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Chapter 1

Introduction

First considerations dealing with a non-commutative (or quantized) space-
time are due to Snyder [1,2] and date back to the year 1947. The idea
was to overcome the ultra-violet divergences in quantum electrodynamics by
the introduction of an effective short distance cut-off in the field theory. In
contrast to earlier attempts, which replaced the space-time continuum by a
lattice structure, the non-commutative structure maintains the translational
invariance. At the same time, however, the renormalization program suc-
ceeded in predicting numbers from the theory of quantum electrodynamics
and the ideas of Snyder were for the most part ignored. Some time later
von Neumann introduced the term “non-commutative geometry” to refer in
general to a geometry in which an algebra of functions is replaced by a non-
commutative algebra. As in the quantization of the classical phasespace,
coordinates are replaced by generators of the algebra. Since these do not
commute they cannot be diagonalized simultaneously and the space disap-
pears. Similarly to the uncertainty principle of quantum mechanics,

[#", p,] = ihd", (1.1)

one may replace the Minkowski coordinates x* by generators z* of a non-
commutative algebra which satisfy commutation relations of the form

", 5] = 0" | (1.2)

where the parameter « is a fundamental area scale. If the right-hand side
does not vanish some of the coordinates # do not commute and thus can-
not simultaneously be measured with arbitrary accuracy. Non-commutative



1. Introduction 4

effects could take place on mikroskopic scales and from dimensional consid-
erations of the fundamental constants we suppose the value of a: to be of the
order of the Planck area,

a~mpt=Gh. (1.3)

However, the experimental bounds would be much larger. On makroskopic
scales we cannot see the algebraic structure (1.2), since lim, o 2# = z* so
that the coordinates commute.

In a sense, string theory introduces a concept that is very similar to
non-commutative geometry. Point particles are replaced by strings, open
and closed ones. The structure of these extended objects gets relevant at
the Planck scale and it provides, just as non-commutative geometry, an ef-
fective short distance cut-off. So it is not astonishing that string theory
and non-commutative geometry are somehow related, even more if one takes
into account that the space-time coordinates, being fields on a two dimen-
sional world sheet, become operators upon quantization. However, things are
not so simple and an algebra like (1.2) was first found by Schomerus [4] no
more than two years ago. The non-commutative structure originates from a
two form background field B and appears only on so-called Dp-branes that
are (p+1)-dimensional dynamical objects on which the ends of open strings
are fixed. So in a theory of only closed strings there does not arise non-
commutativity (at least not by the same mechanism). Before this discovery,
both fields of research, the non-commutative geometry as well as the open
string theory, were intensively investigated seperately. Thereafter a lot of
progress was achieved in the relation of the two and interests went in several
directions, such as D-brane physics, the differential structure, or the rela-
tion between commutative and non-commutative geometry, provided by the
Seiberg-Witten map.

In the subsequent sections we present recent developements in open string
theory and non-commutative geometry as far as they are relevant for our
considerations.
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1.1 Non-commutative Geometry

The mathematical description of non-commutative coordinates can be im-
plemented in two different ways. In the introduction we used the operator
notation. The order of the operators z# plays an essential role and if the
non-commutative parameter ©*” is not constant we have to specify in what
order it depends on the coordinates z#. The second description is known as
deformation quantization and uses ordinary c-numbers z*, i.e., x* are the co-
ordinates of a point P on a differentiable manifold M. Non-commutativity is
realized by a bilinear, associative product of functions, which is parametrized
by a tensor field ©*” on M. Henceforth, we will make use of the second kind
of description.

A constant field ©#” defines for instance the Moyal-Weyl star product

ia gur e} o

fl@)* glw) = e 2707 f(x)g(y)| (1.4)

=y’
Taking the functions to be the coordinates themselves one obtains immedi-
ately

[zh, 2"], = ot x 2¥ — 2P x 2¥ = ia®" | (1.5)

which is similar to equation (1.2). The Moyal-Weyl product (1.4) has, apart
from its associativity, the property that under an integral the product of two
functions simplifies to an ordinary product. Accordingly, the integration acts
on the product of an arbitrary number of functions as a trace, i.e.,

/ defl*...*fN_l*sz/ APz fy * fix.. . % fvot, (1.6)
M M

and it is allowed to omit one of the stars.

Recently, a lot of success was achieved investigating non-commutative
Yang-Mills theories. We give a short description of the underlying model.
The Moyal-Weyl product is a very simple example for a non-commutative
space, so that it was used for most considerations. If we take, in addition, a
flat Minkowski metric, the action for a non-commutative U(N) Yang-Mills

theory is
1 14
S = 4 MdeTr(F,W*F“ ), (1.7)
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where g is a coupling constant. The field strength F},, corresponding to the
gauge field A, is defined as

Fo = 0,4, — 0,4, —i[A,, A, . (1.8)

Both A and F are N x N hermitian matrices and comply with the infinites-
imal gauge transformations

(5)\14# — 8”)\ + Z[)\,A#]* s 5/\Fl“’ — Z[)\, F#V]* . (19)

Even in the U(1) case equations (1.9) keep the structure of a non-abelian
gauge transformation. In the limit ©*” — 0 the theory reduces to an ordinary
U(N) gauge theory.

So far we considered the very special case of the Moyal-Weyl product.
The generalization to a non-constant field ©*”(z) was investigated in the
context of deformation quantization of Poisson manifolds [8]. A manifold
with a Poisson structure ©#” is endowed with a bilinear, associative product
given by!

; 2
fog = fg+%@””8uf a,,g—%eﬂ"ewauapf 0,0, —  (1.10)
o pp vo 3
~50M0,0 (aﬂayf 0,9 — 0, f aﬂa(,g) +O>0?) .

If the manifold is, moreover, symplectic, the Poisson condition simplifies to
the condition that the inverse of ©* is closed, i.e., d(©~") = 0.

1.2 Open String Theory

In analogy to the action of a point particle, the Nambu-Goto action of a
(bosonic) string is the area of a surface, the world sheet, that is embedded
in a D-dimensional target space:

Swe = 2730/ /Ed%\/— det g (X)) , (1.11)

!The exact definition of the product containing all orders of a can be found in the
original paper [8]. Tt would go beyond the scope to introduce the notation in order to give
the full definition. However, throughout this work we only need approximation (1.10).
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where g, is the induced target space metric on the world sheet 3. o' and

o? are the local coordinates on X. In terms of the action principle the mini-
malization of the area gives the path and the oszillation mode of the string.

There are two possible types of strings. The closed string is a loop, so that
its world sheet has no boundary. The open string has two ends, which means
that it gives rise to a world sheet with boundaries. The oscillation modes of
a string correspond to the spectrum of various particles. The closed string,
for instance, gives rise to a graviton, a 2-form gauge field and a dilaton. The
open string model includes in addition gauge bosons.

When deriving the equations of motion for the coordinate fields X* in
terms of the action principle, in the open string case we have to impose
boundary conditions, either Dirichlet, X”‘az = a* (or equivalent 3TX“‘32 =
0), where a* is constant, or von Neumann, anX“‘az = 0. It is also possible to
use different types for different directions, for instance, the time and p spatial
directions satisfying von Neumann and the remaining (D—p—1) directions
satisfying Dirichlet conditions. In such a case the string ends are fixed on
a (p+1)-dimensional hypersurface, which is called a Dp-brane and is itself a

dynamical object and interacts with a string through its ends.

The Nambu-Goto action (1.11) can also be reformulated in terms of a
sigma model, the Polyakov action,

Sp = ﬁ [ V9, X0, g, (X) (1.12)
where g, and X* denote the metric and the coordinates in the target space
and hg the metric on the world sheet. The Nambu-Goto action can be
retrieved by solving the algebraic equation of motion of h,,. But doing so,
the world sheet metric can be determined only up to an arbitrary function
p(o), i.e., ha = pgl,. This means that the Polyakov action (1.12) has,
different from the Nambu-Goto action (1.11), an additional symmetry, the
Weyl symmetry, i.e., it is invariant under the transformation hy,, — phgy.
This symmetry is very important for the sigma model of strings. Without,
one could never get back to the Nambu-Goto action and the interpretation
of minimalizing an area would break down. The Weyl symmetry occurs only
in two dimensions.

The Weyl symmetry plays a key role in the quantization of a string theory
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with interactions of the target space coordinates X*, for instance (1.12). The
quantized theory is no longer invariant and one has to require the condition
that the Weyl anomalies vanish, which leads to equations of motion for the
background fields in the target space, such as the Einstein equation for the
metric g,,, i.e., R,, = 0.

Another important symmetry on the world sheet is the diffeomorphism
invariance, so that it is locally always possible to transform h,, into the flat
metric d,,. However, for several issues it is more useful to take the conformal
gauge hgy = €“64,. Then, choosing in addition a flat target space G = Nuws
the action reads

B 1
 Anad

Sp / 00, X" 0" X, . (1.13)
b

Although we have fixed the gauge, action (1.13) is still invariant under con-
formal (angle preserving) transformation, i.e., all world sheets that are con-
nected by conformal transformations describe equivalent theories. The sim-
plest interaction of open strings without any holes in the world sheet can thus
be formulated as a theory on the disk or on the complex upper half plane,
where the in- and outgoing open strings shrink to points on the boundary.
All our considerations will be restricted to this tree level interaction.

