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Kurzfassung

Die besondere Bedeutung von Membranen für Superstringtheorie wurde zuerst 1995
in ihrer Rolle im Netz von nicht-perturbativen Dualitäten zwischen a priori un-
abhängigen, perturbativen Superstringtheorien erkannt. Seither hatten insbesondere
D-branes, deren Quantenfluktuationen offene Strings sind, Auswirkungen auf zahl-
reiche andere Bereiche der Stringtheorie, aber auch der Quantenfeldtheorie. So
initiierten sie, zum Beispiel, eine intensivere Untersuchung von nicht-kommutativer
Geometrie und nicht-kommutativer Feldtheorien. Da die niederenergetischen Frei-
heitsgrade auf D-branes Eichfelder sind, spielen sie auch eine wichtige Rolle in der
Konstruktion von Stringtheoriemodellen mit einer Einbettung des Standardmodells
der Teilchenphysik.

Diese Arbeit konzentriert sich auf einen anderen Aspekt der Physik von Mem-
branen, der mit der Tatsache zusammenhängt, dass D-branes ein effektives Super-
potential für N = 1 supersymmetrische Modelle verursachen, dessen chirale Super-
felder von den Eichfeldern auf der Membran und von der Position der Membran
im Einbettungsraum herrühren. Das effektive Superpotential kann im Prinzip mit
Hilfe von topologischer Stringtheorie berechnet werden, welche einen Teilsektor der
vollen Superstringtheorie beschreibt. Zwar konnten im Rahmen von topologischer
Stringtheorie zahlreiche exakte (nicht-perturbative) Ergebnisse erzielt werden, doch
ist die Miteinbindung von D-branes bis dato nicht ausreichend verstanden, weshalb
keine effektive Methode bekannt ist, das Superpotential (außer in wenigen einfachen
Beispielen) zu berechnen.

In dieser Arbeit wird die mathematische Struktur von topologischen String-
amplituden untersucht, die zu effektiven Superpotentialtermen führen. Wie gezeigt
wird, erfüllen die Amplituden Konsistenzrelationen, die Ward–Identitäten und Fak-
torisierungseigenschaften in der topologischen Stringtheorie entsprechen. Diese Gle-
ichungen stellen eine Erweiterung von Differenzialgleichungen dar, die auf R. Di-
jkgraaf, E. Verlinde und H. Verlinde, sowie E. Witten zurückgehen, und vervoll-
ständigen jene zu einer abzählbaren Menge von sowohl algebraischen Relationen
als auch Differentialgleichungen. Die Konsistenzrelationen umfassen die folgenden
mathematischen Strukturen: (i) eine A∞-Algebra, (ii) eine topologische Version der
Cardy-Relation, welche eine Dualität zwischen offenen und geschlossenen Strings im-
plementiert, und schließlich (iii) eine Kreuzungssymmetrie, die die Kopplung von
offenen und geschlossenen Strings kontrolliert.

Ein Großteil der Analyse dieser Arbeit konzentriert sich auf die Herleitung der
A∞-Algebra, welche bereits 1963 von J. Stasheff als Verallgemeinerung von assozia-



tiven Algebren entwickelt wurden. Ihre Rolle in Stringtheorie wurde zunächst im
Rahmen von Stringfeldtheorie, dann in topologischer Stringtheorie, erkannt. Auch
die Mirrorsymmetrievermutung für Calabi–Yau Mannigfaltigkeiten mit D-branes
beruht wesentlich auf A∞-Algebren.

Die Cardy-Relation und die Kreuzungssymmetrie bewirken — so wie die A∞-
Algebra — starke Einschränkungen auf die topologischen Amplituden. Dies wird
anhand einer einfachen Klasse von Modellen, den topologischen Landau–Ginzburg
Modellen der A-Serie, demonstriert. Durch Lösen der Gleichungen mit Hilfe von
Mathematica konnten in den einfachsten Fällen alle topologischen Amplituden ein-
deutig bestimmt werden. Die Strukture der Ergebnisse deutet überdies auf eine ge-
schlossene Formel für das effektive Superpotential aller möglichen Konfigurationen
von D-branes in diesen Modellen hin. Obwohl ein rigoroser Beweis dieser Formel
bis dato fehlt, kann sie durch nicht-triviale, unabhängige Kontrollen aus der Defor-
mationstheorie von D-branes verifiziert werden.



Abstract

The importance of membranes for superstring theory was first recognised in 1995 in
their special role for non-perturbative dualities between seemingly different pertur-
bative superstring theories. D-branes are a particular class of such extended objects,
whose quantum fluctuations are open strings. Apart from dualities, D-branes had
numerous effects on various fields in string theory as well as quantum field theory.
They lead, for instance, to an enhanced investigation of non-commutative geometry
and non-commutative field theories. They play moreover an important role in the
search for ‘realistic’ superstring models with an embedding of the standard model
of particle physics, which can be traced back to the fact that the low-energy degrees
of freedom on D-branes are given by gauge fields.

This work concentrates on a further aspect of D-brane physics, which is related to
the fact that they give rise to an effective superpotential for N = 1 supersymmetric
field theories; the chiral superfields descend from gauge fields on the D-brane and
the position of the D-brane in the embedding space. The effective superpotential
can be computed, in principle, through topological string theory, which describes a
subsector of the full superstring theory. In fact, the framework of topological string
theory already allowed to derive several exact (non-perturbative) results; however,
the inclusion of D-branes is not sufficiently well understood, so that there exists no
effective method to compute the superpotential (apart from specific examples).

In this work the mathematical structure of topological string amplitudes, which
lead to terms in the effective superpotential, is investigated: It is shown that the
amplitudes satisfy consistency conditions, which correspond to Ward identities and
factorisation properties in topological string theory. These relations provide an ex-
tention of differential equations, found by R. Dijkgraaf, E. Verlinde and H. Verlinde
as well as E. Witten, and complete the latter to a countable set of algebraic and
differential equations. The consistency conditions comprise (i) an A∞ algebra, (ii) a
topological version of the Cardy condition, i.e., the open-closed string duality, and
finally (iii) a bulk-boundary crossing symmetry, which controls the coupling of open
and closed topological strings.

A main part of this work concentrates on the derivation of the A∞ algebra, which
was developed by J. Stasheff as a generalisation of associative algebras already in
1963. Its role in string theory was first discovered within string field theory and
later within topological string theory. Moreover, the homological mirror symmetry
conjecture relies on A∞ algebras in an essential way.

The Cardy relation and the bulk-boundary crossing symmetry, as well as the



A∞ algebra, impose strong restrictions on the topological amplitudes. This fact
is demonstrated in a simple series of models, the A-series of topological Landau–
Ginzburg models. Solving the consistency conditions with Mathematica uniquely
determines all topological amplitudes in the simplest examples. Moreover, the struc-
ture of the results suggests a closed formula for the effective superpotential for all
possible D-brane configurations in these models. Although this formula still lacks a
rigorous proof, it stands an independent, non-trivial test from deformation theory
of D-branes.





Contents

1 Introduction 1

2 Motivation and Summary 5
2.1 Compactification and D-branes . . . . . . . . . . . . . . . . . . . . . 5
2.2 Obstructions and A∞ algebras . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Consistency conditions and the effective superpotential . . . . . . . . 9
2.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 N = (2, 2) superconformal field theories 12
3.1 The algebra and representation theory . . . . . . . . . . . . . . . . . 13
3.2 Boundary conditions and boundary states . . . . . . . . . . . . . . . 19
3.3 A-type and B-type D-branes . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Non-linear sigma models . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Landau–Ginzburg models . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Topological conformal field theories 34
4.1 Definition of topological field theories . . . . . . . . . . . . . . . . . . 34
4.2 Topological conformal algebra . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Physical operators and descendants . . . . . . . . . . . . . . . . . . . 37
4.4 The effects of a boundary . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Topological twisting 42
5.1 Twisting of the closed string sector . . . . . . . . . . . . . . . . . . . 42
5.2 Compatibility with boundary conditions . . . . . . . . . . . . . . . . 43
5.3 What do topological amplitudes compute in N = (2, 2) theories? . . . 44
5.4 B-twisted non-linear sigma models . . . . . . . . . . . . . . . . . . . . 45
5.5 A-twisted non-linear sigma models . . . . . . . . . . . . . . . . . . . 49
5.6 B-twisted Landau–Ginzburg models . . . . . . . . . . . . . . . . . . . 53

6 The WDVV equations for the prepotential 65

7 Disk amplitudes and the superpotential 68
7.1 The regularised amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Equivalence of the two types of amplitudes . . . . . . . . . . . . . . . 71

i



CONTENTS ii

7.3 Two point correlation functions are not deformed . . . . . . . . . . . 73
7.4 Independence of the positions of unintegrated insertions . . . . . . . . 74
7.5 Independence of the world-sheet metric . . . . . . . . . . . . . . . . . 75
7.6 Cyclicity and bulk permutation invariance . . . . . . . . . . . . . . . 76
7.7 Deformed amplitudes and the boundary metric . . . . . . . . . . . . . 77
7.8 The formal generating function and the effective superpotential . . . 79

8 Consistency conditions for disk amplitudes 81
8.1 Minimal A∞ constraints on boundary amplitudes . . . . . . . . . . . 82
8.2 Weak A∞ constraints for deformed amplitudes . . . . . . . . . . . . . 86
8.3 Interpretation in terms of open string field theory . . . . . . . . . . . 91
8.4 Bulk-boundary crossing symmetry . . . . . . . . . . . . . . . . . . . . 95
8.5 Cardy conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9 Landau–Ginzburg minimal models 100
9.1 Experimental evidence . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.2 The effective potential for a single B-brane . . . . . . . . . . . . . . . 104
9.3 The effective potential for general B-branes . . . . . . . . . . . . . . . 107
9.4 The superpotential as action for a holomorphic matrix model . . . . . 109





Chapter 1

Introduction

Our current understanding of nature at the most fundamental level is based on two
main ideas, quantum mechanics and general relativity. The former was developed
in order to describe physics at microscopic scales, whereas the latter is a theory for
gravitational interaction at macroscopic distances.

The concept of quantisation was successfully applied to the three fundamental
forces, electro-magnetism, weak and strong interactions, and unified them to a single
quantum field theory, the standard model (SM) of particle physics. The interactions
in the standard model are realised in terms of non-Abelian gauge theories, more
precisely, in terms of the gauge group SU(3)c × SU(2)L × U(1)Y . The first factor
is responsible for the strong interaction; the corresponding gauge particles comprise
eight gluons. The SU(2)L × U(1)Y part describes the electro-weak theory, with the
photon as particle of U(1)em and the weak W± and Z bosons. The standard model
agrees with collider experiments to astonishingly high accuracy, although it leaves
elementary questions unexplained, for instance, the origin of the particle spectrum.
There were several attempts to explain it in terms of grand unification theories
(GUT), where the SM gauge group is embedded in a larger simple gauge group,
such as SU(5), SO(10) or E6. This approach was suggested by the fact that the
coupling constants run with energy and meet approximately, but not quite, at the
scale MGUT ∼ 1016GeV . Another extension of the standard model is provided by
supersymmetry, which associates to each particle of the SM a partner with opposite
fermion number. However, we did not so far observe this symmetry in any experi-
ment, which means that it must be broken at a scale above the current experimental
limits. One of the great successes of supersymmetry is the unification of the gauge
couplings in one point at the GUT scale.

Neither the standard model nor its extension by supersymmetry provide expla-
nations for the values of particle masses, mixing angles and coupling constants.
Likewise, the large difference between electro-weak scale MZ ∼ 102GeV , grand uni-
fication scale MGUT ∼ 1016GeV and the Planck scale Mpl ∼ 1019GeV remains a
puzzle, which is known as the hierarchy problem.

The basic idea behind general relativity is the unification of space and time
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to a curved, dynamical geometry. This theory, too, is well-established by high
accuracy measurements. Quite recently, several cosmological observations suggested
that the universe has a non-vanishing cosmological constant of incredibly small value,
Λgrav ∼ 10−120(Mpl)

4, which is another ingredient in the hierarchy problem. In
contrast to the interactions of the standard model the gravitational field, i.e., the
metric, is not quantised within general relativity, and, thus, in view of the quantum
nature of the other three forces it is natural to ask for a quantum theory of gravity.
A significant feature of such a theory would be the existence of a spin 2 particle, the
graviton. However, the usual perturbative approach to quantum gravity suffers from
non-renormalisability, which is due to the mass-dimension of Newton’s constant.

One candidate for such a theory is superstring theory, which was originally devel-
oped in the course of describing strong interactions, but first overrun by the success
of non-Abelian Yang–Mills theories. The idea is that the most fundamental objects
are not point-like as in ordinary quantum field theory, but 1-dimensional strings; the
basic concept of quantum theory is, however, retained within string theory. Since
the interaction of strings is smeared out over spacetime the problem of short-distance
singularities is resolved. Finally, the facts that the superstring can consistently be
quantised, is anomaly-free and contains a massless spin 2 particle in the spectrum
initiated the first string revolution in 1984/85.

A distinct feature of superstring theory comes from conformal invariance which
requires 10 spacetime dimensions. The additional 6 dimensions are believed to be
curled up on a compact space whose size is of the order of the Planck scale1 and
are, therefore, undetectable by current experiments. These extra dimensions gave
even room for a quite old idea of a unification of gauge degrees of freedom and
gravity in terms of Kaluza–Klein reduction, so that superstring theory seemed to be
a promising candidate for a unique quantum theory of all fundamental interactions.

However, in the course of investigations it turned out that there are five different
perturbative string theories: four models for oriented closed strings - type IIA, type
IIB, heterotic E8 × E8 and SO(32), as well as one unoriented open string - type I.
String theory did not seem to fulfil the dream of a unique consistent unified theory.

But this idea was revived in the second string revolution in 1995 when it was
realized that non-perturbative effects connect the five superstring theories. Even
before, T -duality between type IIA and IIB theory compactified on a circle or,
more generally, mirror symmetry for compactifications on Calabi–Yau manifolds
provided a perturbative duality upon two string theories. But then S-duality, a
weak-strong coupling duality completed T -duality to a web of dualities between
all five superstring theories. Moreover, the strong coupling limit of type IIA theory
turned out to be dual to a weakly coupled theory, called M-theory, whose low energy
theory is 11-dimensional supergravity, suggesting that all string theories and M-
theory are limits in the moduli space of a single underlying theory, which remains
unknown so far.

1With the investigation of D-branes it turned out that the scale of the extra dimensions could
be as large as the millimetre scale.
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The basic idea of S-duality is the fact that a theory in the strong coupling regime
is dual to a theory in the weak coupling regime. Non-perturbative BPS states in
the weakly coupled regime of one theory can become perturbative states of the dual
theory in the strong coupling limit. The most important non-perturbative objects
of such kind in string theory are D-branes, whose quantum excitations are open
strings; they will play a central role in this thesis.

Since the discovery of the web of dualities D-branes have influenced the develop-
ment not only of string theory but also of quantum field theory in numerous exam-
ples: They triggered, for instance, an enhanced investigation of non-commutative
geometry and non-commutative field theories. They provide important insight into
the information paradox of black hole physics. Moreover, the fact that the low-
energy degrees of freedom on D-branes are given by gauge fields lead to the search
for superstring models with an embedding of the standard model of particle physics.

Despite all the successes of string theory in the unification of the fundamental
forces and its contributions to the understanding of strong coupling effects, a long
list of open questions still remains. For instance, the particular spectrum of particles
in the Standard Model as well as the coupling constants remain so far unexplained
within string theory. On the one hand, string theory provides the intriguing feature
that it has no fundamental constants, and all coupling constants of a low-energy
effective theory descend from vacuum expectation values of scalar fields. On the
other hand, no mechanism (if it exists at all) is known, which selects a particular
set of values.

The issue of fixing vacuum expectation values currently gives rise to increased
investigations and, once again, D-branes play an essential role, which is due to
the fact that they entail an effective superpotential for N = 1 supersymmetric field
theories. The chiral superfields for the potential come from gauge fields on D-branes
as well as the positions of D-branes in the embedding space.

The effective superpotential of the low-energy effective field theory can be com-
puted in terms of topological string theory. The latter describes a subsector of
the full superstring theory that leads to numerous exact (non-perturbative) results.
However, the inclusion of D-branes in topological string theory is not sufficiently
well understood, so that an effective method to compute the superpotential has not
been found so far.

In this work the mathematical structure of topological open string amplitudes in
the presence of D-branes is investigated and the relation to the effective superpoten-
tial is pointed out. The main result comprises consistency conditions for topological
string amplitudes, which correspond to Ward identities and factorisation properties.
These relations provide an extention of differential equations, found by R. Dijkgraaf,
E. Verlinde and H. Verlinde as well as E. Witten, and complete the latter to a count-
able set of algebraic and differential equations. The consistency conditions include
the following structures:

• A∞ algebra: It was developed by J. Stasheff as a generalisation of associative
algebras already in 1963. Its role in string theory was first discovered within
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string field theory and later within topological string theory. Moreover, the
homological mirror symmetry conjecture relies on A∞ algebras in an essential
way.

• Topological Cardy condition: It is the topological string theory counterpart of
the open-closed string duality of conformal field theory.

• Bulk-boundary crossing symmetry : It controls the coupling of open and closed
topological strings.

All consistency conditions together imposes strong restrictions on the topological
amplitudes. This fact is demonstrated in a simple series of models, the A-series of
topological Landau–Ginzburg models. In this particular example the consistency
conditions are strong enough to determine all topological amplitudes uniquely. The
explicit calculations were done with Mathematica, and the results suggest a closed
formula for the effective superpotential for all possible D-brane configurations in
these models. Although this formula still lacks a rigorous proof, it stands an in-
dependent, non-trivial test from deformation theory of D-branes. Moreover, it can
be interpreted as classical action for a holomorphic matrix model, which provides
further evidence for its correctness.



Chapter 2

Motivation and Summary

This chapter provides a more detailed motivation for the subject of this thesis. It
contains a concise summary of the main results, which include the effective super-
potential as well as the consistency conditions. Finally, we give a brief outline of
the thesis.

2.1 Compactification and D-branes

Closed strings

As already mentioned, the contact to physics on a 4-dimensional spacetime is realised
as compactification of the superstring on an ‘internal’ space, i.e., on a (complex)
3-dimensional Calabi–Yau manifolds X , which is by definition a Ricci flat Kähler
manifold. The compactification of type IIA/B superstring, for instance, although not
of phenomenological interest, leads to deep insights in the moduli space and the non-
perturbative behaviour of N = 2 supersymmetric field theory in four dimensions.

From the string world sheet perspective, a type IIA/B Calabi–Yau compactifi-
cation is described by a N = (2, 2) superconformal field theory (SCFT) [1–3], i.e., a
N = (2, 2) non-linear sigma model on X . The massless string excitations in such a
model are in one-to-one correspondence with Kähler and complex structure defor-
mations of the Calabi–Yau 3-fold and can be used to deform the N = (2, 2) SCFT.
One of the most intriguing features of these SCFTs is the fact that the Kähler
and complex structure deformation of the Calabi–Yau manifold are captured by
two independent topological subsectors. The restriction to one of the subsectors
is a well-defined procedure, known as topological twisting [4] of the N = (2, 2)
SCFT to a topological conformal field theory (TCFT). In fact, the two independent
topological subsectors correspond to two ways of twisting the theory: The A-twist
restricts to a TCFT, which describes the moduli space of Kähler deformations; and
the B-twist restricts to complex structure deformations. Moreover, in each of the
topological subsectors all tree-level closed string amplitudes are encoded in a single
(holomorphic) generating function, the prepotential F [5, 6].

5
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The decoupling of Kähler and complex structure deformations immediately im-
plies that the total moduli space M of the N = (2, 2) SCFT splits into two factors,
M = MK ×MC . In [7] each factor was found to be equipped with a Kähler met-
ric, and the geometry of MK and MC is completely governed by the prepotential
F . This kind of geometry is called special Kähler geometry, and the connection to
4-dimensional N = 2 effective field theory is given by the fact that the prepotential
F serves as effective Lagrangian and describes the spaces of vacuum expectation
values (moduli) of massless scalar fields in vector and hypermultiplets [6, 8].

A priori the moduli spaces MK and MC differ profoundly in their structure; the
prepotential for complex structure deformations can be described in purely geometric
terms, whereas the prepotential for Kähler deformations gets non-perturbative world
sheet instanton corrections [9, 10]. More precisely, it counts the number of possible
embeddings of holomorphic sphere instantons into the Calabi–Yau manifold X [11,
12]. However, a Z2 automorphism of the N = (2, 2) superconformal algebra gives
rise to a powerful interrelation between the moduli spaces of pairs of Calabi–Yau
manifolds, X and X ′, which is known as mirror symmetry [13–15]. In fact, the
prepotential on MK (MC) on X is equal to the prepotential on MC (MK) on
the mirror X ′, upon an appropriate change of parametrisation. In terms of the
topologically twisted theories this amounts to the statement that the topological A-
model on X is equivalent or mirror to the topological B-model on X ′ and vice versa
[4]. The power of mirror symmetry lies in the capability of counting of holomorphic
spheres on X (X ′) through purely geometric terms on X ′ (X ). In other words, one
can compute non-perturbative results in terms of purely perturbative calculations.

There is one more curiosity with the moduli space M, which can best be seen
from the fact that the Kähler form serves as a volume form on X , so that changing
the Kähler moduli basically means changing the volume of certain cycles within the
Calabi–Yau manifold. However, in string theory nothing prevents us from extending
the Kähler parameter to negative values. In other words, in string theory it is pos-
sible to change the topology of compactified dimensions smoothly [16]. In [17] the
appropriate framework for modelling such processes was shown to be gauged linear
sigma models, where the topology change is realised as phase transition between
different vacuum configurations. Quite generically, it turned out that, apart from
non-linear sigma models on Calabi–Yau manifolds, there appear even non-geometric
phases, such as Landau–Ginzburg orbifold phases, which are governed by a super-
potential term in the N = (2, 2) world sheet action. Moreover, besides providing
a more complete description of the moduli space of the compactified theory the
gauged linear sigma models are the appropriate physical framework for describing
mirror symmetry on the level of a Lagrangian field theory [15,18].

Open strings, D-branes

We know already that in weak-strong dualities D-branes play a quite essential role. A
natural question that arises is how D-branes show up in the compactification of type
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II superstring, i.e. in N = (2, 2) SCFT such as non-linear sigma models on Calabi–
Yau manifolds or Landau–Ginzburg models. From the world sheet perspective, D-
branes are specified as boundary conditions for open strings. This implies that they
break world sheet supersymmetry and in turn spacetime supersymmetry. A rather
special class, the BPS branes, preserves half of the spacetime supersymmetry, that is
N = 1 SUSY, which implies breaking half of world sheet supersymmetry to N = 2.
These BPS branes come in two families: called A-branes and B-branes [19–21].

