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Chapter 1Introdution
First onsiderations dealing with a non-ommutative (or quantized) spae-time are due to Snyder [1, 2℄ and date bak to the year 1947. The ideawas to overome the ultra-violet divergenes in quantum eletrodynamis bythe introdution of an e�etive short distane ut-o� in the �eld theory. Inontrast to earlier attempts, whih replaed the spae-time ontinuum by alattie struture, the non-ommutative struture maintains the translationalinvariane. At the same time, however, the renormalization program su-eeded in prediting numbers from the theory of quantum eletrodynamisand the ideas of Snyder were for the most part ignored. Some time latervon Neumann introdued the term \non-ommutative geometry" to refer ingeneral to a geometry in whih an algebra of funtions is replaed by a non-ommutative algebra. As in the quantization of the lassial phasespae,oordinates are replaed by generators of the algebra. Sine these do notommute they annot be diagonalized simultaneously and the spae disap-pears. Similarly to the unertainty priniple of quantum mehanis,[x̂�; p̂�℄ = i~Æ�� ; (1.1)one may replae the Minkowski oordinates x� by generators x̂� of a non-ommutative algebra whih satisfy ommutation relations of the form[x̂�; x̂� ℄ = i���� ; (1.2)where the parameter � is a fundamental area sale. If the right-hand sidedoes not vanish some of the oordinates x̂� do not ommute and thus an-not simultaneously be measured with arbitrary auray. Non-ommutative3



1. Introdution 4e�ets ould take plae on mikroskopi sales and from dimensional onsid-erations of the fundamental onstants we suppose the value of � to be of theorder of the Plank area, � ' m�2P = G~ : (1.3)However, the experimental bounds would be muh larger. On makroskopisales we annot see the algebrai struture (1.2), sine lim�!0 x̂� = x� sothat the oordinates ommute.In a sense, string theory introdues a onept that is very similar tonon-ommutative geometry. Point partiles are replaed by strings, openand losed ones. The struture of these extended objets gets relevant atthe Plank sale and it provides, just as non-ommutative geometry, an ef-fetive short distane ut-o�. So it is not astonishing that string theoryand non-ommutative geometry are somehow related, even more if one takesinto aount that the spae-time oordinates, being �elds on a two dimen-sional world sheet, beome operators upon quantization. However, things arenot so simple and an algebra like (1.2) was �rst found by Shomerus [4℄ nomore than two years ago. The non-ommutative struture originates from atwo form bakground �eld B and appears only on so-alled Dp-branes thatare (p+1)-dimensional dynamial objets on whih the ends of open stringsare �xed. So in a theory of only losed strings there does not arise non-ommutativity (at least not by the same mehanism). Before this disovery,both �elds of researh, the non-ommutative geometry as well as the openstring theory, were intensively investigated seperately. Thereafter a lot ofprogress was ahieved in the relation of the two and interests went in severaldiretions, suh as D-brane physis, the di�erential struture, or the rela-tion between ommutative and non-ommutative geometry, provided by theSeiberg-Witten map.In the subsequent setions we present reent developements in open stringtheory and non-ommutative geometry as far as they are relevant for ouronsiderations.



1. Introdution 51.1 Non-ommutative GeometryThe mathematial desription of non-ommutative oordinates an be im-plemented in two di�erent ways. In the introdution we used the operatornotation. The order of the operators x̂� plays an essential role and if thenon-ommutative parameter ��� is not onstant we have to speify in whatorder it depends on the oordinates x̂�. The seond desription is known asdeformation quantization and uses ordinary -numbers x�, i.e., x� are the o-ordinates of a point P on a di�erentiable manifoldM. Non-ommutativity isrealized by a bilinear, assoiative produt of funtions, whih is parametrizedby a tensor �eld ��� onM. Heneforth, we will make use of the seond kindof desription.A onstant �eld ��� de�nes for instane the Moyal-Weyl star produtf(x) � g(x) = e i�2 ��� ��x� ��y� f(x)g(y)��x=y: (1.4)Taking the funtions to be the oordinates themselves one obtains immedi-ately [x�; x� ℄� = x� � x� � x� � x� = i���� ; (1.5)whih is similar to equation (1.2). The Moyal-Weyl produt (1.4) has, apartfrom its assoiativity, the property that under an integral the produt of twofuntions simpli�es to an ordinary produt. Aordingly, the integration atson the produt of an arbitrary number of funtions as a trae, i.e.,ZM dDx f1 � : : : � fN�1 � fN = ZM dDx fN � f1 � : : : � fN�1 ; (1.6)and it is allowed to omit one of the stars.Reently, a lot of suess was ahieved investigating non-ommutativeYang-Mills theories. We give a short desription of the underlying model.The Moyal-Weyl produt is a very simple example for a non-ommutativespae, so that it was used for most onsiderations. If we take, in addition, aat Minkowski metri, the ation for a non-ommutative U(N) Yang-Millstheory is S = � 14g2 ZM dDxTr(F�� � F ��) ; (1.7)



1. Introdution 6where g is a oupling onstant. The �eld strength F�� orresponding to thegauge �eld A� is de�ned asF�� = ��A� � ��A� � i[A�; A�℄� : (1.8)Both A and F are N �N hermitian matries and omply with the in�nites-imal gauge transformationsÆ�A� = ���+ i[�;A�℄� ; Æ�F�� = i[�; F�� ℄� : (1.9)Even in the U(1) ase equations (1.9) keep the struture of a non-abeliangauge transformation. In the limit ��� ! 0 the theory redues to an ordinaryU(N) gauge theory.So far we onsidered the very speial ase of the Moyal-Weyl produt.The generalization to a non-onstant �eld ���(x) was investigated in theontext of deformation quantization of Poisson manifolds [8℄. A manifoldwith a Poisson struture ��� is endowed with a bilinear, assoiative produtgiven by1f Æ g = fg + i�2 �����f ��g � �28 ����������f ����g � (1.10)��212�������� �����f ��g � ��f ����g�+O(�3) :If the manifold is, moreover, sympleti, the Poisson ondition simpli�es tothe ondition that the inverse of ��� is losed, i.e., d(��1) = 0.1.2 Open String TheoryIn analogy to the ation of a point partile, the Nambu-Goto ation of a(bosoni) string is the area of a surfae, the world sheet, that is embeddedin a D-dimensional target spae:SNG = 12��0 Z� d2�p� det g�(X(�)) ; (1.11)1The exat de�nition of the produt ontaining all orders of � an be found in theoriginal paper [8℄. It would go beyond the sope to introdue the notation in order to givethe full de�nition. However, throughout this work we only need approximation (1.10).



1. Introdution 7where g�ab is the indued target spae metri on the world sheet �. �1 and�2 are the loal oordinates on �. In terms of the ation priniple the mini-malization of the area gives the path and the oszillation mode of the string.There are two possible types of strings. The losed string is a loop, so thatits world sheet has no boundary. The open string has two ends, whih meansthat it gives rise to a world sheet with boundaries. The osillation modes ofa string orrespond to the spetrum of various partiles. The losed string,for instane, gives rise to a graviton, a 2-form gauge �eld and a dilaton. Theopen string model inludes in addition gauge bosons.When deriving the equations of motion for the oordinate �elds X� interms of the ation priniple, in the open string ase we have to imposeboundary onditions, either Dirihlet, X����� = a� (or equivalent ��X����� =0), where a� is onstant, or von Neumann, �nX����� = 0. It is also possible touse di�erent types for di�erent diretions, for instane, the time and p spatialdiretions satisfying von Neumann and the remaining (D�p�1) diretionssatisfying Dirihlet onditions. In suh a ase the string ends are �xed ona (p+1)-dimensional hypersurfae, whih is alled a Dp-brane and is itself adynamial objet and interats with a string through its ends.The Nambu-Goto ation (1.11) an also be reformulated in terms of asigma model, the Polyakov ation,SP = 14��0 Z� d2�phhab�aX��bX�g��(X) ; (1.12)where g�� and X� denote the metri and the oordinates in the target spaeand hab the metri on the world sheet. The Nambu-Goto ation an beretrieved by solving the algebrai equation of motion of hab. But doing so,the world sheet metri an be determined only up to an arbitrary funtion�(�), i.e., hab = �g�ab. This means that the Polyakov ation (1.12) has,di�erent from the Nambu-Goto ation (1.11), an additional symmetry, theWeyl symmetry, i.e., it is invariant under the transformation hab ! �hab.This symmetry is very important for the sigma model of strings. Without,one ould never get bak to the Nambu-Goto ation and the interpretationof minimalizing an area would break down. The Weyl symmetry ours onlyin two dimensions.The Weyl symmetry plays a key role in the quantization of a string theory



1. Introdution 8with interations of the target spae oordinates X�, for instane (1.12). Thequantized theory is no longer invariant and one has to require the onditionthat the Weyl anomalies vanish, whih leads to equations of motion for thebakground �elds in the target spae, suh as the Einstein equation for themetri g�� , i.e., R�� = 0.Another important symmetry on the world sheet is the di�eomorphisminvariane, so that it is loally always possible to transform hab into the atmetri Æab. However, for several issues it is more useful to take the onformalgauge hab = e2!Æab. Then, hoosing in addition a at target spae g�� = ��� ,the ation reads SP = 14��0 Z� d2��aX��aX� : (1.13)Although we have �xed the gauge, ation (1.13) is still invariant under on-formal (angle preserving) transformation, i.e., all world sheets that are on-neted by onformal transformations desribe equivalent theories. The sim-plest interation of open strings without any holes in the world sheet an thusbe formulated as a theory on the disk or on the omplex upper half plane,where the in- and outgoing open strings shrink to points on the boundary.All our onsiderations will be restrited to this tree level interation.In a quantized onformal �eld theory eah state of the Hilbert spae isassoiated to an operator, i.e., there exists a state-operator isomorphism (see,e.g., [3℄). In terms of string theory this means that all partiles of the stringspetrum orrespond to an operator. For instane, the two form gauge �eld isrepresented by Vb(k) = i�ab�aX��bX�eikXb�� , where b�� is the polarization ofthe partile. We ould now onsider strings in the presene of a bakgroundof suh a �eld. This an be done by introduing a oherent superposition ofpartile operators in the ation. As an example, a bakground of antisym-metri states Vb(k) is represented by14��0 Z� d2�phi�ab�aX��bX�B��(X) : (1.14)



