach differs from the one in [I1] in two major points.
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First of all we stay in the Lagrangian formalism throughout. Second, we first check the holomorphicity and
then the nilpotency. In fact, we need to do so, because only in the first step we can determine the BRST
transformations of the worldsheet fields which we need in the Lagrangian formalism to check nilpotency. The
BRST transformations have so far been given only for the heterotic string in [12], so that the transformations
in the type II case are a new result.

Let us now perform in more detail the program sketched above:

9§, = D:XNVdey+AXDzd.y = (5.144)
58
= —d. S + A"Dzd. (5.145)

In the following we will replace all occurrences of Dzd.~, 7, 102, DA, 1525\(1, D:w.a, ﬁzu}gd, A% and 5\7‘15\
by the equations of motion —. In the end, all terms which are not proportional to the equations of
motion have to vanish which leads to some of the supergravity constraints while the terms proportional to the
equations of motion tell us the BRST transformation of the elementary fields. In order to extract Dzd.~ from

the 2% -equation of motion (5.127)), let us project (5.127) to a flat spinorial index o using some index relabeling:
K OcovS

Didea = —Ea' 20— VP Gpa +
C 3 1 D
+I1I7 §HaCD —T'epja+2L0cip) + §YQGCD = VcGpya | 117 +

12T NP dy + 2T NS dzs +
+dz7 (2,173'7'7 - Ca'y‘y) Cig»:/ + )\QQZQCQQ’B;YWZﬁCZgrY + j\a (zaé&’87 + Sadﬁy’é) szdZ"/ +

+}\az XQZQSQQ&,@@“)Z,&L&EB _ Qa _— ()‘,yal‘..(uaA) . nga +

+2H5DRQDQ2’6)\QQWZQ + ZHZCRQCd’éS\aGJE[a (5.146)

Already at this point we can determine some constraints on the background fields. The divergence of the BRST
current given in has to become a linear combination of the equations of motion. The term ygnf’ Gpa
in cannot be compensated by any other term and it also cannot be replaced by a further equation of
motion. The same is true for our beloved Qg a, .. .ay (AY*1*4%X) - L,z,. Using in addition proposition |1 for the
constraints from the antiholomorphicity of the right-mover BRST current, we can demand

Gag = 0 (only Ga #0) (5.147)
Qa ai...aq = 07 Qd ay...aq ; 0 (5148)

With we have finally obtained the missing ingredient for the reduction of the spinorial connection
coefficients to Lorentz plus scale transformations as it was summarized already in the remark on page [38| at the
end of the section about the antighost gauge symmetry.

Equation allows us to choose a frame where Gy, = 2%, such that we reduce also the bosonic
structure group to Lorentz plus scale transformations. Let us discuss this in more detail in the following
intermezzo.

Intermezzo about the reduced bosonic structure group

Due to (5.147) we know that G ap is of the block-diagonal form Gap = diag (Gap,0,0). This means that the
symmetric rank two tensor is of the form

Gun = Ex®GapEn® (5.149)

In particular we have Gp = En®GepEnb. As the Ej® where introduced by hand, we may choose E,,*
orthonormal as usual, i.e. such that G, becomes the Minkowski metric. This is at least for the leading

component Gy, () (i.e. 6= 0) a familiar thing to do, but it holds_also in the 6-dependent case:
{z,0
- .
Proposition 3 For all symmetric rank two tensor fields Gpn( x ) whose real body (0 = 0-part) has signature

(1,9), there exists locally a frame E,,*(x), such that

Gmn(\m_:_/) = Ema(c_g)nabEnb(E) (5150)



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE Il BACKGROUND 46

Note: In contrast to the ordinary bosonic version, the entries of the matrices are supernumbers.

Proof Due to usual linear algebra, there is an orthonormal basis with respect to the real symmetric matrix
Gmn(7), i.e. we can always find locally E,,%(), s.t. is fulfilled for 6 = 0. In order to prove the same
for £ 0, we will make a 5—expansion of and show that we can always construct a solution Ema(f,é)
for arbitrary 6 from the bosonic solution E,,%(z). Remember the notations 2™ = ™M and Gmnl = Gmnlg_o-

The é—expansion of (5.150|) then reads
1 !
S MM (O, - Oan, Gonn) | £

n>0
! 1 . 1
; gl”cl ~~~:L'K:k (87C1 --~81CkEm )|77abﬁ1'£1 -~~I£'L (851 ...8£lEnb)| =
k>0 ’
1 n n a
= > M > ( . > (O - - - Or B )| ot (DM - - - Ont, B (5.151)
n>0 m=0

At n = 0 we have the solvable bosonic equation G, (7) = E,,*( 7 )nap Enb(7) to start with. At higher orders
n we have

(Onm, - - Onn, Con) é]

Z ( :@ ) (8_/\,11 . 6MmEm”’)| Nab (8M'm,+1 . 6M,,LEnb)] =
m=0

n—1

= 25, OO B4 X (1) Ot O B it Ot -0, B (3152

m=1

We thus have the iterative explicit expression for the n-th @-derivative of the vielbein in terms of the (n— 1)-th
and all lower derivatives.

(O, -+ Om, En?) :{ (5.153)
n—1
1 C m n a
= 5”/ ¢ E.™| |: (OM, -+ OMm, Gn)| — Zl ( m ) (Omy -+ O, Enn®)| Mab (8Mm,+l aMﬂEnb)”
m=
This completes the proof of the proposition. a

In gpite of the above proposition, we will not fix G4, to 744, but only up to a conformal factor. This is of
course possible by a redefinition of Ej;% with the square root of this conformal factor. The reason for us to
do this is the fact that we have for the spinorial indices not only Lorentz-, but also scale transformations. It
seems natural to keep this scale invariance also for the bosonic indices before we do not fix the fermionic one (in
particular if we aim at structure group invariant y-matrices y% B)' We thus introduce an auxiliary compensator

field ®(x ) and choose E,,* such that
Gab = 62<D77ab (5154)

As soon as E,,*(z) is chosen appropriately, the remaining vielbein components Eaq® are uniquely determined
via:

! a a n a
Gmn = EmnanEn° = Epm® = GanEy™n® (5.155)

In summary this means that there is locally always a choice for the bosonic 1-form E® = de™ Ey;, such that
Gun = En®e®®na Ext or Gun = Ea®napEn®, if one does not introduce the compensator field. The latter
form of G n was the starting point in [11], probably motivated by the integrated vertex operator of the flat
space.

With the compensator field included, the bosonic structure group with infinitesimal generator L,” (compare
to page [35| with A,? = 6% + L") is — like the fermionic ones — restricted to Lorentz plus scale transformations.