As for closed strings we can perform the topological A- and B-twist for N = 2
SCFT of open strings. A-branes are naturally described within the A-twisted topo-
logical model, whereas B-branes appear in the B-twisted model; hence the names.
Although the topological twist discards lots of information, the open string TCFT
computes important contributions to the 4 dimensional N = 1 effective field theory,
namely the F-terms [6].1 In this work we shall especially be interested in the tree-
level contribution from topological disk amplitudes, which gives rise to the effective
superpotential for the N = 1 spacetime theory.

In the large volume limit of a Calabi–Yau 3-fold A-branes turn out to be (real)
3-dimensional special Lagrangian submanifolds (see [22] and references therein) with
flat non-Abelian gauge connection, whereas B-branes show up as holomorphic sub-
manifolds with a non-Abelian gauge field that defines a complex structure [19, 20].
However, in the non-geometric phase there is no obvious interpretation in terms
of submanifolds [23], and even for Calabi–Yau manifolds the proper description for
B-branes turns out to be within algebraic geometry in terms of sheaves [24]. The
problem with the picture of holomorphic submanifolds is that it breaks down when
we move around in the moduli space of the Calabi–Yau manifold. Starting with a
B-brane of given dimension at large volume it gets transformed into a bound state
of B-branes of different dimensions. In general, such an object cannot be described
as bundle over a holomorphic submanifold; the language of sheaves in algebraic
geometry provides an appropriate framework (see [25, 26] and references therein).

In [27] Kontsevich put forward a conjecture for mirror symmetry of Calabi–Yau
manifolds including D-branes, which is known as the homological mirror symmetry
conjecture. It is formulated in the language of triangulated categories [28, 29]; see
[26] for an introduction on the latter subject. For short, a category consists of
objects A,B, . . . and morphisms f, g, . . . ∈ Hom(A,B) between pairs of objects,
equipped with an associative composition of morphisms and an identity morphism
in Hom(A,A) for any object A. This is the most general structure for describing
D-branes (as objects) and open strings (as morphisms), where the (associative)
composition of morphisms corresponds to the binding of two open strings to a single
one.

The term ‘triangulated’ basically corresponds to the following two statements
for D-branes in physical terms:
(i) Bound state formation: If one turns on an open string f ∈ Hom(A,B) between
any two D-branes, then A and B can potentially form a bound state C. The objects

1This interpretation is, of course, only true if the central charge of the associated SCFT is c = 9.
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A and B together with C can be arranged in a triangle diagram with morphisms
in between, hence the name triangulated. Whether the binding process occurs or
not depends on whether f is tachyonic or not; in other words, when f is tachyonic,
the triangle describes a tachyon condensation process [30]. Notice that the triangle
shows just the possibility of bindings; the direction of decay is dictated by stability
[31, 32].2

(ii) Anti-brane: For any D-brane A there exists an anti D-brane Ā, so that they
bind or better annihilate to the closed string vacuum.

The homological mirror symmetry of [27] then conjectures an equivalence of the
derived category of the Fukaya category for A-branes on X and the derived category
of coherent sheaves for B-branes on the mirror X ′.

2.2 Obstructions and A∞ algebras

Now, we come closer to the actual subject of this work, which is related to a fun-
damental difference between the closed string moduli space of Kähler and complex
structure deformations and the open string moduli space. Again, in non-geometric
phases there is no obvious interpretation in this manner. The important point is
that the combined open-closed string moduli are obstructed [33–35]; opposed to the
pure closed string theory, the moduli are subject to a potential, which turns out to
be the effective superpotential mentioned previously.

An example from mathematics, where such obstructions occur, is the deformation
theory of holomorphic vector bundles (see [36] and references therein): There, a
complex structure is defined by a gauge connection with vanishing (0, 2)- and (2, 0)-
part of the gauge field strength, i.e., F 0,2 = (∂̄ + A)2 = ∂̄A + A2 = 0, where A
is the (0, 1)-form part of the gauge connection. An equation of this form appears
quite generically in deformation theory and is called Maurer–Cartan equation. An
infinitesimal deformation δa of the connection is called obstructed if it cannot be
integrated to a finite deformation, and it is a well-known fact that the deformations
of the complex structure on holomorphic vector bundles are, in general, obstructed.
The question is, how one can take control over these obstructions? In [35] it was
shown that the obstructions of the above problem are encoded in the potential of an
associated field theory for which the Maurer–Cartan equation serves as equation of
motion. In the case at hand the field theory turned out to be holomorphic Chern–
Simons theory [37]. By summing all tree-level Feynman diagrams of n in-coming
legs one derives n-linear products which form an algebraic structure, known as A∞
algebra [38, 39]. These products can then be combined into an effective potential,
which encodes the obstructions of the deformations [35].

Physically, the above setup is realized as a B-brane, which wraps the whole
Calabi–Yau manifold and supports a holomorphic vector bundles. The gauge con-

2However, this issue is not captured within the topological twisted theory and, therefore, not
within the scope of this work.
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nection on this vector bundle corresponds to an open string modulus. As it was
shown in [37] the open string field theory of the topological subsector that describes
the gauge fields is actually holomorphic Chern–Simons theory, described above.
Moreover, in the same work the open string field theory for A-branes on special
Lagrangian cycles M of the non-compact Calabi–Yau 3-folds T ∗M was identified as
Chern–Simons theory on M , i.e. the topological field theory of flat gauge connec-
tions. As A∞ algebras play an essential role in open string field theory [40, 41], it
should not surprise that they also occur in these topological models [35, 42].

If we consider several D-branes and therefore include open strings spanned in-
between, we have to switch again to the categorical language in the sense of the
last subsection, obtaining an A∞ category (see [43] and references therein). This
means that in addition to the bilinear composition of open strings we have now
higher n-linear compositions, which are restricted to the A∞-algebra relations. In-
deed, the derived category of the Fukaya category of the topological A-model is an
A∞ category [44], which has, however, a quite complicated structure due to the
appearance of holomorphic disk instantons. On the other hand, in the topologi-
cal B-model the derived category of coherent sheaves can also be enhanced to an
A∞ category. Polishchuk suggested in [45] a refinement of the homological mirror
symmetry conjecture on the level of A∞ categories (see also [43]).

2.3 Consistency conditions and the effective su-

perpotential

We have seen that the open string field theory approach to topological conformal
string theories is naturally equipped with an A∞ algebra, more precisely a minimal
one, which means that it contains n-linear products for n ≥ 2. This fact leads quite
naturally to the question how this structure can be derived through a conformal
field theory approach to TCFT without referring to string field theory. This thesis
is devoted to this question and presents results that were mainly published in [46].

To begin with, we show that topological open string amplitudes, Ba0...an
for

n ≥ 2, on the disk are equipped with a minimal A∞ algebra, thereby reproducing
the string field theory results. The indices come from a basis of open string physical
operators that are inserted in cyclic order on the disk.

One can go even further and include closed string physical operators in the
amplitudes. It turns out that closed string insertions can be integrated to deformed
open string amplitudes: Fa0...an

(ti) for n ≥ 0, where ti are the closed string moduli.
This leads to a deformation from a minimal A∞ algebra to a weak A∞ algebra, i.e.,
for m ≥ 0:

m
∑

k, j = 0
k ≤ j

(−1)ã1+...+ãk Fa0
a1...akcaj+1...am

(t) F c
ak+1...aj

(t) = 0 . (2.1)
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A weak A∞ algebra has additional n-linear products with n = 0 and n = 1, which
can be interpreted as tadpoles resp. masses for open strings in the effective super-
potential, which reads:

W(s, t) =

∞
∑

m=0

1

m+ 1
sam

. . . sa0Fa0...am
(t) . (2.2)

Here, sa denote the open string moduli. The disk amplitudes Fa0...am
(t) are only

cyclic symmetric in the open string indices, which causes sever complications: we
are, in general, not able to integrate the disk amplitudes to a single function and
express the A∞ relations and the subsequent constraints in terms of this function;
the effective superpotential contains only the totally symmetrised disk amplitudes,
which means that it does not encode the full information. This fact has to be
opposed to the closed topological string, where the prepotential F(t) contains the
full information on sphere amplitudes.

Besides the A∞ algebra we are able to derive two further sets of equations that
put constraints on the interactions between open and closed topological strings. The
first is the bulk-boundary crossing symmetry:3

∂i∂j∂kF(t) ηkl ∂lFa0a1...am
(t) = (2.3)

=
∑

0≤m1≤...m4≤m

(−1)sFa0...am1 bam2+1...am3cam4+1...am
(t) ∂iF b

am1+1...am2
(t) ∂jF c

am3+1...am4
(t) ,

and the second is a generalisation of the topological Cardy constraint:

∂iFa0...an
ηij∂jFb0...bm

= (2.4)

=
∑

0 ≤ n1 ≤ n2 ≤ n

0 ≤ m1 ≤ m2 ≤ m

(−1)s ωc1d1 ωc2d2 Fa0...an1d1bm1+1...bm2 c2an2+1...an
Fb0...bm1c1an1+1...an2d2bm2+1...bm

.

Here, ηij and ωab are the inverse of the bulk resp. boundary topological metric. Note
that relation (2.3) contains the prepotential F(t) of the closed topological string and,
therefore, mixes open and closed topological string quantities.

These constraint equations represent the open string counterpart of the WDVV
equations of closed TCFT [5], which we present for completeness:

∂i∂j∂mF ηmn ∂n∂k∂lF = ∂i∂k∂mF ηmn ∂n∂j∂lF . (2.5)

They reflect associativity of the topological bulk operator product.
In order to demonstrate the power of the constraint equations (2.1), (2.3) and

(2.4) we computed the disk amplitudes in the simplest examples of minimal Landau–
Ginzburg models [47] by solving these equations in [46]. We were even able to
propose a closed form for the effective superpotential for any configurations of D-
branes in these models [48].

3The explicit expressions for the signs in (2.3) and (2.4) are given in chapters 8 and 9.
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2.4 Overview

Here, we provide only a rough outline of this thesis. More detailed summaries can
be found at the beginning of each chapter.

In chapter 3 we review well-known facts about N = (2, 2) SCFT and their
boundary conditions and boundary states. We give several explicit examples of
N = (2, 2) SCFT models. We present the basic definitions of open and closed
topological conformal field theories in chapter 4 and explain the topological twisting
in chapter 5. Here, we meet again the SCFT models in their topologically twisted
version, where special emphasise is attached to Landau–Ginzburg minimal models.

After presenting the basic idea behind the derivation of the closed string WDVV
equation (2.5) in chapter 6, we prepare for the computation of the open string
constraint equations by properly defining the disk amplitudes in chapter 7. The
effective superpotential is also defined there. Finally, the A∞ algebra (2.1) as well
as the bulk-boundary crossing relation (2.3) and the Cardy constraint (2.4) are
derived in chapter 8.

In the last chapter we determine the superpotential for Landau–Ginzburg mini-
mal models and investigate its relation to deformations of D-branes in these models.



Chapter 3

N = (2, 2) superconformal field
theories

N = (2, 2) superconformal field theories became important for type II superstring
compactifications because exactly this amount of supersymmetry is a necessary con-
dition on the conformal field theory of the internal sector in order to obtain N = 2
supersymmetry in four dimensions (cf. [49, 50]).

In section 3.1 we review well-known properties of N = (2, 2) SCFTs following [2,
3]. We start with defining the operator product algebra and explain the bosonisation
of the U(1) current, which plays an important role for the definition of the spectral
flow operator (see [1, 2]). A special choice of the latter acts as an isomorphism
between the Neveu–Schwarz and the Ramond sector and is, therefore, the internal
part of the world sheet current that generates spacetime supersymmetry. (In chapter
5 the spectral flow operator will turn out essential for the explanation of the question,
what topological amplitudes are computing.) In fact, we were a bit imprecise with
this statement; in order to have a well-defined spacetime supersymmetric theory we
have to require two additional conditions: single-valuedness of the operator product
between any vertex operators of the theory and modular invariance of the torus
partition function. These requirements are implemented by the Gliozzi–Scherk–
Olive (GSO) projection [51].

We review the different sectors of chiral and twisted chiral primary operators [1],
which span topological subsectors of the N = (2, 2) SCFT, i.e., the (twisted) chiral
primary operators show up as physical operators in a topologically twisted theory,
which we describe in subsequent chapters. After introducing the automorphism
algebra U(1) × Z2 of the N = (2, 2) superconformal algebra, we show that the Z2

part, called mirror automorphism, exchanges the chiral and twisted chiral sectors; a
very simple property on the level of SCFT with profound consequences in concrete
models.

In section 3.2 we briefly review a general description of boundary conditions in
conformal field theories, where we closely follow [21,52]; and we explain the introduc-
tion of boundary states through open-closed string duality [53, 54]. Thereafter, we

12
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discuss boundary conditions and the corresponding boundary states in N = (2, 2)
superconformal field theory in section 3.3. There appear two types, called A-type
D-branes and B-type D-branes [20, 55].

In the remainder of this chapter we consider explicit realisations of N = (2, 2)
SCFTs in non-linear sigma models of Calabi–Yau manifolds and Landau–Ginzburg
models. In the former, A-type and B-type boundary conditions were first stud-
ied in [20] and identified as special Lagrangian submanifolds and holomorphic sub-
manifolds, respectively. The analysis was extended to Landau–Ginzburg models
in [23, 56, 57]. Quite recently [47, 58, 59], Landau–Ginzburg B-branes were under-
stood as matrix factorisations referring to earlier work by Warner [55]. In the dis-
cussion of boundary conditions for non-linear sigma models and Landau–Ginzburg
models we will closely follow [23] and [47].

3.1 The algebra and representation theory

The symmetry algebra of a N = (2, 2) superconformal field theory is generated by
the stress-energy tensor T (z) of conformal weight h = 2, along with two fermionic
currents G(z) and Ḡ(z) with h = 3/2 and a U(1) R-current J(z) of h = 1. In
this section we consider the superconformal algebra on the complex plane, thus
describing closed strings. The algebra in operator product form is given by:

T (z) T (0) ∼ c

2z4
+

2

z2
T (0) +

1

z
∂T (0) ,

T (z) G(0) ∼ 3

2z2
G(0) +

1

z
∂G(0) ,

T (z) Ḡ(0) ∼ 3

2z2
Ḡ(0) +

1

z
∂Ḡ(0) ,

T (z) J(0) ∼ 1

z2
J(0) +

1

z
∂J(0) ,

G(z) Ḡ(0) ∼ c

3z3
+

1

z2
J(0) +

1

z
T (0) +

1

2z
∂J(0) , (3.1)

G(z) G(0) ∼ Ḡ(z)Ḡ(0) ∼ 0 ,

J(z) G(0) ∼ +
1

z
G(0) ,

J(z) Ḡ(0) ∼ −1

z
Ḡ(0) ,

J(z) J(0) ∼ c

3z2
.

The relations (3.1) comprises the holomorphic part of the algebra and there exists a
whole copy for the right-moving part as well. For completeness we write the currents
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in terms of their mode expansions:

T (z) =
∞
∑

n=−∞
Ln z

−n−2 , G(z) =
∞
∑

n=−∞
Gn+a z

−(n+a)−3/2 ,

J(z) =
∞
∑

n=−∞
Jn z

−n−1 , Ḡ(z) =
∞
∑

n=−∞
Ḡn−a z

−(n−a)−3/2 .
(3.2)

The labels for the fermionic currents involve a number a ∈ R, which causes branch-
cuts in the complex plane. In the Ramond (R) sector this number is a ∈ Z and in
the Neveu–Schwarz (NS) sector it is a ∈ Z + 1/2, so that the fermionic currents are
single valued in the NS sector, but carry a branch cut in the R sector. In view of (3.1)
and (3.2) the commutator algebra for the generators of the N = 2 superconformal
algebra becomes:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 ,

[Ln, Gm+a] =
(n

2
− (m+ a)

)

Gn+m+a ,

[Ln, Ḡm−a] =
(n

2
− (m− a)

)

Ḡn+m−a ,

[Ln, Jm] = −mJm+n , (3.3)

[Gn+a, Ḡm−a] = Lm+n +
1

2
(n−m+ 2a)Jm+n +

c

6

(

(n+ a)2 − 1

4

)

δm+n,0 ,

[Jn, Gm+a] = +Gn+m+a ,

[Jn, Ḡm−a] = −Ḡn+m−a ,

[Jn, Jm] =
c

3
nδm+n,0 . (3.4)

Here, [·, ·] denotes the graded commutator.

Bosonisation of the U(1) current

The last line of (3.1) suggests that J(z) can be bosonised in terms of a free boson
H(z) with operator product expansion

H(z)H(0) = − log z .

The explicit identification is

J(z) = i

√

c

3
∂H(z) . (3.5)

The U(1) charge q of any operator O is then uniquely encoded in a factor containing
the boson H(z), so that the operator can be written as

O = O0e
iq
√

3
c
H , (3.6)

where O0 denotes the contribution of vanishing charge. From the operator expansion
(3.1) of the fermionic currents with the U(1) current, we find, in particular, that G

and Ḡ contain a factor ei
√

3
c
H and e−i

√
3
c
H , respectively.



CHAPTER 3. N = (2, 2) SUPERCONFORMAL FIELD THEORIES 15

Spectral flow operator

An operator of special importance in N = (2, 2) SCFT is the spectral flow operator

Ση(z) := eiη
√

c
3
H . (3.7)

It can change the periodicity of the fermionic currents G and Ḡ with respect to any
vertex operator, which can be seen from the operator product expansion:

e±i
√

3
c
H(z) Ση(0) ∼ z±η .

Therefore, the spectral flow operator Ση can change a representation of the N =
(2, 2) algebra to another representation with periodicity shifted by η. The explicit
form of the spectral flow operator Ση(z) shows that the charge and the conformal
weight of any operator changes as:

q → q + η
c

3
,

h → h+ qη + η2 c

6
.

The spectral flow operator with η = ±1/2, i.e.,

Σ± := Σ±1/2 = e±i
√

c
12

H , (3.8)

turns out to be of special interest, because it implements a bijection between rep-
resentations in the NS sector and the R sector. In particular, it maps the ground
state in the NS sector (which corresponds to the unit operator) to a R sector ground
state, which is represented by the spectral flow operator Σ+ or Σ− itself.

In the context of type II string compactification to 4 spacetime dimensions (c =
9) the spectral flow operator Σ± is part of the current, which implements spacetime
supersymmetry. The operators corresponding to R ground states in the ghost and
4-dimensional Minkowski part are given by the spin fields e−φ/2 and

Sα := ei α
2
(H0+H1) (3.9)

Sα̇ := ei α̇
2
(H0−H1) , (3.10)

respectively (cf. [50]). Here, the fields Ha are the bosonisations of the free fermions
ψµ in flat space, i.e.,

e±iH0 ∼= 1√
2
(±ψ0 + ψ1)

e±iH1 ∼= 1√
2
(ψ2 ± iψ3) ,

and φ is part of the bosonisation of the (β, γ) ghost system.
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The spectral flow operator and the spin fields form the currents

Qα := e−φ/2SαΣ+ , Qα̇ := e−φ/2Sα̇Σ− ,

Q̃α := e−φ̃/2S̃αΣ̃∓ , Q̃α̇ := e−φ̃/2S̃α̇Σ̃± ,
(3.11)

which generate the spacetime supersymmetry of type IIA or IIB superstring com-
pactified to 4 dimensions (see [50]).

Strictly speaking we have to require an additional condition in order to realize
spacetime supersymmetry: The operator product of the supersymmetry currents
(3.11) has to be single valued with respect to all operators. A general vertex operator
of the full theory contains a factor

elφ+is0H0+is1H1+iQ/
√

3H . (3.12)

From the operator product of the supersymmetry currents (3.11) with (3.12) we find
that the condition for single-valuedness of the operator product expansion is1

l + s0 + s1 +Q ∈ 2Z . (3.13)

The projection to such operators is called the Gliozzi-Scherk-Olive (GSO) projection.
It can be recast into the requirement that any vertex operator has integer charge
with respect to the U(1) current

JGSO =
1

2
∂(−φ + iH0 + iH1 + i

√
3H). (3.14)

Besides single-valuedness of the operator product expansion the GSO projection
ensures modular invariance of the torus partition function.

Chiral primary states

A primary operator is defined by the operator products with the currents of the
algebra (3.1) through:

T (z)Ψ(0) ∼ h

z2
Ψ(0) +

1

z
∂Ψ(0) , (3.15)

J(z)Ψ(0) ∼ q

z
Ψ(0) , (3.16)

G(z)Ψ(0) ∼ 1

z
Λ , (3.17)

Ḡ(z)Ψ(0) ∼ 1

z
Λ̄ , (3.18)

where Λ and Λ̄ denote the superpartners of Ψ.

1This is true in the type IIB theory. In type IIA the GSO projection in the R sector projects
to odd integers.
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A particular class of primary operators in the NS sector is the set Hc of chi-
ral primary operators Φ,2 which correspond to BPS states of the superconformal
algebra. They are defined by the additional requirement Λ = 0, so that

G(z)Φ(0) ∼ 0 . (3.19)

The saturated BPS condition for a chiral primary operator fixes the conformal weight
to

h =
q

2
.

An upper bound for the conformal weight of chiral primary fields is given by the fact
that, in view of equation (3.6), an operator of charge q provides the contribution
3q2/2c to the conformal weight, so that

3q2

2c
≤ h =

q

2
.

Unitarity provides a lower bound, h ≥ 0, and all-in-all we find for chiral primary
operators:

0 ≤ q ≤ c

3
. (3.20)

In particular, the chiral primary carrying the maximal charge, q = c/3, is unique
and can be represented by the spectral flow operator with η = ±1:

Σ±1 = ei
√

c
3
H . (3.21)

Upon acting with the spectral flow operator Σ− on the chiral operators we obtain
the space Ho of ground states of the R sector with h = c/12 and −c/6 ≤ q ≤ c/6.
And acting twice with Σ− we get the space Ha of antichiral primary operators (again
in the NS sector), which are defined by

Ḡ(z)Φ(0) ∼ 0 , (3.22)

and carry conformal weight

h = −q
2
.

Note that the identity operator (with h = q = 0) is both chiral and antichiral.
The chiral and the antichiral operators share the property that there operator

product expansion is regular and the leading (constant) term incorporates only chiral
resp. antichiral operators: Let φi ∈ Hc(a), for i = 1, . . . , hc(a) := dim(Hc(a)), be a
basis of (anti)chiral operators, then

φi(z)φj(0) ∼ Cij
kφk(0) . (3.23)

2Strictly speaking Hc is the Hilbert space of chiral primary states. Due to the state-operator
isomorphism of conformal field theory we will loosely regard H as space of chiral primary operators.
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Since there are no operator product singularities between these fields, one can safely
take the limit z → 0. The product defined in this limit equips the (anti)chiral oper-
ators with a ring structure, which is called the (anti)chiral ring. The regular nature
of the operator product (3.23) implies that the chiral operators span a topological
subsector of the N = (2, 2) superconformal field theory. This statement will become
clearer later when we study the twist to topological field theories.