1. Introdution 91.3 The ConnetionA very interesting open string model is the simple ase of a onstant anti-symmetri bakground �eld B�� . Expression (1.14) beomes a surfae termand the whole ation readsS = 14��0 Z� d2��aX��aX���� + i4��0 I�� d� X���X�B�� ; (1.15)again in onformal gauge. In [4℄ it was shown that on the disk this theoryleads to a non-ommutative produt of funtions, in fat, the Moyal-Weylprodut (1.4). Without any alulation this is plausible from the strutureof (1.15). While the �rst term gives rise to a \propagation" of the oordi-nate �elds X�, the seond desribes an interation of di�erent oordinatediretions and thus originates a non-ommutative geometry. Furthermore,the antisymmetri part in model (1.15) is a pure boundary term and thusnon-ommutativity arises only on D-branes.In [7℄ a limit was introdued in order to deouple the metri ��� fromthe gauge �eld B��, i.e., to swith o� gravitational e�ets and to keep onlynon-ommutative e�ets. We use the slightly di�erent limit ��� � �! 0 andB�� � onst:, whih has in fat the same onsequene. In this deouplinglimit the non-ommuative produt appears in a very lear way through theorrelator of N funtions inserted at the boundary of the dis with the order(�1; : : : ; �N ), i.e.,hf1[X(�1)℄ : : : fN [X(�N ℄i = Zx f1(x) � : : : � fN (x) : (1.16)'�' indiates the Moyal-Weyl produt with the non-ommutative parameter��� = (B�1)�� . Beause of the simple struture within the limit, it wasused in almost all onsiderations of non-ommutative geometry within stringtheory, even in the ase of non-trivial B-�eld bakgrounds.From the point of view of string theory the trae property of the Moyal-Weyl produt is not an aident but a onsequene of the onformal in-variane of the theory. On the upper half plane (the disk) the boundaryonditions restrit the possible onformal transformations, so that only theSL(2;R) group remains. The orrelation funtions must be invariant undersuh transformations and it is exatly the inversion part that is responsible



1. Introdution 10for the yli permutation. Sine the onformal invariane is a onsistenyrequirement of string theory, in the deoupling limit the trae property mustbe satis�ed even for non-trivial bakgrounds.A generalization to non-onstant B-�elds was �rst onsidered in ref. [9℄but not diretly in the ontext of string theory. In fat, a topologial Poissonsigma model was found to be the �eld theory behind Kontsevih's produt(1.10). The onnetion to open string theory is based on the speial ase ofa sympleti model. Then the Poisson sigma model oinides with the openstring model in the deoupling limit and with a non-onstant, but losed2-form �eld B.A generalization to a ompletely arbitrary non-ommutative parameter��� in the framework of open string theory was �rst tried by the authorsof ref. [11℄. They showed that the produt retains the Kontsevih form butis of ourse non-assoiative, where the �eld strength H = dB ontrols non-assoiativity. We already pointed out that the trae property is importantfor a produt originating from string theory. Althought treated in [11℄ thereare still open questions onerning the trae property.The �nal goal of onsidering non-ommutativity within string theory isto reprodue the full low energy �eld theory arising from open string theoryaway from the deoupling limit. In [7℄ a alulation of the orrelation funtionof three photons in the \onstant" model (1.15) was taken to reprodue theU(1) Yang-Mills theory (1.7)S = � 14g2 ZM dDxpGG��G��F�� � F �� ; (1.17)where the metri G�� and the �eld ��� are de�ned in terms of the openstring quantities by (G � �)�� = (� � B)�1�� . The �eld strength and thegauge transformations are as in equations (1.8) and (1.9). Mind that thehoie of the integration measure pG in (1.17) is in fat arbitrary, sine G��is onstant. So, the form of the atual measure still needs to be lari�ed.This an only be done if one onsiders non-trivial bakgrounds.



1. Introdution 111.4 Methods and SummaryIn this work we tie in with ref. [11℄ and onsider the problem of open stringsin general bakgrounds, in partiular B-�eld bakgrounds with non-vanishing�eld strength. We address the issue of the measure for the integration as itappears in equations (1.17) as well as in (1.16) where it was silently sup-pressed sine it plays no role in the ase of onstant �elds. The main goalwill be to derive the non-ommutative produt of funtions to �rst orderin derivatives of the bakground �elds and investigate its properties. Thefeature of our approah will be the use of the on-shell ondition for the bak-ground �elds. In previous work the deoupling limit g�� ! 0 disguised theimportane of the equations of motion. Therefore, we omit it exept foromparative purposes.Following a similar strategy as the authors in [11℄ we will work with aderivative expansion of the bakground �elds to extrat the star produtfrom orrelation funtions omputed on the disk. Furthermore, we do nothoose any gauge onditions for the bakground gauge �elds. Here our settingdeviates vitally from the one used in [11℄, where radial gauge was imposedon the two form gauge potential B. With this hoie of gauge and negletingthe �eld strength F of the boundary interation only the �eld strength H =dB ontributes in the derivative expansion of the bakground �elds. Dueto H being totally antisymmetri this obsures the underlying struture ofthe produt. Instead we prefer to work with the gauge invariant quantityB + F and keep the full dynamis of F . Furthermore, we only perform aperturbation expansion around the onstant zero modes, but do not use theapproximation of slowly varying bakground �elds as done in [11℄. This keepsthe full zero mode dependene of the bakground �elds and even simpli�esthe alulations.Our main onern will be to disuss the properties of the produt ob-tained by the proedure desribed above. Although this produt is non-ommutative and even non-assoiative we will show that assoiativity of theprodut of three funtions and the trae property of the integrated produtfor an arbitrary number of funtions is guaranteed up to �rst order in thederivative expansion and up to surfae terms. This is ahieved by inludingthe full Born-Infeld measure and the equations of motion of the spae-timebakground �elds. However, no on-shell ondition is needed for the fun-



1. Introdution 12tions inserted in the produt! Beause of the prominente role of the Weylanomalies we present a detailed derivation thereof.Finally, we omment on the relation to the reent work of Cornalba andShiappa [11℄. Using the limit g�� ! 0 they found that with the hoie ofradial gauge it is possible to adjust the integration measure in suh a waythat the integral still ats as a trae. However, we will show that this worksonly in radial gauge. Moreover, the onsisteny of the topologial limit of [11℄severely onstrains the bakground �elds through the equations of motion.In the seond order of the derivative expansion the Einstein equation alreadyimplies the vanishing of the �eld strength H [12℄ and hene one is restritedto the sympleti ase.The organization of this work is as follows.In hapter 2 we introdue the setup for the models under onsideration.We give the derivative expansions of the bakground �elds in terms of Rie-mannian normal oordinates and introdue the additional interation ver-ties. The split of the onstant zero mode and the quantum utuationsin the path integral is explained in detail [20℄. Moreover, we ite severalrelations in Riemannian normal oordinates.In hapter 3 we review the alulations of [4℄ for the free �eld theoryde�ned by the onstant parts of the bakground �elds and identify the e�e-tive open string parameters G and �. Furthermore, we ompute the vauumamplitude of the free theory on the disk. It ontributes the \Born-Infeld"measure to the integration over the zero modes in the path integral.Chapter 4 ontains a alulation of the Weyl anomalies of the open stringtheory. Dimensional regularization gives rise to anomalies on the bulk, suhas the Einstein equation and the equation of motion for the B-�eld. Theboundary anomaly, the non-linear Maxwell equation, is omputed by the useof a displaement regularization.Then in hapter 5 the disk orrelators are omputed in order to extratthe non-ommutative and non-assoiative Kontsevih-type produt.The properties are disussed in hapter 6. In partiular we show thatthe trae property of the two point funtion holds due to the equations ofmotion of the bakground �elds. The \Born-Infeld" measure exatly anels



1. Introdution 13the additional ontributions arising from partial integration. By the samemehanism the produt of three funtions does not depend on the way oneintrodues brakets, i.e. the non-assoiativity is a surfae term. This, inturn, implies the trae property for an arbitrary number of funtions. We�nish this hapter with some omments on the relations of our approah tothe reent work of Cornalba and Shiappa. In partiular we examine theimpliations of the radial gauge and the onsisteny of the topologial limitused in [11℄.In the last hapter we onlude with omments on some open questions.Appendix A �nally presents the dilogarithm funtion and some relationsthereof. Appendix B ontains the detailed alulations of Greens funtionsfor hapter 5.



Chapter 2Open String Sigma Model
The starting point of our onsiderations is the non-linear sigma model of thebosoni open string [20, 22, 23℄S = 14��0 Z� d2�ph�hab�aX��bX�g��(X) + i�ab�aX��bX�B��(X)�+ i Z�� ds��sX�A�(X)�; (2.1)whih inludes the spae-time metri g��(X), the 2-form gauge potentialB��(X) and the 1-form gauge potential A�(X). hab denotes the Eulideanmetri on the world sheet � and ds is the indued line element on the bound-ary.In (2.1) the boundary term of the 1-form gauge potential A an be writtenas a bulk term Z� d2�ph i�ab�aX��bX�F��(X); (2.2)where F = dA is the orresponding 2-form �eld strength.