We should of course also restrict the auxiliary connection accordingly.

L = L 4 L [y = Lo ney = —Lia (5.156)
Qe = 95\5)52 + QP Qntab = QN = — Qs (5.157)

The compensator field is a scalar with respect to superdiffeomorphisms. With respect to the structure group,
however, it has to transform in a special way, in order to make G, transforming covariantly. The infinitesimal
transformation of G, under structure group transformations is 0Gap = —2L(q|“Gepp) = —2iP)a,, (see 1)
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on page . This transformation results in a simple shift of the compensator field. For the same reason, also
the covariant derivative contains a shift of ®:

60 = —LW0 (5.158)
Vud = oy - (5.159)
VuGap = 2Vu®Gap (= 0uGap — 224 Geyn)) (5.160)

Let us return to the calculation of the divergence of the BRST current and let us finally replace Dzd,nin

(5.145) by the ¥ equation of motion given in (5.146) (already using (5.147) and 5.148)

5. 08 a K(Scovs

z

3 .
+AaHg <2HQ¢CD + 2Ia(C\D) + vaq)GCD> H? +

EYvozCD
FA T o p T2 dy + 22T IS d2sy +
FA ey (To P = Ca™) dy + A*A" Vg Cay P wopdy + XA (Vo CaP7 4 Saa™?) G ey +

+)\°‘)\°‘2)\ V. Sasa” wzngﬁ+

+2X°TI? Rapa, P A% w.p + 23S RacaP A 0 g (5.161)

Before we plug in further equations of motion (replacing I1Z and IT7) we should notice that we can already read
off some more constraints. Namely Yocq = Y, .5 = Yaya = Y5 = 0. The first constraint Y,.q = 0 can be
separated in symmetric and antisymmetric part of the indices ¢ and d. In addition, we already add everywhere

the constraints coming from the right-moving BRST current , using proposition Ion pagelR|(H — —H,T — T,
v — V)

12The comparison of the rewritten bosonic z¥-equation

1 1
izz(HEGea) + §zz (HgGea) =

K OcovS
sx K

+d.4 VY, P‘de—&-)\ V,Co? wzgdz.y-f—)\ V.Ca ﬁw 5day +

3 . s
= —E, +n¢ <5HGCD +2T o1y + Va<I>GCD> N8 + 27, p P dny + 2T, I dzs, +

IS\ WSaa” wzﬁw,ﬁ+2n PRupaPA*w, g + 211€ R0l A @,

K 6(:0115
sxkK

Fdany Vo PV desy + A2V, Coy PV w.gdzs + AV, CaPY T, 5day +

B

. 3 . PN N
with  Vidia = —Fa +1¢ (QHQCD +2Lq(cip) + vacbccp) 2 + 2T p Ml doy + 2Tac M dog +

a3y oSayal? wzﬂw +2mnL RaDazﬁX”wz,a+2H2Ra0dﬁ)\a<b2é

and with V.ds4 suggests the introduction of

1
~II$Gea, dza =

1
dza 27 2

13 At first we should remember that IACB = diag (TAC ,TacB, TAC ) As Gpq are the only non-vanishing components of Ggp,
the contraction of the upper torsion index with Gpp projects out the first block-diagonal and we can write

Tscip = Tacip

The next important observation is that the constraints are independent of the choice of the auxiliary bosonic connection /%, as
it should be . The only condition is that it obeys QM(W,) = ng?)Gab which we used during the derivation by taking VMGAB =

2V ®G ap (see (5.160)). Remember also that Vo ® = Eo ™83, ® — Q(D) 1} Qprq? enters the terms Yoo p (defined in

and containing the constraints) only in the combination QTQ(C‘D) — a )GCD7 where it completely cancels:
- = (D = = = (D
2T (c|p) — oPGep = 2(dE") (|G p) + Qa(c1D) — QclalD) —oPaep =
N— —

=0
M N b
= 2Ea" Ec|" O EN) GyD)
In particular the connection does not enter at all the following torsion component:

= (dEd)angc

adle



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE Il BACKGROUND 48

Haca = 0 (5.162)

Tagela)y = *%VAQGCCI (5.163)

—g%;;ffjﬂ - 8 } = Hys,=T,5,=0 (5.164)
3 . 3 .

iHa'yd +Toya = 0, *iHoz:yd +Taq1a =0 (5.165)

Hys = 0, Hazs=0 (5.166)

So far we have used only the equations of motion obtained by the variational derivative with respect to the
antighosts and with respect to €. There still remain the ones with respect to the ghosts, with respect to the
Lagrange multipliers and with respect to d.o and dzg. The first ones simply will not enter the calculation and
the pure spinor constraints (coming from the Lagrange multipliers) will be used at the very end. So let us

remind ourselves the variational derivatives with respect to d,o and dsa ((5.129]) and (5.128))):

m = 6‘;‘9 — POVds — S\dédf’%z@, I = ;TS —dA P = A0 P08 (5.167)
20 25

Together with the new constraints ((5.162))-(5.166) we plug them into the divergence ({5.161)) of the BRST current
In a last effort we sort all the terms with respect to the appearance of the elementary fields and finally arrive at

_ 68 )
9j, = —dwmy— —A*E 228
I 7w SxkK +
+)\a(§H7H 6+ 2Tas " dory — 2A*? Ry 50 Pw.g + 11 3H 5)£+
9z oy [e z7y azd z3 z ac 6d25
2T os|e
L5 P 3 0S
+Ae (2Taq6d53 + QAaRa.ydﬁngﬁ> W +
zZy

FACTI ( — 3Heaes POV + 2Ta(ﬂ>d5:, + AT <2Ta.ﬂ - 2Ha.,57?5“’) dzs +
2To¢5\c

FA%dy (2Tad”) Hg +2A%dy (Ta[sﬂy) Hg +
FA ey (o PV = Ca = 2 PO = 20,5 7P70) dasy +
-6 A 2 . R N . . 3 . s
AN ( — 3Hues CaPo + zRacdﬁ)wm + XTIy (QRM(,B - 2Ha.,50dﬁ5> @+
2To¢5\a

e

FACAY ., (yaédf” + Saa™ — 21570 Pé 2Raﬁd57fﬁ) G FAVAE N g0, (5.168)
where we defined an extra symbol for the terms coming quadratic in the ghost A%:

— 8
Xalaz = 2 (R[Ocl\d\az]ﬁ) ngzﬁ + 2H2 (R[a1|3|a2]ﬁ) wzp +

~ A ~ 8 6A
+ (Vi Cant™ = 2157 Claas™ = 2R, 510l PP ) dogwrzp +
~Q P ~ 2 ~ N Aé R
1A (z[a15a2]&ﬁﬁ + 2R101 1562 Claa® + 2Ria, 510s P Ca? ) w.p@_5 (5.169)
Summarizing, we observe that we managed — with the help of the equations of motion — to turn the simple

equation (5.145) into a quite lengthy one ... We are not going to copy the whole long equation again for the
next step. The only equation of motion that we may still apply, is the pure spinor constraint

5S 1, .
T = 5N (5.170)

We therefore can concentrate on the term A*' Xg, o,A*?, where the pure spinor combination Ay*A might
appear. As discussed in footnote [7| on page [34] (see also the appendix-subsection on page [132)), all graded

The constraints (5.163)-(5.165)) are therefore independent of the choice of Qas4°. In particular, we can choose Qrq° (defined by
Qe P via VMYap = 0) or Qpra® (defined by Qpr6° via @M'yg‘g =0). o




CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE Il BACKGROUND 49

antisymmetric 16 x 16 matrices can be expanded in v and ~!:

Xalaz = X@Vglaz + Xa1 a5'7a1a35 (5.171)
1 1
Xo = 16v"2"1Xa1a2 < 16v°‘1"2Xa1a2> (5.172)
(D37 1
Haras 7= g g lasm Kanas (5.173)
We can use this to rewrite the quadratic ghost term as follows:
o a2 1 (e 5¥e ) 55 1 (e DY 31 aij...as
A" Xaia. A = _87(1 Xauxz@ + 16. 5!7a1...a5Xa1a2 (}\’y )\) (5174)

This was the last ingredient to determine all remaining constraints on the background fields and also to be able
to read off all BRST transformations (including the one for the Lagrange multiplier). Let us start with the
constraints. In addition to (5.162)-(5.166)), we get the following constraints on the background fields:

’f‘ac’? = Ta&\c ,Pé;ya Tdcﬂy = a(ﬂc ,P’Ya (5175)
S—~— ~——
5 Hocs —$Hscs
foA 3 54 v__3 ~b
Ta’)’ = Z a’yép s TEx‘y = 4Ha'7673 (5176)
Tad? = 0, Tad? =0 (5.177)
Ta37 = 0, T&J;Y =0, = IadK =0 (5178)
Ca = Y PV —2T"P —2 T 7 P (5.179)
——
=0 (5.178)
Ca¥ = VaPYY —2T, P70 (5.180)
~ 3 3 Fy 3 F}
Rac&'@ = 5 acd C&'@ ) ]%tﬁzcot'6 = _2 acéc p (5181)
— —
Ta&\c T&S\c
; 3 5 Bs s__3 a5
Raya” = HaysCa™, Raza” = =7 Hs55Ca (5.182)
Sas™® = -V, CaP +2Tns7CaP? + 2R 0 PP (5.183)
ydp-vﬁifgj“dgﬁp-yd
Sad®? = -V, CaPY 42T, Y Co P + 2Rana P (5.184)
A4 'pB*r_QTm;ﬁ'pé"v
Vol Riaya” = 0, V84% Riana,” =0 (5.185)
Yo Rsgra” = 0, V2192 Rsgan” =0 (5.186)
Varas (Zazcal‘”) = 2yl% Ra,“galﬁp‘sﬁ — TAOLI({? Cafs , plus hatted version ... (5.187)
——
=0
Var oo, (V Sala ) = 2y;ro (Rala,d'@Cazﬁ;Y — Ra25alﬁé’d'@5) , plus hatted version ... (5.188)

Note that on the constraint surface the condition 7192 X4, o, = 0 is equivalent to the vanishing of Xa,a,
when contracted with two ghost fields:

(5.171)—(5.173) (AY*A)=0

Yorta Xaja, =0 A X g0 A2 =0

(5.189)
The above equivalences hold for general bispinors, not only for the one defined in . It is not necessary to
memorize the constraints ([56.187) and ([5.188) as they will be implemented by other constraints anyway. We
will show this fact at the end of section on page
Let us now devote a new section to the BRST transformations that we can likewise read off from (5.168).

X[O‘la2] 1 (7a4 JXO‘3°‘4)’Y?11¢12

6

5.8 The covariant BRST transformations

Remember that we started on page 4] with the demand 5jz = —Sou®l 5“;; The covariant BRST transfor-

mations s.,,¢Z; have to be understood in the sense of the covariant variation defined in (5.97)-(5.101)). We have
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N &

for example sﬂj\a = S0\ = 5\ —‘erMQA]BdS\B. When the constraints of the end of last section are fulfilled,
we can read off the covariant BRST transformations s.,,¢%,; from equation (5.168) together with :5.174). Again
we give at the same time (using proposition [1| on page the results for the right-mover BRST-symmetry §

: P dcovS
defined v1 07: = —R%ou S

aM = ANEM, &M =X"EM (5.190)
SJU'UAQ = 0= AS;ovAaa Seov . =0= Scévj\a (5191)
SovWzaa — dzaa AS?m)wza - 0, AS?&U‘:JEd = dAZda S"fmwid =0 (5192)
3
Sovdes = —ATI 3Hucs — S ATIY Horys — 2X*TasVdony + 2A%A%? R 50 w25 (5.193)
—— 2
2T s
o YT 3.a_4 PSPPI cE LAy A ;
Sovdzy = A TE3Hg5 +0X T Hggs = 20 Tas7doy + 20 X Ry 557w 5 (5.194)
——
727—‘&8\6
Sovdzy = —22%Tas®ds — 2X°A" RasaPo s (5.195)
——
=0
Sovdey = =23 Tay?dos — 2A°A%Ranalw.p (5.196)
——
=0
1 (s 3 ) - - 7 1 dldg % T
S:()ULZZ(L = g’ya Xa1a27 S’:O’I)LZEH, = 07 S:é?;LZza = g’Ya Xd1d27 S:évLiz =0 (5197)

The composite object Xq,a, is given in (5.169). Let us for completeness also give the BRST transformation of
the supersymmetric momentum

(5.117)

solll; T=  V.:A%t + 210, T, 5" (5.198)
I -1 VA 05" + 23718 T, 57 (5.199)

All these BRST transformations are similar to those for the heterotic string, given in [12]. There it was also noted
that the BRST transformations always contain a Lorentz transformation (multiplication with the connection).
We have absorbed this term into the definition of the covariant variation. The advantage is that we then have
expressions all the time that are covariant with respect to the target space structure group. Although the
ordinary BRST differential sis needed to calculate the cohomology (as it squares to zero), the calculations are
simpler if they are performed with s.,, and only in the end transferred to s When acting on a target space
scalar, the two coincide anyway.

