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Chapter 1Introdu
tion
First 
onsiderations dealing with a non-
ommutative (or quantized) spa
e-time are due to Snyder [1, 2℄ and date ba
k to the year 1947. The ideawas to over
ome the ultra-violet divergen
es in quantum ele
trodynami
s bythe introdu
tion of an e�e
tive short distan
e 
ut-o� in the �eld theory. In
ontrast to earlier attempts, whi
h repla
ed the spa
e-time 
ontinuum by alatti
e stru
ture, the non-
ommutative stru
ture maintains the translationalinvarian
e. At the same time, however, the renormalization program su
-
eeded in predi
ting numbers from the theory of quantum ele
trodynami
sand the ideas of Snyder were for the most part ignored. Some time latervon Neumann introdu
ed the term \non-
ommutative geometry" to refer ingeneral to a geometry in whi
h an algebra of fun
tions is repla
ed by a non-
ommutative algebra. As in the quantization of the 
lassi
al phasespa
e,
oordinates are repla
ed by generators of the algebra. Sin
e these do not
ommute they 
annot be diagonalized simultaneously and the spa
e disap-pears. Similarly to the un
ertainty prin
iple of quantum me
hani
s,[x̂�; p̂�℄ = i~Æ�� ; (1.1)one may repla
e the Minkowski 
oordinates x� by generators x̂� of a non-
ommutative algebra whi
h satisfy 
ommutation relations of the form[x̂�; x̂� ℄ = i���� ; (1.2)where the parameter � is a fundamental area s
ale. If the right-hand sidedoes not vanish some of the 
oordinates x̂� do not 
ommute and thus 
an-not simultaneously be measured with arbitrary a

ura
y. Non-
ommutative3



1. Introdu
tion 4e�e
ts 
ould take pla
e on mikroskopi
 s
ales and from dimensional 
onsid-erations of the fundamental 
onstants we suppose the value of � to be of theorder of the Plan
k area, � ' m�2P = G~ : (1.3)However, the experimental bounds would be mu
h larger. On makroskopi
s
ales we 
annot see the algebrai
 stru
ture (1.2), sin
e lim�!0 x̂� = x� sothat the 
oordinates 
ommute.In a sense, string theory introdu
es a 
on
ept that is very similar tonon-
ommutative geometry. Point parti
les are repla
ed by strings, openand 
losed ones. The stru
ture of these extended obje
ts gets relevant atthe Plan
k s
ale and it provides, just as non-
ommutative geometry, an ef-fe
tive short distan
e 
ut-o�. So it is not astonishing that string theoryand non-
ommutative geometry are somehow related, even more if one takesinto a

ount that the spa
e-time 
oordinates, being �elds on a two dimen-sional world sheet, be
ome operators upon quantization. However, things arenot so simple and an algebra like (1.2) was �rst found by S
homerus [4℄ nomore than two years ago. The non-
ommutative stru
ture originates from atwo form ba
kground �eld B and appears only on so-
alled Dp-branes thatare (p+1)-dimensional dynami
al obje
ts on whi
h the ends of open stringsare �xed. So in a theory of only 
losed strings there does not arise non-
ommutativity (at least not by the same me
hanism). Before this dis
overy,both �elds of resear
h, the non-
ommutative geometry as well as the openstring theory, were intensively investigated seperately. Thereafter a lot ofprogress was a
hieved in the relation of the two and interests went in severaldire
tions, su
h as D-brane physi
s, the di�erential stru
ture, or the rela-tion between 
ommutative and non-
ommutative geometry, provided by theSeiberg-Witten map.In the subsequent se
tions we present re
ent developements in open stringtheory and non-
ommutative geometry as far as they are relevant for our
onsiderations.



1. Introdu
tion 51.1 Non-
ommutative GeometryThe mathemati
al des
ription of non-
ommutative 
oordinates 
an be im-plemented in two di�erent ways. In the introdu
tion we used the operatornotation. The order of the operators x̂� plays an essential role and if thenon-
ommutative parameter ��� is not 
onstant we have to spe
ify in whatorder it depends on the 
oordinates x̂�. The se
ond des
ription is known asdeformation quantization and uses ordinary 
-numbers x�, i.e., x� are the 
o-ordinates of a point P on a di�erentiable manifoldM. Non-
ommutativity isrealized by a bilinear, asso
iative produ
t of fun
tions, whi
h is parametrizedby a tensor �eld ��� onM. Hen
eforth, we will make use of the se
ond kindof des
ription.A 
onstant �eld ��� de�nes for instan
e the Moyal-Weyl star produ
tf(x) � g(x) = e i�2 ��� ��x� ��y� f(x)g(y)��x=y: (1.4)Taking the fun
tions to be the 
oordinates themselves one obtains immedi-ately [x�; x� ℄� = x� � x� � x� � x� = i���� ; (1.5)whi
h is similar to equation (1.2). The Moyal-Weyl produ
t (1.4) has, apartfrom its asso
iativity, the property that under an integral the produ
t of twofun
tions simpli�es to an ordinary produ
t. A

ordingly, the integration a
tson the produ
t of an arbitrary number of fun
tions as a tra
e, i.e.,ZM dDx f1 � : : : � fN�1 � fN = ZM dDx fN � f1 � : : : � fN�1 ; (1.6)and it is allowed to omit one of the stars.Re
ently, a lot of su

ess was a
hieved investigating non-
ommutativeYang-Mills theories. We give a short des
ription of the underlying model.The Moyal-Weyl produ
t is a very simple example for a non-
ommutativespa
e, so that it was used for most 
onsiderations. If we take, in addition, a
at Minkowski metri
, the a
tion for a non-
ommutative U(N) Yang-Millstheory is S = � 14g2 ZM dDxTr(F�� � F ��) ; (1.7)



1. Introdu
tion 6where g is a 
oupling 
onstant. The �eld strength F�� 
orresponding to thegauge �eld A� is de�ned asF�� = ��A� � ��A� � i[A�; A�℄� : (1.8)Both A and F are N �N hermitian matri
es and 
omply with the in�nites-imal gauge transformationsÆ�A� = ���+ i[�;A�℄� ; Æ�F�� = i[�; F�� ℄� : (1.9)Even in the U(1) 
ase equations (1.9) keep the stru
ture of a non-abeliangauge transformation. In the limit ��� ! 0 the theory redu
es to an ordinaryU(N) gauge theory.So far we 
onsidered the very spe
ial 
ase of the Moyal-Weyl produ
t.The generalization to a non-
onstant �eld ���(x) was investigated in the
ontext of deformation quantization of Poisson manifolds [8℄. A manifoldwith a Poisson stru
ture ��� is endowed with a bilinear, asso
iative produ
tgiven by1f Æ g = fg + i�2 �����f ��g � �28 ����������f ����g � (1.10)��212�������� �����f ��g � ��f ����g�+O(�3) :If the manifold is, moreover, symple
ti
, the Poisson 
ondition simpli�es tothe 
ondition that the inverse of ��� is 
losed, i.e., d(��1) = 0.1.2 Open String TheoryIn analogy to the a
tion of a point parti
le, the Nambu-Goto a
tion of a(bosoni
) string is the area of a surfa
e, the world sheet, that is embeddedin a D-dimensional target spa
e:SNG = 12��0 Z� d2�p� det g�(X(�)) ; (1.11)1The exa
t de�nition of the produ
t 
ontaining all orders of � 
an be found in theoriginal paper [8℄. It would go beyond the s
ope to introdu
e the notation in order to givethe full de�nition. However, throughout this work we only need approximation (1.10).



1. Introdu
tion 7where g�ab is the indu
ed target spa
e metri
 on the world sheet �. �1 and�2 are the lo
al 
oordinates on �. In terms of the a
tion prin
iple the mini-malization of the area gives the path and the oszillation mode of the string.There are two possible types of strings. The 
losed string is a loop, so thatits world sheet has no boundary. The open string has two ends, whi
h meansthat it gives rise to a world sheet with boundaries. The os
illation modes ofa string 
orrespond to the spe
trum of various parti
les. The 
losed string,for instan
e, gives rise to a graviton, a 2-form gauge �eld and a dilaton. Theopen string model in
ludes in addition gauge bosons.When deriving the equations of motion for the 
oordinate �elds X� interms of the a
tion prin
iple, in the open string 
ase we have to imposeboundary 
onditions, either Diri
hlet, X����� = a� (or equivalent ��X����� =0), where a� is 
onstant, or von Neumann, �nX����� = 0. It is also possible touse di�erent types for di�erent dire
tions, for instan
e, the time and p spatialdire
tions satisfying von Neumann and the remaining (D�p�1) dire
tionssatisfying Diri
hlet 
onditions. In su
h a 
ase the string ends are �xed ona (p+1)-dimensional hypersurfa
e, whi
h is 
alled a Dp-brane and is itself adynami
al obje
t and intera
ts with a string through its ends.The Nambu-Goto a
tion (1.11) 
an also be reformulated in terms of asigma model, the Polyakov a
tion,SP = 14��0 Z� d2�phhab�aX��bX�g��(X) ; (1.12)where g�� and X� denote the metri
 and the 
oordinates in the target spa
eand hab the metri
 on the world sheet. The Nambu-Goto a
tion 
an beretrieved by solving the algebrai
 equation of motion of hab. But doing so,the world sheet metri
 
an be determined only up to an arbitrary fun
tion�(�), i.e., hab = �g�ab. This means that the Polyakov a
tion (1.12) has,di�erent from the Nambu-Goto a
tion (1.11), an additional symmetry, theWeyl symmetry, i.e., it is invariant under the transformation hab ! �hab.This symmetry is very important for the sigma model of strings. Without,one 
ould never get ba
k to the Nambu-Goto a
tion and the interpretationof minimalizing an area would break down. The Weyl symmetry o

urs onlyin two dimensions.The Weyl symmetry plays a key role in the quantization of a string theory
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tion 8with intera
tions of the target spa
e 
oordinates X�, for instan
e (1.12). Thequantized theory is no longer invariant and one has to require the 
onditionthat the Weyl anomalies vanish, whi
h leads to equations of motion for theba
kground �elds in the target spa
e, su
h as the Einstein equation for themetri
 g�� , i.e., R�� = 0.Another important symmetry on the world sheet is the di�eomorphisminvarian
e, so that it is lo
ally always possible to transform hab into the 
atmetri
 Æab. However, for several issues it is more useful to take the 
onformalgauge hab = e2!Æab. Then, 
hoosing in addition a 
at target spa
e g�� = ��� ,the a
tion reads SP = 14��0 Z� d2��aX��aX� : (1.13)Although we have �xed the gauge, a
tion (1.13) is still invariant under 
on-formal (angle preserving) transformation, i.e., all world sheets that are 
on-ne
ted by 
onformal transformations des
ribe equivalent theories. The sim-plest intera
tion of open strings without any holes in the world sheet 
an thusbe formulated as a theory on the disk or on the 
omplex upper half plane,where the in- and outgoing open strings shrink to points on the boundary.All our 
onsiderations will be restri
ted to this tree level intera
tion.In a quantized 
onformal �eld theory ea
h state of the Hilbert spa
e isasso
iated to an operator, i.e., there exists a state-operator isomorphism (see,e.g., [3℄). In terms of string theory this means that all parti
les of the stringspe
trum 
orrespond to an operator. For instan
e, the two form gauge �eld isrepresented by Vb(k) = i�ab�aX��bX�eikXb�� , where b�� is the polarization ofthe parti
le. We 
ould now 
onsider strings in the presen
e of a ba
kgroundof su
h a �eld. This 
an be done by introdu
ing a 
oherent superposition ofparti
le operators in the a
tion. As an example, a ba
kground of antisym-metri
 states Vb(k) is represented by14��0 Z� d2�phi�ab�aX��bX�B��(X) : (1.14)