14



2. Open String Sigma Model 152.1 Spae-Time Gauge FieldsBoth, the 1-form potential A and the 2-form potential B, are assoiated withspae-time gauge invarianes. For the former the gauge transformationÆA = d� (2.3)leaves the ation (2.1) invariant. In open string theory there does not exist agauge transformation for the 2-form potential B alone, beause surfae termsrequire a ombined transformationÆB = d�;ÆA = � �2��0 (2.4)that does not hange the ation (2.1). From (2.3) and (2.4) one an seethat the ombination F = B+2��0F = B+2��0dA is invariant under bothgauge symmetries. Therefore, gauge invariant expressions ontain the 2-formF and the 3-form �eld strength H = dF = dB.If one onsiders a brane that is not spae-time �lling, the gauge �eld Aand hene F are only de�ned along the brane. For simpliity we will re-strit our onsiderations to the speial ase of a spae-time �lling D25-brane.Furthermore, in topologially non-trivial bakgrounds the gauge potentialsA and B may not be globally well de�ned. Suh onsiderations are, however,irrelevant in the present ontext.In the lassial approximation of open string theory the world sheet �is a disk. Taking advantage of the onformal invariane of the theory, wemap the disk to the upper half plane H and perform our alulations there.Furthermore, we hoose the onformal gauge and use omplex oordinatesz = �1 + i�2. Thus the world sheet metri beomes hz�z = e2!(z;�z)Æz�z andthe invariant line element at the boundary is ds = e!d� . The derivativestangential and normal to the boundary are �� = (� + ��) and �n = i(�� � �),respetively. In this parametrization the ation (2.1) is given byS = 12��0 ZH d2z �X� ��X��g��(X) + F��(X)�; (2.5)and the orresponding mixed boundary ondition along the brane isg��(X)(� � ��)X� � F��(X)(� + ��)X������z=z = 0: (2.6)



2. Open String Sigma Model 162.2 Constant Zero Mode and Derivative Ex-pansionFollowing the proedure explained in [20℄ we expand the �eldX�(z; �z) aroundthe onstant zero mode ontribution x,X�(z; �z) = x� + ��(z; �z); (2.7)so that the path integral over the �eld X�(z; �z) splits into an ordinary inte-gral over the onstant zero modes x� and a path integral over the quantumutuations ��(z; �z). This separation is, in fat, not unique. A onstant part,�, an always be exhanged between the two parts, i.e.,X�(z; �z) = x� + ��(z; �z) = x0� + � 0�(z; �z)x0� = x� � �� 0� = �� + �So, we have to impose a \gauge" ondition in order to �x �. A unique wayto perform the split (2.7) is to insert the following \unity" into the pathintegral:1 = Z dDx Z [d�℄ ÆD�X(z; �z)� (x + �(z; �z)� ÆD(P �[x; �℄) �[x; �℄ ; (2.8)with �[x; �℄ = det��P �[x� ; � + ℄� �=0 :P �[x; �℄ = 0 is the \gauge" ondition and �[x; �℄ is the orresponding \ghost"determinant. Subsequently, we will use the onditionP � = Z ds ��(s) = 0 ; � = LD ; L = Z ds : (2.9)Sine � is only a onstant fator it does not play an essential role and we aninorporate it in the normalization of the path integral. The delta funtionalfor P � = 0 will not be written expliitely, but we impose the ondition byhand. Whereever there appears an integral of the quantum utuations overthe boundary of the world sheet, we set it to zero.



2. Open String Sigma Model 17Therefore, we geth :f1[X(z1)℄ : : : : :fN [X(zN)℄ : i == 1LD Z [dX℄ e�S[X℄f1[X1℄: : : fN [XN ℄ == Z dDx Z [d�℄ e�S[x+�℄f1[x+�1℄ : : : fN [x+�N ℄ ; (2.10)where the funtions fi[X(zi)℄ denote arbitrary insertions in the path integral.For the expansion of the ation S[X℄ = S[x + �℄ around the zero modes wesimplify our omputation by making use of Riemannian normal oordinates[18, 24℄,g��(x + �) = ��� � 13R����(x)���� +O(�3); (2.11)F��(x + �) = F��(x) + ��F��(x)�� + 12����F��(x)���� +O(�3):(2.12)In ontrast to [11℄ we do not hoose radial gauge for F��(X). In that ase(2.12) would split into two separate expansions for B and F , where the non-onstant part of the B expansion ontains only the �eld strength H. Theradial gauge �xes the ombined transformation (2.4), whereas transformation(2.3) remains una�eted. With (2.11) and (2.12) we are able to write theation (2.5) asS = 12��0 ZH d2z n��� ����(��� + F��) + ��� ������ ��F�� ++ ��� �������� (12����F�� � 13R����) +O(�3�)o:(2.13)In the following we will restrit our onsiderations to terms of at most�rst order in derivatives of the spae-time bakground �elds.2.3 More About Riemannian Normal Coor-dinatesFor later referene we explain some properties of Riemannian normal oor-dinates in this setion.



2. Open String Sigma Model 18The basi idea behind Riemannian normal oordinates is to use thegeodesis through a given point to de�ne the oordinates for nearby points[16, 17℄. Take a point P with oordinates x� and a nearby point Q. If Q islose enough to P then there exists a unique geodesi joining P to Q. Let a�be the omponents of the unit tangent vetor to this geodesi at P and lets be the geodesi ar length measured from P to Q. Then the Riemanniannormal oordinates of Q are de�ned to be X� = x� + sa�.An equivalent but for our purposes more useful de�nition of Riemanniannormal oordinates at a point P is that they are a set of oordinates forwhih ����(x) = 0 (2.14)����;�(x) + ����;�(x) + ����;�(x) = 0 : (2.15)As a onsequene, one obtains equation (2.11) by a Taylor series expansionaround P . The at metri ��� at P requires the additional property thatthe tangent vetors of the geodesis whih build our oordinate system arehosen to be orthogonal at P .Finally, we present some useful relations between the metri, the Christof-fel symbols and the urvature:����;�(x) = �13�R����(x) +R����(x)� (2.16)g��;��(x) = �13�R����(x) +R����(x)� (2.17)R����(x) = g��;��(x)� g��;��(x) (2.18)These equations will intensively be used in setion 4.7.



Chapter 3The Free Theory
3.1 The PropagatorAs a warm up for later alulations and to set up the relevant tehniquesof our approah let us �rst alulate the propagator for the free �eld theoryde�ned by the Gaussian part of (2.13) in the path integral,Sfree = 12��0 ZH d2z ��� ������� + i4��0 I�H d� ������F��: (3.1)Here, �H denotes the boundary of the upper half plane, i.e., the real line.1The seond term ontributes to the boundary ondition whih takes thesame form as (2.6) with ��� and F��(x) replaing the full metri g��(X) andF��(X), respetively. The boundary term an be regarded as a perturbativeorretion [4℄ to the free propagatorh��(u; �u) ��(w; �w)i = ��02 ��� ln ju� wj2 � �02 ��� ln ju� �wj2: (3.2)The homogeneous (image harge) part aounts for the Neumann boundaryondition �n��j�H = 0 of the theory without perturbation. The propagatorof the perturbed theory is then given byh��(u; �u) ��(w; �w)iF = h��(u; �u) ��(w; �w)e� i4��0 H�H d� ���� ��F��i: (3.3)1We have used the divergene theorem for omplex oordinates, whih readsR� d2z (�zvz � ��zv�z) = i H�� (d�zvz � dzv�z):19



3. The Free Theory 20For the alulation of the propagator only tree ontributions are relevant.We will onsider loops separately in the next setion. Expanding in a per-turbation series the term of order nh��(u; �u)��(w; �w) 1n!n i4��0hI�H dz �����F�� + I�H d�z ������F��ioni (3.4)gives two slightly di�erent ontributions, depending on whether n is even orodd. By using the derivative of the propagator (3.2) it is straightforward toobtain the result2i2� (Fn)��n(�1)n�1 I�H dz ��� 1�u� z h��(z; �z)��(w; �w)i+ I�H d�z ��� 1u� �z h��(z; �z)��(w; �w)io : (3.5)The remaining divergent integrals are regularized by di�erentiating with re-spet to w and �w, respetively. This yields a �nite result plus an in�niteadditive onstant C��(1),�0(Fn)��n(�1)n�1 ln(�u� w)� ln(u� �w)o + C��(1): (3.6)Now, it is possible to sum up all orders in a geometri series, whih �nallygives the desired propagator [22, 23℄h��(u; �u) ��(w; �w)iF =��0n���(ln ju� wj � ln ju� �wj)+G�� ln ju� �wj2 � ��� ln� �w � u�u� w�o+ C��(1); (3.7)where we have introdued the quantities3G�� := � 1g �F g 1g + F ��� and ��� := �� 1g � F F 1g + F ��� : (3.8)2In this alulation there appear integrals of the form H�H dz 1�u�z 1�z�w . The part alongthe real axis R is RR dr 1�u�r 1r�w , whereas the integral along the semiirle in the upperhalf plane with in�nite radius is zero. Therefore, the original integral an be written asI�H dz 1�u� z 1�z � w = I�H dz 1�u� z 1z � w ;whih an be evaluated using the residue theorem.3For later referene we have expressed G�� and ��� by the full bulk metri g�� , whereasthe orret terms in (3.7) ontain of ourse the Minkowski metri ��� beause of theRiemannian normal oordinates.