14 Another way to write down the BRST transformations for d,s and d}ﬁ is the following

3
Sovdzs = 7§Aanic’7}Ha{cn}s — X 5 1 Geall? | 2dary } + 2X* X2 Ry 50 P w2
4 3 d,é 5 5 G 5 5 -
Sovdzy = —Ekaﬂé ’ He(a,yq =X Iaﬁ{d’é}{Gdcng s 2d,5} — 22 AaR(x"/dﬁwg[a
—_———
-0 =0

In the second line for the first two terms, we have just used a complicated way to write zero. The reason was to bring it to a form
similar to the one in the first line. In any case, at least the first line suggests again the introduction of the variables

1 1
dze = SGally,  dse = Geglls
that we already proposed in footnote on page [f7} Indeed, their BRST transformation takes the form
3 .
Sovdze = _EAQH?H(XﬁC _ZAaTacddzd

Using Hyge = Tee® = 0 and at (least for Ay*X = 0) A A“QRa2da/3 = 0, the transformation of d, . takes the same form as the
one of d,5 and we can write

3 ‘)
sovdarasy = AT ooy ias) — 23 Ta a5y O dgeny —2X A R sjaza, Pwep for (Ay"X) =0

We suggest to introduce d.4 as an independent variable into the action, with an on-shell value d,. = %chng. Doing this, one
would arrive at a formalism where the G sy term is replaced by a first order term, while the Bjsn term remains. This would
therefore be a mixed first-second order formalism which would be suitable to couple it to e.g. the components of a generalized
complex structure. o
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5.9 Graded commutation of left- and right-moving BRST differential

We have started in flat background with two independent BRST symmetries, the left-moving and the right-
moving one, which both squared to zero and graded commuted. As they define the physical spectrum and
identify physically equivalent states, these facts should not change in a consistent theory, at least on-shell. This
is similar to the fact that gauge symmetries should not be broken. We have already derived the constraints
coming from a vanishing divergence of the BRST currents. The ansatz for the currents was such that this
corresponds to holomorphicity for 7, and antiholomorphicity for j;. Having on-shell a holomorphic 7, and an
antiholomorphic j; is in a conformal theory already enough to make the corresponding symmetries commute.
For example on the level of operators, the operator product between a holomorphic and an antiholomorphic
current always vanishes on-shell. The same is true for the charges which generate the symmetry. The on-shell
vanishing of the commutators is all that we can demand for consistency. Therefore we do not expect any
additional information from the graded commutation of left- and right-moving BRST differential. Nevertheless
it is instructive to calculate the graded commutators and consider it as a further check. In particular it is
interesting to see the terms which prevent an off-shell commutation of the differentials. The starting point is
the request that we have

n !
8960 = 6(ubmn + 0 ben + StrivPmn (5.200)

where 6triv¢aIL11 is a trivial and thus on-shell vanishing gauge transformation (see page in the appendix).
Spelled out in words, means that the graded commutator [§§ has to vanish on shell up to antighost
gauge transformations. There are at least two ways to check this. Either we calculate the commutator of the
transformations on each worldsheet field or we calculate the transformations of the Noether currents. This is
directly related to calculating the Poisson brackets of the generating charges in the Hamiltonian formalism.

Determining [s§ via the transformation of the currents Let us see, how the reasoning goes in the
Lagrangian formalism. We start with the defining equations of the BRST currents

; 68

0j., = —spt—r 5.201

J -~ S¢a11 5%111 ( )
05

93, = -t ——o 5.202

E all 5%1]1 ( )

If we consider the combination §(5.201)) + s5.202)), we discover the Noether current for the graded commutator
s §:

_ ; 68

0. +0(9:) = —[Qﬂ(ﬁall% (5.203)

In order to calculate the lefthand side, remember the form of the BRST current j, = A%d.o (6.39) and also
note that it is a target space scalar. The BRST differential can be replaced by the covariant one:

~& 3 1l.a
Y. = —Noudey = 20 AN A"RaralPw.g =2 A"V Re P (AY°N) (5.204)
G189 8 NI
25252

Using the left-right-symmetry of proposition [1| on page we get the corresponding expression for sj;. Both
vanish on the pure spinor constraint surface (Ay?A) = (Ay®A) = 0 and as they are the components of the
Noether current belonging to [§d, this is again a sign that this commutator will vanish on-shell up to gauge

transformations. Indeed, if we take ji., = —j\a73‘7Rd7a5wzg and [iz correspondingly and remember the
antighost gauge transformations (5.85) and (5.86) with corresponding current (5.73)), we arrive at
= S S
o(sy 0(8;) = —praMYNa—— +Dspirg—— 5.205
(¥.) +0(9:) frza(AY?) S T Pebeagy— (5.205)

Having a current that coincides with the one of a gauge transformation, the form of [s§ can only differ by a
trivial gauge transformation. In any case we have obtained the result that the commutator vanishes up to gauge
transformations. A safe way to figure out potentially appearing trivial gauge transformations in the commutator
is to calculate it on each single worldsheet field separately.

Acting on each field separately Although this method would lead to the precise off-shell form of all the
commutators, we are for now satisfied with the result we already obtained and give the explicit commutator only
for the most simple cases. Starting with the covariant BRST transformations of the elementary fields (given in

(15.190)-(5.197) on page , we will first calculate the commutator [§.00, S0v] and only after that determine the
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ordinary commutator via the relations (IS.lO?I) and (I5.108|). For the embedding functions x%, the ghosts A, A7
and the antighosts w,o and wzg the calculation is very simple and we immediately obtain

[fov, 8o0] 2 = 0 (5.206)
Sovs o] AT = 0, [sou8a] AT =0 (5.207)
[Gov Sou] Woy = Bovday = 28 A%Rayalw.p,  [Son foo] @25 = —22°A% Ranyal@_5 (5.208)

The transformations of the remaining fields are much more complicated and we prefer not to study them. Let
us now derive the ordinary commutators:

g2 B2 [5,, 50,] K —22° z&ﬁ A% =0 (5.209)
=0 =0(5.178)
58, A B2 5 80 AT -2 A% A Raap AP = 0 (5.210)
=0 =0 1|
[8 8o Wary &9 (800, Seou | Wy +2)‘a5‘dRad'rﬁ“’Zﬁ =
=—2A%A%*RaraBuw.p
= 45\d>\"Rd[aﬂﬁwzﬁ (5.211)

Again we get the corresponding equations for A% and wz4. The last line corresponds excactly to the gauge

transformation with gauge parameter p,, = —i;\a%‘f"Rd.yaﬁwz,@ that we found already above. It is interesting
to see in (5.209), that some holomorphicity constraints like T5,% = 0 are needed for the commutation. In
fact, in [50] this constraint was derived by demanding a vanishing Poisson bracket between the two genera-
tors of the BRST symmetries. The constraint T4, = 0 did not appear in our derivation via the currents
above. The reason is that we already started the derivation in from an equation which assumes on-shell
holomorphicity.