1. Introdu
tion 91.3 The Conne
tionA very interesting open string model is the simple 
ase of a 
onstant anti-symmetri
 ba
kground �eld B�� . Expression (1.14) be
omes a surfa
e termand the whole a
tion readsS = 14��0 Z� d2��aX��aX���� + i4��0 I�� d� X���X�B�� ; (1.15)again in 
onformal gauge. In [4℄ it was shown that on the disk this theoryleads to a non-
ommutative produ
t of fun
tions, in fa
t, the Moyal-Weylprodu
t (1.4). Without any 
al
ulation this is plausible from the stru
tureof (1.15). While the �rst term gives rise to a \propagation" of the 
oordi-nate �elds X�, the se
ond des
ribes an intera
tion of di�erent 
oordinatedire
tions and thus originates a non-
ommutative geometry. Furthermore,the antisymmetri
 part in model (1.15) is a pure boundary term and thusnon-
ommutativity arises only on D-branes.In [7℄ a limit was introdu
ed in order to de
ouple the metri
 ��� fromthe gauge �eld B��, i.e., to swit
h o� gravitational e�e
ts and to keep onlynon-
ommutative e�e
ts. We use the slightly di�erent limit ��� � �! 0 andB�� � 
onst:, whi
h has in fa
t the same 
onsequen
e. In this de
ouplinglimit the non-
ommuative produ
t appears in a very 
lear way through the
orrelator of N fun
tions inserted at the boundary of the dis
 with the order(�1; : : : ; �N ), i.e.,hf1[X(�1)℄ : : : fN [X(�N ℄i = Zx f1(x) � : : : � fN (x) : (1.16)'�' indi
ates the Moyal-Weyl produ
t with the non-
ommutative parameter��� = (B�1)�� . Be
ause of the simple stru
ture within the limit, it wasused in almost all 
onsiderations of non-
ommutative geometry within stringtheory, even in the 
ase of non-trivial B-�eld ba
kgrounds.From the point of view of string theory the tra
e property of the Moyal-Weyl produ
t is not an a

ident but a 
onsequen
e of the 
onformal in-varian
e of the theory. On the upper half plane (the disk) the boundary
onditions restri
t the possible 
onformal transformations, so that only theSL(2;R) group remains. The 
orrelation fun
tions must be invariant undersu
h transformations and it is exa
tly the inversion part that is responsible
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tion 10for the 
y
li
 permutation. Sin
e the 
onformal invarian
e is a 
onsisten
yrequirement of string theory, in the de
oupling limit the tra
e property mustbe satis�ed even for non-trivial ba
kgrounds.A generalization to non-
onstant B-�elds was �rst 
onsidered in ref. [9℄but not dire
tly in the 
ontext of string theory. In fa
t, a topologi
al Poissonsigma model was found to be the �eld theory behind Kontsevi
h's produ
t(1.10). The 
onne
tion to open string theory is based on the spe
ial 
ase ofa symple
ti
 model. Then the Poisson sigma model 
oin
ides with the openstring model in the de
oupling limit and with a non-
onstant, but 
losed2-form �eld B.A generalization to a 
ompletely arbitrary non-
ommutative parameter��� in the framework of open string theory was �rst tried by the authorsof ref. [11℄. They showed that the produ
t retains the Kontsevi
h form butis of 
ourse non-asso
iative, where the �eld strength H = dB 
ontrols non-asso
iativity. We already pointed out that the tra
e property is importantfor a produ
t originating from string theory. Althought treated in [11℄ thereare still open questions 
on
erning the tra
e property.The �nal goal of 
onsidering non-
ommutativity within string theory isto reprodu
e the full low energy �eld theory arising from open string theoryaway from the de
oupling limit. In [7℄ a 
al
ulation of the 
orrelation fun
tionof three photons in the \
onstant" model (1.15) was taken to reprodu
e theU(1) Yang-Mills theory (1.7)S = � 14g2 ZM dDxpGG��G��F�� � F �� ; (1.17)where the metri
 G�� and the �eld ��� are de�ned in terms of the openstring quantities by (G � �)�� = (� � B)�1�� . The �eld strength and thegauge transformations are as in equations (1.8) and (1.9). Mind that the
hoi
e of the integration measure pG in (1.17) is in fa
t arbitrary, sin
e G��is 
onstant. So, the form of the a
tual measure still needs to be 
lari�ed.This 
an only be done if one 
onsiders non-trivial ba
kgrounds.



1. Introdu
tion 111.4 Methods and SummaryIn this work we tie in with ref. [11℄ and 
onsider the problem of open stringsin general ba
kgrounds, in parti
ular B-�eld ba
kgrounds with non-vanishing�eld strength. We address the issue of the measure for the integration as itappears in equations (1.17) as well as in (1.16) where it was silently sup-pressed sin
e it plays no role in the 
ase of 
onstant �elds. The main goalwill be to derive the non-
ommutative produ
t of fun
tions to �rst orderin derivatives of the ba
kground �elds and investigate its properties. Thefeature of our approa
h will be the use of the on-shell 
ondition for the ba
k-ground �elds. In previous work the de
oupling limit g�� ! 0 disguised theimportan
e of the equations of motion. Therefore, we omit it ex
ept for
omparative purposes.Following a similar strategy as the authors in [11℄ we will work with aderivative expansion of the ba
kground �elds to extra
t the star produ
tfrom 
orrelation fun
tions 
omputed on the disk. Furthermore, we do not
hoose any gauge 
onditions for the ba
kground gauge �elds. Here our settingdeviates vitally from the one used in [11℄, where radial gauge was imposedon the two form gauge potential B. With this 
hoi
e of gauge and negle
tingthe �eld strength F of the boundary intera
tion only the �eld strength H =dB 
ontributes in the derivative expansion of the ba
kground �elds. Dueto H being totally antisymmetri
 this obs
ures the underlying stru
ture ofthe produ
t. Instead we prefer to work with the gauge invariant quantityB + F and keep the full dynami
s of F . Furthermore, we only perform aperturbation expansion around the 
onstant zero modes, but do not use theapproximation of slowly varying ba
kground �elds as done in [11℄. This keepsthe full zero mode dependen
e of the ba
kground �elds and even simpli�esthe 
al
ulations.Our main 
on
ern will be to dis
uss the properties of the produ
t ob-tained by the pro
edure des
ribed above. Although this produ
t is non-
ommutative and even non-asso
iative we will show that asso
iativity of theprodu
t of three fun
tions and the tra
e property of the integrated produ
tfor an arbitrary number of fun
tions is guaranteed up to �rst order in thederivative expansion and up to surfa
e terms. This is a
hieved by in
ludingthe full Born-Infeld measure and the equations of motion of the spa
e-timeba
kground �elds. However, no on-shell 
ondition is needed for the fun
-
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tion 12tions inserted in the produ
t! Be
ause of the prominente role of the Weylanomalies we present a detailed derivation thereof.Finally, we 
omment on the relation to the re
ent work of Cornalba andS
hiappa [11℄. Using the limit g�� ! 0 they found that with the 
hoi
e ofradial gauge it is possible to adjust the integration measure in su
h a waythat the integral still a
ts as a tra
e. However, we will show that this worksonly in radial gauge. Moreover, the 
onsisten
y of the topologi
al limit of [11℄severely 
onstrains the ba
kground �elds through the equations of motion.In the se
ond order of the derivative expansion the Einstein equation alreadyimplies the vanishing of the �eld strength H [12℄ and hen
e one is restri
tedto the symple
ti
 
ase.The organization of this work is as follows.In 
hapter 2 we introdu
e the setup for the models under 
onsideration.We give the derivative expansions of the ba
kground �elds in terms of Rie-mannian normal 
oordinates and introdu
e the additional intera
tion ver-ti
es. The split of the 
onstant zero mode and the quantum 
u
tuationsin the path integral is explained in detail [20℄. Moreover, we 
ite severalrelations in Riemannian normal 
oordinates.In 
hapter 3 we review the 
al
ulations of [4℄ for the free �eld theoryde�ned by the 
onstant parts of the ba
kground �elds and identify the e�e
-tive open string parameters G and �. Furthermore, we 
ompute the va
uumamplitude of the free theory on the disk. It 
ontributes the \Born-Infeld"measure to the integration over the zero modes in the path integral.Chapter 4 
ontains a 
al
ulation of the Weyl anomalies of the open stringtheory. Dimensional regularization gives rise to anomalies on the bulk, su
has the Einstein equation and the equation of motion for the B-�eld. Theboundary anomaly, the non-linear Maxwell equation, is 
omputed by the useof a displa
ement regularization.Then in 
hapter 5 the disk 
orrelators are 
omputed in order to extra
tthe non-
ommutative and non-asso
iative Kontsevi
h-type produ
t.The properties are dis
ussed in 
hapter 6. In parti
ular we show thatthe tra
e property of the two point fun
tion holds due to the equations ofmotion of the ba
kground �elds. The \Born-Infeld" measure exa
tly 
an
els
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tion 13the additional 
ontributions arising from partial integration. By the sameme
hanism the produ
t of three fun
tions does not depend on the way oneintrodu
es bra
kets, i.e. the non-asso
iativity is a surfa
e term. This, inturn, implies the tra
e property for an arbitrary number of fun
tions. We�nish this 
hapter with some 
omments on the relations of our approa
h tothe re
ent work of Cornalba and S
hiappa. In parti
ular we examine theimpli
ations of the radial gauge and the 
onsisten
y of the topologi
al limitused in [11℄.In the last 
hapter we 
on
lude with 
omments on some open questions.Appendix A �nally presents the dilogarithm fun
tion and some relationsthereof. Appendix B 
ontains the detailed 
al
ulations of Greens fun
tionsfor 
hapter 5.