3. The Free Theory 21The integration onstant C��(1) plays no essential role and an be set to aonvenient value, e.g. C��(1) = 0 [7℄. Restrited to the boundary (u = �u = �and w = �w = � 0) the propagator has the simple form�0i����(�; � 0) := h��(�) ��(� 0)iF= ��0G�� ln(� � � 0)2 � �0i�����(� � � 0): (3.9)As disussed in [7℄ the boundary propagator (3.9) suggests to interpret G��as an e�etive metri seen by the open strings, in ontrast to g�� , whih isto be viewed as the losed string metri in the bulk.For later purposes we elaborate on the distintion between the open stringquantities G�� and ��� and the losed string quantities g�� and B�� . In orderto make a lear distintion between the bulk and the boundary quantities,we mark all expressions that refer to boundary quantities with bars. To thisend we de�ne �G�� := (g � F2)�� and ���� := �F��: (3.10)The �rst of the above de�nitions is equivalent to setting �G�� = G�� andrequiring �G�� to be its inverse. The seond de�nition follows from setting���� = ��� and pulling indies with �G��. In an analogous way we labelall expressions that are built out of these quantities with bars, e.g. theChristo�el symbol ����� and the ovariant derivative �D� ompatible with theopen string metri �G�� .3.2 Vauum Amplitude and Integration Mea-sureLet us now onsider loop ontributions arising from an even number of inser-tions of the boundary perturbation of (3.1)4. In this alulation there appeardivergenes when the insertion points approah the boundary. We regularizethese terms by keeping a �xed distane d0 with respet to the metri in on-formal gauge to the boundary �H , i.e., we impose jz� �zj � 2Im(z) � e�!d0.4Odd powers vanish beause of the antisymmetry of F��



3. The Free Theory 22To make this more expliit let us onsider the one loop ontribution of theF2 term,12h� �i4��0�2 I�H d� ���� ��F�� � I�H d� 0 ���0� ��F��i1�loop: (3.11)Using the same tehniques as for the hains (3.4) gives the divergent ontri-bution � 14�d0 Z ds�12F��F��; (3.12)where ds = d�e! is the invariant line element in onformal gauge. Summingup all powers of F in the 1-loop ontribution yields� 14�d0 Z ds� 1Xn=1 12nTr(F2n) = �� 14�d0 Z ds�12 ln(det(Æ �F2)��): (3.13)As observed in [19,25℄ this linear divergene is in fat regularization shemedependent and an be absorbed into the tahyon by a �eld rede�nition. Buta �nite onstant part b0 ln(det(Æ � F2)��) (3.14)may remain after subtration of appropriate ounterterms. The analysisgiven in [20, 25℄ determined the onstant b0 to be 14 in order to yield theBorn-Infeld ation for a vanishing tahyon �eld.In (3.14) we have added up all powers of F ontributing to the onnetedvauum graphs. Taking into aount all disonneted one loop graphs to allorders of the interation leads in fat to the Born-Infeld Lagrangian1Xn=0 1n!�ln(det(Æ � F2)��) 14 �n = 4qdet(Æ � F2)�� =qdet(Æ �F)�� : (3.15)Here we used the antisymmetry of F�� to hange the sign in the determinant.Expression (3.15) an also be interpreted as a ontribution to the measure ofthe integration over the zero modes in the path integral. Although we makeuse of Riemannian normal oordinates for the perturbation expansion, wean write the measure in a ovariant way by inluding the term pdet g�� .



3. The Free Theory 23Therefore, if there are no operator insertions in the path integral (2.10), weobtain the Born-Infeld ationZ dDxpdet g�� 4qdet(Æ �F2)�� = Z dDx 4pdet g�� 4qdet �G�� == Z dDxqdet(g � F)��; (3.16)where �G�� is the boundary metri as de�ned in (3.10).So far we have regarded all possible diagrams of the boundary insertionof (3.1). Therefore, we an now work with the full propagator (3.7) for allhigher order interation terms.For the remainder we make use of the abbreviations g = det g�� andRx = R dDxpg � F = R dDx 4pg 4p �G. Furthermore, we set 2��0 = 1.



Chapter 4Weyl Anomalies
In setion 1.2 we pointed out that the Weyl invariane of the sigma model isimportant to maintain the onnetion to the Nambu-Goto ation (1.11). Inthis hapter we are interested in the saling behaviour of the quantized openstring sigma model. The regularization of the divergent diagrams entailsthe introdution of a sale dependent parameter and, therefore, the quan-tum orretions ause a breaking of the symmetry, i.e., the theory is Weylanomalous.The renormalization group theory provides a quantity that extrats theWeyl anomalous parts from the regularized diagrams. It is alled the �-funtion and is assoiated with the renormalization of the oupling onstant.In the ase of the sigma model (2.1) we have, in fat, in�nitely many ouplingonstants. Expanding the funtional F��[X(z; �z)℄ in a Taylor series (2.12)we get a sequene of oupling onstants F��(x), ��F��(x), 12����F��(x), : : :for the interation verties ��� ����, ��� ������, ��� ��������, : : : , respetively.In order to maintain the Weyl invariane of the quantized theory one has torequire that the orresponding �-funtions vanish.In string theory the funtions g�� and F�� have two di�erent meanings.From the world sheet point of view they represent a series of ouplings, asstated above. But in the target spae they mean various partile �elds. Theondition � = 0 orresponds to equations of motion for the partile �elds (inthe target spae). 24



4. Weyl Anomalies 25In pratie, the omputation of the �-funtion requires a separation ofthe ounterterms into ontributions to the wave funtion and the ouplingonstant renormalization. Therefore, it is neessary to work out the oun-terterms for two di�erent verties. In order to avoid this separation it is moreonvenient to ompute the Weyl anomaly more diretly by hoosing onfor-mal gauge. The anomalous terms then ontain the onformal funtion ! andappear in the �nite part of the regularized diagrams.1 The divergent partmust be ompensated by ounterterms, whih an be written in a generaloordinate invariant way.In the simpler model of losed strings only the inhomogeneous part ofthe propagator ontributes to divergent loop diagrams whih is due to theabsene of a boundary. So the problem an be treated on the omplex planewith natural boundary onditions and the divergenes appear all over theworld sheet. Sine the open string theory is de�ned on a world sheet withboundary the homogeneous part of the propagator gives also rise to additionaldivergenes that appear only at the boundary. For both kinds of divergenewe obtain of ourse orresponding Weyl anomalies.4.1 The Ation in Continuous DimensionsWe start with the alulation of the bulk anomalies using the inhomoge-neous part of the propagator (3.7). We hoose the dimensional regulariza-tion sheme and thus start rewriting ation (2.1) in ontinuous dimensionsn = 2 � � with � > 0. Applying onformal gauge hab = e2!Æab the inte-gration measure on the world sheet beomes ph = en! and in ombinationwith the inverse metri we get phhab = e(n�2)!Æab. The treatment of theantisymmetri tensor �ab is a bit more subtle. It is de�ned as �ab = ~�abph withthe �-symbol ~�ab,2 and in onformal gauge we have �ab = e�2!~�ab. If onegeneralizes to arbitrary dimensions the entries in �ab do not hange, but theontinuous dimension emerges again from the measure, so that we obtain1The ! independent �nite terms are no matter of interest in our disussion and will benegleted throughout this hapter.2We use the onvention that ~�12 = 1.



4. Weyl Anomalies 26ph�ab = e(n�2)!~�ab. All in all the ation (2.1) is given byS = 14��0 ZH dn� e��!n�a���a��(��� � ���� 13R����) (4.1)+ i~�ab�a���b��(F�� + ����F�� + ���� 12����F��)o :Beause of the fator e��! the �rst term in (4.1) is not a free part ofthe theory. In order to seperate a free part we perform a �eld rede�nition�� = e �2! ~��, so thatS� = 14��0 ZH dn� n�a~���a~�� + ��a!~���a~�� +O(�2)o : (4.2)The �rst term yields the propagator and the seond an be treated pertur-batively as \soft mass insertion" [21℄.4.2 The Inhomogeneous Part of the Propa-gatorIn order to aount for the ontinuous dimensions the inhomogeneous partof the propagator should be represented through its Fourier transformation< ~��(�)~��(�0) >free= 2��0��� Z dnk(2�)n eik(���0)k2 +m2 : (4.3)Sine the propagator is also infrared divergent, we introdued an appropriateregulator mass m. The ultraviolet behaviour of the free propagator (4.3) is< ~��(�)~��(�) >free� �0��� 1� : (4.4)Within dimensional regularization there appear only logarithmi divergenesin a massless theory, so that< �a~��(�)~��(�) >free � 0 ;< �a~��(�)�b~��(�) >free � 0 ; (4.5)< �a�b~��(�)~��(�) >free � 0 :



4. Weyl Anomalies 27However, the \soft mass" term an hange the order of divergene andthus generate non-vanishing results. Sine it is linear in � we expet a �niteresult that depends on the onformal fator !. To see how this works wereognize �rst that the insertion an be rewritten as��a!~���a ~��= ��a(!~���a~��)� �!�a~���a~�� (4.6)= 12��a(�a!~��~��)� 12��2!~��~�� (4.7)Here we used the fat that in the dimensional regularization sheme the freelassial equation of motion �2~�� = 0 is satis�ed as operator equation as anbe seen from (4.5). This an easily be seen from (4.5). The boundary termsin expressions (4.6) and (4.7) do not generate divergenies and thereforevanish in the limit �! 0. The interesting ontributions arise from the bulkinsertions. They give rise to 1� poles whih are anelled by the � in the \softmass" term. Take, for instane, insertion (4.6). Using the propagator (4.3)we obtain < ~��(�)~��(�) 14��0 ZH dn�0 �!�a~���a ~�� >free� �0!��� : (4.8)If we repeat the proedure with the di�erentiated �eld ~�� in a similar waywe end up with the ontrations< ~��(�)~��(�) > � �0���(1� + !) ;< �a~��(�)~��(�) > � 0 ;< �a�b~��(�)~��(�) > � �14�0���Æab�2! and< �a~��(�)�b~��(�) > � 14�0���Æab�2! : (4.9)Finally, returning to the original �eld ��, we �nd the ontrations< ��(�)��(�) > � e�!�0���(1� + !) ;< �a��(�)��(�) > � e�!�02 ����a! ;< �a��(�)�b��(�) > � e�!�04 ���Æab�2! and (4.10)< �2��(�)��(�) > � 0 :



4. Weyl Anomalies 28
�FR, �2FFigure 4.1: The one loop diagrams under onsideration.4.3 Counterterms and Weyl Anomaly INow we are prepared to alulate divergent and !-dependent ontributionsto the e�etive ation arising from diagrams as shown in �gure 4.1. In everyinteration vertex of (4.1) two �elds must be ontrated.First, we onsider the urvature 4-point vertex� 112��0 ZH dn� e��!�a���a������R���� : (4.11)The oinidene limits (4.10) yield the result� 112� ZH dn� n(1�+!)�a���a��R�� � �a!�a����R�� + 12�2!����R��o :The 1� -divergene must be ompensated by an appropriate ounterterm inthe ation. We are not further interested in it. In more detail we look intothe Weyl anomalous part. In order to ompare the result with later ones wereturn to omplex oordinates (f. hapter 2). After partial integration the!-dependent terms an be written as�(!)R;1 = � 12� ZH d2z ! ��� ����R�� � (4.12)� 112� Z�H d� n12�n! ����R�� � 2! �n����R��o :We postpone the interpretation of (4.12) to a later setion when all ontri-butions to the Weyl anomaly are known.