5.10 Nilpotency of the BRST differentials

While the last section was rather a check than bringing much new information, the nilpotency of the BRST
differentials will give us additional constraints on the background fields. The nilpotency is essential to define
the physical spectrum as in the flat case via the cohomology. It would be inconsistent if this prescription brakes
down, as soon as a nonvanishing background is generated by the strings. Demanding nilpotency at least on-shell
and up to gauge transformations is thus legitimate.

Nilpotency constraints from the BRST transformation of the current In the same way as in the
previous section, we can examine the BRST-transformation of the BRST-current instead of studying nilpotency
on every single worldsheet field. Start from the defining equation of the BRST current

= 0S
dj. = —spb—r 5.212
11 6¢azdl ( )
and act with sfor a second time
= oS 528
. _ 2T T T 921
8(s5.) s e (5.213)
—_———

=0

The BRST transformation of the BRST current is therefore the Noether current for the transformation . As
the BRST current is a target space scalar, we can replace the BRST differential with the covariant one when
calculating 57,

. = Sov (Xsdzé) = *Xssﬂdz& =

: .3
= _AIAY3H . 11 — 5/\5)\"‘Ha,,5HZ — 2NN T sV oy + 2XOAMAM R0l (5.214)

2To¢6|c

We want to demand that &, whose current is sj _, vanishes up to gauge transformations. Due to propositionon
page in the appendix, every gauge transformation has (up to trivially conserved terms) an on-shell vanishing



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE Il BACKGROUND 53

Noether current. Instead of deriving the form of & on the fields by taking the divergence of this current, we
can simply demand that it vanishes on-shell. This is a necessary condition|"] Also due to proposition [4] it is a
sufficient condition, as we know already that sj, is a Noether current for a symmetry transformation and if this
current vanishes on-shell, the transformation can be extended to a local one, i.e. it is a gauge transformation.
The only equations of motion, which can make sj, vanish on-shell are the pure spinor constraints Ay*A = 0.
We therefore get the following conditions on the background fields

= N HacsA® = 0, AA 57 =0,  MNAMA™R4.50,° =0,  (onshell)  (5.215)

Remembering that we have the constraints Tos). = 5 Hacs (5.165) and Tos? = 3 HaspPPY, we can extend the
above condition on the torsion on all indices

AAT, s =0 (on-shell) (5.216)

All these on-shell conditions can be formulated in an off-shell version with the help of y-matrices by using
(5.189) on page Either we write that the terms are linear combinations of v[’s, or equivalently we can
write that the y[l-part vanishes. In particular the constraint on Hacs can then be further simplified. We have
1
Heap = Heavas for Hog = 1—6HC,567§5 (5.217)
In particular for C' = =, due to the (graded) total antisymmetry of H.,qg, this should at the same time be
proportional to 75, and v3.:

a 1 d_.a 1 b S a D‘65 1 a
Hyap "= Hplalag = EH[’Y\5€7¢§ Neg) = T6Heb7[7|575 7|ag]§H[-y\aW|a5](5-218)

In the last step we used the Clifford algebra for the first two 7’s and then the Fierz identity
to throw away one of the resulting terms. Remember that the appendix about I'-matrices doesn’t use the
graded summation convention. For the Fierz identity we thus have a (graded) antisymmetrization, instead of
the symmetrization and for the Clifford algebra we get an extra minus sign because of the NW-definition of the
Kronecker-delta.

The second and the last term of the above equation contradict each other if they do not vanish.

Heap =0 (5.219)

The components Heqg and Hed,fa where constraint to be zero already before. Of the components in ,
we thus have only Heag = HeaVop nonvanishing. It is a linear combination of Yop and in flat space the two
indeed coincide up to a constant factor. We can now analyze in a similar way the constraint on the curvature
in (5.215). As the pure spinor constraint is quadratic it can be equivalently written as A**A%? Rjq,50,]° = 0
(on-shell). For this expression, one can do the same reasoning as above with Heog and arrives at

Riays0,)” = 0 (5.220)

We will get the same constraint from the Bianchi identities later in case one feels uncomfortable with that line
of arguments.

Of course we get all the constraints also in the hatted version from the right-mover BRST current. We will
explicitely write them when we are collecting all constraints in section on page

Nilpotency on the single fields Just to get a flavour of how the calculation would work if we act on each
field twice with the BRST differential, we perform this for the simplest cases. One discovers immediately that
acting on € and A® twice with the covariant BRST transformation yields zero. The reformulation of &, in

cov

terms of the square of the ordinary differential & gives a torsion or a curvature term respectively. These terms
have to vanish on-shell in order to have an on-shell vanishing &*:

0 = 0% =geX 20T 55N = AT 55A° =0 (on — shell) (5.221)
20 (on — shell)
0 = £,2A% = (£)eooA® 12X A Ry55°A° = ATAPRy55°A° 20 (on —shell)  (5.222)
——

<0 (on — shell)

On the antighosts we have sgovwm = Sovdza Which will not vanish, but which will correspond to a gauge
transformation. The same should be true for L,z,. The calculation of s2dz,y is quite involved to calculate and

will probably contain also constraints that follow from the earlier ones via Bianchi identities. We will calculate
the identities anyway in sections on page [62] and on page

15 There are no trivially conserved parts in sj,. A trivially conserved part is of the form 845[45] for some rank two tensor S¢¢.
In the conformal gauge this would take the form 9.S|z,; which is of conformal weight (2,1). Such a term is certainly not present
in our current. <
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5.11 Residual shift-reparametrization

Before we are going to collect all the constraints on the background fields which we have obtained so far, let us
eventually make use of the residual shift-symmetry discussed in the paragraph on page [32| (which in turn refers
to the paragraph about shift-reparametrization on page . It is a target space symmetry that is based on a
residual shift reparametrization of the fermionic momenta:

o = doa —ED0(2)(VA)aw:s (5.223)

The BRST current gets changed under this reparametrization by a linear combination of the pure spinor
constraint , but this change can be undone by a redefinition of the BRST transformations with the
corresponding antighost gauge transformations. This does of course not change the on-shell holomorphicity of
the BRST current, as the pure spinor term vanishes on-shell.