Until now all our considerations were restricted to one side of the N = (2, 2)
algebra. Taking into account both, the left- and the right-moving sector, the Hilbert
space can be decided into 4 sectors: NS-NS, NS-R, R-NS and R-R. In particular, the
chiral (c) and antichiral (a) rings combine in the NS-NS sector to c-c (a-a) operators,
called (anti)chiral, and to c-a (a-c) operators, called twisted (anti)chiral.

Mirror and U(1) automorphisms

The algebra (3.1) admits the automorphism group U(1) × Z2. The second factor is
the mirror automorphism given by

m(T ) = T ,

m(G) = Ḡ , (3.24)

m(Ḡ) = G ,

m(J) = −J ,

which looks pretty harmless on the level of the superconformal algebra. It has,
however, profound consequences in concrete realizations in Lagrangian field theories
— it lead to the mirror symmetry conjecture for Calabi–Yau manifolds. From the
first relation in (3.24) we infer that the conformal weight of operators does not
change under the mirror automorphism. The last line, however, implies that the
charge is inverted, which means, in particular, that chiral and antichiral operators
are exchanged.

When we act with the mirror automorphism on just one side of the algebra, say
the antiholomorphic part, the various (twisted) (anti)chiral operators transform as
follows:

c− c ↔ c− a ,
a− a ↔ a− c ,
c− a ↔ c− c ,
a− c ↔ a− a .

The twisted and the untwisted sectors are exchanged.
Besides the mirror automorphism, the algebra (3.1) admits a U(1) automor-

phism, which acts as phase on the fermionic currents:

G→ eiαG and Ḡ→ e−iαḠ . (3.25)

Both automorphisms will turn out essential when we subsequently study boundary
conditions for the N = (2, 2) algebra.
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3.2 Boundary conditions and boundary states

We will start in this section with a general discussion of boundary conditions and
the associated boundary states in a general CFT and thereafter apply this technique
on N = (2, 2) SCFT.

Let us consider a general CFT on the upper half plane, which contains the
holomorphic symmetry algebra AL generated by the stress-energy tensor T (z) and
some other currents:

W (z) =
∑

n∈Z

Wn

zn+hw
.

We choose the corresponding antiholomorphic symmetry algebra AR to be identical
to AL and set A := AL = AR. Therefore, the antiholomorphic sector contains
T̄ (z̄) and W̄ (z̄), so that the total symmetry algebra is A⊗A. In the presence of a
boundary one has to set conditions, which relate the two sector. In order to avoid
energy density flowing out of the boundary we have to demand

T (z) = T̃ (z̄) for z = z̄ , (3.26)

which shows that the total symmetry algebra A ⊗ A is broken by the boundary
conditions and the best we can hope for is to preserve one copy of A. Given an
automorphism Ω : A → A, which acts trivially on T (z), we can maintain A by the
boundary condition [21]:

W (z) = Ω(W̃ )(z̄) for z = z̄ . (3.27)

Now we want to find a (coherent) state |α
〉

in the closed string Hilbert space,
so that we can rewrite correlation functions on the upper half plane with boundary
conditions α in terms of correlation functions on the complex plane in the presence
of |α

〉

. The map can be constructed by taking advantage of the open-closed string
duality. Let us start with coordinates (z, z̄) on the upper half plane. A correlation
function of primary operators, which satisfy

φ(w, w̄) =

(

∂z

∂w

)h(
∂z̄

∂w̄

)h̄

φ(z, z̄) ,

and are inserted in the upper half plane, describes closed strings coupled to a D-
brane, which is characterized by the boundary condition α. The explicit expression
for the amplitude is

〈

φ1(z1, z̄1) . . . φN(zN , z̄N)
〉

α
. (3.28)

Now let us perform the map to the complex plane with coordinates (w, w̄). This
is done by the transformation [52]

w = e−2πi/βoz , w̄ = e2πi/βoz̄ , (3.29)
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where the upper half plane is mapped outside of the unit circle |w| = 1. Writting
w = et′+iσ′

, we see that the role of space and time was exchanged, i.e. t′ = 2π
βo
σ ∈

[0, 2π2/βo] and σ′ = −2π
βo
t ∼ σ′ + 2π, so that we clearly describe a closed string

process in these coordinates. The upper half plane is mapped outside of the unit
circle |w| = 1.

Since we want to describe the correlation function (3.29) purely in closed string
terms we have to implement the boundary conditions (3.26) and (3.27) on some
state |α

〉〉

in the closed string Hilbert space. For that we perform the conformal
transformation (3.29) of the current W (z) and expand the current in terms of its
oscillator modes, so that we obtain

(

whw

∑

n∈Z

Wn

wn+hw
− (−w̄)hw

∑

n∈Z

Ω(W̃n)

w̄n+hw

)

|α
〉〉

= 0 for |w| = 1 .

Since this equation must be true for all w subject to the condition |w| = 1 we infer
the Ishibashi conditions [53]:

Wn − (−)hwΩ(W̃−n)
∣

∣α
〉

Ω
= 0 , (3.30)

Ln − L̃−n

∣

∣α
〉

Ω
= 0 .

Comparing the relations for boundary conditions (3.27) and boundary states (3.30)
we recognize an additional sign factor (−)hw in (3.30). This sign has a natural
generization for operators with half integer conformal weight, i.e., (−)hw → e±iπhw .
The additional sign corresponds to a choice of spin structure.

In view of the state
∣

∣α
〉

the correlation function (3.28) can be written as:

〈

φ1(z1, z̄1) . . . φN(zN , z̄N)
〉

α
=
〈

φ1(w1, w̄1) . . . φN(wN , w̄N)
∣

∣α
〉

.

Given an irreducible highest weight representation Hi of A, Ishibashi found
in [53] an (up to an overall factor) unique solution for the condition (3.30). Let
{
∣

∣ i, N
〉

}N∈Z be an orthonormal basis of Hi, then the corresponding Ishibashi state

∣

∣ i
〉〉

Ω
:=
∑

N

∣

∣ i, N
〉

⊗ UVΩ

∣

∣ i, N
〉

(3.31)

solves the Ishibashi conditions (3.30). U is an anti-unitary operator, which acts on
W̃n through

UW̃n = (−)hwW̃−nU , (3.32)

and VΩ : Hi → Hω(i) is an isomorphism, which is induced by the automorphism
Ω, and commutes with U . Relation (3.32) means that U maps to the conjugate
representation U : Hi → Hi† and therefore

∣

∣ i
〉〉

couples to the closed Hilbert space
Hi ⊗Hω(i)† . In a concrete theory an Ishibashi state can only appear if Hi ⊗Hω(i)†

is part of the closed string Hilbert space H =
⊕

i,̄ıNīı Hi ⊗Hı̄.
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A priori we could take all possible linear combinations of Ishibashi states in
order to form boundary states

∣

∣α
〉

, i.e.,

∣

∣α
〉

:=
∑

i

Bα
i
∣

∣ i
〉〉

. (3.33)

However, besides the constraints (3.30), which implement the boundary conditions,
Cardy has found a quite powerful constraint on the possible linear combinations
(3.33), which stems from the modular invariance of the cylinder amplitude [54]:
The amplitude of a closed string exchange between two boundary states

∣

∣α
〉

and
∣

∣ β
〉

should be the same as an open string one-loop amplitude

Zαβ(qo) := TrHαβ
qL

(o)
0 −c/24

o =
∑

i

ni
αβχi(qo) ,

where qo = e−2πt. In the last expression Zαβ(qo) was expanded into the characters

χi(qo) = TrHi
q

L
(o)
0 −c/24

o of irreducible representations of A. ni
αβ are positive integers

counting the multiplicity of the representation Hi in the Hilbert space of open strings
stretched between D-branes characterized through boundary conditions α and β.
The Cardy relation can be written as

Zαβ(qo) =
〈

α
∣

∣q1/2(L
(c)
0 )+L̄

(c)
0 )−c/12

c

∣

∣β
〉

, (3.34)

where qc = e−2π/t.
Inserting a complete set of Ishibashi states on the right-hand side of (3.34) and

using the orthonormality relation

〈〈

i
∣

∣q1/2(L
(c)
0 )+L̄

(c)
0 )−c/12

c

∣

∣ j
〉〉

= δijχi(qc) ,

as well as the expansion (3.33), the right-hand side of (3.34) can be recast as:

∑

i

(Bi
α)∗Bβ

iχi(qc) .

As final manipulation we use the modular transformation of the character χi(qc)
under t→ 1

t
, i.e.,

χi(qc) =
∑

j

Si
jχj(qo) ,

and obtain the Cardy relation in its final form [54]:

∑

i

(Bi
α)∗Bβ

iSi
j = nj

αβ . (3.35)

The coefficients Bβ
i of a boundary states must provide a solution to this equation,

so that nj
αβ are positive integers, which count representations in the open string

sector.
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3.3 A-type and B-type D-branes

After these general preparations we study BPS branes of N = (2, 2) SCFT, which
preserve one copy of the superconformal algebra (3.1). They come in two different
types: A-branes and B-branes. The notation, A and B, was introduced in [20] and
is related to the topological twisting of the N = (2, 2) SCFT.

We start with the A-branes, which satisfy boundary conditions twisted by the
mirror automorphism (3.24), i.e., the A-type boundary conditions:

T (z) = m(T̃ (z̄)) = T̃ (z̄) ,

G(z) = m(G̃(z̄)) = κ∗ ˜̄G(z̄) ,

Ḡ(z) = m( ˜̄G(z̄)) = κ G̃(z̄) ,

J(z) = m(J̃(z̄)) = −J̃(z̄) ,

for z = z̄ . (3.36)

The phase factor κ = eiϕ accounts for the additional U(1) automorphism group
acting as a phase on the fermionic currents of (3.1) and leaves the freedom of choosing
a spin structure [21]. Single-valuedness of the correlation functions requires that the
difference of phases is always an integer and therefore we can fix

κ = (−)s for s ∈ Z .

Let us investigate the spectrum of chiral primary operators, which are consistent
with (3.36). The equations for the stress-energy tensor and the U(1) current descend
to h = h̃ resp. q = −q̃ on states. This implies, in particular, that c − a and a − c
ring elements are compatible with the A-type boundary conditions in the sense
that they exist on the boundary as (anti)chiral operators with conformal weight
hb = h + h̃ = 2h and charge qb = q − q̃ = ±2hb, whereas c − c and a − a elements
do not.

For the associated A-type Ishibashi states the boundary conditions (3.36) imply
the following relations:

(

Ln − L̃−n

)

∣

∣ i
〉〉

A
= 0 ,

(

Gn + (−)si ˜̄G−n

)

∣

∣ i
〉〉

A
= 0 ,

(

Ḡn + (−)siG̃−n

)

∣

∣ i
〉〉

A
= 0 ,

(

Jn − J̃−n

)

∣

∣ i
〉〉

A
= 0 .

(3.37)

Compared to the boundary conditions (3.36) we have a sign-flip in the condition
(3.37) for the U(1) current. Therefore, the A-type Ishibashi states incorporate
Ishibashi states associated to c− c and a− a representations of H but not c− a and
a − c representations. Given the set of Ishibashi states {

∣

∣ i
〉〉

A
} one can then form

the A-type boundary states

∣

∣α
〉

A
=
∑

i

B(A)
α

i
∣

∣ i
〉〉

A
, (3.38)
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c-c, a-a c-a, a-c

A boundary condition ×
Ishibashi state ×

B boundary condition ×
Ishibashi state ×

Table 3.1: Compatibility of elements in the (anti)chiral and twisted (anti)chiral ring
with boundary conditions and boundary states.

where the coefficients B
(A)
α

i are subject to the Cardy relation (3.35).
The second class of BPS branes, the B-branes, is associated to the trivial auto-

morphism (up to the sign for the fermionic currents):

T (z) = T̃ (z̄) ,

G(z) = (−)sG̃(z̄) ,

Ḡ(z) = (−)s ˜̄G(z̄) ,

J(z) = J̃(z̄) ,

for z = z̄ . (3.39)

The associated B-type Ishibashi states are subject to the constraints:

(

Ln − L̃−n

)

∣

∣ i
〉〉

B
= 0 ,

(

Gn + (−)siG̃−n

)

∣

∣ i
〉〉

B
= 0 ,

(

Ḡn + (−)si ˜̄G−n

)

∣

∣ i
〉〉

B
= 0 ,

(

Jn + J̃−n

)

∣

∣ i
〉〉

B
= 0 .

(3.40)

The relations to the (anti)chiral and twisted (anti)chiral ring elements of the bulk
theory are now exactly the other way round: The boundary conditions (3.39) admit
c − c and a − a elements on the boundary and the B-type Ishibashi states include
the representations c− a and a− c, but not c− c and a− a. The B-type boundary
states can be written as:

∣

∣α
〉

B
=
∑

i

B(B)
α

i
∣

∣ i
〉〉

B
. (3.41)

Table (3.1) provides a collection of all the relations between BPS sectors and
boundary conditions or boundary states.

3.4 Non-linear sigma models

We turn now to the discussion of explicit Lagrangian realizations of N = (2, 2)
superconformal algebras and the associated D-branes. A quite important class of
theories are non-linear sigma models on Calabi-Yau 3-folds. In the following we
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will introduce the field content of such theories in terms of the (2, 2)-superspace
formalism in two dimensions.

The superspace is spanned by two bosonic coordinates (σ0, σ1) (or in complex
coordinates:3 z = σ0 + iσ1) and four fermionic coordinates θ±, θ̄± (with (θ±)† = θ̄±).
We define our theory on the upper half plane Σ with σ0 ∈ R and σ1 ∈ [0,∞).
The world sheet metric has Euclidean signature and is flat. The supercharges and
covariant derivatives are represented by

Q± =
∂

∂θ±
+ θ̄±

∂

∂z±
, Q̄± = − ∂

∂θ̄±
− θ±

∂

∂z±
, (3.42)

and

D± =
∂

∂θ±
− θ̄±

∂

∂z±
, D̄± = − ∂

∂θ̄±
+ θ±

∂

∂z±
. (3.43)

They satisfy the supersymmetry algebra

{Q+, Q̄+} = −2∂ , {D+, D̄+} = 2∂ , (3.44)

{Q−, Q̄−} = −2∂̄ , {D−, D̄−} = 2∂̄ ,

In the non-linear sigma model we introduce a chiral and an antichiral superfield
Φ and Φ̄, i.e., D̄±Φ = 0 and D±Φ̄ = 0. The expansion in component fields reads

Φ(y±, θ±) = φ(y±) + θ+ψ+(y±) + θ−ψ−(y±) + θ+θ−F (y±) ,

where y± = z±−θ±θ̄±. If we set

δ = ǫ+Q− − ǫ−Q+ − ǭ+Q̄− + ǭ−Q̄+ , (3.45)

the variations of the fields take the form

δφ = +ǫ+ψ− − ǫ−ψ+ ,

δψ+ = +2ǭ−∂φ+ ǫ+F ,

δψ− = −2ǭ+∂̄φ+ ǫ−F ,

δφ̄ = −ǭ+ψ̄− + ǭ−ψ̄+ ,

δψ̄+ = −2ǫ−∂φ̄ + ǭ+F̄ ,

δψ̄− = +2ǫ+∂̄φ̄+ ǭ−F̄ .

(3.46)

In terms of the chiral and antichiral superfields one can build two supersymmetric
contributions for the action. The D-term is a superspace integral of the Kähler
potential of the Calabi–Yau, K(Φ, Φ̄):

∫

Σ

d2zd4θK(Φ, Φ̄) . (3.47)

The F -term, or superpotential term, can be written only in terms of chiral fields.
However, non-linear sigma models do not incorporate an F -term. Performing the

3We occasionally use z± = σ0 ± iσ1 instead of z and z̄.
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integration over the Grassmann variables we obtain the action in terms of component
fields:

Skin =

∫

Σ

d2z

{

−gi̄(∂φ
i∂̄φ̄ + ∂̄φi∂φ̄) +

1

2
gi̄ψ̄

̄
−
↔
Dzψ

i
−+ (3.48)

+
1

2
gi̄ψ̄

̄
+

↔
Dz̄ψ

i
+ +Rīıj̄ψ

i
+ψ

j
−ψ̄

ı̄
−ψ̄

̄
+

}

,

where we used the algebraic equation of motion

F i = Γi
jkψ

j
+ψ

k
− .

The derivative Dz is the pull-back of the covariant derivative in spacetime to the
world sheet, explicitly it reads

Dzψ
i
− = ∂ψi

− + ∂φjΓi
jkψ

k
− .

Upon variation of the action the fermionic fields obtain a first order differential
equation as equation of motion and, therefore, require half the number of boundary
conditions as compared to bosonic fields. Therefore, it will turn out convenient to
introduce an additional boundary term:

Sb =
i

2

∫

∂Σ

dτ gi̄(ψ̄
̄
−ψ

i
+ − ψ̄̄

+ψ
i
−) . (3.49)

In order to provide a closed N = (2, 2) supersymmetric algebra the field theory
(3.47) has to be invariant under left- and right-moving U(1) R-symmetries. On
superspace the R-symmetry acts on the superspace coordinates in the following
way:

θ+ → eiα+θ+ θ+ → θ+

θ̄+ → e−iα+ θ̄+ θ̄+ → θ̄+

θ− → θ− θ− → eiα−θ−

θ̄− → θ̄− θ̄− → e−iα− θ̄−

(3.50)

Note that the integration measure d2zd4θ is invariant under these transformations.
If we associate vanishing R-charges to the superfield Φ via

Φ(z, z̄, θ±, θ̄±) → Φ(z, z̄, eiα±(θ±), e−iα±(θ̄±))) = Φ(z, z̄, θ±, θ̄±) ,

we obtain the R-charges for the component fields listed in table (3.2), where the
U(1) action on an arbitrary field, which carrys charges q+ and q−, is given by

Rα±
(O) = e−iα±q±O .

The vector and axial R-charge is defined by qV = q+ + q− and qA = q+ − q−,
respectively.
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q+ q− qV qA

ψi
+ 1 0 1 1
ψ̄̄

+ −1 0 −1 −1
ψi
− 0 1 1 −1
ψ̄̄
− 0 −1 −1 1

Table 3.2: The U(1) R-charges of the components fields in the non-linear sigma
model. The vector and axial charges are given by qV = q+ + q− and qA = q+ − q−.

Before we turn to the analyses of the boundary conditions we state the explicit
form of the N = (2, 2) currents, which fulfil the operator product algebra (3.1).
These can be evaluated by means of the Noether procedure. If there was no bound-
ary, the left and right U(1) currents corresponding to the R-symmetries are

J = gi̄ψ
i
+ψ̄

̄
+ , J̃ = gi̄ψ

i
−ψ̄

̄
− . (3.51)

The supercurrents are give by the expressions

G = gi̄ψ
i
+∂φ̄

̄ , Ḡ = gi̄ψ̄
̄
+∂φ

i ,

G̃ = gi̄ψ
i
−∂̄φ̄

̄ , ˜̄G = gi̄ψ̄
̄
−∂̄φ

i ,
(3.52)

and the stress-energy tensor reads

T = −gi̄

(

∂φi∂φ̄̄ − 1
2
ψi

+

↔
Dzψ̄

̄
+

)

,

T̃ = −gi̄

(

∂̄φi∂̄φ̄̄ − 1
2
ψi
−
↔
Dz̄ψ̄

̄
−
)

.
(3.53)

Boundary conditions

Now we turn to the investigation of supersymmetric boundary conditions of (3.48)
and (3.49). The variation of the action gives rise to the constraints

gi̄

(

δφi∂1φ̄
̄ + δφ̄̄∂1φ

i
)

= 0 , (3.54)

gi̄

(

(ψ̄̄
+ − ψ̄̄

−)(δψi
+ + δψi

−) − (δψ̄̄
+ + δψ̄̄

−)(ψi
+ − ψi

−)
)

= 0 , (3.55)

on the boundary, which can be solved in different ways.
If we wish to formulate our theory on a world sheet with boundary, one recognises

first that the translation symmetry normal to the boundary is broken and, therefore,
at least half of the supersymmetry is broken [20,55], so that the four supersymmetry
parameters of (3.46) reduce to two parameters. In order to find out which super-
symmetries remain unbroken, we perform a supersymmetry transformation of the
action and find the boundary term:

δ(Skin + Sb) = − i

2

∫

dτ
{

−(ǫ+ + ǫ−)gi̄∂φ̄
̄ψi
− − (ǫ− + ǫ+)gi̄∂̄φ̄

̄ψi
+ + (3.56)

+(ǭ+ + ǭ−)gi̄∂φ
iψ̄̄
− + (ǭ− + ǭ+)gi̄∂̄φ

iψ̄̄
+

}

.
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From (3.56) it is apparent that there are two types of supersymmetries which can
be maintained in the presence of a boundary:

(i) The A-type boundary condition relates the SUSY parameters such that

ǫ := ǫ− = ǭ+ , (3.57)

ǭ := ǭ− = ǫ+ .

From (3.45) we find that the unbroken supersymmetries are then given by

QA = Q+ + Q̄− , and Q̄A = Q̄+ +Q− . (3.58)

and the transformations (3.46) become

δφi = +ǭψi
− − ǫψi

+ ,

δψi
+ = +2ǭ∂φi + ǭF i ,

δψi
− = −2ǫ∂̄φi + ǫF i ,

δφ̄̄ = −ǫψ̄̄
− + ǭψ̄̄

+ ,

δψ̄̄
+ = −2ǫ∂φ̄̄ + ǫF̄ ̄ ,

δψ̄̄
− = +2ǭ∂̄φ̄̄ + ǭF̄ ̄ .

(3.59)

The dependence on ǫ and ǭ forces us to relate the fermionic fields ψi
− and ψ̄̄

+ (as well
as ψ̄̄

− and ψi
+). By supersymmetry transformation the conditions on the bosonic

fields are also determined. We obtain:

∂0φ
i − Ri

̄∂0φ
̄ = 0 ,

∂1φ
i +Ri

̄∂1φ
̄ = 0 ,

ψi
− − Ri

̄ψ̄
̄
+ = 0 , (3.60)

ψi
+ − Ri

̄ψ̄
̄
− = 0 ,

where ∂0 and ∂1 are tangent and normal to the boundary of the world sheet, respec-
tively. The requirement that (3.56) vanishes when we insert ǫ and ǭ gives:

gi̄R
i
l̄(R
∗)̄

m = gml̄ . (3.61)

Ri
̄ satisfies, moreover, Ri

̄(R
∗)̄

l = δi
l, which tells us that Ri

̄ has full rank.
If we take the boundary conditions (3.60) and plug them into the currents (3.51–

3.53), we find that they indeed satisfy the A-type boundary conditions (3.36).
In order to find out what kind of submanifold γA the relations (3.60) define, it

is convenient to combine the fields in the following way: φI := (φi, φ̄)T , ψI
−,± :=

(ψi
−,±ψ̄̄

+)T , ψI
+,± := (ψi

+,±ψ̄̄
−)T ; and we define:

RI
J :=

(

0 Ri
̄

(R∗)l̄
m 0

)

.