4. Weyl Anomalies 29For the remaining 2-form verties14��0 ZHdn� e��!i~�ab�a���b��n����F�� + ���� 12����F��)o (4.13)we apply the same proedure and obtain the Weyl symmetry breaking terms�(!)F ;1 = 14� ZH d2z ! ��� ����������H����+ (4.14)+ i4� Z�H d� ! �� ��������F�� + ���������F��� :4.4 The Homogeneous Part of the Propaga-torAs mentioned in the introdution of this hapter the main new feature ofthe open string model is the appearene of divergenes and anomalies thatare loated at the boundary. These in�nities are related to the homogeneouspart of the propagator (3.7). The oinidene limits thereof, i.e.,< ��(z; �z) ��(z; �z) >hom = ��0 ~G�� ln jz � �zj2 ;< ��(z; �z) ���(z; �z) >hom = ��0 ~G�� 1z � �z � �0��� 1z � �z ; (4.15)< ��(z; �z) ����(z; �z) >hom = +�0 ~G�� 1z � �z � �0��� 1z � �z and< ���(z; �z) ����(z; �z) >hom = ��0 ~G�� 1(z � �z)2 + �0��� 1(z � �z)2 ;are �nite inside the world sheet but divergent at the boundary and requiretherefore an appropriate regularization. For onveniene, we introdued theappreviation ~G�� = G�� � 12��� .4.5 One More the Regularization of Bound-ary DivergenesWe reapply the same method as in setion 3.2 and restrit z to the domainH (d0 ) := �z 2 H �� 2Im(z) � e�!d0	 ; (4.16)



4. Weyl Anomalies 30where d0 is a small displaement. The weight e�! appears beause we havehosen the metri in onformal gauge. This regularization sheme will beillustrated for the diagrams arising from the urvature 4-point vertex� 16��0 ZH (d) d2z��� ��������R���� : (4.17)Using the ontrations (4.15) we obtain�R;2 = 16� ZH(d) d2zn 1(z � �z)2 ����( ~GR)�� (4.18)� 1z � �z �� ����( ~GR)��+ 1z � �z �����( ~GR)��+ ln jz � �zj2 ��� ����( ~GR)��+ 2z � �z �����(���)�R����+ 2z � �z ����(���)�R����o ;where ( ~GR)�� = ~G��R����. If we onsider (4.18) we reognize the appearaneof di�erent boundary divergenes in the integrand: a logarithmi one aswell as a linear and a quadrati one. However, the former is not that bad.Althought divergent, it is integrable if one performs two further ontrationsinluding the remaining �elds ��� and ����. In fat, it leads to a �nite result.For the later two types we observe the following behaviour. The integral asa whole is divergent, whereas the integrand is singular only at the boundary.So one an try to split the integral into a �nite intergral over the bulk H (d0 )and a integral over the boundary �H (d0 ) with a divergent argument as d0 ! 0.Take, for instane, the quadrati term in (4.18). By partial integration weget 13� ZH d2z ln jz � �zj ��� ����( ~GR)�� ++ i6�nZ�H (d0 )dz ln jz � �zj ����� � Z�H (d0 )d�z ln jz � �zj ������o( ~GR)�� �� i12�nZ�H(d0 )dz 1z � �z ���� + Z�H(d0 )d�z 1z � �z ����o( ~GR)�� : (4.19)



4. Weyl Anomalies 31So, with this method we are able to isolate the boundary divergenes froman integrable bulk ontribution in the �rst line.Sine we are interested in the Weyl anomaly, we keep only the diver-gent and !-dependent part in the integrals over the boundary and thereforesubstitute (z � �z)���H = ie�!d0. Lines two and three in (4.19) give� 16� Z�H d�(ln d0 � !) �n����( ~GR)�� �� 16� 1d0 Z�H d�e!����( ~GR)�� : (4.20)The other terms in (4.18) an be treated in the same way and one obtains a�nite, a divergent and a !-dependent ontribution. In order to get managableparts we split �R;2 into �R;2 = �(fin)R;2 + �(div)R;2 + �(!)R;2 : (4.21)Similarly, we onsider the verties12��0 ZH d2z ��� ����n�� ��F�� + ���� 12����F��o; (4.22)and, aordingly, use the split�F ;2 = �(fin)F ;2 + �(div)F ;2 + �(!)F ;2 : (4.23)For the sake of ompleteness we present the �nite terms, althought not in-teresting for our purposes,�(fin) = �(fin)R;2 + �(fin)F ;2 == 1� ZH d2z ln jz � �zj ��� ����n( ~GR)�� � 13(�R)��o+ (4.24)+ 12� ZH d2z ln jz � �zj ��� ����n����(�H�)�� � ~G����H���o ;where (�R)�� = ���(R���� +R����).



4. Weyl Anomalies 324.6 Counterterms and Weyl Anomaly IIAs already stated in setion 4.3 the divergent ontributions �(div)2 = �(div)F ;2 +�(div)R;2 must be ompensated by appropriate ounterterms. Applying themethods of the previous setion gives�(div)2 = � 13� ln d0 Z�H d� �n����( ~GR)��� i6� ln d0 Z�H d� ������(�R)�� (4.25)� i2� ln d0 Z�H d� ����(��F�� ~G�� + ������F�� ~G��)� 14� ln d0 Z�H d� �n��(H������ + ����H������) :In the followingWeyl anomalous parts we also inluded the divergent tahyonlike ontributions sine the ompensation of the divergene by a ountertermmay leave a �nite !-dependene. Thus we have�(!)R;2 = � 16� 1d0 Z�H d� e!����( ~GR)��+ 13� Z�H d� ! �n����( ~GR)��+ i6� Z�H d� ! �� ����(�R)�� (4.26)and �(!)F ;2 = � 12� 1d0 Z�H d� e!(����F����� + 12��������F�����) ++ i2� Z�H d� ! ����(��F�� ~G�� + ������F�� ~G��)+ 14� Z�H d� ! �n��(H������ + ����H������) : (4.27)



4. Weyl Anomalies 334.7 The Spae-Time Equations of MotionNow we have alulated all Weyl anomalies arising from the diagrams in�gure 4.1 and are ready to interpret the results. First, we reognize that thehomogeneous part of the propagator gave only rise to Weyl anomalies on theboundary, as we have already mentioned earlier. Whereas the inhomogeneouspart generated both, boundary and bulk anomalies. For easier referene wesummarize the results (4.12,4.14,4.26,4.27),�(!) = � 12� ZH d2z ! ��� �����R�� � 12�����H����� 124� Z�H d� �n! ����R�� + 112� 1d0 Z�H d� e!����R��+ 13� Z�H d� ! �n����(GR)��+ i6� Z�H d� ! �� ����(�R)��� 12� 1d0 Z�H d� e!�����F����� + ���� 12(����F����� + 23(GR)��)�+ i2� Z�H d� ! �� ��(��F��G�� + ������F��G��)+ 14� Z�H d� ! �n��(H������ + ����H������) : (4.28)At �rst sight their are some terms with no obvious meaning. For instane,there appear anomalies whih ontain a derivative of the �eld �n�, but wedid not introdue a vertex operator likeZ�H d� �nX�V�(X) : (4.29)However, we an use the boundary onditions (2.6) for the quantum �elds,i.e., �n�����z=z = � iF���� �����z=z + : : : ; (4.30)and rewrite the normal derivative as tangential derivative.Furthermore, we have to take into onsideration that in setion 2.2 wehave introdued Riemannian normal oordinates. This means that in equa-tion (4.28) the lines three and four and the last expression in line �ve ould



4. Weyl Anomalies 34�F�FFigure 4.2: The (�F)2-diagram was not taken into onsideration.ontribute to ovariant derivatives. Indeed using formulas (2.14 - 2.18) onean showG��D�D�F�� = G��(����F�� � ������F�� + ������F��) == G������F�� � 23(GR)��F�� + 13(�R)�� (4.31)and ���D�D�F�� = ���(����F�� � 2������F��) == �������F�� + 23(GR)�� � 23R�� : (4.32)If we apply the boundary ondition and take advantage of the Riemanniannormal oordinates, we see the ovariant struture of (4.28),�(!) = � 12� ZH d2z ! ��� ����(R�� � 12D�H���) + (4.33)� 124� Z�H d� �n! ����R�� � 112� 1d0 Z�H d� e!����R��� 12� 1d0 Z�H d� e!���D�F����� + ���� 12D�D�F������+ i2� Z�H d� ! �� ��n(G��D�F�� � 12���H���F��)+ ��(G��D�D�F�� � 12���D�H���F��)o :Mind that we have not taken into aount all possible 1-loop diagrams.The diagram shown in �gure 4.2 whih is built of two 3-point verties wasnot treated. On the bulk it gives rise to the well known H2-term. At theboundary the missing terms of seond order in derivatives ombine with terms



4. Weyl Anomalies 35available in the last line of (4.33) to giveD�(G��D�F�� � 12���H���F��), theseond term in a Taylor series expansion of the �� �� anomaly [22, 23℄.The same holds for the third line of (4.33). This ontribution reminds ofa tahyon vertex and an indeed be absorbed by the tahyon in terms of a�eld rede�nition (f. the disussion of setion 3.2) [19℄. Note that the �rstterm in this line vanishes beause of ondition (2.9) whih was introduedto ensure a unique separation of the onstant zero mode and the quantumutuation.The remaining ontributions annot be removed by appropriate �eld re-de�nitions and must be set to zero in order to maintain the onformal in-variane of the theory, i.e., R�� � 14H2�� = 0 ;D�H��� = 0 ; (4.34)G��D�F�� � 12F�����H��� = 0 ;where we have added the H2-term arising from the diagram in �gure 4.2.These are the equations of motion for the bakground �elds: the Einsteinequation for g�� , the equation of motion for B�� , and the non-linear Maxwellequation for A�. In hapter 6 the latter will turn out to be very importantfor the properties of the non-ommutative produt de�ned in setion 5.3.