Apart from the change of the BRST current, we have the following induced transformations of the background
fields coming along with this reparametrization:

Ma® = Qua® — Ex"2,E®,P (5.224)
Gl = CaPY b 20, Sp (5.225)
50s® = Saa t CaP1h 2®,0 (5.226)

Note that the transformations of Co?Y and S,4?? are in agreement with the holomorphicity constraints
and , relating them to Q7. It is thus enough to memorize the transformation of the connection Q74
Remember now the definition of the torsion as T = dE4 — EB AQpA. This implies the following transformation
of the corresponding torsion component (see also in the appendix on page [143):

TP = Toas® — o, 5P (5.227)

Due to the nilpotency constraints we have To, a,” 75, 4, In addition, the left-right symmetry of proposition
induces the same statements for ledgﬁ and the second residual shift symmetry related to the reparametriza-
tion of dy. We can therefore completely fix the two residual gauge symmetries by choosing the (obviously
accessible) gauge

T..7=0 (5.228)

Tag? = 0, 58

We can now immediately take advantage of this additional (conventional) constraint and check the validity of
the constraints (5.187)) and (5.188) on page

5.12 Further discussion of some selected constraints

There are some constraints which deserve further examination, before we move on to study the Bianchi identities.
First, the four constraints , and their hatted versions on page [49| do not look very useful as they
stand. We will show that they are actually consequences of other constraints. Second, with and
we have two equations for SaaP? and it is interesting to know whether they are equivalent or not. Let us start
with this last problem:

the new conventional constraint T8 =0 = Tafaﬁ 5. . Starting with (5.183)), the tensor of interest is given
by

Consistency of (5.183) and ([5.184) In the following we will (actually just for convenience) frequently use
G2

Sadﬂﬁ _yazapﬁﬁ + QRQ:Y&@@B’? —
(5.179)
I 5 5 A . B 33 . B 34
B2 g v PP or, PV, PP 9RasPPP — 2R PP 1 2R aPPPY (5.220)

In order for this to be compatible with (5.184]), i.e. with

Saa? —ydzapﬂf* + 2Ranya PP (5.230)
(.
the curvature has to obey A o
Rajas)PP%? = Rya5° PP = 0 (5.231)

In fact, this condition will be a simple consequence of the torsion Bianchi identities that we will obtain in ((5.428)

and (5.429).
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Check of (5.187) The constraint ((5.187) contains the covariant derivative of Co”Y for which we can use in
turn the constraint (5.179) together with our new constraint (5.228)).

Via:Con®? = 2Rjas510,) P P =

(5.179) y 54
= y[azyal}pﬁv — 2R(a, (5|0 Bpdy —
F.28]
‘ - ' - agaleD,PB’Y + 3R[a2a15 A 7)67 + RQQQIJ’Y 7)66 (5.232)

N——
=0 (5.220) =0 (5.182),(5-219)

Only the first term remains, but recalling the nilpotency constraint in combination with (5.189), we
observe that also this term vanishes, when contracted with 7212 . The constraint therefore does not
give new information and will be omitted in future listings. The same is true of course for its hatted version
due to the left-right symmetry.

Relating (5.188) to a Bianchi identity For the constraint (5.188) we have to consider the following
combination

ViasSenla™ = 2Rjay 156" Clay,)®Y + 2Rias)slaa)? Ca® =

(5.183) A ~ A 3 ~ 3 3 3
Vel (Y\al]lﬂ’ﬂﬁ - ZR\al]ﬁaﬁPm) - 2R[a1\’yd,62|a2]7357 + 2Ry 50 ] " Vo PP =
Too, CVeV AP 4 Ropona? Vo P — Ropo s VPP +

H,_/ %/—’

SERE e Em
+2Z[a2|f3\a1hdg’])r3‘1 + 2R[a25a1]'8 zdpé‘ﬂ _
————
=0 (5.220)

= °YoVa Pﬁﬁmv[az,mmha BpBY (5.233)

—azal

The first term vanishes again when contracted with vg1%2_ ((5.216)) and (5.189)) and the constraint (5.188)
reduces to
18102 i RiaagaPPY =0 (5.234)

We will see in a second that this equation is automatically fulfilled when the Bianchi identity for the curvature
is fulfilled. We will study the Bianchi identities at a later point, but not all of those for the curvature, because
we intend to make use of Dragon’s theorem, relating second to first Bianchi identity. Let us therefore write
down at this point the Bianchi identity that we have in mind (see on page :

| . R . .
0 = z[ozz\Rlou’?]@B + 2I[a2a1IDRD\‘Y]dﬁ =
2 .\ A 1 R 5 4 - 5 2 A A
_ B B = D B,z D B
= gy[aﬂR\al]‘yd + gyﬁ Razala +3 Iry[az,\ RD|a1]a + 3Ia2a1 RD'ya (5235)

—
~EE.62Z0 _, (5175)

Once again the last torsion term vanishes when contracted with v %2 | so that the above Bianchi identity
implies
Vo 2as Ve Rlas)5a’ = 0 (5.236)

as——

which is even stronger than (5.234]). Of course we also get a hatted version of this constraint.

5.13 BI’s & Collected constraints

The next step ist to study all the Bianchi identities. The logic is as follows: We have obtained certain constraints
on the H-field, on the torsion and on the curvature. As these objects are defined in terms of B-field, vielbein
and connection, the constraints can be seen as differential equations for the elementary fields. If one solved
these equations and calculated again H-field, torsion and curvature, one would observe additional constraints
that one had not seen in the beginning. Being too lazy to solve for the elementary fields, one studies instead the
Bianchi identities which deliver the additional constraints as consistency conditions. Depending on the point of
view, they are a direct consequence of either the nilpotency of the de Rham differential = 0 (see appendix
on page or of the Jacobi identity for the commutator. Their explicit form, using the schematic index
notation of reads:

VaHaaa+3T44“Hoaa = 0 (5.237)
VaTlaa” +2T44Toa” = Raaa® (5.238)
VaRaap® +2Taa"Rpas® = 0 (5.239)
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Repeated bold indices at the same altitude are simply antisymmetrized ones. Dragon’s theorem (see page [147)
tells us that — when the torsion Bianchi identity is fulfilled — we can replace the curvature Bianchi identity by
the weaker condition

R Ap B _
feep Lec
= Vo, YelTee® + Tee®YpToc™ +2 (YCICCB + 2ICCDIDCB) Tpe™ (5.240)

We will anyway concentrate on the Bianchi identities for H-field and torsion, because they provide new algebraic
constraints. The corresponding calculations are lengthy but not very elluminating and we put them into the
local appendices, at the end of this part of the thesis.