In a quantized conformal field theory each state of the Hilbert space is
associated to an operator, i.e., there exists a state-operator isomorphism (see,
e.g., [3]). In terms of string theory this means that all particles of the string
spectrum correspond to an operator. For instance, the two form gauge field is
represented by V, (k) = i€?*9, X#0, X" e'*Xb,,,, where b, is the polarization of
the particle. We could now consider strings in the presence of a background
of such a field. This can be done by introducing a coherent superposition of
particle operators in the action. As an example, a background of antisym-
metric states Vy(k) is represented by

drad

/ 20V hie®d, X" 9, X" B, (X) . (1.14)
%
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1.3 The Connection

A very interesting open string model is the simple case of a constant anti-
symmetric background field B,,. Expression (1.14) becomes a surface term
and the whole action reads

1
g =

drad

i
d%00,X"0°X"n,, + —— dr X*0.X"B,, , 1.15
/; o 77u + 471'04’ \%92 T 22 ( )

again in conformal gauge. In [4] it was shown that on the disk this theory
leads to a non-commutative product of functions, in fact, the Moyal-Weyl
product (1.4). Without any calculation this is plausible from the structure
of (1.15). While the first term gives rise to a “propagation” of the coordi-
nate fields X*, the second describes an interaction of different coordinate
directions and thus originates a non-commutative geometry. Furthermore,
the antisymmetric part in model (1.15) is a pure boundary term and thus
non-commutativity arises only on D-branes.

In [7] a limit was introduced in order to decouple the metric 7,, from
the gauge field B,,, i.e., to switch off gravitational effects and to keep only
non-commutative effects. We use the slightly different limit 7,, ~ ¢ — 0 and
B,, ~ const., which has in fact the same consequence. In this decoupling
limit the non-commuative product appears in a very clear way through the
correlator of N functions inserted at the boundary of the disc with the order

(Tl,...,TN), i.e.,

(f1[X ()] ... [n[X(Tn]) = /fl(x) *..oox fa(x) . (1.16)

"x” indicates the Moyal-Weyl product with the non-commutative parameter
O" = (B 1. Because of the simple structure within the limit, it was
used in almost all considerations of non-commutative geometry within string
theory, even in the case of non-trivial B-field backgrounds.

From the point of view of string theory the trace property of the Moyal-
Weyl product is not an accident but a consequence of the conformal in-
variance of the theory. On the upper half plane (the disk) the boundary
conditions restrict the possible conformal transformations, so that only the
SL(2,R) group remains. The correlation functions must be invariant under
such transformations and it is exactly the inversion part that is responsible
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for the cyclic permutation. Since the conformal invariance is a consistency
requirement of string theory, in the decoupling limit the trace property must
be satisfied even for non-trivial backgrounds.

A generalization to non-constant B-fields was first considered in ref. [9]
but not directly in the context of string theory. In fact, a topological Poisson
sigma model was found to be the field theory behind Kontsevich’s product
(1.10). The connection to open string theory is based on the special case of
a symplectic model. Then the Poisson sigma model coincides with the open
string model in the decoupling limit and with a non-constant, but closed
2-form field B.

A generalization to a completely arbitrary non-commutative parameter
O in the framework of open string theory was first tried by the authors
of ref. [11]. They showed that the product retains the Kontsevich form but
is of course non-associative, where the field strength H = dB controls non-
associativity. We already pointed out that the trace property is important
for a product originating from string theory. Althought treated in [11] there
are still open questions concerning the trace property.

The final goal of considering non-commutativity within string theory is
to reproduce the full low energy field theory arising from open string theory
away from the decoupling limit. In [7] a calculation of the correlation function
of three photons in the “constant” model (1.15) was taken to reproduce the
U(1) Yang-Mills theory (1.7)

gL dPxVGGH GO F,, « (1.17)
49% Jur

where the metric G* and the field ©" are defined in terms of the open
string quantities by (G — ©)" = (np — B) ', The field strength and the
gauge transformations are as in equations (1.8) and (1.9). Mind that the
choice of the integration measure /G in (1.17) is in fact arbitrary, since GH
is constant. So, the form of the actual measure still needs to be clarified.
This can only be done if one considers non-trivial backgrounds.
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1.4 Methods and Summary

In this work we tie in with ref. [11] and consider the problem of open strings
in general backgrounds, in particular B-field backgrounds with non-vanishing
field strength. We address the issue of the measure for the integration as it
appears in equations (1.17) as well as in (1.16) where it was silently sup-
pressed since it plays no role in the case of constant fields. The main goal
will be to derive the non-commutative product of functions to first order
in derivatives of the background fields and investigate its properties. The
feature of our approach will be the use of the on-shell condition for the back-
ground fields. In previous work the decoupling limit g, — 0 disguised the
importance of the equations of motion. Therefore, we omit it except for
comparative purposes.

Following a similar strategy as the authors in [11] we will work with a
derivative expansion of the background fields to extract the star product
from correlation functions computed on the disk. Furthermore, we do not
choose any gauge conditions for the background gauge fields. Here our setting
deviates vitally from the one used in [11], where radial gauge was imposed
on the two form gauge potential B. With this choice of gauge and neglecting
the field strength F' of the boundary interaction only the field strength H =
dB contributes in the derivative expansion of the background fields. Due
to H being totally antisymmetric this obscures the underlying structure of
the product. Instead we prefer to work with the gauge invariant quantity
B 4+ F and keep the full dynamics of F'. Furthermore, we only perform a
perturbation expansion around the constant zero modes, but do not use the
approximation of slowly varying background fields as done in [11]. This keeps
the full zero mode dependence of the background fields and even simplifies
the calculations.

Our main concern will be to discuss the properties of the product ob-
tained by the procedure described above. Although this product is non-
commutative and even non-associative we will show that associativity of the
product of three functions and the trace property of the integrated product
for an arbitrary number of functions is guaranteed up to first order in the
derivative expansion and up to surface terms. This is achieved by including
the full Born-Infeld measure and the equations of motion of the space-time
background fields. However, no on-shell condition is needed for the func-
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tions inserted in the product! Because of the prominente role of the Weyl
anomalies we present a detailed derivation thereof.

Finally, we comment on the relation to the recent work of Cornalba and
Schiappa [11]. Using the limit g,, — 0 they found that with the choice of
radial gauge it is possible to adjust the integration measure in such a way
that the integral still acts as a trace. However, we will show that this works
only in radial gauge. Moreover, the consistency of the topological limit of [11]
severely constrains the background fields through the equations of motion.
In the second order of the derivative expansion the Einstein equation already
implies the vanishing of the field strength H [12] and hence one is restricted
to the symplectic case.

The organization of this work is as follows.

In chapter 2 we introduce the setup for the models under consideration.
We give the derivative expansions of the background fields in terms of Rie-
mannian normal coordinates and introduce the additional interaction ver-
tices. The split of the constant zero mode and the quantum fluctuations
in the path integral is explained in detail [20]. Moreover, we cite several
relations in Riemannian normal coordinates.

In chapter 3 we review the calculations of [4] for the free field theory
defined by the constant parts of the background fields and identify the effec-
tive open string parameters G and ©. Furthermore, we compute the vacuum
amplitude of the free theory on the disk. It contributes the “Born-Infeld”
measure to the integration over the zero modes in the path integral.

Chapter 4 contains a calculation of the Weyl anomalies of the open string
theory. Dimensional regularization gives rise to anomalies on the bulk, such
as the Einstein equation and the equation of motion for the B-field. The
boundary anomaly, the non-linear Maxwell equation, is computed by the use
of a displacement regularization.

Then in chapter 5 the disk correlators are computed in order to extract
the non-commutative and non-associative Kontsevich-type product.

The properties are discussed in chapter 6. In particular we show that
the trace property of the two point function holds due to the equations of
motion of the background fields. The “Born-Infeld” measure exactly cancels
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the additional contributions arising from partial integration. By the same
mechanism the product of three functions does not depend on the way one
introduces brackets, i.e. the non-associativity is a surface term. This, in
turn, implies the trace property for an arbitrary number of functions. We
finish this chapter with some comments on the relations of our approach to
the recent work of Cornalba and Schiappa. In particular we examine the
implications of the radial gauge and the consistency of the topological limit
used in [11].

In the last chapter we conclude with comments on some open questions.

Appendix A finally presents the dilogarithm function and some relations
thereof. Appendix B contains the detailed calculations of Greens functions
for chapter 5.



Chapter 2

Open String Sigma Model

The starting point of our considerations is the non-linear sigma model of the
bosonic open string [20, 22, 23]

g = ! / d%\/ﬁ(h“”aaXﬂabX"gw(X)+z‘e“”aaXﬂabX"Bw,(X)>
Al |5,
+ z/ as(0.X#4,(X)), (2.1)
ox

which includes the space-time metric g, (X), the 2-form gauge potential
B,,(X) and the 1-form gauge potential A,(X). hy, denotes the Euclidean
metric on the world sheet > and ds is the induced line element on the bound-
ary.

In (2.1) the boundary term of the 1-form gauge potential A can be written
as a bulk term

/ d?oVhie0, X 0y X" F,(X), (2.2)
P

where F' = dA is the corresponding 2-form field strength.

14
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2.1 Space-Time Gauge Fields

Both, the 1-form potential A and the 2-form potential B, are associated with
space-time gauge invariances. For the former the gauge transformation

A = d) (2.3)

leaves the action (2.1) invariant. In open string theory there does not exist a
gauge transformation for the 2-form potential B alone, because surface terms
require a combined transformation

0B = dA,
A
0A = — 2.4
2rad (2.4)
that does not change the action (2.1). From (2.3) and (2.4) one can see
that the combination F = B+ 27wa'F = B+ 2ra’dA is invariant under both
gauge symmetries. Therefore, gauge invariant expressions contain the 2-form

F and the 3-form field strength H = dF = dB.