Chapter 5Correlation Funtions
In string theory interations of di�erent partiles of the string spetrum arealulated by inserting the orresponding vertex operators in the path inte-gral. Our goal is to extrat a non-ommutative produt of funtions out ofthe open string theory orrelation funtions [11℄. To this end we do not re-strit ourself to vertex operators, but investigate the orrelator of two generalfuntions f [X(�)℄ and g[X(� 0)℄ allowed to be o�-shell. To simplify the alu-lations we take the order of insertions to be � < � 0. Sine the funtions areomposite operators, one has to introdue an appropriate normal ordering.As shown in the appendix 7 it is given by: ��(�) ��(� 0) : = ��(�) ��(� 0)+ 12�G�� ln(� � � 0)2 + 12���G�� ln(� � � 0)2 ��(� + � 02 ): (5.1)

36



5. Correlation Funtions 375.1 Moyal-Weyl ContributionTaking into aount the subtrations (5.1) the free propagator (3.9) yields [4℄h :f [X(�)℄ : :g[X(� 0)℄ : iMoyal == Zx 1Xn=0 1n!� i2�n��1�1 : : :��n�n ��1 : : : ��nf(x) ��1 : : : ��ng(x) (5.2)= Zx 1Xn=0 1n!��12� �nG�1�1:: G�n�n lnn(� � � 0)2 ��1:: ��nf(x) � ��1:: ��ng(x):In the last line we have summarized all ���-dependent ontributions in theprodutf � g = 1Xn=0 1n!� i2�n��1�1(x) : : :��n�n(x) ��1 : : : ��nf(x) ��1 : : : ��ng(x)= e i2���(z)�x��y� f(x)g(y)���x=y=z; (5.3)whih we will refer to as \Moyal like" part of the �nal non-ommutativeprodut. It has the well known struture of the Moyal produt and reduesto it if ��� is onstant. In this ase (5.3) is learly assoiative and satis�esthe trae property. This is, however, no longer true, if ��� is a generi �eld.5.2 First Derivative ContributionGoing one step further in the derivative expansion we have to take intoaount the ontribution to the non-ommutative produt arising from theinteration term 12��0 ZH d2z ��� ������ ��F��: (5.4)



5. Correlation Funtions 38The rather umbersome alulations are explained in appendix 7. Using(B.16) and (B.17) we obtainh :f [X(�)℄ : :g[X(� 0)℄ : i�F =� 112 Zx�������� �����f � ��g + ��f � ����g� (5.5)� i8� Zx�����G�� �����f � ��g � ��f � ����g� ln(� � � 0)2� i4� ZxG������� �����f � ��g � ��f � ����g� ln(� � � 0)2� 116�2 ZxG����G�� �����f � ��g + ��f � ����g� ln2(� � � 0)2+ 18�2 ZxG����G�� �����f � ��g + ��f � ����g� ln2(� � � 0)2 + : : : ;where we only kept the ��� terms from the ontributions of the free prop-agator (3.7), sine the G�� parts are irrelevant for our further disussion aswe shall see shortly. Again, the �rst line of (5.5) ontributes to our non-ommutative produt. The partial derivatives of the �elds imply that thewhole expression (5.5) vanishes for onstant �elds.5.3 De�nition of the Non-ommutative Prod-utWe de�ne now the non-ommutative produt aspg � F f(x) Æ g(x) := Z [d�℄ e�S[x+�℄f [X(0)℄ g[X(1)℄ : (5.6)The hoie of the distane � 0 � � = 1 is suh that the sale dependent on-tributions of (5.2) and (5.5) are removed.1 The resulting non-ommutativeprodut is the sale and translation invariant part of the 2-point orrelation.This produt is independent of G��, and we will see that only this part ofthe orrelation has appropriate o�-shell properties (as long as the bakground1The value 1 is due to our hoie of the infrared ut-o�, i.e., the onstant C��(1) in (3.7).



5. Correlation Funtions 39�elds are on-shell). The full o�-shell orrelations will, of ourse, also haveG��-dependent ontributions.From (5.2) and (5.5) we see that, up to �rst order in derivatives of ��� ,the produt reads2f(x) Æ g(x) = f � g� 112���D���� �D�D�f �D�g +D�f �D�D�g�++ O�(D�)2; DD��: (5.7)Here we have reintrodued the ovariant notation. This is justi�ed beausein Riemannian normal oordinates the Christo�el symbol vanishes and (5.7)ontains no derivatives thereof. The same is true for the G��-dependentparts.A omparison of (5.7) with the formula given in [8℄ shows that, apartfrom the ovariant derivatives, the non-ommutative produt (5.6) oinideswith the Kontsevih formula. We do not require, however, that the �eld ���de�nes a Poisson struture. Note that in [11℄ the ��� terms ontains onlyKontsevih ontributions. This is due to the hoie of radial gauge.

2Subsequently we abbreviate O�(D�)2; DD�� by O(D2).



Chapter 6Properties of theNon-ommutative Produt
In the limit �0 ! 0 the orrelator of an arbitrary number of funtions inthe presene of a losed B-�eld bakground an be evaluated by an inte-gration over the non-ommutative produt of these funtions. On the diskthe SL(2;R) invariane of the orrelators requires the produt to satisfy thetrae property.The non-ommutative produt (5.6) de�ned without the use of the limit,however, does not desribe the full orrelation funtions, beause the G��-dependent ontrations give additional ontributions. Even so, we will showin this hapter that the trae property an be maintained for the produt (5.7)if one imposes the equations of motion for the bakground �elds, whereas theinserted funtions are allowed to stay ompletely generi.6.1 On-shell Condition for the BakgroundFieldsIn string theory the bakground �eld equations of motion are related tothe renormalization group � funtions, whih probe the breaking of Weylinvariane (and hene the onformal invariane) of the theory. Sine we40



6. Properties of the Non-ommutative Produt 41perform our alulations up to �rst order in derivatives of the bakground�elds, we expet that we have to aount for the generalization of the Maxwellequation [23, 26℄, G��D�F�� � 12���H���F�� = 0: (6.1)To show our proposition we rewrite (6.1) in a more appropriate way,���pg � F ���� = pgD�� 4p �G4pg ���� = (6.2)= �pg � F�G��D�F�� � 12���H���F���G�� = 0 ;where we have used the relation���D�F�� = �12 �G��D� �G�� = ���� � �����; (6.3)and the fat that the quotient 4p �G4pg is a salar. We introdue the usual no-tation � for equivalene up to equations of motion. Note, furthermore, thatin the following all relations are valid only up to �rst order in derivatives of���.6.2 Trae Property IWe start with the produt of two funtions and show that (5.7) is symmetriunder the integralZ dDxpg �F f Æ g � Z dDxpg �F g Æ f: (6.4)This relation holds due to (6.1) and (6.2), beause then the �rst order termin ��� of (5.7) transforms into a total divergene,Z dDxpg �F ��� D�f D�g � Z dDx ���pg � F ��� f D�g� = 0; (6.5)and the remaining antisymmetri parts an be written as ontributions ofseond order in derivatives. Notie that here and in the subsequent relationsit is essential that the onstant b0 in the integration measure takes the value14 in order to produe the total divergene.



6. Properties of the Non-ommutative Produt 426.3 Assoiativity up to Surfae TermsFor a general �eld ��� the produt (5.7) is not assoiative. But again ap-plying (6.1,6.2) assoiativity, exept for a surfae term, is ensured for theprodut of three funtions. To see this we alulate (f Æ g) Æ h� f Æ (g Æ h).Using the formula���f � g�(x) = (�x� + �y� + �z�)e i2���(z)�x��y� f(x)g(y)���x=y=z= ��f � g + f � ��g + i2�������f � ��g: (6.6)for the produt (5.3) we obtain(f � g) � h = [f � g � h℄ + 14���D����D�f �D�g �D�h+O(D2);f � (g � h) = [f � g � h℄� 14���D����D�f �D�g �D�h+O(D2);(6.7)where [f � g � h℄ denotes the part with no derivatives ating on ��� . So thenon-assoiativity reads(f Æ g) Æ h�f Æ (g Æ h) == 16����D���� + (yl.���)� 16D�f �D�g �D�h+O(D2)= 16��������� �H���D�f �D�g �D�h+O(D2): (6.8)In the last line we have introdued the 3-form �eld �H = d(��1) that isassoiated with the inverse of ���,(��1)�� = �(g � F)��(F�1)��(g + F)�� = (F � gF�1g)��: (6.9)Therefore, assoiativity is obtained (even o�-shell) if�H��� = 0: (6.10)At this point we want to stress that we nowhere have employed the limit�0!0 in our onsiderations, so that the \full" ��� ours in all the relations.This means that (6.10) is a generalization of the well known property thatin the limit �0!0 the produt beomes assoiative if H = 0.