This matrix satisfies R−1 = R and, therefore, has only eigenvalues ±1. In defining
the projection operator,

P± :=
1

2
(11 ±R) , (3.62)
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the boundary conditions (3.60) can be rewritten as:

(P−∂0φ)J = 0 ,

(P+∂1φ)J = 0 , (3.63)

(P±ψ · ,∓)
J = 0 .

This means that P− projects on the normal bundle to the submanifold γA and P+

projects to the tangent bundle. Since Ri
̄ has full rank we find that the supersym-

metric cycle γA is middle-dimensional, i.e., on a Calabi-Yau 3-fold the cycle is (real)
3-dimensional; and condition (3.61) implies that the pull-back of the Kähler form
ωIJ to the submanifold vanishes, i.e., in terms of the projectors (3.63) we have:

ωIJ P
I
+M P J

+N = 0 , (3.64)

which tells us that γA is a middle-dimensional Lagrangian submanifold.
What happens if we include a B-field, i.e., the term

SB = −i
∫

Σ

Bi̄∂φ
i∂̄φ̄ . (3.65)

N = (2, 2) supersymmetry in the bulk requires that B is a closed form. The effect of
the boundary is an additional contribution to the variation terms (3.54) and (3.55)
and the supersymmetric variations (3.59) give rise to the boundary term:

i

2

∫

∂Σ

dσ0
(

ǭψI
−,+ − ǫψI

+,+

)

BIJ∂0φ
J . (3.66)

Going through the above procedure, i.e., checking compatibility of the boundary
conditions with supersymmetry, we obtain the result that the B-field must vanish
on γA. Similarly to (3.64) this can be written as:

BIJ P
I
+M P J

+N = 0 . (3.67)

In view of the fact that the B-field is nothing else but the complexification of the
Kähler form on the Calabi-Yau manifold this result is not very surprising.

An inclusion of a U(N) gauge field A on γA is taken into account by the Wilson
line:

P∂Σ exp

(

−
∫

∂Σ

dσ0∂0φ
IAI(φ)

)

. (3.68)

For the U(1) factor the field strengh combines with the pull-back of the B field to
the gauge-invariant quantity F = B|γA

+ FU(1). This implies that not B|γA
alone

must vanish, but rather:
F = 0 . (3.69)

The condition on the non-abelian SU(N) part is derived by varying (3.68) and gives
rise to a term similar to (3.66). Therefore, we get the condition that the non-abelian
gauge field ASU(N) on γA is flat, i.e.,

FSU(N) = 0 . (3.70)
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Subsequently, we will refer to the non-abelian part of the gauge field strengh as
F , understanding that the abelian part is contained in F . All-in-all we found the
following important result [23]:

A supersymmetric A-cycle on a Calabi-Yau manifold X is a middle-dimensional
Lagrangian submanifold γA with a flat non-Abelian gauge bundle, F = 0, and
F = B|γA

+ FU(1) = 0.

(ii) The B-type boundary condition has the parameters

ǫ := ǫ− = −ǫ+ , (3.71)

ǭ := ǭ− = −ǭ+ ,

so that the unbroken supercharges are given by

QB = Q+ +Q− , and Q̄B = Q̄+ + Q̄− . (3.72)

Because of our choice of ǫ and ǭ, equation (3.56) vanishes immediately and we do not
have to care about it anymore. The B-type supersymmetry transformations become

δφi = −ǫηi ,

δηi = 2ǭ∂0φ
i ,

δθi = 2iǭ∂1φ
i − 2ǫF i ,

δφ̄̄ = ǭη̄̄ ,

δη̄̄ = 2ǫ∂0φ̄
̄ ,

δθ̄̄ = 2iǫ∂1φ̄
̄ − 2ǭF̄ ̄ ,

(3.73)

where ηi = ψi
++ψi

− and θi = ψi
+−ψi

−. In order to formulate the boundary conditions
we introduce two projectors on the holomorphic tangent bundle that divide the latter
into a direct sum of subbundles, i.e., for a Calabi-Yau 3-fold, let Pm and P3−m be the
projectors such that (P (t))i

j +(P (n))i
j = δi

j and P (t) projects onto a m-dimensional
subvector space on the fibre. Then the boundary terms (3.54) and (3.55) as well as
consistency with the supersymmetry transformations (3.73) requires:

(P (n)∂0φ)j = (P ∗(n)∂0φ̄)̄ = 0 ,

(P (n)η)j = (P ∗(n)η̄)̄ = 0 , (3.74)

(P (t)∂1φ)j = (P ∗(t)∂1φ̄)̄ = 0 ,

(P (t)θ)j = (P ∗(t)θ̄)̄ = 0 .

The projector P (t) maps to the tangent direction, whereas P (n) maps to the normal
bundle. In order to satisfy (3.55) we require also

gi̄(P
(t))i

m(P ∗(n))̄
l̄ = gi̄(P

(n))i
m(P ∗(t))̄

l̄ = 0 (3.75)

These boundary conditions define a (complex) m-dimensional holomorphic subman-
ifold γB.
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If we take the boundary conditions (3.74) and plug them into the currents (3.51–
3.53), we find that they satisfy the B-type boundary conditions (3.39).

Including the B field as well as the gauge field on the holomorphic submanifold is
straight forward; in particular, since the B-field is the complexification of the Kähler
form, we have a similar relation to (3.75). The gauge field strength on the boundary
defines a complex structure, i.e., F (2,0) = F (0,2) = 0. And the U(1) part combines
with B to the gauge-invariant quantity F = B|γB

+FU(1), where F (2,0) = F (0,2) = 0.
We have established the following result [23]:

A supersymmetric B-cycle on a Calabi-Yau manifold X is a holomorphic submanifold
γB with a holomorphic structure defined by the non-Abelian gauge field A, i.e.,
F (2,0) = 0, and the U(1) part satisfies F (2,0) = 0.

3.5 Landau–Ginzburg models

In Landau–Ginzburg models the D-term (3.47) is accompanied by the F -term

∫

Σ

d2zd2θW (Φ) + c.c. . (3.76)

In order to have a nontrivial holomorphic potential we choose the target space to be a
non-compact Calabi–Yau manifold. From the transformation of the measure d2zd2θ
under the U(1) transformations (3.50) we find that the Landau–Ginzburg theory is
invariant under R-symmetry only if the superpotential W (Φi) is quasi-homogeneous,
i.e.,

W (λωiΦi) = λW (Φi) , (3.77)

where ωi are some fractional numbers. The theory is invariant under R-symmetry
if the superfields transform in the following way:

Φi(z, z̄, θ±, θ̄±) → e−iα±ωiΦi(z, z̄, eiα±(θ±), e−iα±(θ̄±))) = e−iα±ωiΦi(z, z̄, θ±, θ̄±) .

The component fields have therefore the charges, which are listed in table (3.3).
Additionally, we can associate scaling dimensions d = h + h̄ and spins s = h − h̄
to the fields, where h and h̄ are the left- and right-moving conformal weights, when
the theory is conformal invariant. The conformal weights (h, h̄) of z and z̄ are
(−1, 0) and (0,−1), respectively. Therefore, θ+, θ̄+ have (−1/2, 0) and θ−, θ̄− have
(0,−1/2). Then the conformal dimensions of the superfields Φi are determined
by a quasi-homogeneous superpotential (3.77) and are given by (ωi/2, ωi/2). The
conformal weights of the component fields are also listed in table (3.3).

The additional superpotential term (3.76) does not alter the off-shell supersym-
metry transformations (3.46); however, the algebraic equation of motion for the
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(h , q+) (h̄ , q−) (d , qV ) (s , qA)

φi (ωi

2
, ωi) (ωi

2
, ωi) (ωi , 2ωi) (0 , 0)

φ̄̄ (ωi

2
, −ωj) (ωi

2
, −ωj) (ωi , −2ωj) (0 , 0)

ψi
+ (ωi+1

2
, ωi + 1) (ωi

2
, ωi) (ωi + 1

2
, 2ωi + 1) (1

2
, 1)

ψ̄̄
+ (ωi+1

2
, −ωj − 1) (ωi

2
, −ωj) (ωi + 1

2
, −2ωj − 1) (1

2
, −1)

ψi
− (ωi

2
, ωi) (ωi+1

2
, ωi + 1) (ωi + 1

2
, 2ωi + 1) (−1

2
, −1)

ψ̄̄
− (ωi

2
, −ωj) (ωi+1

2
, −ωj − 1) (ωi + 1

2
, −2ωj − 1) (−1

2
, 1)

Table 3.3: The U(1) R-charges and conformal weights of the components fields in
Landau–Ginzburg models (d = h+ h̄ and s = h− h̄).

auxiliary field F i becomes

F i = Γi
jkψ

j
+ψ

k
− − 1

2
gi̄∂̄W̄ , (3.78)

and the action (3.48) obtains the additional term

Spot =

∫

Σ

d2z

{

−1

4
gi̄∂̄W̄∂iW − 1

2
ψi

+ψ
j
−Di∂jW − 1

2
ψ̄ ı̄

+ψ̄
̄
−Dı̄∂̄W̄

}

(3.79)

A N = (2, 2) supersymmetry variation of (3.79) together with (3.48) and (3.49)
gives, in addition to (3.56), the boundary term

− i

4

∫

Σ

dσ0
{

(ǫ− − ǫ+)(ψ̄̄
− + ψ̄̄

+)∂̄W̄ + (ǭ− − ǭ+)(ψi
− + ψi

+)∂iW
}

. (3.80)

Let us examine what conditions we get for the Landau–Ginzburg potential W when
we apply the A- and B-type boundary conditions.

(i) For the A-type boundary conditions with the supersymmetry parameters
defined in (3.57) the boundary term (3.80) becomes

− i

4

∫

Σ

dσ0(ǫ− ǭ)
{

(ψ̄̄
− + ψ̄̄

+)∂̄W̄ + (ψi
− + ψi

+)∂iW
}

. (3.81)

Using the A-type boundary conditions (3.60) we find the restriction ∂̄W̄ = Ri
̄∂iW ,

which can be expressed in terms of the projector P+ as

P J
+I∂J(W − W̄ ) = 0 . (3.82)

Since P+ is a projector into the direction tangent to the Lagrangian submanifold
γA, this means that ImW is constant along γA, or otherwise stated [23]:4

4One may ask whether it is possible to introduce a boundary term containing bulk fields, which
cancels (3.81); a comparison with the A-type transformations (3.59) shows immediately that this
is not possible. One could try to introduce new boundary degrees of freedom in order to get rid of
(3.81), but this was not considered in the literature so far.
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Given a non-compact Calabi–Yau n-fold X and a Landau–Ginzburg potential W ,
the image of a Lagrangian submanifold γA in the W -plane has to be a straight line.

(ii) For the B-type boundary conditions of Landau–Ginzburg models we will
find a very rich structure which is due to the appearance of additional degrees of
freedom on the boundary of the world-sheet. In view of the parameters (3.71) the
boundary term (3.80) becomes

− i

2

∫

Σ

dσ0
{

ǭηi∂iW + ǫη̄̄∂̄W̄
}

. (3.83)

Using the B-type boundary conditions (3.74) one is lead to the conclusion that W
must be constant along the holomorphic submanifold γB, i.e.,

(P (t))i
j∂jW = 0 . (3.84)

This is due to the fact that we cannot introduce an appropriate counter term con-
taining only bulk fields on the boundary.

A quite elegant way to come around condition (3.84) was introduced in [55] and
further investigated in [47, 58, 60]. It amounts to introducing additional fermionic
supermultiplets on the boundary that are capable of compensating the term (3.83).
In order to construct these multiplets we use superspace notation. We investigate
first how the superspace and the bulk multiplet (3.45) are altered in view of super-
symmetry breaking.

As a result of the B-type boundary conditions the unbroken superspace is spanned
by θ0 = 1/2(θ−+θ+) and θ̄0 = 1/2(θ̄−+θ̄+), so that B-type supercharges (3.72) can
be represented by

QB =
∂

∂θ0
+ iθ̄0 ∂

∂σ0
and Q̄B = − ∂

∂θ̄0
− iθ0 ∂

∂σ0
. (3.85)

If we try to encode the B-type supersymmetry transformations (3.73) in terms of
superfields we see that the chiral multiplet Φi of the bulk theory rearrange into a
bosonic and a fermionic multiplet Φ′i resp. Θ′i. The bosonic superfield Φ′i containing
φi and ηi turns out to be chiral, i.e., D̄B Φ′i = 0. The fields θi and F i do not form a
chiral multiplet, but rather combine into the fermionic superfield Θ′i which satisfies
D̄B Θ′i = 2i∂1Φ

′i. In components we have:5

Φ′i(y0, θ0) = φi(y0) + θ0ηi(y0),

Θ′i(y0, θ0, θ̄0) = θ(y0) − 2θ0F i(y0) − 2i θ̄0
[

∂1φ
i(y0) + θ0∂1η

i(y0)
]

, (3.86)

where y0 = σ0 − θ0θ̄0.

5The splitting of the bulk multiplet occurs of course in any N = (2, 2) supersymmetric theory;
for example in non-linear sigma models.
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Now we are prepared to solve the problem of finding a compensation for expres-
sion (3.83) on the boundary; this issue was raised in [55] and is known as Warner
problem. The solution goes as follows: We introduce a collection of boundary
fermionic superfield ΠA for I = 1 . . . N , which are not chiral but rather satisfies
D̄B ΠA = EA(Φ′). This multiplet has the expansion

ΠA(y0, θ0, θ̄0) = πA(y0) + θ0 lA(y0) − θ̄0
[

EA(φ) + θ0ηl(y0)∂lE
A(φ)

]

. (3.87)

Its component fields transform as:

δπA = ǫlA − ǭEA(φ) ,

δlA = −2ǭ∂0π
A + ǭηl∂lE

A(φ),

δπ̄A = ǭl̄A − ǫĒA(φ̄) ,

δl̄A = −2ǫ∂0π̄
A − ǫη̄ l̄∂̄l̄Ē

A(φ̄) .
(3.88)

Similar to the bulk theory we can build two terms for the action, i.e.,

S∂Σ = − i

2

∫

dσ0d2θ0 Π̄A ΠA +
1

2

∫

∂Σ

dσ0dθ0 ΠAJA(Φ′) |θ̄0=0 + c.c. . (3.89)

Using the algebraic equation of motion lA = −iJ̄A, the boundary action reads

S∂Σ =
1

2

∫

dx0
{

−iπ̄A
↔
D0π

A

− JAJ̄A + iπAηl∂lJ
A + iπ̄Aη̄ l̄∂̄l̄J̄

A + (3.90)

+ EAĒA + π̄Aηl∂lE
A − πAη̄ l̄D̄l̄Ē

A
}

,

and the variation of the boundary fermion π reduces to

δπA = −iǫJ̄A(φ̄) − ǭEA(φ) ,

δπ̄A = +iǭJA(φ) − ǫĒA(φ̄) .
(3.91)

The kinetic term in (3.89) is supersymmetric by construction, whereas the po-
tential term containing JA is not, which is due to the non-chirality of ΠA. Rather,
the transformation of (3.90) generates

δS∂Σ =
i

2

∫

∂Σ

dσ0
{

ǫη̄ l̄∂l̄(Ē
AJ̄A) + ǭηl∂l(E

AJA)
}

. (3.92)

This is exactly what we need in order to compensate (3.83). We come to the con-
clusion that the whole action is invariant under supersymmetry iff [60]

W = EAJA + const. . (3.93)

This equation will play an essential role when we try to deform the Landau–Ginzburg
theory in terms of chiral ring elements; equation (3.93) relates the moduli in the bulk
superpotential W (φ) to the moduli in the boundary potentials JA(φ) and EA(φ).



Chapter 4

Topological conformal field
theories

Topological field theories [61] serve as a bridge between physics and mathematics in
numerous examples (see [62] and references therein). For instance, topological sigma
models were used to compute invariants of complex manifolds [63]; or correlation
functions of Wilson line operators in Chern–Simons theory encode Jones polynomials
of knot theory [64].

In this chapter we will introduce the most basic definitions of 2-dimensional
topological conformal field theories with special emphasise to effects coming from
the presence of a boundary. The content will serve as basis for the subsequent
chapters 5 – 8.

After introducing (general) topological field theories in section 4.1, we specialise
in section 4.2 to topological conformal field theory in 2 dimensions. The latter
are then the main topic for the remainder of this thesis. In sections 4.3 we define
physical operators and their descendants for the bulk (closed string) theory [61,63].
Thereafter, in section 4.4 we apply the knowledge from section 3.2 and study the
possible boundary conditions. Like in the bulk one can introduce physical operators
and descendants on the boundary. In particular, we will find two types of physical
boundary operators [54]: boundary condition preserving operators, which corre-
spond to open strings ending on a single D-brane, and boundary condition changing
operators, which correspond to open strings stretched between two D-branes.

4.1 Definition of topological field theories

A topological quantum field theory (TQFT) defined on a manifold M is charac-
terised by the requirement that the correlation functions of a certain class of op-
erators, which we call physical operators does not depend on the metric on M.
Specifying a basis of physical operators, Oi ∈ Hphys, the correlation functions

〈

Oi1 . . .Oin

〉

Σ

34
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are constants depending only on the labels, i1, . . . , in, and on the topology of Σ.
However, for a realization of a TQFT in terms of a Lagrangian we need to specify a
metric gab on Σ, which leads to a non-vanishing stress-energy tensor Tab. In order to
implement the independence of correlation functions of gab, the stress-energy tensor
must decouple by some symmetry mechanism.

As it was shown in [61] the symmetry that is responsible for the decoupling of
Tab is generated by a nilpotent fermionic operator Q, i.e.,1

Q2 = 0 . (4.1)

The space Hphys of physical operators is defined as the cohomology of Q:

Hphys =
kerQ

imQ
. (4.2)

The crucial point in a TQFT is the property that the stress-energy tensor is
Q-exact,

Tab = [Q,Gab] . (4.3)

Since correlation functions of physical operators do not depend onQ-exact terms, the
stress-energy tensor (4.3) decouples, which implies the independence of the metric
gab.

There are two kinds of TQFTs and we will discuss examples of both types [62].
(i) A topological field theory of Schwarz type has the total action

S(Φ, g) = S0(Φ) + [Q, V (Φ, g)] ,

where Φ denotes the field content.
(ii) The second kind is referred to as TQFT of Witten type. In a sense this is a
special case of the Schwarz type, where S0(Φ) = 0, so that

S(Φ, g) = [Q, V (Φ, g)] .

Since S0 is independent of the metric gab, it follows immediately that in both
cases the stress-energy tensor is given by

Tab = [Q,
1√
g

δV

δgab
] . (4.4)

4.2 Topological conformal algebra

We specialise now to topological conformal field theories (TCFT) in 2 dimensions,
which amounts to the requirement that the stress-energy tensor is traceless, T a

a = 0,

1In general, it is sufficient to require that Q squares to a global symmetry of the TQFT. We
will, however, be concerned only with TQFTs, which satisfy (4.1).
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so that the symmetry algebra splits into a left- and right-moving part. In partic-
ular, the Q-symmetry charge splits into a left- and right-moving part Q0 and Q̃0,
respectively. The stress-energy tensor can be written as

T (z) = [Q0, G(z)] ;

a similar relation exists for the right-moving sector. Moreover, Q0 is the zero mode
of a fermionic current Q(z) of conformal weight 1. Closure of the symmetry algebra,
which is generated by T (z), G(z) and Q(z), requires a U(1) current J(z). The mode
expansions of the currents read

T (z) =
∞
∑

n=−∞
Ln z

−n−2 , G(z) =
∞
∑

n=−∞
Gn z

−n−2 ,

J(z) =
∞
∑

n=−∞
Jn z

−n−1 , Q(z) =
∞
∑

n=−∞
Qn z

−n−1 .
(4.5)

The topological operator product expansions of the symmetry currents (4.5) is given
by

T (z) T (0) ∼ 2

z2
T (0) +

1

z
∂T (0) ,

T (z) G(0) ∼ 2

z2
G(0) +

1

z
∂G(0) ,

T (z) Q(0) ∼ 1

z2
Q(0) +

1

z
∂Q(0) ,

T (z) J(0) ∼ − ĉ

z3
+

1

z2
J(0) +

1

z
∂J(0) ,

Q(z) G(0) ∼ ĉ

z3
+

1

z2
J(0) +

1

z
T (0) , (4.6)

J(z) Q(0) ∼ +
1

z
Q(0) ,

J(z) G(0) ∼ −1

z
G(0) ,

J(z) J(0) ∼ ĉ

z2
,

and the associated mode expansions are:

[Lm, Ln] = (m− n)Lm+n ,

[Ln, Qm] = −mQn+m ,

[Ln, Gm] = (n−m)Gn+ma ,

[Ln, Jm] = −mJm+n +
ĉ

2
n(n + 1)δm+n,0 , (4.7)

[Gn, Qm] = Lm+n +mJm+n +
ĉ

2
n(n+ 1)δm+n,0 ,

[Jn, Gm] = −Gn+m ,

[Jn, Qm] = +Qn+m ,

[Jn, Jm] = ĉnδm+n,0 . (4.8)
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Note in particular that the TCFT algebra does not have a central charge and there-
fore has no conformal anomaly. However, the L − J commutator relation tells us
that we have an anomalous background charge equal to ĉ.

4.3 Physical operators and descendants

The physical operators in the bulk are defined as cohomology classes with respect
to Q0, i.e.,

[Q0, φi] = 0 ,

φi ∼ φi + [Q0, χ] . (4.9)

Similar relations hold for Q̃0. We denote the space of physical operators of the
bulk theory by Hc. For simplicity, we shall also assume that each φi is Grassmann
even. This simplifies certain sign prefactors in later sections and suffices for our
applications. The hermitian conjugate to Q0 is G0 and in view of [G0, Q0] = L0

we can make a ’Hodge decomposition’ of the space of operators. For the physical
operators this implies that a representative of the cohomology class can be fixed by
the requirement [5]

[G0, φi] = 0 . (4.10)

The condition
[L0, φi] = 0 , (4.11)

is equivalent to the definitions (4.9) and (4.10) of a physical operator and tells us
that a physical operator has conformal weight h = 0.

Since L0 and J0 commute we can diagonalise the Hilbert space in eigenstates of
both generators. In particular, for physical operators with

[J0, φi] = qiφi ,

we can infer from unitarity and the topological algebra (4.5) that the charge is
restricted to the range

0 ≤ q ≤ ĉ . (4.12)

Vanishing conformal weight and charge conservation imply already that the op-
erator product of physical operators is regular, where the constant leading term
involves again only physical operators:

φi(z)φj(0) ∼ Cij
kφk(0) . (4.13)

This is consistent with the observation of section 4.1 that correlation functions of
physical operators are constant.