If one considers a brane that is not space-time filling, the gauge field A
and hence F are only defined along the brane. For simplicity we will re-
strict our considerations to the special case of a space-time filling D25-brane.
Furthermore, in topologically non-trivial backgrounds the gauge potentials
A and B may not be globally well defined. Such considerations are, however,
irrelevant in the present context.

In the classical approximation of open string theory the world sheet X
is a disk. Taking advantage of the conformal invariance of the theory, we
map the disk to the upper half plane H and perform our calculations there.
Furthermore, we choose the conformal gauge and use complex coordinates
2z = o' + 02 Thus the world sheet metric becomes h,; = e2¥(4§_ . and
the invariant line element at the boundary is ds = e“dr. The derivatives
tangential and normal to the boundary are 9, = (0 + d) and 9, = i(0 — 9),

respectively. In this parametrization the action (2.1) is given by
1 _
S=— [ dzoxrdx" (gW(X) + .7-"W(X)>, (2.5)

/
2na! [y

and the corresponding mixed boundary condition along the brane is

9 (X)(0 - 0)X" — F (X)(0+0) X" =0. (2.6)

zZ=z
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2.2 Constant Zero Mode and Derivative Ex-

pansion

Following the procedure explained in [20] we expand the field X*(z, Z) around
the constant zero mode contribution =z,

XH(z,2) = 2" + (2, 2), (2.7)

so that the path integral over the field X*#(z, z) splits into an ordinary inte-
gral over the constant zero modes z# and a path integral over the quantum
fluctuations (#(z, z). This separation is, in fact, not unique. A constant part,
c*, can always be exchanged between the two parts, i.e.,

XMz, 2) = a4+ C(M(z,2) =2+ (2, 2)
2t = gt —

o= Pt

So, we have to impose a “gauge” condition in order to fix ¢*. A unique way
to perform the split (2.7) is to insert the following “unity” into the path
integral:

| = /d%/[dg] 52 (X (2,2) — (2 + C(2,2)) 6P (PPl (]) Alen], (2.8)

with

OP"[x — ¢, + c])
dc e=0"

Alz, (] = det(

P#lz, ] = 0is the “gauge” condition and A[x, (] is the corresponding “ghost”
determinant. Subsequently, we will use the condition

P”z/ds(“(s)zo, A=1", L:/ds. (2.9)

Since A is only a constant factor it does not play an essential role and we can
incorporate it in the normalization of the path integral. The delta functional
for P* = 0 will not be written explicitely, but we impose the condition by
hand. Whereever there appears an integral of the quantum fluctuations over
the boundary of the world sheet, we set it to zero.
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Therefore, we get

(:f[ilX(z)]: ... ifN[X(ZN)]¢> =
= L lax)e SN L Xy =

— /dD /d( S [p+G) . vz +Ce], (2.10)

where the functions f;[X(z;)] denote arbitrary insertions in the path integral.
For the expansion of the action S[X] = S|z + (] around the zero modes we
simplify our computation by making use of Riemannian normal coordinates
18, 24],

G+ = T = 3 Ruo (@) + O, .11

Fuwx+() = Fulz)+0,Fu(x)’ + §apa(,fw(x)gpcf’ + O(C*)2.12)

In contrast to [11] we do not choose radial gauge for F,,(X). In that case
(2.12) would split into two separate expansions for B and F', where the non-
constant part of the B expansion contains only the field strength H. The
radial gauge fixes the combined transformation (2.4), whereas transformation
(2.3) remains unaffected. With (2.11) and (2.12) we are able to write the
action (2.5) as

S

2mal

a2z {agﬂég”(n#,, + Fo) + 0CHDCCP 0, Fy +
H

+aCrACCrCT (%apa,fw, - %RW,,,,) + O(a;“;)}.(zm)

In the following we will restrict our considerations to terms of at most
first order in derivatives of the space-time background fields.

2.3 More About Riemannian Normal Coor-
dinates

For later reference we explain some properties of Riemannian normal coor-
dinates in this section.
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The basic idea behind Riemannian normal coordinates is to use the
geodesics through a given point to define the coordinates for nearby points
[16,17]. Take a point P with coordinates z* and a nearby point Q. If @ is
close enough to P then there exists a unique geodesic joining P to (). Let a*
be the components of the unit tangent vector to this geodesic at P and let
s be the geodesic arc length measured from P to ). Then the Riemannian
normal coordinates of () are defined to be X* = z# + sa*.

An equivalent but for our purposes more useful definition of Riemannian
normal coordinates at a point P is that they are a set of coordinates for
which

I (z) = 0 (2.14)
Fupg’/\(%) + FMAP’U(I‘) + Fug/\’p(l‘) = 0. (215)

As a consequence, one obtains equation (2.11) by a Taylor series expansion
around P. The flat metric n,, at P requires the additional property that
the tangent vectors of the geodesics which build our coordinate system are
chosen to be orthogonal at P.

Finally, we present some useful relations between the metric, the Christof-
fel symbols and the curvature:

Moa(z) = —%(R“pa,\(x)—l—R“gpA(a:)) (2.16)
Govpo (@) = —%(RW(:U)JFRWP(;U)) (2.17)
Ruvpo(T) = Gpouo(T) = Gppwo(T) (2.18)

These equations will intensively be used in section 4.7.



Chapter 3

The Free Theory

3.1 The Propagator

As a warm up for later calculations and to set up the relevant techniques
of our approach let us first calculate the propagator for the free field theory
defined by the Gaussian part of (2.13) in the path integral,

1 = l
Siwe = g7 [ 2000+ T AT COCF ()
Here, OH denotes the boundary of the upper half plane, i.e., the real line.!
The second term contributes to the boundary condition which takes the
same form as (2.6) with 7, and F,,(z) replacing the full metric g,,(X) and
Fuw(X), respectively. The boundary term can be regarded as a perturbative
correction [4] to the free propagator

/ !

(¢ () ¢ (w, @) = =S Infu —wl’ = S Infu—wf”. (32)

The homogeneous (image charge) part accounts for the Neumann boundary
condition 9,(*|sm = 0 of the theory without perturbation. The propagator
of the perturbed theory is then given by

(C*(u, @) ¢ (w, @) 5 = (C*(u, @) C¥(w, @)e wmar $ou ATCP0CFory (3.3)

'"We have used the divergence theorem for complex coordinates, which reads
[ A2 (0.0 £ 0:0°) =i §,. (dZv® F dzv?).

19
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For the calculation of the propagator only tree contributions are relevant.
We will consider loops separately in the next section. Expanding in a per-
turbation series the term of order n

(¢ )¢ (w0~ { Léﬂdz@@%?ﬁm+:iﬂdz@@C%ﬁJ}n>(3®

n! Urao/

gives two slightly different contributions, depending on whether n is even or
odd. By using the derivative of the propagator (3.2) it is straightforward to
obtain the result?

1

1
Fn n{_ln_lfd A K ’—u D
= ER I e (e 2 . 0)
1
b de (A @) (39)
SH u—=z
The remaining divergent integrals are regularized by differentiating with re-

spect to w and w, respectively. This yields a finite result plus an infinite
additive constant C(“O';),

cﬂfﬂW“—U“HMa—w}JMu—@}+C&y (3.6)

Now, it is possible to sum up all orders in a geometric series, which finally
gives the desired propagator [22, 23]

(¢ (s, @) ¢ (w, @) = —a' {™ (In Ju — w| — In|u — )

w—u

‘ )}+ cr L (3.7)

u—w

+G" 1n |u — w|* — @’“’ln(

where we have introduced the quantities®

G = (g_lf g gjf)’w and OW = —(g_lf F gjf)’w. (3.8)

?In this calculation there appear integrals of the form ¢, dz=1— -1

. The part along

the real axis R is [, dr———L—  whereas the integral along the semicircle in the upper

half plane with infinite radius is zero. Therefore, the original integral can be written as

1 1 1 1
dZ_ — = dZ_ )
o U—2zZ—w o U—z2Z—w

which can be evaluated using the residue theorem.

3For later reference we have expressed G*¥ and O by the full bulk metric g,,,,, whereas
the correct terms in (3.7) contain of course the Minkowski metric 7,, because of the
Riemannian normal coordinates.
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The integration constant C’éﬁ;) plays no essential role and can be set to a
convenient value, e.g. C{/y = 0 [7]. Restricted to the boundary (v =u =17
and w = w = 7') the propagator has the simple form

o/ it A" (7, 1") = (M) (7)) F
—/G" In(1 — 7')? — o'it®Oe(r — 7').  (3.9)

As discussed in [7] the boundary propagator (3.9) suggests to interpret G,
as an effective metric seen by the open strings, in contrast to g,,, which is
to be viewed as the closed string metric in the bulk.

For later purposes we elaborate on the distinction between the open string
quantities G*” and ©"” and the closed string quantities g, and B,,. In order
to make a clear distinction between the bulk and the boundary quantities,
we mark all expressions that refer to boundary quantities with bars. To this
end we define

Guwi=(9—F), and OF, :=—F", (3.10)

The first of the above definitions is equivalent to setting G* = G* and
requiring G, to be its inverse. The second definition follows from setting
O" = ©M and pulling indices with G,. In an analogous way we label
all expressions that are built out of these quantities with bars, e.g. the
Christoffel symbol T',,,” and the covariant derivative D, compatible with the
open string metric C_?,W.