6. Properties of the Non-ommutative Produt 43However, open string theory does not require suh a restrition and weinvestigate again the e�ets of the equation of motion (6.1). From (6.8) weobtain immediately thatZ dDxpg � F �(f Æ g) Æ h� f Æ (g Æ h)� = (6.11)= 16 Z dDxpg �F ���������� �H���D�f �D�g �D�h�+O(D2) �� 16 Z dDx���pg � F : : :�� +O(D2) = 0;so that we are allowed to omit the brakets.6.4 Trae Property IIFor more than three funtions we are allowed to leave out the outermost lyingbraket. In the ase of four funtions we obtain, for instane, the relationZ dDxpg � F (f Æ g) Æ h Æ l = Z dDxpg �F f Æ g Æ (h Æ l): (6.12)Finally, taking into aount (6.4) and (6.11) we see immediately that thetrae property holds for an arbitrary number of funtions,Z dDxpg �F �(: : : (f1 Æ : : :)) Æ fN�1� Æ fN �� Z dDxpg �F fN Æ �(: : : (f1 Æ : : :)) Æ fN�1� �� Z dDxpg �F �fN Æ (: : : (f1 Æ : : :))� Æ fN�1 � : : : : (6.13)6.5 Comparison with Reent WorkWe lose this hapter with a remark on the relation to the reent work of Cor-nalba and Shiappa [11℄. They onsidered the speial ase of a slowly varyingbakground �eld B in radial gauge, i.e., B��(x) = B�� + 13H���x� + O(x2),



6. Properties of the Non-ommutative Produt 44and a vanishing �eld strength F for their path integral analysis. Takingthe topologial limit, g�� � � ! 0,1 the above properties of the prod-ut were ahieved by adjusting a onstant N in the integration measurepB (1 + N (B�1)��H���x�). Using onsisteny arguments they determinedthe appropriate value of the onstant to be N = 13 .However, dropping the radial gauge and repeating the alulations2 of [11℄for the trae property one obtains�i Z pB[N (B�1)��(B�1)�� � (B�1)��(B�1)��℄��B�� f��g: (6.14)This expression does in general not vanish for anyN . Thus the trae propertyan not be restored by an appropriate hoie for the onstant N as it ispossible for radial gauge, i.e., when ��B�� is replaed by H���!On the other hand, expanding B��(x) around its onstant value and tak-ing the topologial limit in our setting, the Born-Infeld measure redues topB(x) = pB (1 + 12(B�1)����B��x�). Then (6.14) an be reast into� i Z pBn12(B�1)��(B�1)����B�� ��12(B�1)��(B�1)����B�� + 12(B�1)��(B�1)��H���of��g= i2 Z pB(B�1)��H���(B�1)��f��g : (6.15)The last expression in square brakets in the seond line is exatly whatremains from the generalized Maxwell equation (6.1) in the topologial limit,namely the onstraint (B�1)��H��� = 0. So again the trae property holds,when the bakground �elds are on-shell! Nevertheless, taking the topologiallimit mutilates the on-shell onditions in the sense that no dynamis is leftand only a highly restritive non-linear onstraint remains. In dimensions upto four this onstraint already implies the vanishing of the �eld strength H.Moreover, in the next order one has to take into aount the beta funtionfor the bakground metri, namely the Einstein equation, whih imposes the1Note that this limit is similar to the limit �0!0 of Seiberg and Witten [7℄.2Note that in this paragraph B�� denotes the onstant part of B��(x) and all depen-denies on the zero modes are expliitly written.



6. Properties of the Non-ommutative Produt 45even stronger restritionR�� � 14H���H��� � �14H���H��� +O(�0) = 0; (6.16)whih enfores H��� = 0 for any dimension (f. [12℄).3 Hene the topologiallimit only seems to make sense onsidering the sympleti ase.

3This an be seen by �rst setting � = � = 0 so thatH200 = 0 and using the antisymmetryofH . This yieldsH0ij = 0 for i; j 6= 0. The ondition for purely spatial omponents followsimmediately.



Chapter 7Conlusion
On the world volume of a D-brane the produt of funtions (5.7) representsa non-assoiative deformation of a star produt.1 Nevertheless, it enjoys theproperties that the integral ats as a trae and the produt of three funtionsis assoiative up to total derivatives. This is aomplished by the equationsof motion of the bakground �elds (6.2) and the Born-Infeld measure. No on-shell onditions have to be imposed on the inserted funtions! Note, however,that the produt of four or more funtions inserted in an integral is ambiguousif the brakets are omitted. This is due to the fat that assoiativity forthree funtions is valid only up to total derivatives. Only the outermostlying braket may be omitted, but this suÆes to ensure the trae propertyfor an arbitrary number of funtions.Our results are orret up to �rst order in the derivative expansion of thebakground �elds. In this approximation the inuene of gravity amountsto the use of ovariant derivatives in the generalized produt (5.7) but thestruture is still that of the formula given by Kontsevih. It would be interest-ing to investigate whether gravity indues a deviation from this struture athigher orders of the derivative expansion. One might also expet that higherorder terms of the generalized Maxwell equation have to be used and evenadditional equations of motion must be imposed to maintain the propertiesof the produt.1Note that in the limit of vanishing gauge �elds, F�� � �! 0, the produt redues tothe \ordinary" produt of funtions and the measure redues to pg.46



7. Conlusion 47It would be furthermore interesting to address the question of how touse the open string non-ommutative produt and a perturbative operatorprodut expansion in order to alulate orrelation funtions in general bak-grounds. The property that the produt of four or more funtions is notunique without brakets seems related to the fat that these produts are notindependent of the moduli of the insertion points. For instane, in the ase offour funtions there are two distint possibilities where to put the brakets,whih oinides with the number of onformal bloks. This suggests that forhigher n-point orrelation funtions one has to use linear ombinations of thevarious orderings of the brakets weighted with oeÆients depending on themoduli [13℄.Sine the orrelation funtions provide the S-matrix elements for sat-tering proesses, the issue of �nding the e�etive low energy �eld theory onD-branes is losely related and provides another motivation to alulate theorrelators. Already the Born-Infeld measure denotes an important ontri-bution for this issue.



Appendix AThe Dilogarithm
In appendix B we will enounter the dilogarithm [28℄. As pointed out inref. [11℄ it will play a prominent role in the alulation of orrelation funtionsin open string theory. Therfore, we give de�nitions of the dilogarithm andrelated funtions and ite some relations that will be used in appendix B.A.1 De�nitionConsider the series 1Xk=1 mkk2 ; (A.1)whih is only onvergent for jmj � 1. One an �nd an integral representationof (A.1) Li2(m) := � Z m0 dx ln(1� x)x : (A.2)Li2(m) is alled the dilogarithm. Although the series has a radius of on-vergene of 1 the integral (A.2) is not restrited to this limit. When m isreal, Li2(m) is well de�ned for �1 < m � 1. For m > 1 the argumentof the logarithm is negative and one has to use omplex arguments and an48



A. The Dilogarithm 49appropriate position for the branh ut of the logarithm in order to assign aunique value to the dilogarithm. We hoose the ut to be the negative realaxis, so that we haveln(�x� i�) = ln(x)� i� x < 0 ; �! 0 : (A.3)Then the funtion1Li�2 (m) := � Z m0 dx ln(1� x� i�)x (A.4)is well de�ned for m 2 R.A.2 Dilogarithm RelationsThe dilogarithm ontains a lot of symmetry relations. For instane, one anobtain the values of the funtion on the whole real axis just from the valuesin 0 < m < 1, Li2� mm� 1� = �Li2(m)� 12 ln2(1�m) mm� 1 < 0 ; (A.5)Li�2 � 1m� = �23 � Li2(m)� 12 ln2(m)� i� ln(m) 1m > 1 : (A.6)These relations follow from simple substitutions in the integral representation(A.4). Equation (A.6) suggests a ontinuation of the dilogarithm to the wholereal axis using the values of the funtion in 0 < m < 1 byLi2� 1m� := �23 � Li2(m)� 12 ln2(m) : (A.7)In the remainder of the appendix Li2(m) for m 2 R denotes the analytiontinuation in terms of de�nition (A.7).In appendix B it will turn out that the sum and the di�erene of Li2(m)and Li2(1�m) appear in the 3-point Greens funtion. The sum is just givenby an expression of logarithmsLi2(m) + Li2(1�m) = �26 � ln(m) ln(1�m) 0 < m < 1 : (A.8)1We leave the sign for the imaginary part of (A.4) open sine later on we will enounterboth onventions. We write the � in Li�2 (m) only if deisive, i.e., if m > 1.



A. The Dilogarithm 50And we abbreviate the di�erene by the funtion2L(-)(m) := Li2(m)� Li2(1�m) : (A.9)Sine we used the ontinuation (A.7) for Li2(m), L(-)(m) is well de�ned form 2 R. Using equations (A.5), (A.8) and (A.7) one �ndsL(-)� mm� 1� = �L(-)(m)� �23 ; (A.10)L(-)� 1m� = �L(-)(m) + �23 ; (A.11)for 0 < m < 1. It is by de�nition antisymmetri about 12 and for m � 12 ithas the following speial values:L(-)(12) = 0 ; L(-)(1) = +�26 ;L(-)(2) = +�23 ; L(-)(+1) = +�22 : (A.12)

2The funtion L(-)(m) is losely related to Rogers dilogarithm L(m), i.e., L(m) =�212 + 12L(-)(m).