Given physical operators, one can construct descendants by using relations:

[Q0, G−1] = L−1 and [Q̃0, G̃−1] = L̃−1 . (4.14)



CHAPTER 4. TOPOLOGICAL CONFORMAL FIELD THEORIES 38

Since the commutators with L−1 and L̃−1 act as ∂
∂z

and ∂
∂z̄

, respectively. We find
that the operators

φ
(1,0)
i = [G−1, φi]dz ,

φ
(0,1)
i = [G̃−1, φi]dz̄ ,

φ
(1,1)
i = [G−1, [G̃−1, φi]]dz ∧ dz̄ = [G̃−1, [G−1, φi]]dz̄ ∧ dz ,

satisfy the descent equations:

[Q0, φ
(1,0)
i ] = ∂φi , [Q̃0, φ

(1,0)
i ] = 0

[Q0, φ
(0,1)
i ] = 0 , [Q̃0, φ

(0,1)
i ] = ∂̄φi (4.15)

[Q0, φ
(1,1)
i ] = ∂φ

(0,1)
i = dφ

(0,1)
i , [Q̃0, φ

(1,1)
i ] = ∂̄φ

(1,0)
i = dφ

(1,0)
i .

Notice that φ
(1,0)
i and φ

(0,1)
i are operator-valued sections of the canonical and anti-

canonical line bundles over P
1, while φ

(1,1)
i is an operator-valued two-form. From

the descent equation we see that the integrated operators

∫

S2

φ
(1,1)
i (4.16)

are Q-closed and, therefore, can be inserted along with local physical operators in
topological correlation functions on the sphere. One could furthermore consider
loop integrals of the one-form descendants φ

(0,1)
i + φ

(1,0)
i , but those observables do

not play a role for what follows.

4.4 The effects of a boundary

Since the topological conformal field theory is a special type of CFT, the implemen-
tation of boundary conditions that maintain one copy of the topological symmetry
algebra goes through as in the general description in section 3.2. Subsequently we
take the world-sheet Σ to be the upper half plane.

Other than in N = (2, 2) SCFT the topological algebra (4.6) does not provide a
mirror automorphism, because the fermionic currents Q(z) and G(z) have different
conformal weights. However, a U(1) automorphism acting as a phase on Q(z) and
G(z) is still present, so that the boundary conditions on the currents are given by

T (z) = T̃ (z̄)

G(z) = (−)s G̃(z̄)

Q(z) = (−)s Q̃(z̄)

J(z) = J̃(z̄)

for z = z̄ , (4.17)

where the sign comes from the U(1) automorphism.
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Let us define the operators on the upper half plane by adding the left- and
right-moving contributions; we obtain, for instance,

Qn + (−)sQ̃n → Qn . (4.18)

In particular, we denote the zero mode by Q = Q0 + (−)sQ̃0. Then Q2 = 0 and the
commutator relation (4.14) responsible for the descent equations becomes

[Q,G−1] = d , (4.19)

where d = ∂ + ∂̄ is the exterior derivative along the boundary on the upper half
plane. The descent equations (4.15) for bulk operators must now be written with
respect to Q and split into descent equations of two multiplets. Let us rewrite the
one-form operators into φ

(1)
i = φ

(1,0)
i + φ

(0,1)
i , and φ

(n)
i = φ

(1,0)
i − φ

(0,1)
i . Then the

descent equations for the physical operator φi read

[Q, φi] = 0 , (4.20)

[Q, φ
(1)
i ] = dφi . (4.21)

The second multiplet for φ
(n)
i , which is however not physical, becomes

[Q, φ
(n)
i ] = dnφi , (4.22)

[Q, φ
(1,1)
i ] = dφ

(1)
i . (4.23)

where dn = ∂ − ∂̄ is the normal derivative at the boundary of the upper half plane.
The last equation implies:

[Q,

∫

Σ

φ
(1,1)
i ] =

∫

∂Σ

φ
(1)
i . (4.24)

As opposed to the sphere, the integrated descendant is not Q-closed, which is due
to the presence of a boundary term.

In addition to the physical operators (4.9) of the bulk theory we can introduce
physical operators on the boundary. But here we have a subtlety, which arises from
the fact that in string theory there appear in addition to open strings attached to
a single D-brane (or a stack of D-branes), strings which are stretched between two
different D-branes. It is well-known [54] that in conformal field theories the former

correspond to boundary condition preserving operators (BPO), ψ
(AA)
a , whereas the

latter correspond to boundary condition changing operators (BCO), ψ
(AB)
a . The

latter switch between two boundary conditions labelled by A and B. Of course, all
operators of the topological conformal algebra (4.7) are BPOs, since they are related
by a single condition on the boundary. The action of the charges on BCOs can be



CHAPTER 4. TOPOLOGICAL CONFORMAL FIELD THEORIES 40

(AB)ψa

(BC)ψb

(CC)ψc

(B) (C)

(C)(A)

Figure 4.1: Some boundary condition changing and preserving op-
erators inserted at the boundary of the disk.

written in a form which is very similar to that relevant for the boundary condition
preserving sector. For example:

[G,ψ(AB)
a ] = G(AA) ψ(AB)

a − (−1)|a|ψ(AB)
a G(BB) :=

∮

(G(z) ψ(AB)
a ) , (4.25)

where — using the doubling trick — the left- and right-moving currents are joined
according to the boundary conditions A and B on the respective side of ψ

(AB)
a . This

allows us to treat BPOs and BCOs on equal footing.
The physical operator condition becomes

[Q,ψ
(AB)
a ] = Q(A)ψ

(AB)
a − (−)|a|ψ

(AB)
a Q(B) = 0 ,

[G0, ψ
(AB)
a ] = G

(A)
0 ψ

(AB)
a − (−)|a|ψ

(AB)
a G

(B)
0 = 0 ,

(4.26)

or equivalently,
[L0, ψ

(AB)
a ] = 0 ,

and we denote the space of physical operators on the boundary by Ho.
In the presence of boundary condition changing sectors, the various algebraic

structures extracted in this work are promoted to their category-theoretic counter-
parts. This follows in standard manner by viewing D-branes (i.e., the boundary
conditions) as objects of a category and identifying BPOs and BCOs with endomor-
phisms and morphisms between distinct objects.

Having said all this, we will subsequently leave out the boundary condition la-
bels in order to keep notation simple. In particular, all relations derived in this
work are true for both boundary condition preserving and changing sectors. Note
that for each boundary component, the labels must be ”cyclically closed” in corre-
lation functions; for example, correlators such as

〈

ψa1 . . . ψan

〉

should be expanded
to
〈

ψA1A2
a1

. . . ψAnA1
an

〉

when restoring boundary labels.
Defining:

ψ(1)
a := [G,ψa]dτ

and using relation (4.19), we also find the boundary descent equations:

[Q,ψa] = 0 , (4.27)

[Q,ψ(1)
a ] = dτψa , (4.28)
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where dτ is the exterior derivative along the boundary. Since operators will be
inserted on the boundary in cyclic order, the typical integral of a descendant ψ

(1)
a

runs from the insertion to its left to the insertion to its right:

τr
∫

τl

ψ(1)
a . (4.29)

Here ‘left’ and ‘right’ should be understood in the sense of the cyclic order on
the boundary of the disk, which is determined by the orientation on the boundary
induced from the orientation of the interior. As a consequence, we find that the
Q-variation of (4.29) need not vanish:

[Q,

τr
∫

τl

ψ(1)
a ] = ψa

∣

∣

∣

∣

τr

τl

. (4.30)

Notice that the Grassmann degree of ψ
(1)
a is opposite to that of ψa. It is con-

venient to take this into account by introducing a new grading on the boundary
algebra Ho. Given an operator ψa, we denote its (usual) Grassmann grade by |a|
and define a shifted, or “suspended” grade of ψa by

ã := |a| + 1 (mod 2) . (4.31)

When we subsequently study consistency relations of disk amplitudes, we will find
that the suspended grading is more natural than the usual Grassmann grading.



Chapter 5

Topological twisting

Topological twisting is a powerful tool that relates the BPS subsectors of a N = 2
supersymmetric theory to a topological field theory, which is in some cases exactly
solvable, when supplemented by geometric methods. It lead, for instance, to impor-
tant insights for mirror symmetry [4].

The main focus of this work is topological conformal field theories and, therefore,
we will start in section 5.1 with the description of the A- and B-twist on the level of
the N = (2, 2) superconformal algebra (3.1) [5, 65]. In section 5.2 we consider the
compatibility of A-type and B-type D-branes of N = (2, 2) SCFT with the two types
of twisting. Thereafter, in section 5.3 we give a brief review of the question [6, 8]:
What are topological amplitudes computing in N = (2, 2) SCFTs and superstring
compactifications?

In the remainder of this chapter we consider three examples of topological twisted
models: Following [66] and [4] we present the topological closed string for the A-
and B-twisted non-linear sigma models on Calabi–Yau 3-folds. We briefly describe
D-branes as boundary conditions in these models [37] (see also [25,26] and references
therein) and point out the role of boundary states of N = (2, 2) SCFT, which are
related to period integrals in the topologically twisted models [20]. The third class
of examples are topological Landau–Ginzburg models. After reviewing the bulk
theory [67] we investigate the physical boundary operators [47, 58, 59] and outline
the relation to the triangulated category of [68,69]. As a special case we analyse the
B-branes and their boundary spectrum in the A-series of Landau–Ginzburg minimal
models and compare the results to N = (2, 2) minimal models [47].

5.1 Twisting of the closed string sector

Comparing the space of the physical operators in TCFT and the space of chiral pri-
maries in SCFT, we find many similarities. Indeed, there is a relation between these
two theories, which can be made precise by the procedure of topological twisting of

42
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an N = (2, 2) SCFT. This twist is implemented by the replacement

T (z) → T (z) + ε1
2
∂J(z) ,

J(z) → εJ(z) ,
ε = ±1 , (5.1)

in the superconformal algebra (3.1), which leads directly to the topological algebra
(4.6). A quite important fact of the twist is the ’transformation’ of the central charge
c of SCFT into the background charge ĉ of TCFT; the precise relation is

ĉ =
c

3
. (5.2)

In terms of operator modes the twist (5.1) reads:

Ln → Ln − εn+1
2
Jn ,

Jn → εJn .
(5.3)

In particular, the conformal weight h of operators with non-vanishing charge q is
shifted as

h→ h− ε
q

2
(5.4)

Then the fermionic SCFT currents G(z) and Ḡ(z), both having conformal weight
3/2, turn into currents with conformal weights h = 3/2 − ε/2 and h = 3/2 + ε/2,
respectively. Depending on the sign ε one of these currents becomes the TCFT
current Q(z) with h = 1 and the other becomes G(z) with h = 2.

From the map (5.4) we see immediately that either the chiral or antichiral pri-
mary fields of SCFT (again depending on the sign ε) are in one-to-one correspon-
dence with the physical operators of TCFT. We can choose the signs ε and ε̃ for
twisting of the left- resp. the right-moving sector independently, so that depending
on this choice one of the four sectors is described by the TCFT. Following the con-
vention of [4] we call a twist with different signs, i.e., (ε, ε̃) = (±1,∓1), an A-twist.
The twist with equal signs, (ε, ε̃) = (±1,±1), is refereed to as B-twist. In table (5.1)
we give a list of the correspondence between twisting and chiral primary operators
that appear as physical operators in the topological theory. We see that the A-twist
projects on the twisted (anti)chiral sector and the B-twist on the (anti)chiral sector.

5.2 Compatibility with boundary conditions

The type of topological twisting puts, moreover, restrictions on the possible bound-
ary conditions that we can consider in the N = (2, 2) theory. Let us first consider
the B-twist. Assume that we have A-type boundary conditions (3.36), then G(z)

is related to ˜̄G(z̄). However, by the topological B-twist with (+1,+1) these cur-
rents are mapped to Q(z) resp. G̃(z̄), which have different conformal weights and,
therefore, cannot be related anymore. On the other hand, it is easy to see that the
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(ε, ε̃) phys. operators bound. cond. bound. states

A− twist (+1,−1) c− a A B
(−1,+1) a− c A B

B − twist (+1,+1) c− c B A
(−1,−1) a− a B A

Table 5.1: In view of the topological twisting one of the four sectors of (twisted)
(anti)chiral operators is described by the topological field theory.

B-twist respects B-type boundary conditions. The same argument goes through for
A- and B-type boundary conditions and the A-twist.

In section 3.3 we realized that A-brane boundary states contain Ishibashi states
associated to the representations of c − c or a− a ring elements, and that B-brane
boundary states contain Ishibashi states for c − a and a − c elements. Therefore,
A-brane boundary states couple naturally to the B-twisted theory and vice versa.
The considerations of this paragraph lead to the following conclusions (see table
(5.1)):

A topological conformal field theory, arising from an A(B)-twist of a N = (2, 2)
SCFT, contains information about A(B)-branes in terms of boundary conditions
and the spectrum of (anti)chiral boundary operators; and it provides information
about B(A)-brane in terms of boundary states.

5.3 What do topological amplitudes compute in

N = (2, 2) theories?

In the following we sketch the effect of topological twisting on 3-point correlation
functions on the sphere. The generalisation to arbitrary Riemann surfaces (possibly
with boundaries) is worked out in [6, 8].

In section 5.1 we found that the topological twist is formally performed by adding
a U(1)-current term to the stress-energy tensor:

T → T + ε
1

2
∂J .

Thinking in terms of the action we have to add a term, which couples the spin
connection ω = ∂ log(

√
g) on the world-sheet to the U(1)-current J , i.e.

ε

8π

∫

d2z (ωJ̃ + ω̃J) . (5.5)
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Upon variation of the metric this expression gives rise to the additional term for the
stress-energy tensor. If we write J in terms of its bosonisation, J = i

√

c/3∂H , and
the Riemann tensor in terms of the spin connection, R = ∂∂̄ log(

√
g), expression

(5.5) becomes:

− iε

4π

√

c

12

∫

d2z
√
gRH + c.c. . (5.6)

By conformal invariance we can always choose a metric on the sphere such that the
curvature is concentrated on two points, i.e. R = 4π[δ(z−z1) + δ(z−z2)]. Then,
(5.6) gives rise to the insertion of the spectral flow operators

Σ−ε(z1)Σ−ε(z2) = e−εi
√

c
12

H(z1)e−εi
√

c
12

H(z2)

in N = (2, 2) SCFT correlation functions. The topological correlation function can
be expressed in terms of the SCFT correlation functions as follows:

〈

φi(z1)φj(z2)φk(z3)
〉

TCFT
=
〈

φi(z1)Σ−ε(z1) φj(z2)Σ−ε(z2) φk(z3)
〉

SCFT
. (5.7)

Since the spectral flow operator is part of the generator of spacetime supersymmetry
we see that topological amplitudes (5.7) compute Yukawa couplings between two
fermions and a boson.1

Notice that for type II superstring compactifications to four dimensions we have
to taken into account the external matter sector and the ghost sector in (5.7).
A careful analysis was done in [6, 8] and basically shows that all the additional
contributions cancel mutually, so that topological amplitudes indeed compute terms
for the effective action.

5.4 B-twisted non-linear sigma models

We start with the non-linear sigma model on the sphere, so that we do not have any
boundary effects. We perform the B-twist of the action (3.48), where the left- and
right-moving sector is twisted with equal signs ε and ε̃. It is convenient to combine
the fermionic fields in the following way [4]:

η̄ = ψ̄
+ + ψ̄

− and θi = gi̄

(

ψ̄
+ − ψ̄

−
)

.

The topological twist has the effect that η̄ is a section of the pull-back of the
antiholomorphic cotangent bundle, Φ∗(T 0,1X ), on the Calabi–Yau 3-fold, and θi is
a section of Φ∗(T ∗1,0(X )). On the other hand, ρi

z̄ = ψi
− and ρi

z = ψi
+ are sections

of K̄ ⊗Φ∗(T 1,0(X )) and K ⊗Φ∗(T 1,0(X )), respectively. K and K̄ are the canonical
and anticanonical line bundles on Σ.

1The term Yukawa coupling comes from heterotic string compactifications and is actually not
applicable in type II superstring, because we have to take into account both left- and right-moving
spectral flow.



CHAPTER 5. TOPOLOGICAL TWISTING 46

The Q-symmetry is given by

Q = Q̄B = Q̄+ + Q̄− , (5.8)

and the variations of the fields read

Qφi = 0 ,

Qρi = dφi ,

Qφ̄ = η̄ ,

Qη̄ = Qθi = 0 .
(5.9)

These transformations suggest the following map to geometrical objects:

Q → ∂̄ ,

η̄ → dZ ̄ ,

θi → ∂

∂Z i
, (5.10)

φi → Z i ,

φ̄ → Z ̄ .

Let us take the vector-valued form

ω = ω̄1...̄n

i1...imdZ ̄1 . . . dZ ̄n
∂

∂Z i1
. . .

∂

∂Z im
, (5.11)

and associate to ω the operator

Oω = ω̄1...̄n

i1...imη̄1 . . . η̄nθi1 . . . θim . (5.12)

The Q-symmetry acts as
QOω = O∂̄ω .

The physical operators of the B-model are then in one-to-one correspondence with
the Dolbeault cohomology of antiholomorphic n-forms taking values in

∧m T 1,0, i.e.,

H(cl)
B =

3
⊕

n,m=0

H0,n

∂̄
(∧mT 1,0) , (5.13)

where the unique holomorphic 3-form on the Calabi–Yau 3-fold provides an isomor-
phism

H0,n

∂̄
(∧mT 1,0) ∼= H3−m,n

∂̄
(X ) .

A special cohomology class is provided by H0,1

∂̄
(T 1,0) ∼= H2,1

∂̄
(X ), which corresponds

to marginal deformations of the N = (2, 2) SCFT. In geometric terms they give
rise to complex structure deformations on X ; given a basis χa = χa;̄

idZ ̄ ∂
dlZi of

H0,1

∂̄
(T 1,0), the metric is deformed according to:

δgı̄̄ =

h2,1
∑

a=1

taχa;̄ı
igi̄ . (5.14)
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We now turn to the action of the topological B-model. Writing (3.48) in terms
of the twisted fields we obtain

SB =

∫

Σ

d2z
{

−gi̄(∂φ
i∂̄φ̄ + ∂̄φi∂φ̄) + (5.15)

+
1

2
gi̄η

̄
↔
D(zψ

i
z̄) −

1

2
gi̄θ

̄
↔
D[zψ

i
z̄] +

1

2
Rīıj̄ρ

i
zρ

j
z̄η

ı̄θlg
l̄
}

.

In fact, the whole action can be written as Q-exact term [66],

SB =

∫

Σ

d2z[Q, V ] .

Since the topological theory is independent of Q-exact contributions in the action,
we can introduce a parameter λ, so that SB → λ

∫

[Q, V ]. From the bosonic part of
the action (5.15) we find that in the limit of large λ the main contribution to the
path integral comes from field configurations with

dφi = 0 ,

so that the whole world-sheet is mapped to a point in the Calabi–Yau manifold
and we do not get instanton corrections in the B-model. All computations descend
to classical geometry on the Calabi–Yau 3-fold. In particular, the large volume
expression,

κabc =

∫

X
Ω ∧ χi

a ∧ χj
b ∧ χk

c Ωijk , (5.16)

for the Yukawa couplings of the B-model [7] is exact. Here, Ω ∈ H3,0(X ) denotes
the unique covariantly constant holomorphic 3-form on X .

On the boundary the action of the gauge field becomes

∫

∂Σ

dφIAI =

∫

∂Σ

dφ̄A̄ + [Q,

∫

∂Σ

ρiAi] , (5.17)

and, therefore, the (0, 1) part of the gauge field, Ā = A̄dZ
̄, twists the antiholomor-

phic Dolbeault operator:
∇̄Ā = ∂̄ + Ā . (5.18)

In section 3.4 we found that the (0, 2) part of the field strength vanishes so that the
twisted Dolbeault operator ∇̄Ā defines a complex structure on a vector bundle over
the holomorphic submanifold γB.

By the B-type boundary conditions (3.74) we find that the physical fields on the
boundary lie in

H(op)
B =

dB
⊕

n=0

3−dB
⊕

m=0

H0,n

∇̄Ā
(∧mN1,0

γB/X ) ,
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where dB is the dimension of the holomorphic submanifold γB. The operator asso-
ciated to an element ω in H0,n

∇̄Ā
(∧mN1,0

γB/X ) is given by

Oω = ω̄1...̄n

i1...imη̄1 . . . η̄nθi1 . . . θim for 0 ≤ n ≤ dB, 0 ≤ m ≤ 3 − dB.

There appear two types of physical fields, which correspond to marginal (but in
general not exactly marginal) deformations in the N = 2 SCFT. A physical field ā ∈
H0,1

∇̄Ā
(γB) gives rise to deformations of the complex structure ∇̄Ā of the holomorphic

vector bundle over γB, whereas X ∈ H0,0

∇̄Ā
(N1,0(γB)) changes the position of the

B-brane γB.
Let us consider a stack of N D6-branes wrapping the whole Calabi–Yau, which

amounts to consider a holomorphic N -dimensional vector bundle over X ; we have
only deformations of the complex structure on the bundle. The requirement that
the deformed connection defines again a complex structure, i.e. (∇̄Ā+ā)

2 = 0, can
be expressed in terms of the Maurer–Cartan equation:

∇̄Āā+ ā ∧ ā = 0 . (5.19)

The string field theory for the open topological A-model with equation of motion
(5.19) is described by the holomorphic Chern–Simons theory [37]:

ShCS =

∫

M

Ω ∧
(

1

2
Ā ∧ ∂̄Ā+

1

3
Ā ∧ Ā ∧ Ā

)

. (5.20)

The generalisation to D-branes in lower-dimensional holomorphic submanifolds is
done by dimensional reduction of the holomorphic Chern–Simons theory (5.20) [37,
70].

From the discussion of section 5.2 we know that despite of B-type D-branes
described in terms of boundary conditions we have also A-type D-branes realized
as boundary states. In the topological twisted model the physical bulk fields in
H(cl)

B couple to the RR sector Ishibashi states of the boundary state
∣

∣α
〉

B
, which

correspond to c− c (or a− a) ring elements via spectral flow. We write the RR part
of the boundary state as

∣

∣αA

〉

RR
=
∑

i

Bi(αA)
∣

∣ i
〉〉

RR
.

Picking a cohomology class ωi ∈ H3−n,n

∂̄
(X ), the coefficients for the RR sector

Ishibashi states that correspond to c− c elements are give by the amplitudes:

Bi(αA) = ηij
〈

Oωi

∣

∣αA

〉

RR
. (5.21)

As shown in [20] using contour deformation arguments, these amplitudes depend on
complex structure moduli but not on Kähler moduli. This implies that we can take
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the large volume limit and write the coefficients as period integrals over middle-
dimensional Lagrangian submanifolds:

Bi(αA) =

∫

αA

ωi , (5.22)

where ωi for i = 1, . . . h2,1 is a basis for H2,1(X ) and ω0 ∈ H3,0(X ) is the unique
holomorphic 3-form Ω. In particular, these periods do not obtain any corrections
from world-sheet instantons. The coefficients (5.21) of the boundary state can be
integrated with respect to ti to a single function B0(αA):

Bi(αA) =
∂

∂ti
B0(αA) , (5.23)

where we assumed that the ti’s are flat coordinates. Therefore, all the information
of the chiral primary part of the boundary state (5.22) is encoded in the period

B0(αA) =

∫

αA

Ω , (5.24)

where Ω ∈ H3,0(X ) is the unique holomorphic 3-form on the Calabi–Yau 3-fold.