3.2 Vacuum Amplitude and Integration Mea-
sure

Let us now consider loop contributions arising from an even number of inser-
tions of the boundary perturbation of (3.1)%. In this calculation there appear
divergences when the insertion points approach the boundary. We regularize
these terms by keeping a fixed distance dy with respect to the metric in con-
formal gauge to the boundary OH, i.e., we impose |z — z| > 2Im(z) > e™“d,.

40dd powers vanish because of the antisymmetry of F,,,
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To make this more explicit let us consider the one loop contribution of the
F? term,

1/ —iN?
— 1 v ! FpAal o
2<<47TO/) ﬁH dTC a’rC f/ﬂ/ X ﬁH dr C aTC fpo‘>1—loop- (3]_]_)

Using the same techniques as for the chains (3.4) gives the divergent contri-
bution

1 |
SFvE N
(4de /ds>2.7-"u Fh (3.12)

where ds = d7e” is the invariant line element in conformal gauge. Summing
up all powers of F in the 1-loop contribution yields

oo

(i ] 1) 2 0™ = (g, [ 45) 3 niden(s = 7,). (313

n=1

As observed in [19,25] this linear divergence is in fact regularization scheme
dependent and can be absorbed into the tachyon by a field redefinition. But
a finite constant part

bo In(det(6 — F2),") (3.14)

may remain after subtraction of appropriate counterterms. The analysis
given in [20, 25] determined the constant by to be ; in order to yield the

Born-Infeld action for a vanishing tachyon field.

In (3.14) we have added up all powers of F contributing to the connected
vacuum graphs. Taking into account all disconnected one loop graphs to all
orders of the interaction leads in fact to the Born-Infeld Lagrangian

1

oo 1 N
>~ - (In(det(s - F2),7)) "= {fdet(s — F2),r = \[det(s — F), . (3.15)

n=0

Here we used the antisymmetry of F,, to change the sign in the determinant.
Expression (3.15) can also be interpreted as a contribution to the measure of
the integration over the zero modes in the path integral. Although we make
use of Riemannian normal coordinates for the perturbation expansion, we
can write the measure in a covariant way by including the term /det g,,.
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Therefore, if there are no operator insertions in the path integral (2.10), we
obtain the Born-Infeld action

/de\/deth{‘/det((S—.7-"2),/ = /dD:r:{‘/deth{‘/detGW =
= /dD:c\/det(g—}')W, (3.16)

where GG, is the boundary metric as defined in (3.10).

So far we have regarded all possible diagrams of the boundary insertion
of (3.1). Therefore, we can now work with the full propagator (3.7) for all
higher order interaction terms.

For the remainder we make use of the abbreviations ¢ = detg,, and

[ =[dPa/g—F = dex@ﬁ. Furthermore, we set 2o/ = 1.



Chapter 4

Weyl Anomalies

In section 1.2 we pointed out that the Weyl invariance of the sigma model is
important to maintain the connection to the Nambu-Goto action (1.11). In
this chapter we are interested in the scaling behaviour of the quantized open
string sigma model. The regularization of the divergent diagrams entails
the introduction of a scale dependent parameter and, therefore, the quan-
tum corrections cause a breaking of the symmetry, i.e., the theory is Weyl
anomalous.

The renormalization group theory provides a quantity that extracts the
Weyl anomalous parts from the regularized diagrams. It is called the (-
function and is associated with the renormalization of the coupling constant.
In the case of the sigma model (2.1) we have, in fact, infinitely many coupling
constants. Expanding the functional F,,[X(z, Z)| in a Taylor series (2.12)
we get a sequence of coupling constants F, (), 8,F,(x), 30,0, Fu(z), ...
for the interaction vertices 9C*0¢", AC*ACYCP, OCHOCYCPC?, ... , respectively.
In order to maintain the Weyl invariance of the quantized theory one has to
require that the corresponding [S-functions vanish.

In string theory the functions g,, and F,, have two different meanings.
From the world sheet point of view they represent a series of couplings, as
stated above. But in the target space they mean various particle fields. The
condition = 0 corresponds to equations of motion for the particle fields (in
the target space).

24
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In practice, the computation of the S-function requires a separation of
the counterterms into contributions to the wave function and the coupling
constant renormalization. Therefore, it is necessary to work out the coun-
terterms for two different vertices. In order to avoid this separation it is more
convenient to compute the Weyl anomaly more directly by choosing confor-
mal gauge. The anomalous terms then contain the conformal function w and
appear in the finite part of the regularized diagrams.! The divergent part
must be compensated by counterterms, which can be written in a general
coordinate invariant way.

In the simpler model of closed strings only the inhomogeneous part of
the propagator contributes to divergent loop diagrams which is due to the
absence of a boundary. So the problem can be treated on the complex plane
with natural boundary conditions and the divergences appear all over the
world sheet. Since the open string theory is defined on a world sheet with
boundary the homogeneous part of the propagator gives also rise to additional
divergences that appear only at the boundary. For both kinds of divergence
we obtain of course corresponding Weyl anomalies.

4.1 The Action in Continuous Dimensions

We start with the calculation of the bulk anomalies using the inhomoge-
neous part of the propagator (3.7). We choose the dimensional regulariza-
tion scheme and thus start rewriting action (2.1) in continuous dimensions
n = 2 — e with € > 0. Applying conformal gauge h, = e?*d,, the inte-
gration measure on the world sheet becomes vh = ¢ and in combination
with the inverse metric we get Vhh® = e 250 The treatment of the

antisymmetric tensor €* is a bit more subtle. It is defined as €*’ = % with
the e-symbol é%°2 and in conformal gauge we have €™ = e2¥¢®.  If one

generalizes to arbitrary dimensions the entries in € do not change, but the
continuous dimension emerges again from the measure, so that we obtain

IThe w independent finite terms are no matter of interest in our discussion and will be
neglected throughout this chapter.
2We use the convention that é'2 = 1.
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Vhe® = e(n=2wgab Al in all the action (2.1) is given by

1
4!

1
S /H d”ae*fw{aagﬂaag”(nw — C*C" S Ry (4.1)

1
OGO (Fou (PO F s+ (P 50,0,F )

Because of the factor e~ the first term in (4.1) is not a free part of
the theory. In order to seperate a free part we perform a field redefinition
(P = e2¥(*, so that

1

S0 = o /H a"0 {0,007, + o'l + O} . (42)

The first term yields the propagator and the second can be treated pertur-
batively as “soft mass insertion” [21].

4.2 The Inhomogeneous Part of the Propa-
gator

In order to account for the continuous dimensions the inhomogeneous part
of the propagator should be represented through its Fourier transformation

N N d"k eik(a—a’)
M v ! ee:2 ! v - ) 4
< E@)) aa 2ml [ G (1.3

Since the propagator is also infrared divergent, we introduced an appropriate
regulator mass m. The ultraviolet behaviour of the free propagator (4.3) is

< CM0)CY(0) >tree ~ a'n’“’% : (4.4)

Within dimensional regularization there appear only logarithmic divergences
in a massless theory, so that

< aaéu(o')éy(o-) >free ~ 0,
< 8(16#(0')61)5”(0') >free ™ 0 s (45)
< 8,18(,5“(0)5”(0) Stree 0
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However, the “soft mass” term can change the order of divergence and
thus generate non-vanishing results. Since it is linear in € we expect a finite
result that depends on the conformal factor w. To see how this works we
recognize first that the insertion can be rewritten as

€D,w(rD°,
= €0,(wC"D°(,) — ewdo (P, (4.6)
— %eaa(aaw@fu) - %ea%)é“éﬂ (4.7)

Here we used the fact that in the dimensional regularization scheme the free
classical equation of motion 825“ = 0 is satisfied as operator equation as can
be seen from (4.5). This can easily be seen from (4.5). The boundary terms
in expressions (4.6) and (4.7) do not generate divergencies and therefore
vanish in the limit € — 0. The interesting contributions arise from the bulk
insertions. They give rise to % poles which are cancelled by the € in the “soft
mass” term. Take, for instance, insertion (4.6). Using the propagator (4.3)
we obtain

< ¢"(0)¢" (o)

/d"a' €wDyCP ) >tree ~ AWt (4.8)
H

dma!
If we repeat the procedure with the differentiated field ¢# in a similar way
we end up with the contractions
<HEF0) > ~ At
< 8,CM0)(0) > ~ 0
< 0,0,CH(0)C" (0) >~ —la'n“”éaﬁ?w and

4

< 0,CM(0)0,C (o) >~ %a'n’“’(sabaQw : (4.9)

Finally, returning to the original field (*#, we find the contractions

CCHO0) >~ el w)

< 0,(M(0)C (0) >~ e“”%n“”@aw ,

< 0uCHM(0)0pC (o) > ~ eew%n“"éabc’iQw and (4.10)
< *C*0)¢"(0) > ~ 0
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R, 3*F OF

Figure 4.1: The one loop diagrams under consideration.

4.3 Counterterms and Weyl Anomaly I

Now we are prepared to calculate divergent and w-dependent contributions
to the effective action arising from diagrams as shown in figure 4.1. In every
interaction vertex of (4.1) two fields must be contracted.

First, we consider the curvature 4-point vertex

1
127a!