We will now collect all the constraints on the background fields that we have obtained so far plus the ones
that we will obtain from the Bianchi identities. We label those by (BI). If we later make use of some explicit
form of one of the background fields without giving the explicit equation number, the corresponding equation
should be among the following ones.

Not all equations we write are independent. It is sometimes convenient to have them in different versions.
In particular, some constraints for H are at the same time constraints for the torsion and will be listed in both
paragraphs.

Restricted structure group constraints The first set of constraints is related to the restriction of the
structure group (of the supermanifold) to a a block diagonal form with three copies of Lorentz and scale
transformations. This was discussed in a paragraph on pages in the remark on page and in the
intermezzo on page The following equations are taken from (5.89)-(5.91), (5.147) or (5.149) and (5.154)

Qe = %Qﬁv’}’)éaﬁ + %Q%ﬁlaﬂ“maﬁ, O’ = %Q(ﬂ?af + iﬂﬁilaﬂal%ﬁ (5.241)

C.B7 %Cﬁaag N iczlaﬂalazagv CLP — %éw(gdfi n iéllaﬂ““”aﬁ (5.242)
Saa® = isaa%éf’ + ésalaz(sa%awzdf’ -

+é§a1a27“1“2a65a[’ + %Salazblbﬂ“l“aﬁvblbzaﬁ (5.243)

Gun = Eu"GaEN’, Gab = € 1ap (5.244)

Constraints on H Due to (5.162)-(5.166), (5.217), (5.219) an the total antisymmetry of H, its only nonva-
nishing components are

Hype # 0 (in general) (5.245)
2, 2
Haﬂc = _g aBlc = —g’ygﬁfac (5246)
H _ ip o 22 g 24
aBe 3 aBlc = g’yd,@fac (5.247)

The vanishing components are thus (written a bit redundantly)
Hype = Haﬁc = Hd,@c = Ha,@C = H.ABC =0 (5248)

The only additional algebraic constraint that we get from the Bianchi identities for the components of H is that
fa© and fac have to be Lorentz plus scale transformations respectively. This is a very important point, because
it finally provides a possibility to gauge fix two of the three local structure group transformations by fixing
f.¢ and f,°© to the Kronecker delta.

(BI) + g.—ﬁX. : fac = fac = Gac (5249)

This has, however, also other important consequences: the mixed connection that we used is not a suitable
connection any longer, as it would not preserve this gauge. We will discuss this issue at the beginning of

section [5.14] on page 59

The derivative Binachi identities on H read:
(BI): VsHaope = —4T[ab|é7|c]é;; (5.250)
VeHaupe = ATi0p %Y c)es (5.251)

9
v[a]:Ibcd] = iH[ab|eHe|cd] (5252)
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Constraints on the torsion Let us now collect the information of the constraints (5.163)-(5.165)), (5.175)-
(5.178) and (5.216). The only (a priori) nonvanishing components of the torsion T 45 are

Talay = —%vﬂDch (5.253)

Taple = —g ape = Yap Jic, - TamCZSHmCZme Jie, (5.254)
Gac (BI) Gac (BI)

Tue? = TaseP? =g Jae PO, Tat =Tu5.P" =7l i"/ P (5.255)
Gae (BI) Gae (BI)

T.,° # 0 (in general) (5.256)

With the help of the Bianchi identities, the first and the last line become more precise:

. 1 .1,
(BI) : Tap” = —5Va®0; - i%zﬁvﬁ@ (5.257)
N 1~ 1 PN
N I v = T ¢ By
Tar® = —5Va®d;— 5’ Ve (5.258)
1 5 ot 8\~ 4
Ta? = 15 (5P +8V50P7) 5,57 (5.259)
PN 1 - N
T’ = 5 (Y, PV + 8V, 2PY) Yy 67 (5.260)
3 X 3
T’ = =Hu®  Twp®=—"Hy® 5.261
b 2 b b 9 b ( )

The remaining components do vanish already without BI’s, which can be written (again a bit redundantly) as

Tas® = Toa® =Tad’ =Tad’ =0 (5.262)

ad

We are finally able to write down explicitely the antisymmetrized difference tensor between left and right-mover
connection

73Habc *Taﬁc Tch
(BI)  Aup = T’ 0 0 (5.263)
Tap® 0 0

Constraints on C and S and others The constraints on C' and S can be regarded as defining equations.
We have already shown in that the two equations for S are equivalent up to Bianchi identities.

C =y (5.264)

Ca¥7 = v, P (5.265)

Saa™ = Yo CaP? +2RaraPPT (5.266)
Zé‘pwé

Saa?’ = —yd\cgfjwz%maﬁpﬁ (5.267)
Y PPy

In addition we have from the Bianchi identities

(BI) 0 = Vad=Va® <— Q,=Q,=EMoyd (5.268)
= AP = 0 (5.269)
AP = v,0 (5.270)

AP = _vae (5.271)
VaPo% = 8P%aV,a (5.272)

v P = 8Py, (5.273)
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Constraints on the curvature Induced by the restricted structure group constraints on the connection, we
have such constraints likewise for the curvature (see (5.68) on page [35| and (F.77),(F.79) and (F.81) on page
The curvature is blockdiagonal and each part decays into a scale part and a Lorentz part:

Rapc” = diag(Rape’, Rapy®, Raps®) (5.274)
y Ny . . 1.
Rape' = Fis¢+ Ry FYp) = Rase’ (5.275)
1
RAB')/G = 7FAB)6 + R;ngal 771)0,2'7[11{12 67 F,Ex%) = _gRAB'y‘Y (5276)
A > R 1.
Rapy” = iF(D)&iB + ZR‘(‘”;M Mbas V" &, P = —gRAB~f' (5.277)

with the scale field strength
FP) = g0, FP) =g, FD) = g0 (5.278)

Finallly we had a couple of holomorphicity and nilpotency constraints:

Racdlg = Tazﬂc éaﬁé 5 R&ca = Ta5|c C ’88 (5279)

—~—— v\,_/

Feas (BI) ToP?P Teas YaPP?
Rova® = 0, Rasa® =0 (5.280)
Y32 Rioan® = 0, 731%2 Rygan® =0 (5.281)
Y2 Ry, = 0 A8%2 Roaran” =0 (5.282)
R[alazas]ﬁ = 0? R[d1d2d3]ﬁ = O (5283)