5.5 A-twisted non-linear sigma models

We perform the A-twist of the action (3.48), where the left- and right-moving sectors
are twisted with opposite signs ε and ε̃. The fermions ψi

+ and ψ̄̄
− become sections

of the pull-back of the holomorphic and antiholomorphic tangent bundle of the
Calabi–Yau 3-fold, Φ∗(T (1,0)) and Φ∗(T (0,1)), respectively. Following [4] we shall
denote the twisted fields by χi := ψi

+ and χ̄ := ψ̄̄
−. The other fermions become

one-forms on the world-sheet Σ and we denote them by ψi
z̄ = ψi

− ∈ Φ∗(T (1,0)) ⊗ K̄
and ψ̄

z = ψ̄
+ ∈ Φ∗(T (0,1)) ⊗K.

The Q-symmetry is given by the combination (3.58):

Q = QA = Q+ + Q̄− , (5.25)

and transformations of the fields under Q can easily be read off from (3.59). We
obtain

Q φi = χi ,

Q χi = 0 ,

Q ψi
z̄ = 2∂̄φi − Γi

jkχ
jψk

z̄ ,

Q φ̄̄ = χ̄ ,

Q ψ̄
z = 2∂φ̄̄ − Γ̄̄

l̄m̄χ
l̄ψm̄

z ,

Q χ̄ = 0 .

(5.26)

These transformation properties suggest the following map:

Q → d ,

χi → dZ i ,

χ̄ → dZ ̄ , (5.27)

φi → Z i ,

φ̄ → Z ̄ .
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Given an (n,m)-form,

ω = ωi1...in ̄1...̄m
(Z i, Z ̄) dZ i1 . . . dZ in dZ ̄1 . . . dZ ̄n ,

we find that Q acts on the associated local operator

Oω = ωi1...in ̄1...̄m
(φi, φ̄) χi1 . . . χin χ̄1 . . . χ̄n ,

as de Rham operator, i.e.,
[Q,Oω] = Odω . (5.28)

In particular, the map (5.27) gives a natural isomorphism between the de Rham
cohomology on X and the space of physical fields of the topological model,

H(cl)
A

∼=
d
⊕

n,m=0

Hn,m
d (X ) . (5.29)

The degrees n and m of ω correspond to the left-, right-U(1) charges of the operator
Oω.

A special case of cohomology classes is given by the Kähler class H1,1(X ), which
corresponds to marginal perturbations of the associated N = (2, 2) SCFT. On a
Calabi–Yau 3-fold, H1,1(X ) characterises the Kähler deformations of the Kähler
metric, i.e.,

δgi̄ =
h1,1
∑

a=1

taωa;i̄ . (5.30)

In terms of the twisted fields the Lagrangian (3.48) can be written as

SA =

∫

Σ

d2z
{

−gi̄(∂φ
i∂̄φ̄ + ∂̄φi∂φ̄) + (5.31)

+
1

2
gi̄χ

̄
↔
Dzψ

i
z̄ +

1

2
gi̄ψ

̄
z

↔
Dz̄χ

i − Rīıj̄χ
iχı̄ψj

z̄ψ
̄
z

}

.

A key feature of the A-twisted non-linear sigma model is that the action cannot
totally be written as Q-exact term, rather we have [4, 12]

SA =

∫

Σ

d2z[Q, V ] +

∫

Σ

Φ∗(ω) , (5.32)

where
∫

Σ

Φ∗(ω) =
1

2

∫

Σ

d2z gi̄ (∂φi∂̄φ̄ − ∂̄φi∂φ̄) (5.33)

is the integral of the pull-back of the Kähler form to the world-sheet Σ. This integral
depends only on the cohomology class of the Kähler form and on the homotopy class
of the map Φ. The Hodge number h1,1 on a Calabi–Yau 3-fold gives the number
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of Kähler deformations ti ∈ R of the metric g and upon proper normalisation, the
contribution from (5.33) is given by

∫

Σ

Φ∗(ω) = 2π

h1,1
∑

i=1

niti (5.34)

where the integers ni are the instanton numbers of the map Φ, which label the
homotopy class. An inclusion of the B-field leads merely to a complexification of
the Kähler parameters, so that ti ∈ C. In correlation functions corresponding to the
instanton numbers {ni} the term (5.34) gives rise to

e−2π
P

i niti

1 − e−2π
P

i niti
, (5.35)

where the geometric series comes from multiple instanton contributions.
A key point in the evaluation of the path integral is the fact that in correlation

functions nothing depends on Q-exact terms and we can multiply the Q-exact term
by a parameter λ, i.e., SA → λ[Q, V ] +

∫

Φ∗(ω), and take the limit λ → ∞. A
comparison of the action (5.31) with the splitting (5.32) shows that the bosonic part
of the Q-exact term is given by

∫

||∂̄φ||2 and, therefore, the path integral localises
at the moduli space Mni

of holomorphic disk instantons, i.e. on maps obeying

∂φ̄ = ∂̄φi = 0 , (5.36)

and carrying instanton numbers {ni}. In the large volume limit ti → ∞ only the
instanton with ni = 0 contributes, as we see from the instanton sum (5.35). This
instanton is homotopy equivalent to the point and, therefore, the main contribution
in the large radius limit comes from the sphere mapped to a point in the Calabi–Yau
3-fold.

The Yukawa coupling in the large radius limit is given as intersection number
of homology classes [7] that are associated to the Kähler deformations ωa; explicity
the Yukawa coupling reads

κ
{0}
abc =

∫

X
ωa ∧ ωb ∧ ωc . (5.37)

And the total coupling including instanton corrections becomes [11, 12]

κabc = κ
{0}
abc +

∞
∑

n1,...,n
h1,1=0

nanbncκ
{ni} e−2π

P

i niti

1 − e−2π
P

i niti
, (5.38)

where the leading term for large ti is (5.37) and the numbers κ{ni} are integers and
count the number of holomorphic instantons of degree {ni} [12, 71].

The boundary theory of the topological A-model is by far less well understood
and we will give only some results on the space of physical boundary operators,
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H(op)
A , and on the topological field theory that describes the A-model on Lagrangian

submanifolds γA.
We found in section 3.4 that the A-type boundary conditions require a flat gauge

connection on the boundary. According to [37] the Q-symmetry is then twisted by
this gauge potential so that it can be realized as

∇A = d+ A . (5.39)

Choosing coordinates so that χI points in the tangent direction of the Lagrangian
submanifold the physical fields can be written as

a = aI1...In
χI1 . . . χIn for 0 ≤ n ≤ 3 , (5.40)

and are in one-to-one correspondence with the cohomology of ∇A, i.e.,

H(op)
A =

3
⊕

n=0

Hm
∇A

(γA) . (5.41)

A special type of physical fields is given by the cohomology H1
∇A

(γA), which
corresponds to infinitesimal deformations of the gauge connection ∇A. These defor-
mations correspond to marginal but, in general, not exactly marginal deformations
of the related N = 2 SCFT. In order to provide a finite deformation of the flat
connection ∇A, the deformed connection ∇A+a must again be flat:

(∇A+a)
2 = 0 .

Using the flatness of the original connection we derive the Maurer–Cartan equation

∇Aa+ a ∧ a = 0 , (5.42)

which obstructs the finite perturbations of the gauge connection.
In [37] Witten constructed the open string field theory for the flat gauge con-

nection on a specific class of non-compact Calabi–Yau 3-folds. Taking a real 3-
dimensional manifold M , the Calabi–Yau X is given by M together with its cotan-
gent bundle T ∗M . Then M can be shown to be a Lagrangian submanifold of X .
The string field theory for the U(N) open string mode A = AIdx

I , where x are real
coordinates on M , turns out to be Chern-Simons gauge theory on M :

SCS =
1

gs

∫

M

(

1

2
A ∧ dA+

1

3
A ∧ A ∧ A

)

. (5.43)

On a general Calabi–Yau 3-fold X with several Lagrangian cycles Mi the whole open
string sector of the A-model is, however, much more complicated [37], which is due
to the existence of world-sheet instantons that can (i) wrap 2-cycles of X and (ii)
end on different Lagrangian cycles Mi.
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As mentioned in section 5.2 the A-twisted topological model contains information
about B-type boundary states (3.41). The physical bulk fields in H(cl)

A couple to RR
sector Ishibashi states of the boundary state

∣

∣α
〉

B
, which correspond to c − a (or

a− c) ring elements via spectral flow. We write

∣

∣αB

〉

RR
=
∑

i

Bi(αB)
∣

∣ i
〉〉

RR
.

Let ωi ∈ Hn,m
d (X ), then the coefficients for the Ishibashi states that correspond to

c− a elements are give by the amplitudes:

Bi(αB) = ηij
〈

Oωi

∣

∣αB

〉

RR
. (5.44)

As shown in [20] using contour deformation arguments, these amplitudes depend on
the Kähler moduli but not on the complex structure moduli.

We found in section 3.4 that in the large volume limit B-type D-branes on Calabi–
Yau 3-folds are given by holomophic submanifolds of complex dimension dB. There-
fore, like for the A-type boundary states discussed in the previous section we can
write B0(αB) as period integral [20],2

B0(αB) =

∫

αB

ωdB + O(e2πit) , (5.45)

where dB is the dimension of the cycle αB. But this time B0(αB) receives world-
sheet instanton corrections. In (5.45) ω =

∑

i t
iωi is the Kähler form on X and the

ωi’s form a basis for H1,1(X ). Finally, all the coefficients Bi(αB) can be obtained
by differentiation:

Bi(αB) =
∂

∂ti
B0(αB) ,

where the ti’s are again flat coordinates.

5.6 B-twisted Landau–Ginzburg models

Now, we consider the last example for a topological twisted SCFT, the topological
Landau–Ginzburg models, which come from twisting the Landau–Ginzburg models
of section 3.5. The field content of the bulk theory is the same as in the B-twisted
non-linear sigma model. The difference is encoded in the transformation properties
of the fields. From (3.73) and (3.78) we obtain

Qφi = 0 ,

Qρi = dφi ,

Qφ̄ = η̄ ,

Qη̄ = 0 ,

Qθi = ∂iW .

(5.46)

2Note that this expression is only true for a vanishing gauge field on the B-brane.
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These transformations suggest the identifications (5.10) with the exception that the
Q-operator is twisted by a potential term:

Q→ ∂̄ + i∂W . (5.47)

Because of the relations ∂̄2 = {∂̄, i∂W} = i2∂W = 0 the physical fields are determined
by the double cohomology:

H(cl)
LG =

⊕

n,m

H∂̄(Hi∂W
(Ω0,n ⊗ ΛmT 1,0)) . (5.48)

In the following we are interested in theories, where the only non-trivial part of
H(cl)

LG comes from (n,m) = (0, 0). The space of physical operators turns out to be
the polynomial ring C[φi] modulo ∂iW = 0 for i = 1, . . . , N , i.e.:

H(cl)
LG =

C[φi]

{∂iW} . (5.49)

Analogous to the 3-point functions in the twisted non-linear sigma models we
can ask now the question how to compute correlation functions of physical fields in
this theory. Taking a basis pj(φ) ∈ H(cl)

LG one can show [67] by localisation of the
path integral that the correlation function of physical bulk fields is given by the
residue formula:

Cijk =
〈

pi(φ)pj(φ)pk(φ)
〉

=
1

(2πi)N

∮

C

dNφ
pi(φ)pj(φ)pk(φ)

∂1W . . . ∂NW
. (5.50)

We have seen in section 5.6 that there are additional boundary degrees of freedom
from the boundary fermions ΠA. In the following we investigate which physical
operators can be associated with them. The supersymmetry transformations (3.91)
give rise to the Q-symmetry transformations:

QπA = −EA(φ) ,

Qπ̄A = iJA(φ) .
(5.51)

Canonical quantisation of the boundary fermions gives the anticommutation rela-
tions:

{πA, π̄B} = δAB ,
{πA, πB} = 0 = {π̄A, π̄B} . (5.52)

This algebra can be realized as 2N -dimensional Clifford algebra representation. In
this representation the Q-symmetry acting on the boundary fields is expressed
through the matrix

QB =
∑

A

(

iJAπA − EAπ̄A
)

, (5.53)

which, in view of (3.93), satisfies the relation3

(QB)2 = −iW . (5.54)

3Here and in the following we set the integration constant in (3.93) to zero.
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We write an element in the space of boundary operators H(op) as polynomials in π
and π̄ with coefficients in C[φi], i.e.:

Ψ(φ, π, π̄) =
N
∑

i,j=0

f(φ)A1...AiB1...Bj
πA1 . . . πAiπ̄B1 . . . π̄Bj . (5.55)

Then the Q-symmetry acts in terms of QB through

QΨ = [QB,Ψ] ,

where [·, ·] is the graded commutator. The space of boundary operators inherits a
natural Z2 grading from the boundary fermions. The physical fields at the boundary
are then given by the cohomology HQB

(H(op)).
As in the bulk theory we can use a localisation argument [58, 72] in order to

derive a formula for the correlation functions of physical fields. Picking a basis of
bulk and boundary physical fields, pi(φ) resp. ψa(φ, π, π̄), the result is:

Bia =
〈

piψa

〉

=
1

(2πi)N

∮

C

dNφ
pi(φ) STr((∂QB)∧N ψa)

∂1W . . . ∂NW
, (5.56)

where STr is a supertrace and

(∂QB)∧N :=
1

n!

∑

σ∈SN

(−)|σ|∂σ(1)QB . . . ∂σ(N)QB .

The representation (5.53) of the Q-symmetry plays also a quite important role
for the expression of the topologically twisted action. Namely, the action reads

SLG = −1

2

(
∫

Σ

(W )(1,1) +

∫

∂Σ

(QB)(1)

)

+ [Q, ·] , (5.57)

where we inherited the notation for the topological descendants from chapter 4.
From this action we see immediately that a perturbation by a boundary physical
field Ψ, i.e.,

δS =

∫

∂Σ

Ψ(1) ,

is an infinitesimal deformation δQB = Ψ of the boundary Q-symmetry. If we con-
sider finite perturbations, the deformed Q-symmetry has to satisfy the relation

(QB + Ψ)2 = −iW .

Using (5.54) it can be rewritten as Maurer–Cartan equation:

[QB,Ψ] + Ψ2 = 0 . (5.58)

In the following we introduce a slight generalisation of the above construction
for the boundary theory and give a categorical description thereof. Rather than
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considering a matrix representations of boundary operators, which descends from
boundary fermions πA and thus has rank 2N , we consider general matrix factorisa-
tions4

W11 = (QB)2 , (5.59)

where QB is now a matrix of rank 2r, and QB has only off-diagonal entries, i.e.,

QB =

(

0 J
E 0

)

.

Here, J and E are rank r matrices. Such an off-diagonal representation for QB can
always be found because of the existence of a linear involution, σ : H(op) → H(op),
σ2 = 1. Its eigenvalues +1 and −1 correspond to the Z2 grading of H(op), which
implies that it anticommutes with QB. In the diagonal representation,

σ =

(

11 0
0 −11

)

,

QB is therefore off-diagonal.

Triangulated category

Let us summerise the structure of D-branes in topological Landau–Ginzburg models
in terms of a triangulated additive category DGW , which has the following data
[47, 59, 60, 69].

The objects of DGW , which represent D-branes, are given by matrix factorisa-
tions (5.59) of W , viewed as pairs

P := ( P1

EP
//

P0
JP

oo )

of free C[φi]-modules. We denote the associated Q-symmetry by

DP =

(

0 J
E 0

)

.

The space of morphisms of DGW is defined by

HomDGW
(M,N) := Hom(M1 ⊕M0, N1 ⊕N0) =

⊕

i,j=0,1

Hom(Mi, Nj) , (5.60)

where Hom(Mi, Nj) are spaces of definite grading i − j mod 2. Morphisms in
Homeven(M,N) = Hom(M1, N1) ⊕Hom(M0, N0) of even grade and morphisms in

4In the following we leave out the factor (−i) in front of W in equation (5.54), which is just a
matter of convention.
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Homodd(M,N) = Hom(M1, N0)⊕Hom(M0, N1) of odd grade can be resembled into
matrices

fMN :=

(

f0 0
0 f1

)

, and gMN :=

(

0 g0

g1 0

)

, (5.61)

respectively. The differential of DGW acts then through

D(fMN) := DM ◦ fMN − (−)|f |fMN ◦DN , (5.62)

where |f | denotes the Z2-grade of fMN .
The derived category (of physical fields) DBW has the same objects as DGW ,

but the morphism are elements of

HomDBW
(M,N) = HD(HomDGW

(M,N)).

The proof that this category is triangulated was provided in [69]. In fact, we
have the following properties: DGW provides a shift functor P → P [1], which maps
D-branes to their anti-branes:

P [1] := ( P0

−JP
//

P1
−EP

oo ) . (5.63)

Every odd morphism M
f→ N can be completed to a distinguished triangle:

M
f→ N → Cone(f) →M [1] , (5.64)

where the cone of the triangle is defined by

Cone(f) := ( M1 ⊕N1

E
//

M0 ⊕N0
J

oo ) (5.65)

J =

(

JM f0

0 JN

)

and E =

(

EM f1

0 EN

)

. (5.66)

The physical meaning of this triangle is that upon turning on a tachyonic field
(morphism) f between any two D-branes (objects) in such a triangle, these two
D-branes can form a bound state, which is represented by the third object. For
example, if we turn on the tachyonic field in the triangle (5.64) the D-branes M and
N form a bound state isomorphic to Cone(f).

A-series Landau–Ginzburg minimal model

Landau–Ginzburg minimal models of the A-series are described in terms of a super-
potential W (φ) of degree k+ 2 in one chiral superfield φ. The topological D-branes
are determined by the possible factorizations (3.93) of the bulk superpotential. In
the following, we will use the symbol (ℓ) to label the various possible choices for
J(φ) and E(φ), and study for any given such choice the topological open string
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spectrum. Here, ℓ is related to the polynomial degree of J(φ) and E(φ), more
precisely: deg(J) = ℓ + 1 and deg(E) = k − ℓ + 1. We will determine both the
spectrum of boundary preserving and boundary changing operators of a generically
perturbed LG model with one variable. For the special case of the unperturbed, i.e.
superconformal A-series minimal models, we will compare the spectrum obtained
from the Landau-Ginzburg formulation with the spectrum one gets using BCFT
techniques [73].

Recall that the chiral ring R of the bulk theory (5.49) is determined [1] in terms
of the superpotential W (φ). The ring may be represented by polynomials Φi in φ
with degrees deg Φi = i equal to or less than k:

{Φi} = {1,Φ1(φ), ...,Φk(φ)} . (5.67)

The Q-cohomology classes of the topological sector on the boundary can be extracted
from the transformation properties

Qπ = E(ℓ)(φ) , Qπ̄ = −iJ (ℓ)(φ) . (5.68)

Therefore, on the boundary the chiral ring R(ℓ)
B is truncated earlier than in the

bulk, since it consists of polynomials modulo J (ℓ)(φ) and E(ℓ)(φ). In the generic
case, when J (ℓ)(φ) and E(ℓ)(φ) have no common divisor, the Q-cohomology is empty
and all topological boundary amplitudes vanish. The interesting case is when the
boundary potentials have a common factor, so that we can write

J (ℓ)(φ) = q(ℓ)(φ)G(ℓ)(φ) , E(ℓ)(φ) = p(ℓ)(φ)G(ℓ)(φ) . (5.69)

Here G(ℓ)(φ) is the greatest common divisor of J (ℓ)(φ) and E(ℓ)(φ); if it is non-
trivial, the bosonic part of the boundary ring is given by the polynomials in φ
modulo truncation by G(ℓ)(φ).

In contrast to the bulk, the chiral ring at the boundary also contains fermionic
fields, since we can construct the following Q-closed field out of the boundary
fermions π and π̄:

ω(ℓℓ) =
√
i(q(ℓ)(φ)π − ip(ℓ)(φ)π̄) . (5.70)

Here the labels indicate that ω(ℓℓ) is a boundary preserving operator, but we will
sometimes omit these labels for notational simplicity. ω(ℓℓ) satisfies an algebraic
relation, which is determined by the canonical anticommutation relations (5.52).
One immediately obtains [47]:

(

ω(ℓℓ)
)2

= p(ℓ)(φ)q(ℓ)(φ) . (5.71)

The chiral ring R(ℓ)
B in the boundary sector (ℓ) is thus given by the polynomial

ring generated by φ and ω(ℓℓ), modulo G(ℓ)(φ):

R(ℓ)
B =

C[φ, ω(ℓℓ)]

{G(ℓ)(φ), (ω(ℓℓ))2 − p(ℓ)(φ)q(ℓ)(φ)} . (5.72)
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The number of elements of the open string chiral ring is controlled by the polynomial
degree dℓ = deg(G(ℓ)). In total we have dℓ bosonic fields and dℓ fermionic fields in
the boundary preserving sector. In order to fix notation, let us denote these fields
by Ψ

(ℓℓ)
α , where α labels bosonic and fermionic sub-sectors in an obvious manner:

α ≡ (a, σ) and a = 0, 1, . . . , dℓ − 1, σ = 0, 1. We can thus write a basis of R(ℓ)
B as

{Ψ(ℓℓ)
(a,0)} = {1,Ψ1(φ), ...,Ψdℓ−1(φ)} ,

{Ψ(ℓℓ)
(a,1)} =

{

ω(ℓℓ), ω(ℓℓ)Ψ1(φ), ..., ω(ℓℓ)Ψdℓ−1(φ)
}

,
(5.73)

where Ψa(φ) are polynomials in φ of degree deg(Ψa) = a, which will in general be
different from the bulk ring polynomials Φi(φ) in (5.67).

In order to determine the spectrum and the chiral ring R(ℓ1ℓ2)
B for boundary

changing fields, we can proceed in a similar way as above. First, the action of
the supercharge QB on the boundary fields in the sector (ℓ1ℓ2) can consistently be
defined as

[QB,Ψ
(ℓ1ℓ2)
α ] ≡ Q

(ℓ1)
B Ψ(ℓ1ℓ2)

α − (−)|α| Ψ(ℓ1ℓ2)
α Q

(ℓ2)
B . (5.74)

Then we realize that the canonical commutation relations (5.52) for π and π̄ are
universal for all boundary conditions, i.e., they do not depend on the polynomials
J (ℓ) and E(ℓ). In fact, the supercharge

Q
(ℓ)
B = iJ (ℓ)π −E(ℓ)π̄ ,

contains all the information on the boundary condition (ℓ). This implies that we
can use the universality of (5.52) to construct the boundary changing operators in
terms of polynomials of φ, π and π̄.