Appendix BThe Contribution of the3-Point Vertex
In the following we give an expliit alulation of the tree level ontributionof the interation term (5.4), i.e., the 3-point funtion h��(�i)��(�j)��(�k)i,whih is needed in hapter 5. There we derive the orrelator of two funtionsf and g. These funtions ontain an arbitrary power of quantum utuations��. Therefore, the orrelator has also ontributions from 3-point Greensfuntions with two oiniding quantum �elds ��: lim�j!�ih��(�i)��(�j)��(�k)iand lim�j!�kh��(�i)��(�j)��(�k)i. The oinidene limits onsist of both �niteand divergent terms, whih need di�erent treatments. The divergent onesmust be ompensated by appropriate subtrations, whih are aounted forin the normal ordering of the inserted funtions, whereas the �nite onesontribute expliitly to the orrelator.We will start with the introdution of onvenient notations following [11℄.Thereafter, we derive the Greens funtion h��(�i)��(�j)��(�k)i, whih needsa regularization similar to the propagator (3.3). We will see that the resultis a generalization of the one in [11℄, beause we do not use the limit �0!0and the radial gauge. Finally, we perform the oinidene limits to obtainthe orret normal ordering and the �nite ontributions to the orrelator.
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B. The Contribution of the 3-Point Vertex 52B.1 Convenient Notations and Useful Rela-tionsThe free propagator (3.7) with one side onneted to the boundary ish��(�i) ��(z; �z)i = � 12� �G��S(�i; z)� ���A(�i; z)�; (B.1)where Ai and Si are de�ned asAi = A(�i; z) = ln� �z � �i��i � z� and Si = S(�i; z) = ln j�i � zj2: (B.2)Note that Ai is an antisymmetri funtion in �i and z, whereas Si is sym-metri, i.e., A(�i; z) = �A(z; �i) and S(�i; z) = S(z; �i). From (B.2) we seethat Ai and Si satisfy the relations �Si = ��Ai and ��Si = ��Ai. Therefore,we get h��(�i) ���(z; �z)i = 12����� +G��� �Aih��(�i) ����(z; �z)i = 12����� �G��� ��Ai: (B.3)Furthermore we introdue the funtionsfA(�a; �b; �) = ZH d2z �Aa ��AbA (B.4)fS(�a; �b; �) = ZH d2z �Sa ��SbS = � Z d2z �Aa ��AbS; (B.5)whih are �nite exept for an in�nite onstant. So the omputation of (B.4)and (B.5) will need a regularization. With the above abbreviations and therelations D�G�� = �G��D�F����� � ���D�F��G��D���� = ����D�F����� �G��D�F��G�� ; (B.6)



B. The Contribution of the 3-Point Vertex 53the tree level amplitude of (5.4) readsh��i(�i) ��j(�j)��k(�k) n� ZH d2z ��� ������ ��F��oitree == � 1(2�)3 n+��k�����i�j �fA(�i; �j; �k)� fA(�j; �i; �k)�+��k���G�i�j �fA(�i; �j; �k) + fA(�j; �i; �k)�+G�k�����i�j �fS(�i; �j; �k)� fS(�j; �i; �k)�+G�k���G�i�j �fS(�i; �j; �k) + fS(�j; �i; �k)�+�yl. perm. (ijk) �o: (B.7)For the following omputation of (B.7) we take the order �i < �j < �k on thereal axis.B.2 Regularization of fA and fSTo regularize fA and fS we di�erentiate the integral representations (B.4)and (B.5) with respet to �a, �b and �, respetively. Then we an performthe integration over the upper half plane H . This an be done by the wellknown method of a transformation into a ontour integral and using theresidue theorem. The pole presriptions on the real axis are obtained byintroduing a small imaginary shift �i�, so thatAi = ln� �z � �i � i��i � i�� z� and Si = ln�(�i � i�� z)(�i + i�� �z)� : (B.8)The presription is hosen so that it is onsistent with bulk insertions thatemerge the boundary, i.e., we onsider in fat insertions in the bulk whihare very lose to the boundary. The appearane of the logarithm needs aseletion of a ut and it turns out that the negative real axis is a onvenienthoie. Finally, we determine the antiderivative with respet to �a, �b and �.Now, the in�nity is ontained in the integration onstant.



B. The Contribution of the 3-Point Vertex 54In suh a way we getfA(�a; �b; �) = 2� Z t0 dx� ln(x� i�0)1� x + ln(1� x� i�0)x � + CA(1);fS(�a; �b; �) = 2� Z t0 dx�� ln(x� i�0)1� x + ln(1� x� i�0)x � (B.9)� �2 ln2(�b � �a)2 + i�2�(�b � �a) ln(�b � �a)2 + CS(1);where the� in the logarithm abbreviates in fat the sign funtion +�(�b � �a).In (B.9) we have introdued the parameter t whih is de�ned as the ombi-nation t = ���a�b��a . The shift �0 is needed to integrate along the orret side ofthe ut for negative arguments of the logarithm. This seletion is determinedby the pole presription explained above.The integrals (B.9) remind us of the dilogarithm (A.4) introdued inappendix A. Indeed, taking into aount the branh ut of the logarithm, onean express equation (B.7) in terms of the analytially ontinued dilogarithmthat was de�ned by (A.2) and (A.7). Beause of the order �i < �j < �k theso-alled modulus m = �j � �i�k � �i ; (B.10)is restrited to 0 < m < 1, a region that we met several times in appendixA.



B. The Contribution of the 3-Point Vertex 55B.3 The Tree Level AmplitudeWhat is left is to use (B.9) to bring together all ombinations of the funtionsfA and fS in (B.7). This leads to the rather lengthy result�2�2h��i(�i) ��j(�j) ��k(�k) ZH d2z ��� ������ ��F��itree =n+��k�����i�j�Li2(�ik�ij )� Li2(�kj�ij )� (B.11)+��i�����j�k�Li2( �ji�jk )� Li2( �ik�jk )�+��j�����k�i�Li2(�kj�ki )� Li2( �ji�ki )�+i���k���G�i�j�ln �ji � ln �ki��i���i���G�j�k�ln �kj � ln �ki��i�G�k�����i�j�ln �ki��i�G�i�����j�k�ln �ki�+i�G�j�����k�i�ln �ki�+G�k���G�i�j�+ ln �ji ln �kj � ln �kj ln �ki + ln �ji ln �ki�+G�i���G�j�k�+ ln �ji ln �kj + ln �kj ln �ki � ln �ji ln �ki�+G�j���G�k�i�� ln �ji ln �kj + ln �kj ln �ki + ln �ji ln �ki� o;where we have set the integration onstants of (B.9) to a onvenient value,whih an be done sine they play no essential role (f. equation (3.7)).In the limit g��!0 all terms ontaining the boundary metri G�� vanishand we obtain�2�2h��i(�i) ��j(�j) ��k(�k) ZH d2z ��� ������ ��F��itree;�0!0 =n+��k�����i�j�Li2(1�m)� Li2(m) + �23 � (B.12)+��i�����j�k�Li2(1�m)� Li2(m)� �23 �+��j�����k�i�Li2(1�m)� Li2(m)� o ;where we expressed (B.12) in terms of the modulus m instead of the expliit



B. The Contribution of the 3-Point Vertex 56quotients in (B.11). Furthermore, we took advantage of relations (A.10) and(A.11).When using, in addition, radial gauge and taking a vanishing gauge �eldA, the terms ��23 in the �rst two lines disappear and we reover the resultof [9℄. This is due to the relation to Rogers dilogarithm L(m), Li2(1�m)�Li2(m) = �26 � 2L(m).B.4 Coinidene LimitsIn hapter 5 we alulate the orrelator of two funtions. For that purposewe have to onsider the oinidene limits �j ! �i and �j ! �k of (B.11). Inthese limits there appear logarithmi singularities whih an be regularizedby a ut-o� parameter �, i.e., lim�j!�i ln(�j � �i) ! ln�. In terms of � weget�h��i(�i) ��j(�i) ��k(�k) ZH d2z ��� ������ ��F��itree;sing == + i2���k���G�i�j ln� + 1�2G�k���G�i�j ln� ln(�k � �i)= � 1���G�i�j ln�h��(�i) ��k(�k)i (B.13)for �j ! �i and�h��i(�i) ��j(�k) ��k(�k) ZH d2z ��� ������ ��F��itree;sing == � i2���i���G�j�k ln� + 1�2G�i���G�j�k ln� ln(�k � �i)= � 1���G�j�k ln�h��i(�i) ��(�k)i (B.14)for �j ! �k. The singularities (B.13) and (B.14) must be ompensated byappropriate subtrations, i.e., one has to introdue a normal ordering for theinterating theory (2.1). The orret subtrations an easily be read o� from(B.13,B.14). Together with the singular part of the propagator (3.9) we get��(�) ��(� 0) = � 12�G�� ln(� � � 0)2 � 12���G�� ln(� � � 0)2 ��(� + � 02 )+ ( regular terms ): (B.15)



B. The Contribution of the 3-Point Vertex 57In order to obtain the �nite part of equation (B.11) in our limits we haveto take into aount the speial values (A.12). So we get� h �(�i(�i) ��j)(�i) ��k(�k) ZH d2z ��� ������ ��F��itree;�n = (B.16)= � 112���i�����j�k ���j�����k�i�� i2� ���k���G�i�j +G�j�����i�k +G�i�����j�k� ln(�k � �i)� 12�2 �G�k���G�i�j �G�i���G�j�k �G�j���G�k�i� ln2(�k � �i)for �j ! �i and� h ��i(�i) �(�j(�k) ��k)(�k) ZH d2z ��� ������ ��F��itree;�n = (B.17)= + 112���k�����i�j � ��j�����k�i�+ i2� ���i���G�j�k +G�j�����k�i +G�k�����j�i� ln(�k � �i)� 12�2 �G�i���G�j�k �G�j���G�k�i �G�k���G�i�j� ln2(�k � �i)for �j ! �k. We onsidered only the symmetri part of the limit, sine theantisymmetri one does not ontribute in hapter 5.
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