/ d"o e “0,CP " C"C ¢ Rypyo - (4.11)
H

The coincidence limits (4.10) yield the result

_ L d"o {(l—i—w)aaC”a“C”RW — Oqw0*CHC" Ry + 1GQwC“(”RW} .

127 Jg € 2

The %—divergence must be compensated by an appropriate counterterm in
the action. We are not further interested in it. In more detail we look into
the Weyl anomalous part. In order to compare the result with later ones we
return to complex coordinates (cf. chapter 2). After partial integration the
w-dependent terms can be written as

i

1 _
r'e) = 5 /H A2z w ACHOCY R,y — (4.12)

1 1
o - VR 9 pev _
or /. dT{Qaan 'Ry — 2w 0 CHC R#,,}

We postpone the interpretation of (4.12) to a later section when all contri-
butions to the Weyl anomaly are known.
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For the remaining 2-form vertices

1 1
/d"a e i 0,0, { POy Fo + gﬂg”Eapa(,fw)} (4.13)

dma! Jy
we apply the same procedure and obtain the Weyl symmetry breaking terms
w 1 =
M) = o [ @00 (0, o) + (4.14)
b 7-‘- H

+ ﬁ - 7w 0.CH (0770, Fop + C1 010, Fy) -

4.4 The Homogeneous Part of the Propaga-
tor

As mentioned in the introduction of this chapter the main new feature of
the open string model is the appearence of divergences and anomalies that
are located at the boundary. These infinities are related to the homogeneous
part of the propagator (3.7). The coincidence limits thereof, i.e.,

< (M(2,2) (2, 2) >hom = —a'G"™In|z -z |
~ 1 1
< (M(2,2)0¢"(2,2) >hom = —d'G"—— —d'0O"—— | (4.15)
z—Z z—Z
_ ~ 1 1
< (M(2,2)0¢"(2,2) >hom = +dG"—— —ad'O"—— and
z—Z z—Z
o a1 o
< 0C"(2,2) 0C"(2,Z) >hom = —a'G" L + a'eH e

are finite inside the world sheet but divergent at the boundary and require

therefore an appropriate regularization. For convenience, we introduced the

appreviation G" = G" — Lpm.

4.5 Once More the Regularization of Bound-
ary Divergences

We reapply the same method as in section 3.2 and restrict z to the domain
Hgy) = {z € H | 2Im(2) > e “do} , (4.16)
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where dy is a small displacement. The weight e~ appears because we have

chosen the metric in conformal gauge. This regularization scheme will be
illustrated for the diagrams arising from the curvature 4-point vertex
1
6ma’

/ d?20¢"0C"C ¢ Rypwer - (4.17)
Ha)

Using the contractions (4.15) we obtain

1

FR’Q = - dQZ{
67 H(d)

1
(z —2)?
1 _ -
I v
5 COC(GR)
1 ~
v
= 0" (GR)w
+1n |z — 22 9C*ICY (G R)
2 _
. anc(p@U)uRupM

2 g )V
Zacuc(p@ ) Rupw} ,

2 —

C"CY(GR) (4.18)

+

_|_

where (GR),, = G*’ R,,,5. If we consider (4.18) we recognize the appearance
of different boundary divergences in the integrand: a logarithmic one as
well as a linear and a quadratic one. However, the former is not that bad.
Althought divergent, it is integrable if one performs two further contractions
including the remaining fields 9¢* and 0¢”. In fact, it leads to a finite result.
For the later two types we observe the following behaviour. The integral as
a whole is divergent, whereas the integrand is singular only at the boundary.
So one can try to split the integral into a finite intergral over the bulk H,)
and a integral over the boundary 0Hl4,) with a divergent argument as dy — 0.
Take, for instance, the quadratic term in (4.18). By partial integration we
get
1

— d2z1n\z—2|3ﬁ“5ﬁ'/(éR)W+
37T H

+ i{/ dzIn > — 3| OCHCY — / dzIn |z — 3| 3C“C”}(C¥R)W -
6 M (ag) Mg

! U I TN
_ m{/ﬁﬂ(dod)zz_zcu( +/a dz——("¢ }(GR)W. (4.19)

Hdg)
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So, with this method we are able to isolate the boundary divergences from
an integrable bulk contribution in the first line.

Since we are interested in the Weyl anomaly, we keep only the diver-
gent and w-dependent part in the integrals over the boundary and therefore
substitute (z — 2)‘3151 = ie “dy. Lines two and three in (4.19) give

— | dr(Indy — w) 8,¢"C*(GR) W —
671' oM

11

el WUV
6rd /o dre“C " (GR) - (4.20)

The other terms in (4.18) can be treated in the same way and one obtains a
finite, a divergent and a w-dependent contribution. In order to get managable
parts we split ' o into

Pro =0 + TG 4 1) . (4.21)

)

Similarly, we consider the vertices

_ 1
/ a2z aguag”{gﬂ 0,Fu + C°C° 58,,8(,}'“,,}, (4.22)
H

2!
and, accordingly, use the split
Tro =T +TE) +1%) (4.23)

For the sake of completeness we present the finite terms, althought not in-
teresting for our purposes,

ririn)  — F%;n) + F_(}fén) —
1 [ (s 1
= — [ d®n|z— 7] 8{“8(”{(GR)W - —(eR),w} b (4.24)
™ Jm 3

1 _ A v o ~Npo
+ ﬁ/m d221n |z — 2 HC*AC {@,, OuHyype — G apHW} ,

where (@R),W = @pa(Ruupa + RWJUU)'
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4.6 Counterterms and Weyl Anomaly II

As already stated in section 4.3 the divergent contributions ngiv) = F(;f;) +
Fggj) must be compensated by appropriate counterterms. Applying the

methods of the previous section gives

. 1 g
N B, / dr 9,0"¢"(GR) .,
3m OH

— “lndy / d7 0,C*C(OR) (4.25)
67T OH

— L lndy / A7 0.CH(0,Fpu G + C*0,0,Fu G™)
271' OH

1
= In d, /aH dr 0,C*(H,ps O + (Y0, H,,5,0") .
In the following Weyl anomalous parts we also included the divergent tachyon
like contributions since the compensation of the divergence by a counterterm
may leave a finite w-dependence. Thus we have

@ _ _ 11 W (5
FR,Q 67 d[] o dre C C (GR)MU
1 N
- pev
toge [ drea @R
+ 61 d7w,C ¢ (OR),, (4.26)
T ) om
and
(w) 11 W (e po 1 ez po
Iy, = ——— dr e“(¢"0,F 0" + =(H("0,0,F,,077) +
’ 21 dO SH 2
+ | AT w .M (0, F G+ C1D,0, FuGP)
271' SH
1
+ — d7 w 0,C"(H,pe O + €"0, H,,ps O77) . (4.27)

47 oM
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4.7 The Space-Time Equations of Motion

Now we have calculated all Weyl anomalies arising from the diagrams in
figure 4.1 and are ready to interpret the results. First, we recognize that the
homogeneous part of the propagator gave only rise to Weyl anomalies on the
boundary, as we have already mentioned earlier. Whereas the inhomogeneous
part generated both, boundary and bulk anomalies. For easier reference we
summarize the results (4.12,4.14,4.26,4.27),

w 1 AVl 2 1 a
re = _ﬁ/m d*zw ¢ ¢ (R — 5 0y Hopw)

— L dr 0w C"C'R _,_Li dr e“C"¢"R
27 [ OO W ordy Jow € n
1

+ — dr w 0,C"C"(GR)
37 Jom
i
— | drwd,¢"¢"(OR),,

+ 67 Jom T W CC( )u

- Ll dr e (¢9,F, 0% 4+ CHCV L (0,0, F 0" + 2(GR) )
21 dy Jom nere AN 3 "

+ o | AT w8.CH (0, F GO + €Y, 0, FruGP)
27T SH
1

+ — [ dTw0,(M(H,pe O + (70, H,,,0") . (4.28)
4:7T oM

At first sight their are some terms with no obvious meaning. For instance,
there appear anomalies which contain a derivative of the field 9,(, but we
did not introduce a vertex operator like

/ dr 9, X"V, (X) | (4.29)

However, we can use the boundary conditions (2.6) for the quantum fields,
ie.,

OnCt|._, = —iF"0:CY|_ + ..., (4.30)
and rewrite the normal derivative as tangential derivative.
Furthermore, we have to take into consideration that in section 2.2 we

have introduced Riemannian normal coordinates. This means that in equa-
tion (4.28) the lines three and four and the last expression in line five could
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o0F o0F

Figure 4.2: The (0.F)?-diagram was not taken into consideration.

contribute to covariant derivatives. Indeed using formulas (2.14 - 2.18) one
can show

G’ D,D,Foy = G (0,0,F sy — 0T s Fop + 0T ) Frg) =
2 1
= G"0,0,Fy, — g(GR)M]-“Au + 5(@R),W (4.31)

and

0" D,D,F,, = 0" (8,0,F — 20,T7,,Frs) =
2 2
= @’”’8“8,,.7:,)(, + g(GR)u,/ - gRMV . (432)
If we apply the boundary condition and take advantage of the Riemannian

normal coordinates, we see the covariant structure of (4.28),

1 - 1
F(w) = ——/ d2zw 6(“3{”(]%#” - _DpHp;w) + (433)
27 H 2

1 1

dr Opw (MY Ry — Tondo ; dr e“C"C" Ry,
H

247 Jom
11

2 dy Jom

1
+ 5 | dru 0 (GP Dy Foys = 50 Hags )

1
dr e”(¢* D, Fpr O + C”C”EDADV}—M@”“)

1
+ CV(GpUDUDprM - §@p0DuH/\paf/\u)} :

Mind that we have not taken into account all possible 1-loop diagrams.
The diagram shown in figure 4.2 which is built of two 3-point vertices was
not treated. On the bulk it gives rise to the well known H?-term. At the
boundary the missing terms of second order in derivatives combine with terms
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available in the last line of (4.33) to give D, (G* D,F,, — $0" Hy,, F*,), the
second term in a Taylor series expansion of the 9.¢* anomaly [22,23].