Chapter 2Open String Sigma Model
The starting point of our 
onsiderations is the non-linear sigma model of thebosoni
 open string [20, 22, 23℄S = 14��0 Z� d2�ph�hab�aX��bX�g��(X) + i�ab�aX��bX�B��(X)�+ i Z�� ds��sX�A�(X)�; (2.1)whi
h in
ludes the spa
e-time metri
 g��(X), the 2-form gauge potentialB��(X) and the 1-form gauge potential A�(X). hab denotes the Eu
lideanmetri
 on the world sheet � and ds is the indu
ed line element on the bound-ary.In (2.1) the boundary term of the 1-form gauge potential A 
an be writtenas a bulk term Z� d2�ph i�ab�aX��bX�F��(X); (2.2)where F = dA is the 
orresponding 2-form �eld strength.

14



2. Open String Sigma Model 152.1 Spa
e-Time Gauge FieldsBoth, the 1-form potential A and the 2-form potential B, are asso
iated withspa
e-time gauge invarian
es. For the former the gauge transformationÆA = d� (2.3)leaves the a
tion (2.1) invariant. In open string theory there does not exist agauge transformation for the 2-form potential B alone, be
ause surfa
e termsrequire a 
ombined transformationÆB = d�;ÆA = � �2��0 (2.4)that does not 
hange the a
tion (2.1). From (2.3) and (2.4) one 
an seethat the 
ombination F = B+2��0F = B+2��0dA is invariant under bothgauge symmetries. Therefore, gauge invariant expressions 
ontain the 2-formF and the 3-form �eld strength H = dF = dB.If one 
onsiders a brane that is not spa
e-time �lling, the gauge �eld Aand hen
e F are only de�ned along the brane. For simpli
ity we will re-stri
t our 
onsiderations to the spe
ial 
ase of a spa
e-time �lling D25-brane.Furthermore, in topologi
ally non-trivial ba
kgrounds the gauge potentialsA and B may not be globally well de�ned. Su
h 
onsiderations are, however,irrelevant in the present 
ontext.In the 
lassi
al approximation of open string theory the world sheet �is a disk. Taking advantage of the 
onformal invarian
e of the theory, wemap the disk to the upper half plane H and perform our 
al
ulations there.Furthermore, we 
hoose the 
onformal gauge and use 
omplex 
oordinatesz = �1 + i�2. Thus the world sheet metri
 be
omes hz�z = e2!(z;�z)Æz�z andthe invariant line element at the boundary is ds = e!d� . The derivativestangential and normal to the boundary are �� = (� + ��) and �n = i(�� � �),respe
tively. In this parametrization the a
tion (2.1) is given byS = 12��0 ZH d2z �X� ��X��g��(X) + F��(X)�; (2.5)and the 
orresponding mixed boundary 
ondition along the brane isg��(X)(� � ��)X� � F��(X)(� + ��)X������z=z = 0: (2.6)



2. Open String Sigma Model 162.2 Constant Zero Mode and Derivative Ex-pansionFollowing the pro
edure explained in [20℄ we expand the �eldX�(z; �z) aroundthe 
onstant zero mode 
ontribution x,X�(z; �z) = x� + ��(z; �z); (2.7)so that the path integral over the �eld X�(z; �z) splits into an ordinary inte-gral over the 
onstant zero modes x� and a path integral over the quantum
u
tuations ��(z; �z). This separation is, in fa
t, not unique. A 
onstant part,
�, 
an always be ex
hanged between the two parts, i.e.,X�(z; �z) = x� + ��(z; �z) = x0� + � 0�(z; �z)x0� = x� � 
�� 0� = �� + 
�So, we have to impose a \gauge" 
ondition in order to �x 
�. A unique wayto perform the split (2.7) is to insert the following \unity" into the pathintegral:1 = Z dDx Z [d�℄ ÆD�X(z; �z)� (x + �(z; �z)� ÆD(P �[x; �℄) �[x; �℄ ; (2.8)with �[x; �℄ = det��P �[x� 
; � + 
℄�
 �
=0 :P �[x; �℄ = 0 is the \gauge" 
ondition and �[x; �℄ is the 
orresponding \ghost"determinant. Subsequently, we will use the 
onditionP � = Z ds ��(s) = 0 ; � = LD ; L = Z ds : (2.9)Sin
e � is only a 
onstant fa
tor it does not play an essential role and we 
anin
orporate it in the normalization of the path integral. The delta fun
tionalfor P � = 0 will not be written expli
itely, but we impose the 
ondition byhand. Whereever there appears an integral of the quantum 
u
tuations overthe boundary of the world sheet, we set it to zero.



2. Open String Sigma Model 17Therefore, we geth :f1[X(z1)℄ : : : : :fN [X(zN)℄ : i == 1LD Z [dX℄ e�S[X℄f1[X1℄: : : fN [XN ℄ == Z dDx Z [d�℄ e�S[x+�℄f1[x+�1℄ : : : fN [x+�N ℄ ; (2.10)where the fun
tions fi[X(zi)℄ denote arbitrary insertions in the path integral.For the expansion of the a
tion S[X℄ = S[x + �℄ around the zero modes wesimplify our 
omputation by making use of Riemannian normal 
oordinates[18, 24℄,g��(x + �) = ��� � 13R����(x)���� +O(�3); (2.11)F��(x + �) = F��(x) + ��F��(x)�� + 12����F��(x)���� +O(�3):(2.12)In 
ontrast to [11℄ we do not 
hoose radial gauge for F��(X). In that 
ase(2.12) would split into two separate expansions for B and F , where the non-
onstant part of the B expansion 
ontains only the �eld strength H. Theradial gauge �xes the 
ombined transformation (2.4), whereas transformation(2.3) remains una�e
ted. With (2.11) and (2.12) we are able to write thea
tion (2.5) asS = 12��0 ZH d2z n��� ����(��� + F��) + ��� ������ ��F�� ++ ��� �������� (12����F�� � 13R����) +O(�3�)o:(2.13)In the following we will restri
t our 
onsiderations to terms of at most�rst order in derivatives of the spa
e-time ba
kground �elds.2.3 More About Riemannian Normal Coor-dinatesFor later referen
e we explain some properties of Riemannian normal 
oor-dinates in this se
tion.



2. Open String Sigma Model 18The basi
 idea behind Riemannian normal 
oordinates is to use thegeodesi
s through a given point to de�ne the 
oordinates for nearby points[16, 17℄. Take a point P with 
oordinates x� and a nearby point Q. If Q is
lose enough to P then there exists a unique geodesi
 joining P to Q. Let a�be the 
omponents of the unit tangent ve
tor to this geodesi
 at P and lets be the geodesi
 ar
 length measured from P to Q. Then the Riemanniannormal 
oordinates of Q are de�ned to be X� = x� + sa�.An equivalent but for our purposes more useful de�nition of Riemanniannormal 
oordinates at a point P is that they are a set of 
oordinates forwhi
h ����(x) = 0 (2.14)����;�(x) + ����;�(x) + ����;�(x) = 0 : (2.15)As a 
onsequen
e, one obtains equation (2.11) by a Taylor series expansionaround P . The 
at metri
 ��� at P requires the additional property thatthe tangent ve
tors of the geodesi
s whi
h build our 
oordinate system are
hosen to be orthogonal at P .Finally, we present some useful relations between the metri
, the Christof-fel symbols and the 
urvature:����;�(x) = �13�R����(x) +R����(x)� (2.16)g��;��(x) = �13�R����(x) +R����(x)� (2.17)R����(x) = g��;��(x)� g��;��(x) (2.18)These equations will intensively be used in se
tion 4.7.



Chapter 3The Free Theory
3.1 The PropagatorAs a warm up for later 
al
ulations and to set up the relevant te
hniquesof our approa
h let us �rst 
al
ulate the propagator for the free �eld theoryde�ned by the Gaussian part of (2.13) in the path integral,Sfree = 12��0 ZH d2z ��� ������� + i4��0 I�H d� ������F��: (3.1)Here, �H denotes the boundary of the upper half plane, i.e., the real line.1The se
ond term 
ontributes to the boundary 
ondition whi
h takes thesame form as (2.6) with ��� and F��(x) repla
ing the full metri
 g��(X) andF��(X), respe
tively. The boundary term 
an be regarded as a perturbative
orre
tion [4℄ to the free propagatorh��(u; �u) ��(w; �w)i = ��02 ��� ln ju� wj2 � �02 ��� ln ju� �wj2: (3.2)The homogeneous (image 
harge) part a

ounts for the Neumann boundary
ondition �n��j�H = 0 of the theory without perturbation. The propagatorof the perturbed theory is then given byh��(u; �u) ��(w; �w)iF = h��(u; �u) ��(w; �w)e� i4��0 H�H d� ���� ��F��i: (3.3)1We have used the divergen
e theorem for 
omplex 
oordinates, whi
h readsR� d2z (�zvz � ��zv�z) = i H�� (d�zvz � dzv�z):19



3. The Free Theory 20For the 
al
ulation of the propagator only tree 
ontributions are relevant.We will 
onsider loops separately in the next se
tion. Expanding in a per-turbation series the term of order nh��(u; �u)��(w; �w) 1n!n i4��0hI�H dz �����F�� + I�H d�z ������F��ioni (3.4)gives two slightly di�erent 
ontributions, depending on whether n is even orodd. By using the derivative of the propagator (3.2) it is straightforward toobtain the result2i2� (Fn)��n(�1)n�1 I�H dz ��� 1�u� z h��(z; �z)��(w; �w)i+ I�H d�z ��� 1u� �z h��(z; �z)��(w; �w)io : (3.5)The remaining divergent integrals are regularized by di�erentiating with re-spe
t to w and �w, respe
tively. This yields a �nite result plus an in�niteadditive 
onstant C��(1),�0(Fn)��n(�1)n�1 ln(�u� w)� ln(u� �w)o + C��(1): (3.6)Now, it is possible to sum up all orders in a geometri
 series, whi
h �nallygives the desired propagator [22, 23℄h��(u; �u) ��(w; �w)iF =��0n���(ln ju� wj � ln ju� �wj)+G�� ln ju� �wj2 � ��� ln� �w � u�u� w�o+ C��(1); (3.7)where we have introdu
ed the quantities3G�� := � 1g �F g 1g + F ��� and ��� := �� 1g � F F 1g + F ��� : (3.8)2In this 
al
ulation there appear integrals of the form H�H dz 1�u�z 1�z�w . The part alongthe real axis R is RR dr 1�u�r 1r�w , whereas the integral along the semi
ir
le in the upperhalf plane with in�nite radius is zero. Therefore, the original integral 
an be written asI�H dz 1�u� z 1�z � w = I�H dz 1�u� z 1z � w ;whi
h 
an be evaluated using the residue theorem.3For later referen
e we have expressed G�� and ��� by the full bulk metri
 g�� , whereasthe 
orre
t terms in (3.7) 
ontain of 
ourse the Minkowski metri
 ��� be
ause of theRiemannian normal 
oordinates.