Taking the trace of the first two curvature constraints gives further informations on Dilatation-Field-strength
and Lorentz curvature

. 1. 1. .
D = —5TasVaP?, FD = ~ Lo LaP™ (5.284)
ED =0, F2=0 (5.285)

The Bianchi identities provide more information about the third and the fourth curvature constraint
d 2 _d A
(BI) ]%(:[OL,B]’7 = ’yaﬂTdC‘ya Rp[aﬁ]"l dﬁ:}Tdc‘y (5286)
s e % 86 3 5 e x 56
Rilap)” = —VaplessP"r  Boap’ = —VapVersP (5.287)

Remaining differential BI’s

Ria’ = YaToe’|g g + 4901 arP 7725 P% (5.288)
Ruea® = VaTu®| _ + 4 a5P ) esP” (5:289)
VaToe® = —27345V1gP? = 3Hpee15 5P (5.290)
@a’fbca = =29y aav‘cﬂ?‘” + 3Hbce'7;57356 (5.291)
Vielog® = —3HTe1q® - QT[G,,,%‘C] .5P% (5.292)
@[a,fbc](5 = 3H[ab\eTe|c]6 - 2ﬂab\€:Y\c] 567)66 (5293)
! e e
Ropt = QV[aTﬁ]Cd + 376 gHee” + 41101 T g (5.294)
édécd = QV[a ﬁ]c 3/7:;[3H€Cd + 4T[d\ceT|[.]]ed (5.295)
Ralécd = VBTcad - 2:70 aﬁlpﬁévgg + 2:YCB$P€6’7§& (5296)

Rapet = VgTa®—27, dﬁ,PE%;ZB +29.85P%~2,  (equivalent) (5.297)
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. 3. ~ .

Rapg® = _ZvaHbcd + 290 as P2 T2 10 + Toc*2a (5.298)
3 ~ 5 .

Rapg” = Zvdecd + X1 45 P* Tejg* + The* s (5.299)

. 1 N
Rl = V5P ee M ea (5.300)

1 €~ c
RiG," = gzypee%ce'y%sa (5.301)
Ripe® = o Hyu 4 2 iy o + 2Ty Teyr 5.302
[abe] = 5 Viato] + 5 Hlab] Helc) + 21 0ap| Le|e] (5.302)

~ 3 9 PN
d d e d d
Rpapg” = —§V[aHbc] + §H[ab\ H, % + 2010 Tz (5.303)
3

- Rgljia)b]d = ZvdHabd - Tab7v7¢ + 2Td[a|€Ts|b]d (5304)
7R£ll[‘a)b]d = *ZVdHabd - abﬁery(I) + 2Td[a‘eTE‘b]d (5.305)

5.14 Local SUSY-transformation of the fermionic fields

In order to make contact to generalized complex geometry, we are interested in the local supersymmetry trans-
formations of the fermionic fields, i.e. the gravitino and the gauge field. In the appendix [H| on page [154] we
carefully derive the supergravity transformations in Wess-Zumino gauge in general, following roughly [15]. The
fermionic fields are the gravitino and the dilatino.

5.14.1 Connection to choose

In the appendix [Hlon page we describe the ususal procedure of going to the Wess Zumino gauge Exq?| =
Sam? and Qaqa”| =0 (see (H.100) and (H.127)). This gauge fixing is possible with any connection as long as
it takes the same values (in the Lie algebra) as the gauge transformations (Remember, a connection is a Lie
algebra valued one form). However, the present case is a bit special in the following sense: We have derived the
supergravity constraints using the connection

Qnra® 0 0
Qs = 0 Qua” 0 (5.306)
0 0 QuaP

After that we have coupled the independent structure group transformations of the three blocks by a gauge fixing
s.t. Tag® = Vap and Ty, =5 5 The remaining gauge symmetry has to leave this gauge fixing invariant which
reduces the structure group to only one copy of the Lorentz group plus one scale group. The above connection
however does not leave the gauge fixing invariant (the covariant derivatives do not vanish in general). In order
to be consistent, we thus have to reformulate the equations in terms of a connection which leaves Yop and

72,53 invariant. Possible choices are either Q47 (defined by Qpe” and VJ\,{’Y:;ﬁ = VM’y;,é =0) or by QpraB

(defined by QMdB) or by the average connection

1 A 1
Qua? = 3 (QMAB + QMAB> = Qua® + §AMAB (5.307)

>

We will study the choices 48 and & mAZ. The first has the advantage that at least the left mover equations
stay simple while the second has the advantage that the symmetry between left and right movers is preserved.
Corresponding to the the first choice the connection part of the WZ gauge simply reads

Qmaa®| =0| (gaugel) <= Qpqy = diag (0,0, AmaP ) (5.308)

o |Q:Q,0:0

In this gauge all the equations derived in appendix [H]on page[I54]hold literally. The average connection becomes

1
Q MAB = = AMAB} (gauge I) (5309)

- 2
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Alternatively to gauge-I we could put QM AB’ = 0 or equivalently £ aq A8 = f% AMAB’ which would be

the same type of gauge with simply the role of hatted and unhatted variables interchanged.
However, a different natural gauge fixing (being symmetric in hatted and unhatted variables) is

1 1 1 5
B B . b
Qrma”| =0 (gauge II) <= Qa4 |Q:Q,0:o - dla,g(—iAMa ,—iAMaﬁ, §AMdﬁ) (5.310)

In this gauge we have to replace in all equations of appendix [H|on page Quraf with Qu 42 and Ty n2by

A
L un*.

5.14.2 The dilatino transformation

The dilatino is part of the dilaton-superfield ®(,;,). We define it as

A = 0uPin| (5.311)

Ai = 0u®n)| (5.312)

In [11] and in [50] there are quantum arguments that Vo ®(,n) = 4Qa and Va®n) = 4Q4. Because of the
introduction of our compensator field ®, the relations modify in our case to

EQM(?A[((I)(;D;L) + 4(13) = 40, — —4V P = Vaq)(ph) (5.313)
End’)M@(ph) + 4(13) = 4@@ e —4@&(1) = @dq)(ph) (5.314)

Let us summarize the covariant derivatives of the compensator field using the different connections

Ve =0 Vel =0 V=0
Va® = —1Va®(n) Va® =0 Va®=—3Va®0n (5.315)
Va® =0 Va® = —1VaPun Ya®=—-31VaPun

The dilatino therefore is also related to the é—component of the compensator field ® and the leading component
of the scaling connections [
5.14.2.1 Gauge I

In gauge I we can take the equations literally. We can directly plug in the torsi