The same holds for the third line of (4.33). This contribution reminds of
a tachyon vertex and can indeed be absorbed by the tachyon in terms of a
field redefinition (cf. the discussion of section 3.2) [19]. Note that the first
term in this line vanishes because of condition (2.9) which was introduced
to ensure a unique separation of the constant zero mode and the quantum
fluctuation.

The remaining contributions cannot be removed by appropriate field re-
definitions and must be set to zero in order to maintain the conformal in-
variance of the theory, i.e.,

1

2
Ry = JHy, = 0,
DH,y = 0, (4.34)

1
GpaDpj:oN o ifAueng/\pa =0 )

where we have added the H2-term arising from the diagram in figure 4.2.
These are the equations of motion for the background fields: the Einstein
equation for g,,, the equation of motion for B,,,, and the non-linear Maxwell
equation for A,. In chapter 6 the latter will turn out to be very important
for the properties of the non-commutative product defined in section 5.3.



Chapter 5

Correlation Functions

In string theory interactions of different particles of the string spectrum are
calculated by inserting the corresponding vertex operators in the path inte-
gral. Our goal is to extract a non-commutative product of functions out of
the open string theory correlation functions [11]. To this end we do not re-
strict ourself to vertex operators, but investigate the correlator of two general
functions f[X(7)] and ¢[X (7')] allowed to be off-shell. To simplify the calcu-
lations we take the order of insertions to be 7 < 7’. Since the functions are
composite operators, one has to introduce an appropriate normal ordering.
As shown in the appendix 7 it is given by

HCH(r) () s = QM) ¢(T)

1 . 1 5 T4+ 7
+ﬁGM In(T — 7')% + ﬁapG“ In(t — 7')% ¢°(

2

) (5.1)
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5.1 Moyal-Weyl Contribution

Taking into account the subtractions (5.1) the free propagator (3.9) yields [4]
(X gl X ()] Dty =

Z " vi nVn
_ /Zm ) A A B0, £(2) By D) (5.2)

— LTI i ppnn (e 2
= /I;n!<27r> GMYL GE In™ (1 — 1')° Oy O, f(2) % Oy O, g(20).

In the last line we have summarized all ©#-dependent contributions in the
product

frg = Z 1 <2> M (x) ... O (1) amaunf(l‘) Oy -0, 9(7)

n!
n=0

— e%@)w(z)azuayuf(x)g(y) , (53)

r=y=2

which we will refer to as “Moyal like” part of the final non-commutative
product. It has the well known structure of the Moyal product and reduces
to it if ©*” is constant. In this case (5.3) is clearly associative and satisfies
the trace property. This is, however, no longer true, if ©*" is a generic field.

5.2 First Derivative Contribution

Going one step further in the derivative expansion we have to take into
account the contribution to the non-commutative product arising from the
interaction term

2 U v p
o Hd 20CPOCYCP 0, F (5.4)
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The rather cumbersome calculations are explained in appendix 7. Using
(B.16) and (B.17) we obtain

(X glX ()] Yor =

1
—5 [ ©%0,0" (0,0,] * Dyg + 0 f + 0,0,9) (5.5)

—SL / 0" 0,G" 0,0y [ * Oug — O f * 0,0,9) In(r — 7')2
™ x

7: !
i /IG"“aU@P“ (8,,8pf % 0,9 — O, f * 8,,6pg) In(1r — 7')?

B 1
1672

—i—é/GW@pGau(ayagf*aﬂg_i_aﬂf*auaag) IHQ(T—T')Q—I—...,

[ 60,677 (8,001 0,9+ 0,1+ 0,0,9) (7 — )

X

where we only kept the ©#” terms from the contributions of the free prop-
agator (3.7), since the G* parts are irrelevant for our further discussion as
we shall see shortly. Again, the first line of (5.5) contributes to our non-
commutative product. The partial derivatives of the fields imply that the
whole expression (5.5) vanishes for constant fields.

5.3 Definition of the Non-commutative Prod-
uct

We define now the non-commutative product as

VI—F (@) o gla) = /MQe%wﬂxmnwwny (5.6)

The choice of the distance 7/ — 7 = 1 is such that the scale dependent con-
tributions of (5.2) and (5.5) are removed.! The resulting non-commutative
product is the scale and translation invariant part of the 2-point correlation.
This product is independent of G*”, and we will see that only this part of
the correlation has appropriate off-shell properties (as long as the background

!The value 1 is due to our choice of the infrared cut-off, i.e., the constant Célo';) in (3.7).
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fields are on-shell). The full off-shell correlations will, of course, also have
G" -dependent contributions.

From (5.2) and (5.5) we see that, up to first order in derivatives of ©*,
the product reads?

f(z) o g(z) = f*g—1—12@””Dp®”” (DMD,,f s« Dpg + Dy f *DMD,,g> n
+ O((D®)*,DDO). (5.7)

Here we have reintroduced the covariant notation. This is justified because
in Riemannian normal coordinates the Christoffel symbol vanishes and (5.7)
contains no derivatives thereof. The same is true for the G*”-dependent
parts.

A comparison of (5.7) with the formula given in [8] shows that, apart
from the covariant derivatives, the non-commutative product (5.6) coincides
with the Kontsevich formula. We do not require, however, that the field ©#”
defines a Poisson structure. Note that in [11] the ©®00 terms contains only
Kontsevich contributions. This is due to the choice of radial gauge.

?Subsequently we abbreviate O((D©)?, DDO) by O(D?).



Chapter 6

Properties of the
Non-commutative Product

In the limit o/ — 0 the correlator of an arbitrary number of functions in
the presence of a closed B-field background can be evaluated by an inte-
gration over the non-commutative product of these functions. On the disk
the SL(2,R) invariance of the correlators requires the product to satisfy the
trace property.

The non-commutative product (5.6) defined without the use of the limit,
however, does not describe the full correlation functions, because the G-
dependent contractions give additional contributions. Even so, we will show
in this chapter that the trace property can be maintained for the product (5.7)
if one imposes the equations of motion for the background fields, whereas the
inserted functions are allowed to stay completely generic.

6.1 On-shell Condition for the Background
Fields

In string theory the background field equations of motion are related to
the renormalization group [ functions, which probe the breaking of Weyl
invariance (and hence the conformal invariance) of the theory. Since we
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perform our calculations up to first order in derivatives of the background
fields, we expect that we have to account for the generalization of the Maxwell
equation [23,26],

1
G’ D, F,y — E@ﬂffﬂmﬁu = 0. (6.1)

To show our proposition we rewrite (6.1) in a more appropriate way,

8#(\/ﬁ 9””) - \/EDu(i//—f

= VI~ ]:<GpgDp-7:au - %@pUHpa/\]:/\u> G" =0,

where we have used the relation

@W) - (6.2)

1= - _
O DyFpe = =5GP DGy = | R A (6.3)
and the fact that the quotient t—‘\//_f is a scalar. We introduce the usual no-

tation & for equivalence up to equations of motion. Note, furthermore, that
in the following all relations are valid only up to first order in derivatives of
o,

6.2 Trace Property I

We start with the product of two functions and show that (5.7) is symmetric
under the integral

dPa\/g—F f o g ~ dPx\/g—F g o f. (6.4)

This relation holds due to (6.1) and (6.2), because then the first order term
in ©" of (5.7) transforms into a total divergence,

dPx\/g— F " D, f D,g ~ /de 8M<\/g “Fem D,,g) — 0, (6.5)

and the remaining antisymmetric parts can be written as contributions of
second order in derivatives. Notice that here and in the subsequent relations
it is essential that the constant by in the integration measure takes the value

i in order to produce the total divergence.
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6.3 Associativity up to Surface Terms

For a general field ©#” the product (5.7) is not associative. But again ap-
plying (6.1,6.2) associativity, except for a surface term, is ensured for the
product of three functions. To see this we calculate (f og)oh — fo(goh).
Using the formula

0y(f*9) (@) = (o + Dy + Du)er® D20 £ () g (y)
O g+ Syt %ap@wauf £ 0. (6.6)
for the product (5.3) we obtain
(fxg)xh = [fxgxh]+ %@’“’DU@’”’DJ x D,g x D,h+ O(D?),
fx(gxh) = [fxgxh]— %@‘“’DU@""DM x D,g * D,h + O(D?),(6.7)

where [f * g * h] denotes the part with no derivatives acting on ©*”. So the
non-associativity reads

(fog)oh—fo(goh) =
1 1
= - (0"7D,0" + (cycl.h?)) 5 Duf * Dug  Doh + O(D?)
— é@w@“@ﬂ“f[m D,f * D,g* D,h+ O(D?). (6.8)

In the last line we have introduced the 3-form field H = d(©~!) that is
associated with the inverse of ©",

(Gil)uv =—(g— f)up(}—il)pg(g +Flow = (F — g}—ilg)uv- (6.9)
Therefore, associativity is obtained (even off-shell) if
A,y = 0. (6.10)

At this point we want to stress that we nowhere have employed the limit
o' — 0 in our considerations, so that the “full” ©*” occurs in all the relations.
This means that (6.10) is a generalization of the well known property that
in the limit o/ —0 the product becomes associative if H = 0.
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However, open string theory does not require such a restriction and we
investigate again the effects of the equation of motion (6.1). From (6.8) we
obtain immediately that

/de\/ F((fog)oh—fo(goh)) = (6.11)
= /de\/ F (6"°0"*0” H,z, D,f * D,g x D,h) + O(D?) ~
~ é/d%a(\/ )P+ oD =0,

so that we are allowed to omit the brackets.