3. The Free Theory 21The integration 
onstant C��(1) plays no essential role and 
an be set to a
onvenient value, e.g. C��(1) = 0 [7℄. Restri
ted to the boundary (u = �u = �and w = �w = � 0) the propagator has the simple form�0i����(�; � 0) := h��(�) ��(� 0)iF= ��0G�� ln(� � � 0)2 � �0i�����(� � � 0): (3.9)As dis
ussed in [7℄ the boundary propagator (3.9) suggests to interpret G��as an e�e
tive metri
 seen by the open strings, in 
ontrast to g�� , whi
h isto be viewed as the 
losed string metri
 in the bulk.For later purposes we elaborate on the distin
tion between the open stringquantities G�� and ��� and the 
losed string quantities g�� and B�� . In orderto make a 
lear distin
tion between the bulk and the boundary quantities,we mark all expressions that refer to boundary quantities with bars. To thisend we de�ne �G�� := (g � F2)�� and ���� := �F��: (3.10)The �rst of the above de�nitions is equivalent to setting �G�� = G�� andrequiring �G�� to be its inverse. The se
ond de�nition follows from setting���� = ��� and pulling indi
es with �G��. In an analogous way we labelall expressions that are built out of these quantities with bars, e.g. theChristo�el symbol ����� and the 
ovariant derivative �D� 
ompatible with theopen string metri
 �G�� .3.2 Va
uum Amplitude and Integration Mea-sureLet us now 
onsider loop 
ontributions arising from an even number of inser-tions of the boundary perturbation of (3.1)4. In this 
al
ulation there appeardivergen
es when the insertion points approa
h the boundary. We regularizethese terms by keeping a �xed distan
e d0 with respe
t to the metri
 in 
on-formal gauge to the boundary �H , i.e., we impose jz� �zj � 2Im(z) � e�!d0.4Odd powers vanish be
ause of the antisymmetry of F��



3. The Free Theory 22To make this more expli
it let us 
onsider the one loop 
ontribution of theF2 term,12h� �i4��0�2 I�H d� ���� ��F�� � I�H d� 0 ���0� ��F��i1�loop: (3.11)Using the same te
hniques as for the 
hains (3.4) gives the divergent 
ontri-bution � 14�d0 Z ds�12F��F��; (3.12)where ds = d�e! is the invariant line element in 
onformal gauge. Summingup all powers of F in the 1-loop 
ontribution yields� 14�d0 Z ds� 1Xn=1 12nTr(F2n) = �� 14�d0 Z ds�12 ln(det(Æ �F2)��): (3.13)As observed in [19,25℄ this linear divergen
e is in fa
t regularization s
hemedependent and 
an be absorbed into the ta
hyon by a �eld rede�nition. Buta �nite 
onstant part b0 ln(det(Æ � F2)��) (3.14)may remain after subtra
tion of appropriate 
ounterterms. The analysisgiven in [20, 25℄ determined the 
onstant b0 to be 14 in order to yield theBorn-Infeld a
tion for a vanishing ta
hyon �eld.In (3.14) we have added up all powers of F 
ontributing to the 
onne
tedva
uum graphs. Taking into a

ount all dis
onne
ted one loop graphs to allorders of the intera
tion leads in fa
t to the Born-Infeld Lagrangian1Xn=0 1n!�ln(det(Æ � F2)��) 14 �n = 4qdet(Æ � F2)�� =qdet(Æ �F)�� : (3.15)Here we used the antisymmetry of F�� to 
hange the sign in the determinant.Expression (3.15) 
an also be interpreted as a 
ontribution to the measure ofthe integration over the zero modes in the path integral. Although we makeuse of Riemannian normal 
oordinates for the perturbation expansion, we
an write the measure in a 
ovariant way by in
luding the term pdet g�� .



3. The Free Theory 23Therefore, if there are no operator insertions in the path integral (2.10), weobtain the Born-Infeld a
tionZ dDxpdet g�� 4qdet(Æ �F2)�� = Z dDx 4pdet g�� 4qdet �G�� == Z dDxqdet(g � F)��; (3.16)where �G�� is the boundary metri
 as de�ned in (3.10).So far we have regarded all possible diagrams of the boundary insertionof (3.1). Therefore, we 
an now work with the full propagator (3.7) for allhigher order intera
tion terms.For the remainder we make use of the abbreviations g = det g�� andRx = R dDxpg � F = R dDx 4pg 4p �G. Furthermore, we set 2��0 = 1.



Chapter 4Weyl Anomalies
In se
tion 1.2 we pointed out that the Weyl invarian
e of the sigma model isimportant to maintain the 
onne
tion to the Nambu-Goto a
tion (1.11). Inthis 
hapter we are interested in the s
aling behaviour of the quantized openstring sigma model. The regularization of the divergent diagrams entailsthe introdu
tion of a s
ale dependent parameter and, therefore, the quan-tum 
orre
tions 
ause a breaking of the symmetry, i.e., the theory is Weylanomalous.The renormalization group theory provides a quantity that extra
ts theWeyl anomalous parts from the regularized diagrams. It is 
alled the �-fun
tion and is asso
iated with the renormalization of the 
oupling 
onstant.In the 
ase of the sigma model (2.1) we have, in fa
t, in�nitely many 
oupling
onstants. Expanding the fun
tional F��[X(z; �z)℄ in a Taylor series (2.12)we get a sequen
e of 
oupling 
onstants F��(x), ��F��(x), 12����F��(x), : : :for the intera
tion verti
es ��� ����, ��� ������, ��� ��������, : : : , respe
tively.In order to maintain the Weyl invarian
e of the quantized theory one has torequire that the 
orresponding �-fun
tions vanish.In string theory the fun
tions g�� and F�� have two di�erent meanings.From the world sheet point of view they represent a series of 
ouplings, asstated above. But in the target spa
e they mean various parti
le �elds. The
ondition � = 0 
orresponds to equations of motion for the parti
le �elds (inthe target spa
e). 24



4. Weyl Anomalies 25In pra
ti
e, the 
omputation of the �-fun
tion requires a separation ofthe 
ounterterms into 
ontributions to the wave fun
tion and the 
oupling
onstant renormalization. Therefore, it is ne
essary to work out the 
oun-terterms for two di�erent verti
es. In order to avoid this separation it is more
onvenient to 
ompute the Weyl anomaly more dire
tly by 
hoosing 
onfor-mal gauge. The anomalous terms then 
ontain the 
onformal fun
tion ! andappear in the �nite part of the regularized diagrams.1 The divergent partmust be 
ompensated by 
ounterterms, whi
h 
an be written in a general
oordinate invariant way.In the simpler model of 
losed strings only the inhomogeneous part ofthe propagator 
ontributes to divergent loop diagrams whi
h is due to theabsen
e of a boundary. So the problem 
an be treated on the 
omplex planewith natural boundary 
onditions and the divergen
es appear all over theworld sheet. Sin
e the open string theory is de�ned on a world sheet withboundary the homogeneous part of the propagator gives also rise to additionaldivergen
es that appear only at the boundary. For both kinds of divergen
ewe obtain of 
ourse 
orresponding Weyl anomalies.4.1 The A
tion in Continuous DimensionsWe start with the 
al
ulation of the bulk anomalies using the inhomoge-neous part of the propagator (3.7). We 
hoose the dimensional regulariza-tion s
heme and thus start rewriting a
tion (2.1) in 
ontinuous dimensionsn = 2 � � with � > 0. Applying 
onformal gauge hab = e2!Æab the inte-gration measure on the world sheet be
omes ph = en! and in 
ombinationwith the inverse metri
 we get phhab = e(n�2)!Æab. The treatment of theantisymmetri
 tensor �ab is a bit more subtle. It is de�ned as �ab = ~�abph withthe �-symbol ~�ab,2 and in 
onformal gauge we have �ab = e�2!~�ab. If onegeneralizes to arbitrary dimensions the entries in �ab do not 
hange, but the
ontinuous dimension emerges again from the measure, so that we obtain1The ! independent �nite terms are no matter of interest in our dis
ussion and will benegle
ted throughout this 
hapter.2We use the 
onvention that ~�12 = 1.



4. Weyl Anomalies 26ph�ab = e(n�2)!~�ab. All in all the a
tion (2.1) is given byS = 14��0 ZH dn� e��!n�a���a��(��� � ���� 13R����) (4.1)+ i~�ab�a���b��(F�� + ����F�� + ���� 12����F��)o :Be
ause of the fa
tor e��! the �rst term in (4.1) is not a free part ofthe theory. In order to seperate a free part we perform a �eld rede�nition�� = e �2! ~��, so thatS� = 14��0 ZH dn� n�a~���a~�� + ��a!~���a~�� +O(�2)o : (4.2)The �rst term yields the propagator and the se
ond 
an be treated pertur-batively as \soft mass insertion" [21℄.4.2 The Inhomogeneous Part of the Propa-gatorIn order to a

ount for the 
ontinuous dimensions the inhomogeneous partof the propagator should be represented through its Fourier transformation< ~��(�)~��(�0) >free= 2��0��� Z dnk(2�)n eik(���0)k2 +m2 : (4.3)Sin
e the propagator is also infrared divergent, we introdu
ed an appropriateregulator mass m. The ultraviolet behaviour of the free propagator (4.3) is< ~��(�)~��(�) >free� �0��� 1� : (4.4)Within dimensional regularization there appear only logarithmi
 divergen
esin a massless theory, so that< �a~��(�)~��(�) >free � 0 ;< �a~��(�)�b~��(�) >free � 0 ; (4.5)< �a�b~��(�)~��(�) >free � 0 :



4. Weyl Anomalies 27However, the \soft mass" term 
an 
hange the order of divergen
e andthus generate non-vanishing results. Sin
e it is linear in � we expe
t a �niteresult that depends on the 
onformal fa
tor !. To see how this works were
ognize �rst that the insertion 
an be rewritten as��a!~���a ~��= ��a(!~���a~��)� �!�a~���a~�� (4.6)= 12��a(�a!~��~��)� 12��2!~��~�� (4.7)Here we used the fa
t that in the dimensional regularization s
heme the free
lassi
al equation of motion �2~�� = 0 is satis�ed as operator equation as 
anbe seen from (4.5). This 
an easily be seen from (4.5). The boundary termsin expressions (4.6) and (4.7) do not generate divergen
ies and thereforevanish in the limit �! 0. The interesting 
ontributions arise from the bulkinsertions. They give rise to 1� poles whi
h are 
an
elled by the � in the \softmass" term. Take, for instan
e, insertion (4.6). Using the propagator (4.3)we obtain < ~��(�)~��(�) 14��0 ZH dn�0 �!�a~���a ~�� >free� �0!��� : (4.8)If we repeat the pro
edure with the di�erentiated �eld ~�� in a similar waywe end up with the 
ontra
tions< ~��(�)~��(�) > � �0���(1� + !) ;< �a~��(�)~��(�) > � 0 ;< �a�b~��(�)~��(�) > � �14�0���Æab�2! and< �a~��(�)�b~��(�) > � 14�0���Æab�2! : (4.9)Finally, returning to the original �eld ��, we �nd the 
ontra
tions< ��(�)��(�) > � e�!�0���(1� + !) ;< �a��(�)��(�) > � e�!�02 ����a! ;< �a��(�)�b��(�) > � e�!�04 ���Æab�2! and (4.10)< �2��(�)��(�) > � 0 :