We thus make the ansatz ω(ℓℓ′) = ρ(φ)π + σ(φ)π̄ for the fermionic boundary
changing operators and determine the Q-cohomology using (5.74). In order to do
so, it is convenient to define the following factorisations

E(ℓ1) = p̂(ℓ1) · gcd{J (ℓ2), E(ℓ1)} ,
J (ℓ2) = q̂(ℓ2) · gcd{J (ℓ2), E(ℓ1)} ,

E(ℓ2) = p̂(ℓ2) · gcd{J (ℓ1), E(ℓ2)} ,
J (ℓ1) = q̂(ℓ1) · gcd{J (ℓ1), E(ℓ2)} . (5.75)

When computing the Q-cohomology we observe that E(ℓ1)J (ℓ1) = E(ℓ2)J (ℓ2), which
implies that in order to obtain nontrivial cohomology classes, the constant in (3.93)
must be the same for the boundary sectors (ℓ1) and (ℓ2). Moreover, from (5.75) we
find that p̂(ℓ1)q̂(ℓ1) = p̂(ℓ2)q̂(ℓ2). It turns out that there occur two kinds of fermionic
solutions for the Q-cohomology classes, i.e.,

ω
(ℓ1ℓ2)
qp Ψqp =

√
i(q̂(ℓ1)π − ip̂(ℓ2)π̄) Ψqp ,

ω
(ℓ1ℓ2)
pq Ψpq =

√
i(q̂(ℓ2)π − ip̂(ℓ1)π̄) Ψpq ,

(5.76)

where Ψqp and Ψpq are polynomials of φmodulo gcd{J (ℓ1), E(ℓ2)} and gcd{J (ℓ2), E(ℓ1)},
respectively. The solutions (5.76) are not completely independent but rather satisfy
the relations

p̂(ℓ1) ω
(ℓ1ℓ2)
qp = p̂(ℓ2) ω

(ℓ1ℓ2)
pq ,

q̂(ℓ2) ω
(ℓ1ℓ2)
qp = q̂(ℓ1) ω

(ℓ1ℓ2)
pq ,

(5.77)
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where it is clear that common divisors could be divided out. In a similar way
we make the ansatz β(ℓℓ′) = ρ(φ)ππ̄ + σ(φ)π̄π for the bosonic boundary changing
operators. We define the following factorisations appropriate for this case:

E(ℓ1) = e(ℓ1) · gcd{E(ℓ1), E(ℓ2)} ,
E(ℓ2) = e(ℓ2) · gcd{E(ℓ1), E(ℓ2)} ,

J (ℓ2) = j(ℓ2) · gcd{J (ℓ1), J (ℓ2)} ,
J (ℓ1) = j(ℓ1) · gcd{J (ℓ1), J (ℓ2)} , (5.78)

which imply e(ℓ1)j(ℓ1) = e(ℓ2)j(ℓ2). Likewise, there exist two kinds of solutions for the
boundary changing bosons, which can be written as

β
(ℓ1ℓ2)
j Ψj = (j(ℓ1)ππ̄ + j(ℓ2)π̄π) Ψj ,

β
(ℓ1ℓ2)
e Ψe = (e(ℓ2)ππ̄ + e(ℓ1)π̄π) Ψe ,

(5.79)

Ψj and Ψe being polynomials modulo gcd{J (ℓ1), J (ℓ2)} and gcd{E(ℓ1), E(ℓ2)}, respec-
tively. We have again relations between the solutions (5.79), namely

e(ℓ1) β
(ℓ1ℓ2)
j = j(ℓ2) β

(ℓ1ℓ2)
e ,

e(ℓ2) β
(ℓ1ℓ2)
j = j(ℓ1) β

(ℓ1ℓ2)
e .

(5.80)

Summarising, what we have found is, in contrast to the boundary preserving
sector, that the spectrum “doubles” into two sets of bosonic and two sets of fermionic
fields (at least for sufficiently generic perturbations). For a given sector (ℓ1ℓ2) we
can represent it in the following manner, modulo the relations (5.77) and (5.80):

Ψ
(ℓ1ℓ2)
(a,0) =

{

β
(ℓ1ℓ2)
j , β

(ℓ1ℓ2)
j Ψ1(φ), ..., β

(ℓ1ℓ2)
j Ψdj−1(φ)

}

,

Ψ
(ℓ1ℓ2)
(a,2) =

{

β
(ℓ1ℓ2)
e , β

(ℓ1ℓ2)
e Ψ1(φ), ..., β

(ℓ1ℓ2)
e Ψde−1(φ)

}

,

Ψ
(ℓ1ℓ2)
(a,1) =

{

ω
(ℓ1ℓ2)
qp , ω

(ℓ1ℓ2)
qp Ψ1(φ), ..., ω

(ℓ1ℓ2)
qp Ψdqp−1(φ)

}

,

Ψ
(ℓ1ℓ2)
(a,3) =

{

ω
(ℓ1ℓ2)
pq , ω

(ℓ1ℓ2)
pq Ψ1(φ), ..., ω

(ℓ1ℓ2)
pq Ψdpq−1(φ)

}

,

(5.81)

where the d’s are the polynomial degrees of the respective divisors. In (5.81) we
have extended the set of possible values of the index σ in the boundary changing
sectors to {0, 1, 2, 3}, in order to account for the enlarged spectrum. Note that the
actual spectrum for a given pair of factorisations is governed by which subsets of
roots are common to which factors, and under specific circumstances, an example
for which we will discuss momentarily, the basis (5.81) may collapse to a smaller
one.

For the remainder of this section, let us discuss the unperturbed theory, which
corresponds to the twisted N = 2 minimal model with homogenous superpotential
of singularity type Ak+1:

W (φ) =
1

k + 2
φk+2. (5.82)

This theory has an unbroken U(1) R-symmetry, and in order to maintain it on the
boundary, we require J(φ) and E(φ) to be homogenous as well. Equation (3.93)
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bosons q (k + 2) fermions q (k + 2)

Ψ
(ℓℓ)
(0,0) = 1 0 Ψ

(ℓℓ)
(0,1) = ω k − 2ℓ

Ψ
(ℓℓ)
(1,0) = φ 2 Ψ

(ℓℓ)
(1,1) = ωφ k − 2ℓ+ 2

...
...

...
...

Ψ
(ℓℓ)
(n,0) = φn 2n Ψ

(ℓℓ)
(n,1) = ωφn k − 2ℓ+ 2n

...
...

...
...

Ψ
(ℓℓ)
(ℓ,0) = φℓ 2ℓ Ψ

(ℓℓ)
(ℓ,1) = ωφℓ k

Table 5.2: Elements of the boundary preserving chiral ring and their charges. They
match precisely the open string states obtained from BCFT.

restricts the degrees of J(φ) and E(φ) to certain possibilities, and by an exchange
of {π,E} and {π̄,−iJ} we can always choose deg(J) ≤ deg(E). All-in-all we have
the following possibilities:5

J (ℓ)(φ) = φℓ+1 , E(ℓ)(φ) =
1

k + 2
φk+1−ℓ , for ℓ ∈ {0, 1, ..., [k/2]} . (5.83)

This indeed reproduces the set of B-type boundary labels in the rational boundary
CFT of type Ak+1, as reviewed below. Moreover, we can also precisely match the
spectrum of boundary fields for any given such boundary condition labelled by (ℓ).
For this, recall that the charge of the bulk field φ is determined from the bulk
potential, whereas the charge of the boundary fermion π follows from the boundary
potential in (3.89), i.e., qφ = −qφ̄ = 2

k+2
and qπ = −qπ̄ = k−2ℓ

k+2
(we used here the

fact that on the boundary the U(1)-charge is the sum of left and right charges in
the bulk). Furthermore, the Q-closed fermion ω(ℓℓ) takes the form

ω(ℓℓ) =
√
i(π − i

k + 2
φk−2ℓπ̄), (5.84)

and it has the same charge as π; it obviously satisfies the relation (5.71): [ω(ℓℓ)]2 =
1

k+2
φk−2ℓ. Together with φ it generates the boundary chiral ring, and from U(1)

conservation we get that the natural basis is very simple: Ψa(φ) = φa, i.e.

{Ψ(ℓℓ)
(a,0)} =

{

1, φ, ..., φℓ
}

,

{Ψ(ℓℓ)
(a,1)} =

{

ω(ℓℓ), ω(ℓℓ)φ, ..., ω(ℓℓ)φℓ
}

.
(5.85)

In the boundary changing sector (ℓ1ℓ2), the generators of the algebra read

5The choice J(φ) = 1 and E(φ) = 1
k+2φ

k+2 was excluded, because in that case a constant would
already be Q-exact and all topological correlators would vanish.
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bosons q (k + 2) fermions q (k + 2)

Ψ
(ℓ1ℓ2)
(∆,0) = β(ℓ1ℓ2) 2∆ Ψ

(ℓ1ℓ2)
(∆,1) = ω(ℓ1ℓ2) k − 2 ℓ̄

Ψ
(ℓ1ℓ2)
(∆+1,0) = β(ℓ1ℓ2)φ 2(∆+1) Ψ

(ℓ1ℓ2)
(∆+1,1) = ω(ℓ1ℓ2)φ k − 2(ℓ̄−1)

...
...

...
...

Ψ
(ℓ1ℓ2)
(∆+n,0) = β(ℓ1ℓ2)φn 2(∆+n) Ψ

(ℓ1ℓ2)
(∆+n,1) = ω(ℓ1ℓ2)φn k − 2(ℓ̄−n)

...
...

...
...

Ψ
(ℓ1ℓ2)

(ℓ̄,0)
= β(ℓ1ℓ2)φℓ< 2 ℓ̄ Ψ

(ℓ1ℓ2)

(ℓ̄,1)
= ω(ℓ1ℓ2)φℓ< k − 2∆

Table 5.3: Elements of the boundary changing chiral rings and their charges (∆ =
1
2
|ℓ1−ℓ2|, ℓ̄ = 1

2
(ℓ1+ℓ2) and ℓ< = min{ℓ1, ℓ2}). These match as well the results from

BCFT.

β(ℓ1ℓ2) =

{

φℓ1−ℓ2ππ̄ + π̄π : ℓ2 ≤ ℓ1

ππ̄ + φℓ2−ℓ1π̄π : otherwise
,

ω(ℓ1ℓ2) =
√
i

(

π − i

k + 2
φk−ℓ1−ℓ2π̄

)

.

(5.86)

From (5.86) we find the intriguing feature that in this degenerate situation, the two
sorts of each bosonic and fermionic fields (5.81) reduce to only one kind of bosons
and fermions, respectively; in other words, the basis collapses to

Ψ
(ℓ1ℓ2)
(a,0) =

{

β(ℓ1ℓ2), β(ℓ1ℓ2)φ, ..., β(ℓ1ℓ2)φℓ<
}

,

Ψ
(ℓ1ℓ2)
(a,1) =

{

ω(ℓ1ℓ2), ω(ℓ1ℓ2)φ, ..., ω(ℓ1ℓ2)φℓ<
}

,
(5.87)

where ℓ< = min{ℓ1, ℓ2}. At first sight the charge of boundary changing operators is
not obvious, because π and π̄ do not have a well defined charge in that case. However,
taking advantage of charge conservation and the operator product β(ℓ1ℓ2) β(ℓ2ℓ1) =
φ|ℓ1−ℓ2| mod φℓ<+1 as well as ω(ℓ1ℓ2) ω(ℓ2ℓ1) = φk−ℓ1−ℓ2 mod φℓ<+1, we conclude that
q(β(ℓ1ℓ2)) = |ℓ1−ℓ2|

k+2
and q(ω(ℓ1ℓ2)) = k−ℓ1−ℓ2

k+2
.

The R-charges for the boundary fields in the basis (5.85) and (5.87) are listed in
Tables 5.2 and 5.3, respectively. In the following we will show that they perfectly
coincide with the charges of the boundary chiral ring on B-type D-branes in A-series
superconformal minimal models, which is known from the BCFT approach.

The N = (2, 2) minimal model can be realized as an SU(2) WZW model and a
Dirac fermion, coupled through a U(1) gauge field. The symmetry group is Z2k+4 ×
Z2, where Z2k+4 is an axial R-rotation whose generator is denoted by a and Z2

is the fermion number (−1)F .6 Taking the orbifold by (−1)F (a non-chiral GSO-
projection) one obtains the rational conformal field theory SU(2)k ×U(1)2/U(1)k+2.

6More precisely, a = eπiJ0 , where J0 is the zero-mode of the U(1) R-current.
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Its D-branes can be studied using standard BCFT techniques; their relation to
geometry has been studied in [23, 73, 74].

In order to compare with the results obtained from the LG model, we are in-
terested to obtain the spectrum on B-type D-branes in the unprojected theory,
including the statistics of the boundary operators. Starting from the B-type bound-
ary states of the rational model, one first has to undo the GSO projection to obtain
the boundary states in the unprojected theory. One can then identify the action
of a and (−1)F in the open string sector; the latter in particular determines the
statistics. These steps have been performed in [75], and we refer to that paper for a
detailed discussion. For completeness, we summarise the main steps and the result.

The primary fields of the rational model are labelled by the triple (l,m, s) where
l ∈ {0, 1, 2, ..., k}, m is an integer modulo 2k + 4, and s is an integer modulo 4.
The NS sectors are defined by s = 0, 2 and the R sectors by s = −1, 1. We also
have the identification (l,m, s) ∼ (k − l,m + k + 2, s + 2) and the selection rule
l + m + s = 0 mod 2. The chiral primary (antichiral primary) states in the NS
sector are labelled by (l, l, 0) ((l,−l, 0)) if we use the identification in order to set
s = 0. The symmetry group of the model is Z4k+8 (generated by the simple current
(0, 1, 1)) for k odd and Z2k+4 × Z2 (generated by (0, 1, 1) and (0, 0, 2)) for k even.
The current (0, 0, 2) distinguishes the R and NS sectors of the theory and can be
viewed as the quantum symmetry of (−1)F .

The Cardy states (A-type boundary states) |L,M, S〉C are labelled by the same
set (L,M, S) as the primary states. B-type boundary states can be constructed
using the fact that one can obtain the diagonal form of the charge conjugation
modular invariant by taking a Zk+2 ×Z2 orbifold. Hence, taking Zk+2 ×Z2 orbits of
A-type states plus an application of the “mirror map” (charge conjugation on the
left-movers) leads to B-type boundary states. The Zk+2 acts on the Cardy states
by shifting M by 2 and the Z2 acts by shifting S by 2. We therefore label B-type
states by the orbit labels L = {0, 1, 2, ..., [k

2
]}, M = 0 and S = 0, 1. All of these

states are purely in the NSNS sector, and these branes are unoriented. A special
case arises for k even and L = k

2
(this observation traces back to [76]). In this case

the orbit boundary state is not elementary but can be decomposed further: There
are altogether four states |B, k

2
, Ŝ〉 with Ŝ = −1, 0, 1, 2, which are linear combination

of an “orbit” NSNS part |B, k
2
, S〉 (where S is the mod 2 reduction of Ŝ) and an

extra RR piece. In particular, these branes are oriented. We refer to [73] for details
of the construction.

The task is now to resolve the GSO projection to obtain the branes of the un-
projected theory. As explained in [75], the unoriented branes remain the same in
the projected and unprojected theory. On the other hand, the oriented (short orbit)
branes get re-decomposed into a NSNS and an RR part. In this work, we have
developed a LG formulation of the unoriented orbit-type branes, and we point out
that a LG interpretation of the oriented B-type branes has been proposed in [15,77].
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The open string spectrum between the unoriented branes can be obtained as

H(L,S)(L′,S′) =
⊕

l+m+s even

N l
LL′H

N=2
l,m,S−S′, (5.88)

where N l
LL′ are the SU(2)k fusion rule coefficients. The spaces H N=2

l,m,[s] are the
modules of the unprojected N = 2 theory, which can be written in terms of the
GSO-projected modules as H N=2

l,m,[s] = Hl,m,s + Hl,m,s+2. [s] denotes the mod 2

reduction of s and distinguishes NS and R sectors. (Note that S and S ′ in (5.88)
were only defined mod 2, therefore [S−S ′] = S−S ′ and the bracket can be omitted.)

Since these boundary states are purely in the NSNS sector, it is clear from the
closed string sector that the Witten index between them vanishes. For the R-ground
states in the open string sector this means that their contributions to tr(−1)F cancel
out, in other words, half of the supersymmetric R ground states are bosonic, and half
of them are fermionic. More precisely, one can see that on a (L, S)(L′, S+1)-brane
pair the ground states from H N=2

l,l+1,1 and H N=2
l,−l−1,1 (which is an element of the Hilbert

space Hl,−l−1,−1 of the GSO-projected theory) contribute with opposite sign [75].
By spectral flow (0,−1,−1) these representations are related to H N=2

l,l,0 . Note
however that the spectral flow operator is not part of the spectrum of a single
brane: RR ground states only propagate if S− S ′ = 1 mod 2 and NSNS states only
if S − S ′ = 0 mod 2. In particular, there are never RR states on a single brane. It
is natural to assume that the NSNS chiral primaries split up into a set of bosonic
and fermions just as their RR counter parts, which propagate between branes with
appropriately shifted label S.

To be explicit, the chiral ring consists of elements with charges (q̃ = q (k+2))

q̃ = l ∈ {|L−L′|, |L−L′|+2, . . . , (L+L′)} in H N=2
l,l,0 ,

q̃ = k−l ∈ {k−(L+L′), k−(L+L′)+2, . . . , k−|L−L′|} in H N=2
l,−l−2,2 ,

(5.89)

where the states of H
N=2

l,l,0 have opposite fermion number parity as compared with
the states of H N=2

l,−l−2,2. This spectrum coincides precisely with the one listed in
Tables (5.2) and (5.3), as obtained from the unperturbed Landau-Ginzburg theory;
the label L of the BCFT formulation corresponds to ℓ in the LG formulation.



Chapter 6

The WDVV equations for the
prepotential

We start now to investigate the main goal of this work; we want to find relations be-
tween correlation functions in topological conformal field theories taking advantage
of Ward identities. In this chapter we restrict to closed string tree-level amplitudes,
i.e., amplitudes on the sphere, and review the results of [5], including the WDVV
equations of closed TCFT (cf. also [78, 79]).

We found in section 4.1 that Q-exact terms decouple from topological correlation
functions of physical operators. Given a basis φi for Hc this implies that a correlator

〈

φi1 . . . φin

〉

S2 , (6.1)

has two major properties: (i) The correlators are independent of the insertion point.
This fact can be shown by virtue of the descent relations (4.15). (ii) The correlators
are independent of the world-sheet metric, which follows from (4.4). In particular,
the two point correlation function

ηij =
〈

φiφj

〉

S2 .

plays the distinct role of a topological metric on Hc.
(i) and (ii) are very powerful statements. They imply that the correlation func-

tions are invariant under permutations of the insertions, and they give rise to the
factorisation of any n-point correlation function into 3-point correlators: We can
deform the sphere with n insertions so that we get two spheres, which are connected
by an infinitely long throat. The latter can be replaced by a complete system of
physical operators, 11 =

∑

∣

∣φi

〉

ηij
〈

φj

∣

∣, where ηij is the inverse topological metric.
In such a way we obtain two spheres with n1 resp. n − n1 + 2 insertions. By a
recursive application of this procedure we have shown the desired factorisation into

Cijk =
〈

φiφjφk

〉

S2 . (6.2)

In this respect 3-point correlation functions Cijk (and the topological metric ηij =
Cij0) can be viewed as fundamental objects, which are related to the operator prod-
uct coefficients of relation (4.13) by Cijk = Cij

lηlk. Given a n-point correlation

65
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function the factorisations are by far not unique [80]; we have the choice of different
channels. In particular, from the factorisation of the 4-point correlator we obtain
the associativity relation:

Cijkη
klClmn = Cinkη

klClmj , (6.3)

which ensures already the consistency of factorisations of arbitrary n-point functions
in different channels [80].

We next consider the inclusion of integrated insertions of descendant 2-form op-
erators (4.16). As compared to the correlators (6.1) we shall use the term amplitudes
for correlators containing integrated insertions of descendants. These have the form:

Ci1...in :=
〈

φi1 . . . φi3

∫

φ
(1,1)
i4

. . .

∫

φ
(1,1)
in

〉

S2 . (6.4)

By decoupling of Q-exact terms the amplitudes (6.4) have the same properties as the
topological correlators (6.1). Note that we could have picked an arbitrary number
of fixed insertions in (6.4). The distinct role of the amplitudes (6.4) with 3 fixed
insertions is two-fold. First, all amplitudes can be reduced to this type through
factorisation, as discussed above. Second, from the point of view of string theory we
have to integrate the insertions in an amplitude over the whole moduli space of the
n-punctured sphere, i.e., we have to consider exclusively integrated insertions of the
type (4.16) in string amplitudes. However, the superconformal Möbius transforma-
tions of the topological conformal field theory on the sphere tell us that we can fix
the position of exactly three operators, leading to (6.4). Note, in particular, that
we are free to choose, which of the operators are fixed. Therefore, it is quite natural
that the amplitude is totally symmetric under arbitrary permutations of all fields.
This statement is true for topological conformal field theories, but not for a general
TQFT, and it can be made precise in terms of Ward identities1 of the amplitudes
(6.4) including the 1-form charges G−1 and G̃−1 [78]. A similar Ward identity shows
that

C0i2...in = 0 for n ≥ 4. (6.5)

Let us define perturbed string amplitudes by the expression:

Ci1...in(t) = 〈φi1φi2φi3

∫

S2

φ
(1,1)
i4

. . .

∫

S2

φ
(1,1)
in e

Phc−1
p=0 tp

R

S2 φ
(1,1)
p 〉 ,

which is understood as the formal power series:

Ci1...in(t) =

∞
∑

N0...Nhc−1=0

hc−1
∏

p=0

t
Np
p

Np!
〈φi1φi2φi3

∫

S2

φ
(1,1)
i4

. . .

∫

S2

φ
(1,1)
in

hc−1
∏

p=0

[
∫

S2

φ(1,1)
p

]Np

〉 .

1We do not elaborate on this point here, since we will work out such identities in great detail
for disk amplitudes.
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Here t = (t0 . . . thc−1) is a collection of complex-valued parameters, the closed string
moduli. We can express all deformed amplitudes on the sphere with at least four
insertions as partial derivatives of the deformed three-point function:

Ci1...in(t) = ∂i4 . . . ∂inCi1i2i3(t) for n ≥ 3 .

Here and below we use the notation ∂i := ∂
∂ti

.
Property (6.5) then shows that the perturbed topological metric ηij(t) := C0ij(t)

is independent of the parameters t. And by the symmetry of the amplitudes (6.4)
under all permutations of indices we infer the integrability condition:

∂iCjkl(t) = ∂jCikl(t) ,

which allows us to write the deformed three-point correlator as a triple derivative
of a function F(t):

Cijk(t) = ∂i∂j∂kF(t) . (6.6)

F is known as prepotential and is the generating function for all sphere amplitudes
(6.4). In the appropriate geometric set-up, it can be interpreted as the prepotential
of the effective spacetime theory associated with an N = 2 Calabi-Yau compactifi-
cation of type II superstring.