6.4 Trace Property II

For more than three functions we are allowed to leave out the outermost lying
bracket. In the case of four functions we obtain, for instance, the relation

de‘/g_ fog)ohol= dDg;\/g—}'fogo(hol). (6.12)

Finally, taking into account (6.4) and (6.11) we see immediately that the
trace property holds for an arbitrary number of functions,

de\/ﬁ<(...(flo...))ofN,1>ofN%
~ de\/ﬁfNo((...(flo...))ofN,1>z
~ dem<fNo. (fio.. )))ofN_lz... . (6.13)

6.5 Comparison with Recent Work

We close this chapter with a remark on the relation to the recent work of Cor-
nalba and Schiappa [11]. They considered the special case of a slowly varying
background field B in radial gauge, i.c., By, (z) = By, + $Hyupr? + O(2?),
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and a vanishing field strength F' for their path integral analysis. Taking
the topological limit, g, ~ e — 0,' the above properties of the prod-
uct were achieved by adjusting a constant A in the integration measure
VB (1 +N(B~"H,,,x"). Using consistency arguments they determined
the appropriate value of the constant to be N' = %

However, dropping the radial gauge and repeating the calculations? of [11]
for the trace property one obtains

~i [ VBB (B~ (B (B 0,B foug. (614)

This expression does in general not vanish for any A/. Thus the trace property
can not be restored by an appropriate choice for the constant N as it is
possible for radial gauge, i.e., when 0, B,, is replaced by H,,!

On the other hand, expanding B, (z) around its constant value and tak-
ing the topological limit in our setting, the Born-Infeld measure reduces to
VB(z) = VB (14 3(B™)"9,B,,2”). Then (6.14) can be recast into

- fuan raran,
~5 (B (B0, By + (B (B, } g
SR —— s

The last expression in square brackets in the second line is exactly what
remains from the generalized Maxwell equation (6.1) in the topological limit,
namely the constraint (B~')?” H,,, = 0. So again the trace property holds,
when the background fields are on-shell! Nevertheless, taking the topological
limit mutilates the on-shell conditions in the sense that no dynamics is left
and only a highly restrictive non-linear constraint remains. In dimensions up
to four this constraint already implies the vanishing of the field strength H.
Moreover, in the next order one has to take into account the beta function
for the background metric, namely the Einstein equation, which imposes the

"Note that this limit is similar to the limit o’ —0 of Seiberg and Witten [7].
*Note that in this paragraph B,, denotes the constant part of B,,(z) and all depen-
dencies on the zero modes are explicitly written.
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even stronger restriction

1 ” 1 o
R#u - ZHMﬂaHp v~ _ZHNPJHp vt 0(60) =0, (6'16)

which enforces H,,, = 0 for any dimension (cf. [12]).* Hence the topological
limit only seems to make sense considering the symplectic case.

3This can be seen by first setting = v = 0 so that H3, = 0 and using the antisymmetry
of H. This yields Hoy;; = 0 for 4, j # 0. The condition for purely spatial components follows
immediately.



Chapter 7

Conclusion

On the world volume of a D-brane the product of functions (5.7) represents
a non-associative deformation of a star product.! Nevertheless, it enjoys the
properties that the integral acts as a trace and the product of three functions
is associative up to total derivatives. This is accomplished by the equations
of motion of the background fields (6.2) and the Born-Infeld measure. No on-
shell conditions have to be imposed on the inserted functions! Note, however,
that the product of four or more functions inserted in an integral is ambiguous
if the brackets are omitted. This is due to the fact that associativity for
three functions is valid only up to total derivatives. Only the outermost
lying bracket may be omitted, but this suffices to ensure the trace property
for an arbitrary number of functions.

Our results are correct up to first order in the derivative expansion of the
background fields. In this approximation the influence of gravity amounts
to the use of covariant derivatives in the generalized product (5.7) but the
structure is still that of the formula given by Kontsevich. It would be interest-
ing to investigate whether gravity induces a deviation from this structure at
higher orders of the derivative expansion. One might also expect that higher
order terms of the generalized Maxwell equation have to be used and even
additional equations of motion must be imposed to maintain the properties
of the product.

'Note that in the limit of vanishing gauge fields, F,, ~ € — 0, the product reduces to
the “ordinary” product of functions and the measure reduces to ,/g.
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It would be furthermore interesting to address the question of how to
use the open string non-commutative product and a perturbative operator
product expansion in order to calculate correlation functions in general back-
grounds. The property that the product of four or more functions is not
unique without brackets seems related to the fact that these products are not
independent of the moduli of the insertion points. For instance, in the case of
four functions there are two distinct possibilities where to put the brackets,
which coincides with the number of conformal blocks. This suggests that for
higher n-point correlation functions one has to use linear combinations of the
various orderings of the brackets weighted with coefficients depending on the
moduli [13].

Since the correlation functions provide the S-matrix elements for scat-
tering processes, the issue of finding the effective low energy field theory on
D-branes is closely related and provides another motivation to calculate the
correlators. Already the Born-Infeld measure denotes an important contri-
bution for this issue.



Appendix A

The Dilogarithm

In appendix B we will encounter the dilogarithm [28]. As pointed out in
ref. [11] it will play a prominent role in the calculation of correlation functions
in open string theory. Therfore, we give definitions of the dilogarithm and
related functions and cite some relations that will be used in appendix B.

A.1 Definition

Consider the series
00k
m
> ol (A.1)
k=1

which is only convergent for |m| < 1. One can find an integral representation
of (A.1)

Liy(m) := — /Om dz @ . (A.2)

Lis(m) is called the dilogarithm. Although the series has a radius of con-
vergence of 1 the integral (A.2) is not restricted to this limit. When m is
real, Lig(m) is well defined for —oo < m < 1. For m > 1 the argument
of the logarithm is negative and one has to use complex arguments and an
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appropriate position for the branch cut of the logarithm in order to assign a
unique value to the dilogarithm. We choose the cut to be the negative real
axis, so that we have

In(—z +ie) =In(z)+ir 2<0,e—=0. (A.3)
Then the function'
"o In(l—x+i
Lit(m) = — / g ML= 7 £ i) (A4)
0 T

is well defined for m € R.

A.2 Dilogarithm Relations

The dilogarithm contains a lot of symmetry relations. For instance, one can
obtain the values of the function on the whole real axis just from the values
in0<m<1,

o m . L., m
Ll2(m—1)__L12(m)_§ln (1—m) m—1<0’ (A.5)
a1 2 . R . 1
Li; (E) =3 — Liz(m) — 5 In"(m) £irln(m)  —>1. (A.6)

These relations follow from simple substitutions in the integral representation
(A.4). Equation (A.6) suggests a continuation of the dilogarithm to the whole
real axis using the values of the function in 0 < m < 1 by
1 2 1
Liz(—) = % ~ Lig(m) = 5 In’(m) . (A7)
In the remainder of the appendix Liy(m) for m € R denotes the analytic
continuation in terms of definition (A.7).

In appendix B it will turn out that the sum and the difference of Liy(m)
and Lis(1 —m) appear in the 3-point Greens function. The sum is just given
by an expression of logarithms

Liy(m) 4+ Lia(1 — m) = %2 —In(m)In(1—m) 0<m<1. (A.8)

'We leave the sign for the imaginary part of (A.4) open since later on we will encounter
both conventions. We write the £ in Li;t(m) only if decisive, i.e., if m > 1.
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And we abbreviate the difference by the function?
LY (m) := Lig(m) — Lig(1 — m) . (A.9)

Since we used the continuation (A.7) for Liy(m), L (m) is well defined for
m € R. Using equations (A.5), (A.8) and (A.7) one finds

m 2

L(-)(m) = —L9(m) — % , (A.10)
L(‘)(%) = —L(')(m)+%2, (A11)

for 0 < m < 1. It is by definition antisymmetric about % and for m > % it
has the following special values:

7T2

1
LO(Z) = LO(1) = +—
(=0 . 191 =+,
7'('2 71'2
L(_)(2) = +? ; L(_)(+OO) = +? . (A12)

2The function L©)(m) is closely related to Rogers dilogarithm L(m), i.e., L(m) =
= 4+ LLO(m).



Appendix B

The Contribution of the
3-Point Vertex

In the following we give an explicit calculation of the tree level contribution
of the interaction term (5.4), i.e., the 3-point function €*(7;)¢"(7;)C? (k).
which is needed in chapter 5. There we derive the correlator of two functions
f and ¢g. These functions contain an arbitrary power of quantum fluctuations
(*. Therefore, the correlator has also contributions from 3-point Greens
functions with two coinciding quantum fields ¢*: lim,, -, (¢*(7:)¢"(75)C” (7))
and lim, -, (C*(7;)¢"(7;)¢?(71)). The coincidence limits consist of both finite
and divergent terms, which need different treatments. The divergent ones
must be compensated by appropriate subtractions, which are accounted for
in the normal ordering of the inserted functions, whereas the finite ones
contribute explicitly to the correlator.