4. Weyl Anomalies 28
�FR, �2FFigure 4.1: The one loop diagrams under 
onsideration.4.3 Counterterms and Weyl Anomaly INow we are prepared to 
al
ulate divergent and !-dependent 
ontributionsto the e�e
tive a
tion arising from diagrams as shown in �gure 4.1. In everyintera
tion vertex of (4.1) two �elds must be 
ontra
ted.First, we 
onsider the 
urvature 4-point vertex� 112��0 ZH dn� e��!�a���a������R���� : (4.11)The 
oin
iden
e limits (4.10) yield the result� 112� ZH dn� n(1�+!)�a���a��R�� � �a!�a����R�� + 12�2!����R��o :The 1� -divergen
e must be 
ompensated by an appropriate 
ounterterm inthe a
tion. We are not further interested in it. In more detail we look intothe Weyl anomalous part. In order to 
ompare the result with later ones wereturn to 
omplex 
oordinates (
f. 
hapter 2). After partial integration the!-dependent terms 
an be written as�(!)R;1 = � 12� ZH d2z ! ��� ����R�� � (4.12)� 112� Z�H d� n12�n! ����R�� � 2! �n����R��o :We postpone the interpretation of (4.12) to a later se
tion when all 
ontri-butions to the Weyl anomaly are known.



4. Weyl Anomalies 29For the remaining 2-form verti
es14��0 ZHdn� e��!i~�ab�a���b��n����F�� + ���� 12����F��)o (4.13)we apply the same pro
edure and obtain the Weyl symmetry breaking terms�(!)F ;1 = 14� ZH d2z ! ��� ����������H����+ (4.14)+ i4� Z�H d� ! �� ��������F�� + ���������F��� :4.4 The Homogeneous Part of the Propaga-torAs mentioned in the introdu
tion of this 
hapter the main new feature ofthe open string model is the appearen
e of divergen
es and anomalies thatare lo
ated at the boundary. These in�nities are related to the homogeneouspart of the propagator (3.7). The 
oin
iden
e limits thereof, i.e.,< ��(z; �z) ��(z; �z) >hom = ��0 ~G�� ln jz � �zj2 ;< ��(z; �z) ���(z; �z) >hom = ��0 ~G�� 1z � �z � �0��� 1z � �z ; (4.15)< ��(z; �z) ����(z; �z) >hom = +�0 ~G�� 1z � �z � �0��� 1z � �z and< ���(z; �z) ����(z; �z) >hom = ��0 ~G�� 1(z � �z)2 + �0��� 1(z � �z)2 ;are �nite inside the world sheet but divergent at the boundary and requiretherefore an appropriate regularization. For 
onvenien
e, we introdu
ed theappreviation ~G�� = G�� � 12��� .4.5 On
e More the Regularization of Bound-ary Divergen
esWe reapply the same method as in se
tion 3.2 and restri
t z to the domainH (d0 ) := �z 2 H �� 2Im(z) � e�!d0	 ; (4.16)



4. Weyl Anomalies 30where d0 is a small displa
ement. The weight e�! appears be
ause we have
hosen the metri
 in 
onformal gauge. This regularization s
heme will beillustrated for the diagrams arising from the 
urvature 4-point vertex� 16��0 ZH (d) d2z��� ��������R���� : (4.17)Using the 
ontra
tions (4.15) we obtain�R;2 = 16� ZH(d) d2zn 1(z � �z)2 ����( ~GR)�� (4.18)� 1z � �z �� ����( ~GR)��+ 1z � �z �����( ~GR)��+ ln jz � �zj2 ��� ����( ~GR)��+ 2z � �z �����(���)�R����+ 2z � �z ����(���)�R����o ;where ( ~GR)�� = ~G��R����. If we 
onsider (4.18) we re
ognize the appearan
eof di�erent boundary divergen
es in the integrand: a logarithmi
 one aswell as a linear and a quadrati
 one. However, the former is not that bad.Althought divergent, it is integrable if one performs two further 
ontra
tionsin
luding the remaining �elds ��� and ����. In fa
t, it leads to a �nite result.For the later two types we observe the following behaviour. The integral asa whole is divergent, whereas the integrand is singular only at the boundary.So one 
an try to split the integral into a �nite intergral over the bulk H (d0 )and a integral over the boundary �H (d0 ) with a divergent argument as d0 ! 0.Take, for instan
e, the quadrati
 term in (4.18). By partial integration weget 13� ZH d2z ln jz � �zj ��� ����( ~GR)�� ++ i6�nZ�H (d0 )dz ln jz � �zj ����� � Z�H (d0 )d�z ln jz � �zj ������o( ~GR)�� �� i12�nZ�H(d0 )dz 1z � �z ���� + Z�H(d0 )d�z 1z � �z ����o( ~GR)�� : (4.19)



4. Weyl Anomalies 31So, with this method we are able to isolate the boundary divergen
es froman integrable bulk 
ontribution in the �rst line.Sin
e we are interested in the Weyl anomaly, we keep only the diver-gent and !-dependent part in the integrals over the boundary and thereforesubstitute (z � �z)���H = ie�!d0. Lines two and three in (4.19) give� 16� Z�H d�(ln d0 � !) �n����( ~GR)�� �� 16� 1d0 Z�H d�e!����( ~GR)�� : (4.20)The other terms in (4.18) 
an be treated in the same way and one obtains a�nite, a divergent and a !-dependent 
ontribution. In order to get managableparts we split �R;2 into �R;2 = �(fin)R;2 + �(div)R;2 + �(!)R;2 : (4.21)Similarly, we 
onsider the verti
es12��0 ZH d2z ��� ����n�� ��F�� + ���� 12����F��o; (4.22)and, a

ordingly, use the split�F ;2 = �(fin)F ;2 + �(div)F ;2 + �(!)F ;2 : (4.23)For the sake of 
ompleteness we present the �nite terms, althought not in-teresting for our purposes,�(fin) = �(fin)R;2 + �(fin)F ;2 == 1� ZH d2z ln jz � �zj ��� ����n( ~GR)�� � 13(�R)��o+ (4.24)+ 12� ZH d2z ln jz � �zj ��� ����n����(�H�)�� � ~G����H���o ;where (�R)�� = ���(R���� +R����).



4. Weyl Anomalies 324.6 Counterterms and Weyl Anomaly IIAs already stated in se
tion 4.3 the divergent 
ontributions �(div)2 = �(div)F ;2 +�(div)R;2 must be 
ompensated by appropriate 
ounterterms. Applying themethods of the previous se
tion gives�(div)2 = � 13� ln d0 Z�H d� �n����( ~GR)��� i6� ln d0 Z�H d� ������(�R)�� (4.25)� i2� ln d0 Z�H d� ����(��F�� ~G�� + ������F�� ~G��)� 14� ln d0 Z�H d� �n��(H������ + ����H������) :In the followingWeyl anomalous parts we also in
luded the divergent ta
hyonlike 
ontributions sin
e the 
ompensation of the divergen
e by a 
ountertermmay leave a �nite !-dependen
e. Thus we have�(!)R;2 = � 16� 1d0 Z�H d� e!����( ~GR)��+ 13� Z�H d� ! �n����( ~GR)��+ i6� Z�H d� ! �� ����(�R)�� (4.26)and �(!)F ;2 = � 12� 1d0 Z�H d� e!(����F����� + 12��������F�����) ++ i2� Z�H d� ! ����(��F�� ~G�� + ������F�� ~G��)+ 14� Z�H d� ! �n��(H������ + ����H������) : (4.27)



4. Weyl Anomalies 334.7 The Spa
e-Time Equations of MotionNow we have 
al
ulated all Weyl anomalies arising from the diagrams in�gure 4.1 and are ready to interpret the results. First, we re
ognize that thehomogeneous part of the propagator gave only rise to Weyl anomalies on theboundary, as we have already mentioned earlier. Whereas the inhomogeneouspart generated both, boundary and bulk anomalies. For easier referen
e wesummarize the results (4.12,4.14,4.26,4.27),�(!) = � 12� ZH d2z ! ��� �����R�� � 12�����H����� 124� Z�H d� �n! ����R�� + 112� 1d0 Z�H d� e!����R��+ 13� Z�H d� ! �n����(GR)��+ i6� Z�H d� ! �� ����(�R)��� 12� 1d0 Z�H d� e!�����F����� + ���� 12(����F����� + 23(GR)��)�+ i2� Z�H d� ! �� ��(��F��G�� + ������F��G��)+ 14� Z�H d� ! �n��(H������ + ����H������) : (4.28)At �rst sight their are some terms with no obvious meaning. For instan
e,there appear anomalies whi
h 
ontain a derivative of the �eld �n�, but wedid not introdu
e a vertex operator likeZ�H d� �nX�V�(X) : (4.29)However, we 
an use the boundary 
onditions (2.6) for the quantum �elds,i.e., �n�����z=z = � iF���� �����z=z + : : : ; (4.30)and rewrite the normal derivative as tangential derivative.Furthermore, we have to take into 
onsideration that in se
tion 2.2 wehave introdu
ed Riemannian normal 
oordinates. This means that in equa-tion (4.28) the lines three and four and the last expression in line �ve 
ould



4. Weyl Anomalies 34�F�FFigure 4.2: The (�F)2-diagram was not taken into 
onsideration.
ontribute to 
ovariant derivatives. Indeed using formulas (2.14 - 2.18) one
an showG��D�D�F�� = G��(����F�� � ������F�� + ������F��) == G������F�� � 23(GR)��F�� + 13(�R)�� (4.31)and ���D�D�F�� = ���(����F�� � 2������F��) == �������F�� + 23(GR)�� � 23R�� : (4.32)If we apply the boundary 
ondition and take advantage of the Riemanniannormal 
oordinates, we see the 
ovariant stru
ture of (4.28),�(!) = � 12� ZH d2z ! ��� ����(R�� � 12D�H���) + (4.33)� 124� Z�H d� �n! ����R�� � 112� 1d0 Z�H d� e!����R��� 12� 1d0 Z�H d� e!���D�F����� + ���� 12D�D�F������+ i2� Z�H d� ! �� ��n(G��D�F�� � 12���H���F��)+ ��(G��D�D�F�� � 12���D�H���F��)o :Mind that we have not taken into a

ount all possible 1-loop diagrams.The diagram shown in �gure 4.2 whi
h is built of two 3-point verti
es wasnot treated. On the bulk it gives rise to the well known H2-term. At theboundary the missing terms of se
ond order in derivatives 
ombine with terms



4. Weyl Anomalies 35available in the last line of (4.33) to giveD�(G��D�F�� � 12���H���F��), these
ond term in a Taylor series expansion of the �� �� anomaly [22, 23℄.The same holds for the third line of (4.33). This 
ontribution reminds ofa ta
hyon vertex and 
an indeed be absorbed by the ta
hyon in terms of a�eld rede�nition (
f. the dis
ussion of se
tion 3.2) [19℄. Note that the �rstterm in this line vanishes be
ause of 
ondition (2.9) whi
h was introdu
edto ensure a unique separation of the 
onstant zero mode and the quantum
u
tuation.The remaining 
ontributions 
annot be removed by appropriate �eld re-de�nitions and must be set to zero in order to maintain the 
onformal in-varian
e of the theory, i.e., R�� � 14H2�� = 0 ;D�H��� = 0 ; (4.34)G��D�F�� � 12F�����H��� = 0 ;where we have added the H2-term arising from the diagram in �gure 4.2.These are the equations of motion for the ba
kground �elds: the Einsteinequation for g�� , the equation of motion for B�� , and the non-linear Maxwellequation for A�. In 
hapter 6 the latter will turn out to be very importantfor the properties of the non-
ommutative produ
t de�ned in se
tion 5.3.



Chapter 5Correlation Fun
tions
In string theory intera
tions of di�erent parti
les of the string spe
trum are
al
ulated by inserting the 
orresponding vertex operators in the path inte-gral. Our goal is to extra
t a non-
ommutative produ
t of fun
tions out ofthe open string theory 
orrelation fun
tions [11℄. To this end we do not re-stri
t ourself to vertex operators, but investigate the 
orrelator of two generalfun
tions f [X(�)℄ and g[X(� 0)℄ allowed to be o�-shell. To simplify the 
al
u-lations we take the order of insertions to be � < � 0. Sin
e the fun
tions are
omposite operators, one has to introdu
e an appropriate normal ordering.As shown in the appendix 7 it is given by: ��(�) ��(� 0) : = ��(�) ��(� 0)+ 12�G�� ln(� � � 0)2 + 12���G�� ln(� � � 0)2 ��(� + � 02 ): (5.1)

36



5. Correlation Fun
tions 375.1 Moyal-Weyl ContributionTaking into a

ount the subtra
tions (5.1) the free propagator (3.9) yields [4℄h :f [X(�)℄ : :g[X(� 0)℄ : iMoyal == Zx 1Xn=0 1n!� i2�n��1�1 : : :��n�n ��1 : : : ��nf(x) ��1 : : : ��ng(x) (5.2)= Zx 1Xn=0 1n!��12� �nG�1�1:: G�n�n lnn(� � � 0)2 ��1:: ��nf(x) � ��1:: ��ng(x):In the last line we have summarized all ���-dependent 
ontributions in theprodu
tf � g = 1Xn=0 1n!� i2�n��1�1(x) : : :��n�n(x) ��1 : : : ��nf(x) ��1 : : : ��ng(x)= e i2���(z)�x��y� f(x)g(y)���x=y=z; (5.3)whi
h we will refer to as \Moyal like" part of the �nal non-
ommutativeprodu
t. It has the well known stru
ture of the Moyal produ
t and redu
esto it if ��� is 
onstant. In this 
ase (5.3) is 
learly asso
iative and satis�esthe tra
e property. This is, however, no longer true, if ��� is a generi
 �eld.5.2 First Derivative ContributionGoing one step further in the derivative expansion we have to take intoa

ount the 
ontribution to the non-
ommutative produ
t arising from theintera
tion term 12��0 ZH d2z ��� ������ ��F��: (5.4)
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tions 38The rather 
umbersome 
al
ulations are explained in appendix 7. Using(B.16) and (B.17) we obtainh :f [X(�)℄ : :g[X(� 0)℄ : i�F =� 112 Zx�������� �����f � ��g + ��f � ����g� (5.5)� i8� Zx�����G�� �����f � ��g � ��f � ����g� ln(� � � 0)2� i4� ZxG������� �����f � ��g � ��f � ����g� ln(� � � 0)2� 116�2 ZxG����G�� �����f � ��g + ��f � ����g� ln2(� � � 0)2+ 18�2 ZxG����G�� �����f � ��g + ��f � ����g� ln2(� � � 0)2 + : : : ;where we only kept the ��� terms from the 
ontributions of the free prop-agator (3.7), sin
e the G�� parts are irrelevant for our further dis
ussion aswe shall see shortly. Again, the �rst line of (5.5) 
ontributes to our non-
ommutative produ
t. The partial derivatives of the �elds imply that thewhole expression (5.5) vanishes for 
onstant �elds.5.3 De�nition of the Non-
ommutative Prod-u
tWe de�ne now the non-
ommutative produ
t aspg � F f(x) Æ g(x) := Z [d�℄ e�S[x+�℄f [X(0)℄ g[X(1)℄ : (5.6)The 
hoi
e of the distan
e � 0 � � = 1 is su
h that the s
ale dependent 
on-tributions of (5.2) and (5.5) are removed.1 The resulting non-
ommutativeprodu
t is the s
ale and translation invariant part of the 2-point 
orrelation.This produ
t is independent of G��, and we will see that only this part ofthe 
orrelation has appropriate o�-shell properties (as long as the ba
kground1The value 1 is due to our 
hoi
e of the infrared 
ut-o�, i.e., the 
onstant C��(1) in (3.7).



5. Correlation Fun
tions 39�elds are on-shell). The full o�-shell 
orrelations will, of 
ourse, also haveG��-dependent 
ontributions.From (5.2) and (5.5) we see that, up to �rst order in derivatives of ��� ,the produ
t reads2f(x) Æ g(x) = f � g� 112���D���� �D�D�f �D�g +D�f �D�D�g�++ O�(D�)2; DD��: (5.7)Here we have reintrodu
ed the 
ovariant notation. This is justi�ed be
ausein Riemannian normal 
oordinates the Christo�el symbol vanishes and (5.7)
ontains no derivatives thereof. The same is true for the G��-dependentparts.A 
omparison of (5.7) with the formula given in [8℄ shows that, apartfrom the 
ovariant derivatives, the non-
ommutative produ
t (5.6) 
oin
ideswith the Kontsevi
h formula. We do not require, however, that the �eld ���de�nes a Poisson stru
ture. Note that in [11℄ the ��� terms 
ontains onlyKontsevi
h 
ontributions. This is due to the 
hoi
e of radial gauge.

2Subsequently we abbreviate O�(D�)2; DD�� by O(D2).



Chapter 6Properties of theNon-
ommutative Produ
t
In the limit �0 ! 0 the 
orrelator of an arbitrary number of fun
tions inthe presen
e of a 
losed B-�eld ba
kground 
an be evaluated by an inte-gration over the non-
ommutative produ
t of these fun
tions. On the diskthe SL(2;R) invarian
e of the 
orrelators requires the produ
t to satisfy thetra
e property.The non-
ommutative produ
t (5.6) de�ned without the use of the limit,however, does not des
ribe the full 
orrelation fun
tions, be
ause the G��-dependent 
ontra
tions give additional 
ontributions. Even so, we will showin this 
hapter that the tra
e property 
an be maintained for the produ
t (5.7)if one imposes the equations of motion for the ba
kground �elds, whereas theinserted fun
tions are allowed to stay 
ompletely generi
.6.1 On-shell Condition for the Ba
kgroundFieldsIn string theory the ba
kground �eld equations of motion are related tothe renormalization group � fun
tions, whi
h probe the breaking of Weylinvarian
e (and hen
e the 
onformal invarian
e) of the theory. Sin
e we40



6. Properties of the Non-
ommutative Produ
t 41perform our 
al
ulations up to �rst order in derivatives of the ba
kground�elds, we expe
t that we have to a

ount for the generalization of the Maxwellequation [23, 26℄, G��D�F�� � 12���H���F�� = 0: (6.1)To show our proposition we rewrite (6.1) in a more appropriate way,���pg � F ���� = pgD�� 4p �G4pg ���� = (6.2)= �pg � F�G��D�F�� � 12���H���F���G�� = 0 ;where we have used the relation���D�F�� = �12 �G��D� �G�� = ���� � �����; (6.3)and the fa
t that the quotient 4p �G4pg is a s
alar. We introdu
e the usual no-tation � for equivalen
e up to equations of motion. Note, furthermore, thatin the following all relations are valid only up to �rst order in derivatives of���.6.2 Tra
e Property IWe start with the produ
t of two fun
tions and show that (5.7) is symmetri
under the integralZ dDxpg �F f Æ g � Z dDxpg �F g Æ f: (6.4)This relation holds due to (6.1) and (6.2), be
ause then the �rst order termin ��� of (5.7) transforms into a total divergen
e,Z dDxpg �F ��� D�f D�g � Z dDx ���pg � F ��� f D�g� = 0; (6.5)and the remaining antisymmetri
 parts 
an be written as 
ontributions ofse
ond order in derivatives. Noti
e that here and in the subsequent relationsit is essential that the 
onstant b0 in the integration measure takes the value14 in order to produ
e the total divergen
e.
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ommutative Produ
t 426.3 Asso
iativity up to Surfa
e TermsFor a general �eld ��� the produ
t (5.7) is not asso
iative. But again ap-plying (6.1,6.2) asso
iativity, ex
ept for a surfa
e term, is ensured for theprodu
t of three fun
tions. To see this we 
al
ulate (f Æ g) Æ h� f Æ (g Æ h).Using the formula���f � g�(x) = (�x� + �y� + �z�)e i2���(z)�x��y� f(x)g(y)���x=y=z= ��f � g + f � ��g + i2�������f � ��g: (6.6)for the produ
t (5.3) we obtain(f � g) � h = [f � g � h℄ + 14���D����D�f �D�g �D�h+O(D2);f � (g � h) = [f � g � h℄� 14���D����D�f �D�g �D�h+O(D2);(6.7)where [f � g � h℄ denotes the part with no derivatives a
ting on ��� . So thenon-asso
iativity reads(f Æ g) Æ h�f Æ (g Æ h) == 16����D���� + (
y
l.���)� 16D�f �D�g �D�h+O(D2)= 16��������� �H���D�f �D�g �D�h+O(D2): (6.8)In the last line we have introdu
ed the 3-form �eld �H = d(��1) that isasso
iated with the inverse of ���,(��1)�� = �(g � F)��(F�1)��(g + F)�� = (F � gF�1g)��: (6.9)Therefore, asso
iativity is obtained (even o�-shell) if�H��� = 0: (6.10)At this point we want to stress that we nowhere have employed the limit�0!0 in our 
onsiderations, so that the \full" ��� o

urs in all the relations.This means that (6.10) is a generalization of the well known property thatin the limit �0!0 the produ
t be
omes asso
iative if H = 0.