We will start with the introduction of convenient notations following [11].
Thereafter, we derive the Greens function (C*(7;)¢"(7;)(?(7x)), which needs
a regularization similar to the propagator (3.3). We will see that the result
is a generalization of the one in [11], because we do not use the limit o/ —0
and the radial gauge. Finally, we perform the coincidence limits to obtain
the correct normal ordering and the finite contributions to the correlator.

51



B. The Contribution of the 3-Point Vertex 52

B.1 Convenient Notations and Useful Rela-
tions

The free propagator (3.7) with one side connected to the boundary is

1

o (G"S(1;,2) — O A(73,2)), (B.1)

(¢"(ri) ¢" (2, 2))

where A; and S; are defined as

z —

A = A1y, 2) = ln(_ Ti) and S; =8(7i,2) =In|r — 2] (B.2)

T, — %

Note that A; is an antisymmetric function in 7; and z, whereas S; is sym-
metric, i.e., A(7;, 2) = —A(z,7;) and S(7;,2) = S(z,7). From (B.2) we see
that A; and S; satisfy the relations 0S; = —0A; and 9S; = 0.A;. Therefore,
we get

() 0 (2,2)) = 5 (0" +G) 04
(¢"(m) 3¢ (2,2)) = i(GW—GW) 0A,;. (B.3)

2T

Furthermore we introduce the functions
fA(Ta; Th, TC) — / d2Z 8Aa5¢4(,¢40 (B4)
H

fs(Tay T, 7e) = /dQZ 08,08,8. = —/dQZ OAOAS,,  (B.5)
H

which are finite except for an infinite constant. So the computation of (B.4)
and (B.5) will need a regularization. With the above abbreviations and the
relations

D,G" = —G"D,Fr,0" — 0" D,F,G"
DO = —OMD,F\0% — G"'D,Fr,G" (B.6)
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the tree level amplitude of (5.4) reads

<Cni (Tl) an (Tjrﬁk (Tk) {_ / dQ'Z aCﬂgCpr apfuu}>tree =

1 i K
= - 3 {—l—@“’“"ap@'“ i (falmi 7y, 1) — fa(Tj, 70y T
(

(2m) )

+®nkpapGninJ (fA TZ,T],Tk + fa Tj,Ti;Tk)
+Gnkﬂ@p@nm] (fS Tz;TgaTk fS(Tj,Ti,Tk)
+G"P0,G" " (fs(1i, 75, 7k) + [ )

+(cycl. perm. (1Jk))}. (B.7)

)
)
)
)

Tjs Tiy Tk

For the following computation of (B.7) we take the order 7; < 7; < 74 on the
real axis.

B.2 Regularization of f4 and fs

To regularize f4 and fg we differentiate the integral representations (B.4)
and (B.5) with respect to 7,, 7, and 7., respectively. Then we can perform
the integration over the upper half plane H. This can be done by the well
known method of a transformation into a contour integral and using the
residue theorem. The pole prescriptions on the real axis are obtained by
introducing a small imaginary shift +ie, so that

A :ln<z_7—i — 1€
Ti

— € —Z

) and S; =In((r; —ie —z)(r; +ie— 2)) . (B.3)

The prescription is chosen so that it is consistent with bulk insertions that
emerge the boundary, i.e., we consider in fact insertions in the bulk which
are very close to the boundary. The appearance of the logarithm needs a
selection of a cut and it turns out that the negative real axis is a convenient
choice. Finally, we determine the antiderivative with respect to 7,, 7, and ..
Now, the infinity is contained in the integration constant.
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In such a way we get

! In(z =+ i€ In(1 — 2 + i€
fa(Ta, T, 7e) = 27r/ dx( n(z ze)+ n(l —x 26))+CA
0

1—=x T
In(z +i€")  In(l —xz £ i)
+ )
11—z x

fs(Ta; T, 7c) = 27T/Otdx<— (B.9)

— gln2(ﬂ, — 1) +in’e(ry — 7o) In(ry — 7o) + C’(SOO),
where the + in the logarithm abbreviates in fact the sign function +¢€(m, — 7,).
In (B.9) we have introduced the parameter ¢ which is defined as the combi-
nation ¢ = :Z::Z The shift ¢ is needed to integrate along the correct side of
the cut for negative arguments of the logarithm. This selection is determined
by the pole prescription explained above.

The integrals (B.9) remind us of the dilogarithm (A.4) introduced in
appendix A. Indeed, taking into account the branch cut of the logarithm, one
can express equation (B.7) in terms of the analytically continued dilogarithm
that was defined by (A.2) and (A.7). Because of the order 7; < 7; < 7, the
so-called modulus

T; — T;
m= T

(B.10)

bl
Tk — T4

is restricted to 0 < m < 1, a region that we met several times in appendix
A.
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B.3 The Tree Level Amplitude

What is left is to use (B.9) to bring together all combinations of the functions
fa and fg in (B.7). This leads to the rather lengthy result

(¢ () € (1) € () / 422 0CDC" " 0pF o Yiwe =

{ +0%29,0% (Liy(ZE) — Liy(22)) (B.11)
] Tij
n

+ 079,07 (Lig(21) — Lin(7%))

T]k Tjk

+ 09,0 (Liy(22) — Lip())
Tki

¢
(
(
(
+ir©"L9,G" " (InT; — 111 Thi)
—in@"*9,G" " (InTy; — In7y;)
—imG 0,0 " (ln Tkz)
—imG"P 0,0 (ln Tkz)
+im G 9,0"" (In 73, )
+G"PQ,GR iR (+ In7j;In7; — In7; In 7 + In 7y In Tkl)
(
(-

+G"?0,G"" (+InT; In T, + In7p; In 7, — In 7y In Tki)

+G"P0,G" " (= InTyIn Ty + InTg In 7 + In7yIn Tkz) },

where we have set the integration constants of (B.9) to a convenient value,
which can be done since they play no essential role (cf. equation (3.7)).

In the limit g,, — 0 all terms containing the boundary metric G*” vanish
and we obtain

_27T <Cm (Tz)c ( )an (Tk) /HdQZaC#aCVCp 8pjz'ul/>t1ree,a’ﬁ0 -
{+ ©":9,0""% (Lis(1 — m) — Lis(m) + %2) (B.12)
71.2

+ 00,0 (Lis(1 — m) — Lis(m) — =)
#9970, (Liy(1 = m) ~ Li(m) }.

where we expressed (B.12) in terms of the modulus m instead of the explicit
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quotients in (B.11). Furthermore, we took advantage of relations (A.10) and
(A.11).

When using, in addition, radial gauge and taking a vanishing gauge field
A, the terms i”; in the first two lines disappear and we recover the result
of [9]. This is due to the relation to Rogers dilogarithm L(m), Liy(1 — m) —
Lis(m) = & — 2L(m).

B.4 Coincidence Limits

In chapter 5 we calculate the correlator of two functions. For that purpose
we have to consider the coincidence limits 7; — 7; and 7; — 7 of (B.11). In
these limits there appear logarithmic singularities which can be regularized
by a cut-off parameter A, i.e., lim . In(7; — 7;) — InA. In terms of A we
get

() ) M) [ P00 O F v =
H
' 1
::+iewamwmA+prmmwmAm@—m
1 KiKj K
= —;8,,G i In A(CP(13) ™ (1)) (B.13)
for 7; = 7 and
_<Cni(7—i) C’{j (Tk) an(Tk)/dQZaC#gCVCp ap~7:';w>t1ree,sing; -
H
7: Kj KiK 1 Kj KiK
= —59 0,G % In A + PG #0,G " In AMn(7), — 7;)
1
= — 9,6V InA{CT (m) ¢P(7)) (B.14)
for 7; — 7. The singularities (B.13) and (B.14) must be compensated by

appropriate subtractions, i.e., one has to introduce a normal ordering for the
interacting theory (2.1). The correct subtractions can easily be read off from

(B.13,B.14). Together with the singular part of the propagator (3.9) we get
1 1 !
) ¢r) = —5-GIn(r =) = =9, In(r — ') (5T
+ (regular terms ). (B.15)
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In order to obtain the finite part of equation (B.11) in our limits we have
to take into account the special values (A.12). So we get

— (") ¢ () ¢ () / 42 0C10C " DpFu)seesin = (B.16)
H
]. Ky Kik Kj KEgki
=~ (00,0 — ©%09,0%")

_i ((_)K,kpapGK/ih}]‘ + GRIPQ, ORIk 4 Gmpap@njﬁk) In(r, — 7;)
1
on?

(G"’“”BpG’“"f — G"iP9,G"Ir — G"f”BpG"k“i) an(Tk - 7)
for 7; = 7 and

—(¢"i(m) "9 () ¢ () / A%z 0CHOCCP 0, FuVireosin = (B.17)
H
= +%(@“kﬂap@w — ©Rrg,Q8)

L (000, + G0, 0%+ 0,0 I — )
1
272

(GRP8,Gr9™ — GRiPQ,GRvei — GR428,Gri%3 ) In? (7, — )

for 7; = 7,. We considered only the symmetric part of the limit, since the
antisymmetric one does not contribute in chapter 5.
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