6. Properties of the Non-
ommutative Produ
t 43However, open string theory does not require su
h a restri
tion and weinvestigate again the e�e
ts of the equation of motion (6.1). From (6.8) weobtain immediately thatZ dDxpg � F �(f Æ g) Æ h� f Æ (g Æ h)� = (6.11)= 16 Z dDxpg �F ���������� �H���D�f �D�g �D�h�+O(D2) �� 16 Z dDx���pg � F : : :�� +O(D2) = 0;so that we are allowed to omit the bra
kets.6.4 Tra
e Property IIFor more than three fun
tions we are allowed to leave out the outermost lyingbra
ket. In the 
ase of four fun
tions we obtain, for instan
e, the relationZ dDxpg � F (f Æ g) Æ h Æ l = Z dDxpg �F f Æ g Æ (h Æ l): (6.12)Finally, taking into a

ount (6.4) and (6.11) we see immediately that thetra
e property holds for an arbitrary number of fun
tions,Z dDxpg �F �(: : : (f1 Æ : : :)) Æ fN�1� Æ fN �� Z dDxpg �F fN Æ �(: : : (f1 Æ : : :)) Æ fN�1� �� Z dDxpg �F �fN Æ (: : : (f1 Æ : : :))� Æ fN�1 � : : : : (6.13)6.5 Comparison with Re
ent WorkWe 
lose this 
hapter with a remark on the relation to the re
ent work of Cor-nalba and S
hiappa [11℄. They 
onsidered the spe
ial 
ase of a slowly varyingba
kground �eld B in radial gauge, i.e., B��(x) = B�� + 13H���x� + O(x2),



6. Properties of the Non-
ommutative Produ
t 44and a vanishing �eld strength F for their path integral analysis. Takingthe topologi
al limit, g�� � � ! 0,1 the above properties of the prod-u
t were a
hieved by adjusting a 
onstant N in the integration measurepB (1 + N (B�1)��H���x�). Using 
onsisten
y arguments they determinedthe appropriate value of the 
onstant to be N = 13 .However, dropping the radial gauge and repeating the 
al
ulations2 of [11℄for the tra
e property one obtains�i Z pB[N (B�1)��(B�1)�� � (B�1)��(B�1)��℄��B�� f��g: (6.14)This expression does in general not vanish for anyN . Thus the tra
e property
an not be restored by an appropriate 
hoi
e for the 
onstant N as it ispossible for radial gauge, i.e., when ��B�� is repla
ed by H���!On the other hand, expanding B��(x) around its 
onstant value and tak-ing the topologi
al limit in our setting, the Born-Infeld measure redu
es topB(x) = pB (1 + 12(B�1)����B��x�). Then (6.14) 
an be re
ast into� i Z pBn12(B�1)��(B�1)����B�� ��12(B�1)��(B�1)����B�� + 12(B�1)��(B�1)��H���of��g= i2 Z pB(B�1)��H���(B�1)��f��g : (6.15)The last expression in square bra
kets in the se
ond line is exa
tly whatremains from the generalized Maxwell equation (6.1) in the topologi
al limit,namely the 
onstraint (B�1)��H��� = 0. So again the tra
e property holds,when the ba
kground �elds are on-shell! Nevertheless, taking the topologi
allimit mutilates the on-shell 
onditions in the sense that no dynami
s is leftand only a highly restri
tive non-linear 
onstraint remains. In dimensions upto four this 
onstraint already implies the vanishing of the �eld strength H.Moreover, in the next order one has to take into a

ount the beta fun
tionfor the ba
kground metri
, namely the Einstein equation, whi
h imposes the1Note that this limit is similar to the limit �0!0 of Seiberg and Witten [7℄.2Note that in this paragraph B�� denotes the 
onstant part of B��(x) and all depen-den
ies on the zero modes are expli
itly written.



6. Properties of the Non-
ommutative Produ
t 45even stronger restri
tionR�� � 14H���H��� � �14H���H��� +O(�0) = 0; (6.16)whi
h enfor
es H��� = 0 for any dimension (
f. [12℄).3 Hen
e the topologi
allimit only seems to make sense 
onsidering the symple
ti
 
ase.

3This 
an be seen by �rst setting � = � = 0 so thatH200 = 0 and using the antisymmetryofH . This yieldsH0ij = 0 for i; j 6= 0. The 
ondition for purely spatial 
omponents followsimmediately.



Chapter 7Con
lusion
On the world volume of a D-brane the produ
t of fun
tions (5.7) representsa non-asso
iative deformation of a star produ
t.1 Nevertheless, it enjoys theproperties that the integral a
ts as a tra
e and the produ
t of three fun
tionsis asso
iative up to total derivatives. This is a

omplished by the equationsof motion of the ba
kground �elds (6.2) and the Born-Infeld measure. No on-shell 
onditions have to be imposed on the inserted fun
tions! Note, however,that the produ
t of four or more fun
tions inserted in an integral is ambiguousif the bra
kets are omitted. This is due to the fa
t that asso
iativity forthree fun
tions is valid only up to total derivatives. Only the outermostlying bra
ket may be omitted, but this suÆ
es to ensure the tra
e propertyfor an arbitrary number of fun
tions.Our results are 
orre
t up to �rst order in the derivative expansion of theba
kground �elds. In this approximation the in
uen
e of gravity amountsto the use of 
ovariant derivatives in the generalized produ
t (5.7) but thestru
ture is still that of the formula given by Kontsevi
h. It would be interest-ing to investigate whether gravity indu
es a deviation from this stru
ture athigher orders of the derivative expansion. One might also expe
t that higherorder terms of the generalized Maxwell equation have to be used and evenadditional equations of motion must be imposed to maintain the propertiesof the produ
t.1Note that in the limit of vanishing gauge �elds, F�� � �! 0, the produ
t redu
es tothe \ordinary" produ
t of fun
tions and the measure redu
es to pg.46



7. Con
lusion 47It would be furthermore interesting to address the question of how touse the open string non-
ommutative produ
t and a perturbative operatorprodu
t expansion in order to 
al
ulate 
orrelation fun
tions in general ba
k-grounds. The property that the produ
t of four or more fun
tions is notunique without bra
kets seems related to the fa
t that these produ
ts are notindependent of the moduli of the insertion points. For instan
e, in the 
ase offour fun
tions there are two distin
t possibilities where to put the bra
kets,whi
h 
oin
ides with the number of 
onformal blo
ks. This suggests that forhigher n-point 
orrelation fun
tions one has to use linear 
ombinations of thevarious orderings of the bra
kets weighted with 
oeÆ
ients depending on themoduli [13℄.Sin
e the 
orrelation fun
tions provide the S-matrix elements for s
at-tering pro
esses, the issue of �nding the e�e
tive low energy �eld theory onD-branes is 
losely related and provides another motivation to 
al
ulate the
orrelators. Already the Born-Infeld measure denotes an important 
ontri-bution for this issue.



Appendix AThe Dilogarithm
In appendix B we will en
ounter the dilogarithm [28℄. As pointed out inref. [11℄ it will play a prominent role in the 
al
ulation of 
orrelation fun
tionsin open string theory. Therfore, we give de�nitions of the dilogarithm andrelated fun
tions and 
ite some relations that will be used in appendix B.A.1 De�nitionConsider the series 1Xk=1 mkk2 ; (A.1)whi
h is only 
onvergent for jmj � 1. One 
an �nd an integral representationof (A.1) Li2(m) := � Z m0 dx ln(1� x)x : (A.2)Li2(m) is 
alled the dilogarithm. Although the series has a radius of 
on-vergen
e of 1 the integral (A.2) is not restri
ted to this limit. When m isreal, Li2(m) is well de�ned for �1 < m � 1. For m > 1 the argumentof the logarithm is negative and one has to use 
omplex arguments and an48



A. The Dilogarithm 49appropriate position for the bran
h 
ut of the logarithm in order to assign aunique value to the dilogarithm. We 
hoose the 
ut to be the negative realaxis, so that we haveln(�x� i�) = ln(x)� i� x < 0 ; �! 0 : (A.3)Then the fun
tion1Li�2 (m) := � Z m0 dx ln(1� x� i�)x (A.4)is well de�ned for m 2 R.A.2 Dilogarithm RelationsThe dilogarithm 
ontains a lot of symmetry relations. For instan
e, one 
anobtain the values of the fun
tion on the whole real axis just from the valuesin 0 < m < 1, Li2� mm� 1� = �Li2(m)� 12 ln2(1�m) mm� 1 < 0 ; (A.5)Li�2 � 1m� = �23 � Li2(m)� 12 ln2(m)� i� ln(m) 1m > 1 : (A.6)These relations follow from simple substitutions in the integral representation(A.4). Equation (A.6) suggests a 
ontinuation of the dilogarithm to the wholereal axis using the values of the fun
tion in 0 < m < 1 byLi2� 1m� := �23 � Li2(m)� 12 ln2(m) : (A.7)In the remainder of the appendix Li2(m) for m 2 R denotes the analyti

ontinuation in terms of de�nition (A.7).In appendix B it will turn out that the sum and the di�eren
e of Li2(m)and Li2(1�m) appear in the 3-point Greens fun
tion. The sum is just givenby an expression of logarithmsLi2(m) + Li2(1�m) = �26 � ln(m) ln(1�m) 0 < m < 1 : (A.8)1We leave the sign for the imaginary part of (A.4) open sin
e later on we will en
ounterboth 
onventions. We write the � in Li�2 (m) only if de
isive, i.e., if m > 1.



A. The Dilogarithm 50And we abbreviate the di�eren
e by the fun
tion2L(-)(m) := Li2(m)� Li2(1�m) : (A.9)Sin
e we used the 
ontinuation (A.7) for Li2(m), L(-)(m) is well de�ned form 2 R. Using equations (A.5), (A.8) and (A.7) one �ndsL(-)� mm� 1� = �L(-)(m)� �23 ; (A.10)L(-)� 1m� = �L(-)(m) + �23 ; (A.11)for 0 < m < 1. It is by de�nition antisymmetri
 about 12 and for m � 12 ithas the following spe
ial values:L(-)(12) = 0 ; L(-)(1) = +�26 ;L(-)(2) = +�23 ; L(-)(+1) = +�22 : (A.12)

2The fun
tion L(-)(m) is 
losely related to Rogers dilogarithm L(m), i.e., L(m) =�212 + 12L(-)(m).



Appendix BThe Contribution of the3-Point Vertex
In the following we give an expli
it 
al
ulation of the tree level 
ontributionof the intera
tion term (5.4), i.e., the 3-point fun
tion h��(�i)��(�j)��(�k)i,whi
h is needed in 
hapter 5. There we derive the 
orrelator of two fun
tionsf and g. These fun
tions 
ontain an arbitrary power of quantum 
u
tuations��. Therefore, the 
orrelator has also 
ontributions from 3-point Greensfun
tions with two 
oin
iding quantum �elds ��: lim�j!�ih��(�i)��(�j)��(�k)iand lim�j!�kh��(�i)��(�j)��(�k)i. The 
oin
iden
e limits 
onsist of both �niteand divergent terms, whi
h need di�erent treatments. The divergent onesmust be 
ompensated by appropriate subtra
tions, whi
h are a

ounted forin the normal ordering of the inserted fun
tions, whereas the �nite ones
ontribute expli
itly to the 
orrelator.We will start with the introdu
tion of 
onvenient notations following [11℄.Thereafter, we derive the Greens fun
tion h��(�i)��(�j)��(�k)i, whi
h needsa regularization similar to the propagator (3.3). We will see that the resultis a generalization of the one in [11℄, be
ause we do not use the limit �0!0and the radial gauge. Finally, we perform the 
oin
iden
e limits to obtainthe 
orre
t normal ordering and the �nite 
ontributions to the 
orrelator.

51



B. The Contribution of the 3-Point Vertex 52B.1 Convenient Notations and Useful Rela-tionsThe free propagator (3.7) with one side 
onne
ted to the boundary ish��(�i) ��(z; �z)i = � 12� �G��S(�i; z)� ���A(�i; z)�; (B.1)where Ai and Si are de�ned asAi = A(�i; z) = ln� �z � �i��i � z� and Si = S(�i; z) = ln j�i � zj2: (B.2)Note that Ai is an antisymmetri
 fun
tion in �i and z, whereas Si is sym-metri
, i.e., A(�i; z) = �A(z; �i) and S(�i; z) = S(z; �i). From (B.2) we seethat Ai and Si satisfy the relations �Si = ��Ai and ��Si = ��Ai. Therefore,we get h��(�i) ���(z; �z)i = 12����� +G��� �Aih��(�i) ����(z; �z)i = 12����� �G��� ��Ai: (B.3)Furthermore we introdu
e the fun
tionsfA(�a; �b; �
) = ZH d2z �Aa ��AbA
 (B.4)fS(�a; �b; �
) = ZH d2z �Sa ��SbS
 = � Z d2z �Aa ��AbS
; (B.5)whi
h are �nite ex
ept for an in�nite 
onstant. So the 
omputation of (B.4)and (B.5) will need a regularization. With the above abbreviations and therelations D�G�� = �G��D�F����� � ���D�F��G��D���� = ����D�F����� �G��D�F��G�� ; (B.6)



B. The Contribution of the 3-Point Vertex 53the tree level amplitude of (5.4) readsh��i(�i) ��j(�j)��k(�k) n� ZH d2z ��� ������ ��F��oitree == � 1(2�)3 n+��k�����i�j �fA(�i; �j; �k)� fA(�j; �i; �k)�+��k���G�i�j �fA(�i; �j; �k) + fA(�j; �i; �k)�+G�k�����i�j �fS(�i; �j; �k)� fS(�j; �i; �k)�+G�k���G�i�j �fS(�i; �j; �k) + fS(�j; �i; �k)�+�
y
l. perm. (ijk) �o: (B.7)For the following 
omputation of (B.7) we take the order �i < �j < �k on thereal axis.B.2 Regularization of fA and fSTo regularize fA and fS we di�erentiate the integral representations (B.4)and (B.5) with respe
t to �a, �b and �
, respe
tively. Then we 
an performthe integration over the upper half plane H . This 
an be done by the wellknown method of a transformation into a 
ontour integral and using theresidue theorem. The pole pres
riptions on the real axis are obtained byintrodu
ing a small imaginary shift �i�, so thatAi = ln� �z � �i � i��i � i�� z� and Si = ln�(�i � i�� z)(�i + i�� �z)� : (B.8)The pres
ription is 
hosen so that it is 
onsistent with bulk insertions thatemerge the boundary, i.e., we 
onsider in fa
t insertions in the bulk whi
hare very 
lose to the boundary. The appearan
e of the logarithm needs asele
tion of a 
ut and it turns out that the negative real axis is a 
onvenient
hoi
e. Finally, we determine the antiderivative with respe
t to �a, �b and �
.Now, the in�nity is 
ontained in the integration 
onstant.



B. The Contribution of the 3-Point Vertex 54In su
h a way we getfA(�a; �b; �
) = 2� Z t0 dx� ln(x� i�0)1� x + ln(1� x� i�0)x � + CA(1);fS(�a; �b; �
) = 2� Z t0 dx�� ln(x� i�0)1� x + ln(1� x� i�0)x � (B.9)� �2 ln2(�b � �a)2 + i�2�(�b � �a) ln(�b � �a)2 + CS(1);where the� in the logarithm abbreviates in fa
t the sign fun
tion +�(�b � �a).In (B.9) we have introdu
ed the parameter t whi
h is de�ned as the 
ombi-nation t = �
��a�b��a . The shift �0 is needed to integrate along the 
orre
t side ofthe 
ut for negative arguments of the logarithm. This sele
tion is determinedby the pole pres
ription explained above.The integrals (B.9) remind us of the dilogarithm (A.4) introdu
ed inappendix A. Indeed, taking into a

ount the bran
h 
ut of the logarithm, one
an express equation (B.7) in terms of the analyti
ally 
ontinued dilogarithmthat was de�ned by (A.2) and (A.7). Be
ause of the order �i < �j < �k theso-
alled modulus m = �j � �i�k � �i ; (B.10)is restri
ted to 0 < m < 1, a region that we met several times in appendixA.



B. The Contribution of the 3-Point Vertex 55B.3 The Tree Level AmplitudeWhat is left is to use (B.9) to bring together all 
ombinations of the fun
tionsfA and fS in (B.7). This leads to the rather lengthy result�2�2h��i(�i) ��j(�j) ��k(�k) ZH d2z ��� ������ ��F��itree =n+��k�����i�j�Li2(�ik�ij )� Li2(�kj�ij )� (B.11)+��i�����j�k�Li2( �ji�jk )� Li2( �ik�jk )�+��j�����k�i�Li2(�kj�ki )� Li2( �ji�ki )�+i���k���G�i�j�ln �ji � ln �ki��i���i���G�j�k�ln �kj � ln �ki��i�G�k�����i�j�ln �ki��i�G�i�����j�k�ln �ki�+i�G�j�����k�i�ln �ki�+G�k���G�i�j�+ ln �ji ln �kj � ln �kj ln �ki + ln �ji ln �ki�+G�i���G�j�k�+ ln �ji ln �kj + ln �kj ln �ki � ln �ji ln �ki�+G�j���G�k�i�� ln �ji ln �kj + ln �kj ln �ki + ln �ji ln �ki� o;where we have set the integration 
onstants of (B.9) to a 
onvenient value,whi
h 
an be done sin
e they play no essential role (
f. equation (3.7)).In the limit g��!0 all terms 
ontaining the boundary metri
 G�� vanishand we obtain�2�2h��i(�i) ��j(�j) ��k(�k) ZH d2z ��� ������ ��F��itree;�0!0 =n+��k�����i�j�Li2(1�m)� Li2(m) + �23 � (B.12)+��i�����j�k�Li2(1�m)� Li2(m)� �23 �+��j�����k�i�Li2(1�m)� Li2(m)� o ;where we expressed (B.12) in terms of the modulus m instead of the expli
it



B. The Contribution of the 3-Point Vertex 56quotients in (B.11). Furthermore, we took advantage of relations (A.10) and(A.11).When using, in addition, radial gauge and taking a vanishing gauge �eldA, the terms ��23 in the �rst two lines disappear and we re
over the resultof [9℄. This is due to the relation to Rogers dilogarithm L(m), Li2(1�m)�Li2(m) = �26 � 2L(m).B.4 Coin
iden
e LimitsIn 
hapter 5 we 
al
ulate the 
orrelator of two fun
tions. For that purposewe have to 
onsider the 
oin
iden
e limits �j ! �i and �j ! �k of (B.11). Inthese limits there appear logarithmi
 singularities whi
h 
an be regularizedby a 
ut-o� parameter �, i.e., lim�j!�i ln(�j � �i) ! ln�. In terms of � weget�h��i(�i) ��j(�i) ��k(�k) ZH d2z ��� ������ ��F��itree;sing == + i2���k���G�i�j ln� + 1�2G�k���G�i�j ln� ln(�k � �i)= � 1���G�i�j ln�h��(�i) ��k(�k)i (B.13)for �j ! �i and�h��i(�i) ��j(�k) ��k(�k) ZH d2z ��� ������ ��F��itree;sing == � i2���i���G�j�k ln� + 1�2G�i���G�j�k ln� ln(�k � �i)= � 1���G�j�k ln�h��i(�i) ��(�k)i (B.14)for �j ! �k. The singularities (B.13) and (B.14) must be 
ompensated byappropriate subtra
tions, i.e., one has to introdu
e a normal ordering for theintera
ting theory (2.1). The 
orre
t subtra
tions 
an easily be read o� from(B.13,B.14). Together with the singular part of the propagator (3.9) we get��(�) ��(� 0) = � 12�G�� ln(� � � 0)2 � 12���G�� ln(� � � 0)2 ��(� + � 02 )+ ( regular terms ): (B.15)



B. The Contribution of the 3-Point Vertex 57In order to obtain the �nite part of equation (B.11) in our limits we haveto take into a

ount the spe
ial values (A.12). So we get� h �(�i(�i) ��j)(�i) ��k(�k) ZH d2z ��� ������ ��F��itree;�n = (B.16)= � 112���i�����j�k ���j�����k�i�� i2� ���k���G�i�j +G�j�����i�k +G�i�����j�k� ln(�k � �i)� 12�2 �G�k���G�i�j �G�i���G�j�k �G�j���G�k�i� ln2(�k � �i)for �j ! �i and� h ��i(�i) �(�j(�k) ��k)(�k) ZH d2z ��� ������ ��F��itree;�n = (B.17)= + 112���k�����i�j � ��j�����k�i�+ i2� ���i���G�j�k +G�j�����k�i +G�k�����j�i� ln(�k � �i)� 12�2 �G�i���G�j�k �G�j���G�k�i �G�k���G�i�j� ln2(�k � �i)for �j ! �k. We 
onsidered only the symmetri
 part of the limit, sin
e theantisymmetri
 one does not 
ontribute in 
hapter 5.
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