The associativity condition as it stands in (6.3) is true for the unperturbed
theory. From the flatness of the metric ηij and including integrated insertions to
obtain the deformed 3-point amplitudes Cijk(t) one can show [5] that this constraint
is also realized on the generally deformed theory, i.e.:

Cijm(t)ηmnCnkl(t) = Cikm(t)ηmnCnjl(t) . (6.7)

Using relation (6.6), this gives a system of second order, quadratic partial differential
equations for the prepotential:

∂i∂j∂mF ηmn ∂n∂k∂lF = ∂i∂k∂mF ηmn ∂n∂j∂lF . (6.8)

These are the well-known associativity, or WDVV relations [5, 81].



Chapter 7

Disk amplitudes and the effective
superpotential

In this chapter we discuss the most basic properties of open-closed amplitudes on the
disk. As on the sphere we can consider topological field theory correlation functions:

〈

φi1 . . . φinψa1 . . . ψam

〉

D2 , (7.1)

with arbitrary number of physical bulk and boundary operator insertions. These
correlation functions are constants, just as their counterparts (6.1) on the sphere.
Therefore, we can use similar arguments to show factorisation into the fundamental
correlators

〈

φiψa

〉

D2 ,
〈

ψaψbψc

〉

D2 , (7.2)

and the sphere 3-point correlator (6.2). The different channels of factorisation
give constraint equations on the fundamental correlators (7.2) and (6.2), which are
worked out in detail in [82, 83].

Our main goal is, however, to investigate deformed amplitud that include inte-
grated bulk operators (4.16), as well as integrated boundary operators (4.29). As
compared to the bulk theory on the sphere, we pick up several complications, when
we try to consider amplitudes with arbitrary numbers of fixed and integrated inser-
tions. These complication are due to the presence of the boundary of the world-sheet
and can be traced back to the fact that the integrated operators, (4.16) and (4.29),
are no longer Q-closed. Therefore, the amplitudes are, in general, not independent
of the position of the fixed insertions and not independent of the world-sheet metric.

There is, however, one exception, which occurs in topological conformal field
theories. The string amplitudes, which come from fixing integrated insertions by
virtue of the superconformal Möbius group on the disk, come in two basic forms:
one has either one fixed bulk and one fixed boundary operator or solely three fixed
boundary operators. It is exactly these amplitudes, which can be shown to have the
usual property of topological field theories that they are constant. In contrast to
the amplitudes (6.4) on the sphere, this property requires conformal invariance of
topological field theory.
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For the analysis of consistency conditions in the next chapter it is essential to
introduce a proper regularisation of the disk amplitudes, which is done in section
7.1. Thereafter, we show in section 7.2 that the two basic forms of amplitudes are
equal up to sign; and after some technical preparations we show in sections 7.4 and
7.5 that the amplitudes are independent of the positions of fixed operators and,
moreover, invariant under variations of the world-sheet metric.

In section 7.6 we prove that disk amplitudes are invariant under cyclic permuta-
tions of boundary operators and invariant under all permutations of bulk operators.
In particular, the latter condition allows us to integrate bulk operators to deformed
cyclic disk amplitudes in section 7.7. Finally, we introduce a formal generating func-
tion W(s, t) of deformed disk amplitudes in section 7.8. Here, s and t are a collection
of open resp. closed string moduli. We refer to W(s, t) as effective superpotential,
because it coincides with the spacetime effective superpotential [6], whenever such
an interpretation is possible.

7.1 The regularised amplitudes

Since disk amplitudes with integrated boundary descendants are affected by con-
tact divergences, the conformal field theory arguments of later sections will require
a regulator. We shall use a version of point-splitting for integrated bulk opera-
tors approaching the boundary of the disk and for integrated boundary operators
approaching each other. This regularisation is essential only for the arguments of
sections 8.1 and 8.2.

Given bulk descendants φ
(2)
ik

with k = 1 . . . n, we will choose their integration
domain as follows:

Hn = {(z1, . . . , zn) ∈ C
n | Im(zk) ∈ (kǫ,∞) for all k = 1 . . . n} , (7.3)

Here zk are the insertion points of φ
(2)
ik

, which of course are integrated over.
We next consider boundary insertions. Using superconformal Möbius invariance,

three of them can be fixed while the others are integrated (see fig. 7.1(a)). A typical
disk amplitude has the form:

〈

ψa1ψa2 P

∫

ψ(1)
a3
. . .

∫

ψ(1)
am−1

ψam

∫

φ
(2)
i1
. . .

∫

φ
(2)
in

〉

, (7.4)

where we fixed the positions of ψa1 , ψa2 and ψam
to the points τ1, τ2, τm ∈ R, with the

restriction τ1 < τ2 < τm. The path-ordering symbol P means that the integral over
τ3 . . . τm−1 runs between τ2 and τm with the constraint τ2 < τ3 < . . . < τm−1 < τm.
Including a regulator, the exact integration domain will be chosen as follows:

Sm(τ2, τm) =
{

(τ3, . . . , τm−1) ∈ R
m−3|τk − τj > [2(k− j)−1]ǫ for 2 ≤ j < k ≤ m

}

.
(7.5)

Notice that we are requiring slightly increased separations for non-consecutive
boundary insertions, rather than working with the naive point-splitting constraint
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ψa0
ψa0

ψa
(1)

ψam
ψa1

ψa

ψa1
(1) ψam

(1)

φi0

m−12
(1)

(a) (b)

Figure 7.1: Boundary and bulk insertions for disk amplitudes. (a)
Three boundary fields ψa0 , ψa1 and ψam

are at fixed positions, the
others are integrated in a path ordered way between ψa1 and ψam

.
(b) One bulk and one boundary field are fixed. In both cases ad-
ditional bulk operators may be present, which are integrated over
the whole disk.

|τk − τj | ≥ |k − j|ǫ. This somewhat unusual choice is made for the following rea-
son. The factorisation procedure of the following sections makes use of the descent
equation [Q,G] = d

dτ
, which implies that acting with Q on an integrated boundary

insertion produces terms involving the associated zero-form operator evaluated at
the boundaries of its integration interval, generally with some integrated insertions
squeezed in. The increased separations chosen in (7.5) ensure the presence of non-
void integration domains for the squeezed-in operators. For instance, if we consider
Q acting on

∫

ψ
(1)
a4 , then our choice for the integration domain Sm(τ2, τm) leads to a

term of the form:

ψa2(τ2)

∫ τ4−ǫ

τ2+ǫ

dτ3 ψ
(1)
a3

(τ3) ψa4(τ4)
∣

∣

∣

τ4=τ2+3ǫ
= ψa2(τ2)

∫ τ2+2ǫ

τ2+ǫ

dτ3 ψ
(1)
a3

(τ3) ψa4(τ2 + 3ǫ) ,

which involves integration over a non-void interval. Had we used the naive condition
|τk − τl| > |k − l|ǫ, the integral in the last equation would have been

∫ τ2+ǫ

τ2+ǫ
ψ

(1)
a3 = 0.

Besides (7.4) one can also consider amplitudes in which PSL(2,R)-invariance is
used to fix the positions of one bulk and one boundary insertion (see fig. 7.1(b)):

〈

φi1ψa1 P

∫

ψ(1)
a2
. . .

∫

ψ(1)
am

∫

φ
(2)
i2
. . .

∫

φ
(2)
in

〉

. (7.6)

Naively, the integration domain is obtained from Sm(τ2, τm) by replacing both τ2 and
τm by τ1, where we integrate over the real line and identify −∞ and ∞. However,
the integrals approach ψa1 from both sides, so we have to introduce a further cut-off.
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We will choose the following integration domain:

Sm(τ1) = {(τ2, . . . , τm) ∈ R
m−3 | (τ2 . . . τm) is cyclically ordered and (7.7)

τk − τl > [2(k−l)−1]ǫ for τk > τl > τ1 ,

or τ1 > τk > τl ,

τk − τl > [2(k−l+m)−1]ǫ for τk > τ1 > τl} .

We will see in a moment that (after removing the regulator) the two kinds of am-
plitudes are equal up to sign, as has been argued before in [42].

Having defined the regularised amplitudes, we shall explore the implications of
the conformal Ward identities and of the Ward identities for G. Using the doubling
trick, one easily proves the relation:

∮

ξ(z)
〈

G(z)ψa0 . . . ψam
φi1 . . . φin

〉

=
m
∑

k=0

± ξ(τk)
〈

ψa0 . . . ψ
(1)
ak
. . . ψam

φi1 . . . φin

〉

±
n
∑

k=0

ξ(wk)
〈

ψa0 . . . ψam
φi1 . . . φ

(1,0)
ik

. . . φin

〉

±
n
∑

k=0

ξ̄(w̄k)
〈

ψa0 . . . ψam
φi1 . . . φ

(0,1)
ik

. . . φin

〉

= 0 , (7.8)

where ξ(z) = az2 + bz + c with a, b, c ∈ R is a globally-defined holomorphic vector
field on the upper half plane and the signs account for the grading on boundary fields.
By the doubling trick, the contour integral on the left hand side encircles all fields
and their images with respect to the real axis in the complex plane (which is viewed
as a double cover of the upper half plane). In the right hand side we evaluated the

residue at every insertion, including the images. The terms containing φ
(1,0)
i arise

from the residue at φi, while the terms containing φ
(0,1)
i arise from the residues at

the images of these insertions.
In the bulk sector, a similar identity implies constancy of the bulk topological

metric along the moduli space and integrability of the deformed amplitudes. Below,
we will study the consequences of (7.8).

7.2 Equivalence of the two types of amplitudes

We start by explaining the relation between the two kinds of disk amplitudes (7.4)
and (7.6). We will show that these a priori different quantities are in fact equal up
to sign factors. This was already discussed in [42] and we shall review the argument
below in order to extract the correct signs for the case of boundary fields with
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different degrees. The derivation uses the Ward identities of G to relate integration
over a bulk descendant with two integrations over boundary descendants.

As an example, consider the amplitudes
〈

ψaψbψc

∫

φ
(2)
i

〉

and
〈

φiψa P
∫

ψb

∫

ψc

〉

.
We use the Ward identities:

∮

ξ3
〈

G

∮

ξ2G ψa(τ1) ψb(τ2) ψc(τ3) φi(z, z̄)
〉

= 0 ,

and:
∮

ξ3
〈

Gψaψbψ
(1)
c φi

〉

= 0 ,

∮

ξ2
〈

Gψaψ
(1)
b ψcφi

〉

= 0 ,

with the following choice for the global holomorphic vector fields:

ξ2(z) = (z − τ1)(z − τ3) and ξ3(z) = (z − τ1)(z − τ2) .

We assume the ordering τ1 < τ2 < τ3. Using equation (7.8), we obtain:

ξ2(z)ξ̄3(z̄) − ξ̄2(z̄)ξ3(z)

ξ2(τ2)ξ3(τ3)

〈

ψaψbψcφ
(2)
i

〉

= (−1)b̃
〈

ψaψ
(1)
b ψ(1)

c φi

〉

. (7.9)

The conformal Ward identities ensure that both sides of equation (7.9) depend only

on the cross-ratio ζ = (z−τ3)(τ2−τ1)
(z−τ2)(τ3−τ1)

and its complex conjugate. Using the relations:

ξi(τi)
∂ζ

∂τi
+ ξi(z)

∂ζ

∂z
= 0 , for i = 2, 3 ,

we find:

ξ2(z)ξ̄3(z̄) − ξ̄2(z̄)ξ3(z)

ξ2(τ2)ξ3(τ3)
=

(

∂ζ

∂z

∂ζ̄

∂z̄

)−1(
∂ζ

∂τ2

∂ζ̄

∂τ3
− ∂ζ

∂τ3

∂ζ̄

∂τ2

)−1

.

Hence the prefactor in equation (7.9) is the Jacobian of the coordinate transforma-
tion from (z, z̄) to (τ2, τ3).

A priori we are free to normalise the integrations over bulk and boundary de-
scendants independently: λbulk

∫

φ(2) and λbound

∫

ψ(1). By integrating (7.9) we find:

(−1)b̃
〈

ψaψbψc

∫

φ
(2)
i

〉

= −
〈

φi ψa P

∫

ψ
(1)
b

∫

ψ(1)
c

〉

, (7.10)

where we chose the relative normalisation factor to be −1. Of course, this locks
λbulk and λbound together through the relation λbulk ∝ λ2

bound.
One can easily generalise the analysis to arbitrary numbers of bulk and boundary

insertions. This gives:

Ba0...am;i1...in := (−1)ã1+...+ãm−1
〈

ψa0ψa1 P

∫

ψ(1)
a2
. . .

∫

ψ(1)
am−1

ψam

∫

φ
(2)
i1
. . .

∫

φ
(2)
in

〉

= −
〈

φi1ψa0 P

∫

ψ(1)
a1
. . .

∫

ψ(1)
am

∫

φ
(2)
i2
. . .

∫

φ
(2)
in

〉

. (7.11)



CHAPTER 7. DISK AMPLITUDES AND THE SUPERPOTENTIAL 73

Thus (7.4) and (7.6) are equal up to sign, and they determine the single object
Ba0...am;i1...in defined by the expression above. Notice that for Ba0a1a2 as well as
Ba0;i1 and Ba0a1;i1 such a relation does not exist for obvious reasons. As we shall see
below, it is notationally convenient to define:

Ba0a1 = Ba0 = Bi = 0 . (7.12)

The amplitudes (7.11) are subject to the selection rule:

ã0 + . . .+ ãm = ω̃ , (7.13)

which is induced by the suspended grading on the space of boundary operators
(4.31). ω̃ is the model-dependent grade of non-vanishing amplitudes. Note that the
suspended grading is more natural than the ordinary degree for physical boundary
operators.

We make one final remark about equation (7.11). The first line is manifestly
symmetric in the bulk indices, but this is not obvious for the second line. As in
the pure bulk theory [5], there exists a Ward identity, which switches fixed and
integrated bulk insertions. This can be used to show directly that the second line
in (7.11) is also totally symmetric in the bulk insertions.

7.3 Two point correlation functions are not de-

formed

In this subsection, we show that the two-point boundary correlators are constant
under bulk and boundary deformations. Let us start with the Ward identity for G
in the presence of two fixed boundary insertions:

∮

ξ(z)
〈

G(z) ψa1(τ1)ψa2(τ2)ψa3(τ3)
〉

= 0 .

Choosing ξ(z) = (z − τ1)(z − τ2), we find:
〈

ψa1 ψa2 ψ
(1)
a3

〉

= 0 . (7.14)

The analogous relation for a bulk perturbation:
〈

ψa1 ψa2 φ
(2)
i

〉

= 0 , (7.15)

requires a bit more work. For this, consider the Ward identity:
∮

ξ2
〈

G

∮

ξ1Gψa1(τ1)ψa2(τ2)φi(w, w̄)
〉

= 0 ,

where ξ1(z) = (z − τ1)(z − τ2) and ξ2(z) = (z − τ2)(z − Rew). Combining this with
the relation:

∮

ξ1
〈

Gψa1ψ
(1)
a2
φi

〉

= 0 ,
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leads to equation (7.15).

Since the supercharge G does not act on additional descendants
∫

ψ
(1)
a and

∫

φ
(2)
i ,

we easily infer the generalisation:

〈

ψa1 ψa2 P

∫

ψ(1)
a3
. . .

∫

ψ(1)
am

∫

φ
(2)
i1
. . .

∫

φ
(2)
in

〉

= 0 , for m ≥ 3 or n ≥ 1 . (7.16)

In similar manner, one shows:

〈

φ
(1,0)
i0

ψa1 P

∫

ψ(1)
a2
. . .

∫

ψ(1)
am

∫

φ
(2)
i1
. . .

∫

φ
(2)
in

〉

= 0 ,

〈

φ
(0,1)
i0

ψa1 P

∫

ψ(1)
a2
. . .

∫

ψ(1)
am

∫

φ
(2)
i1
. . .

∫

φ
(2)
in

〉

= 0 , (7.17)

In terms of the quantities defined in equation (7.11), relation (7.16) takes the form:

B0a1...am;i1...in = 0 for m ≥ 3 or n ≥ 1 . (7.18)

The identities discussed in this subsection will be important for subsequent ar-
guments. As we shall see, they are essential for the proof that disk amplitudes are
constant. Moreover, they give rise to special properties of the boundary algebra and
the topological boundary metric.

7.4 Independence of the positions of unintegrated

insertions

We will now show that the fundamental amplitudes (7.11) are independent of the
positions of unintegrated insertions. As an example, consider the 4-point boundary
amplitude. Differentiating it with respect to τ1 and using the descent equations, we
find:

∂

∂τ1

〈

ψa0ψa1

τ3
∫

τ1

ψ(1)
a2
ψa3

〉

=
〈

ψa0 [Q,ψ
(1)
a1

]

τ3
∫

τ1

ψ(1)
a2
ψa3

〉

−
〈

ψa0ψa1ψ
(1)
a2
|τ1ψa3

〉

= (−1)ã1
〈

ψa0ψ
(1)
a1

(ψa2 |τ1 − ψa2 |τ3)ψa3

〉

−
〈

ψa0ψa1ψ
(1)
a2
|τ1ψa3

〉

= (−1)ã1

(

〈

ψa0(ψa1ψa2)
(1)ψa3

〉

−
〈

ψa0ψ
(1)
a1

(ψa2ψa3)
〉

)

= 0 .

In the last line we used relation (7.16). Generalising this argument, it is not hard
to show that all amplitudes (7.11) are independent on the positions of unintegrated
insertions.
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7.5 Independence of the world-sheet metric

Due to the nontrivial terms in the right hand side of equation (4.30), it is not imme-
diately clear that the amplitudes (7.11) are independent of the world-sheet metric.
The usual recipe of topological field theory does not work: the variation of the
correlation function with respect to the metric produces an insertion of the energy-
momentum tensor, which can be written as [Q,Gµν ]. When pulling Q through the
integrated boundary insertions, one obtains nontrivial terms induced by equation
(4.30), so that one cannot immediately conclude that integrated correlators are in-
dependent of the world-sheet metric. However, conformal invariance comes to the
rescue, through the conformal Ward identity:

〈

T (z) φi1 . . . φin ψa1 . . . ψam

〉

=

=

n
∑

k=1

(

hk

(z − zk)2
+

1

z − zk

∂

∂zk

)

〈

φi1 . . . φinψa1 . . . ψam

〉

+ (7.19)

+

n
∑

k=1

(

h̄k

(z − z̄k)2
+

1

z − z̄k

∂

∂z̄k

)

〈

φi1 . . . φinψa1 . . . ψam

〉

+

+
m
∑

l=1

(

hl

(z − τl)2
+

1

z − τl

∂

∂τl

)

〈

φi1 . . . φinψa1 . . . ψam

〉

,

where φik = φik(zk, z̄k) and ψal
= ψal

(τl) are bulk and boundary conformal primaries.
In the case of interest, the conformal weights of zero-form operators are hl = hk =
h̄k = 0, while for descendants one has hl = hk = h̄k = 1.

Let us first consider the simplest case, namely the boundary 4-point amplitude:

τ4
∫

τ2

dτ3
〈

T (z) ψa1ψa2ψ
(1)
a3
ψa4

〉

=
∑

l=1,2,4

τ4
∫

τ2

dτ3
1

z − τl

∂

∂τl

〈

ψa1ψa2ψ
(1)
a3
ψa4

〉

+

+

τ4
∫

τ2

dτ3
∂

∂τ3

(

1

z − τ3

〈

ψa1ψa2ψ
(1)
a3
ψa4

〉

)

.

Using the descent relations (4.27) in the first line and evaluating the integral in the
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second line, we find:

τ4
∫

τ2

dτ3
〈

T (z) ψa1ψa2ψ
(1)
a3
ψa4

〉

=

= (−1)ã1+ã2
1

z − τ1

(〈

ψ(1)
a1
ψa2(ψa3ψa4)

〉

−
〈

ψ(1)
a1

(ψa2ψa3)ψa4

〉)

+

+ (−1)ã2
1

z − τ2

(〈

ψa1(ψa2ψa3)
(1)ψa4

〉

−
〈

ψa1ψ
(1)
a2

(ψa3ψa4)
〉)

+

+
1

z − τ3

(〈

ψa1ψa2(ψa3ψa4)
(1)
〉

−
〈

ψa1(ψa2ψa3)ψ
(1)
a4

〉)

(7.20)

= 0 .

In the last step, we used again equation (7.16). In the same manner one can show
that all amplitudes (7.11) are independent of the world-sheet metric.

Remark: We have seen that taking into account the conformal invariance of
the theory was essential in the last two subsections. In particular, the property of
constancy does not hold for amplitudes with more fixed insertions as compared to
(7.4) or (7.6). This fact will play an essential role, when we subsequently derive
constraint equations, since we cannot apply simple deformation arguments as in the
bulk theory on the sphere.

7.6 Cyclicity and bulk permutation invariance

We shall now prove that disk amplitudes are (graded) cyclically symmetric with
respect to boundary insertions. Let us illustrate this with the boundary 4-point
amplitude:

∮

ξ(z)
〈

G(z) ψa1(τ1)ψa2(τ2)ψa3(τ3)ψa4(τ4)
〉

= 0 , (7.21)

where τ4 > . . . > τ1. Taking ξ(z) = (z − τ4)(z − τ1) in equation (7.21) and using

relation (7.8), we obtain ξ(τ2)
〈

ψaψ
(1)
b ψcψd

〉

= (−1)b̃ξ(τ3)
〈

ψaψbψ
(1)
c ψd

〉

. From the
conformal Ward identities we know that the unintegrated 4-point function depends
only on the cross-ratio ζ = (τ4−τ3)(τ2−τ1)

(τ4−τ2)(τ3−τ1)
, which satisfies the relation:

ξ(τ2)
∂ζ

∂τ2
+ ξ(τ3)

∂ζ

∂τ3
= 0 .

Hence the Ward identity (7.21) implies:

(

∂ζ

∂τ2

)−1
〈

ψaψ
(1)
b ψcψd

〉

= −(−1)b̃

(

∂ζ

∂τ3

)−1
〈

ψaψbψ
(1)
c ψd

〉

.

Let us integrate this equation over ζ , taking into account that on the right hand
side the integration runs in the ‘wrong’ direction, i.e.

∫ 1

0
dζ( ∂ζ

∂τ2
)−1 =

∫ τ3
τ1
dτ2, but
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∫ 1

0
dζ( ∂ζ

∂τ3
)−1 = −

∫ τ4
τ2
dτ3. This gives the relation:

〈ψaP

∫

ψ
(1)
b ψcψd

〉

= (−1)b̃
〈

ψaψbP

∫

ψ(1)
c ψd〉 .

Generalising the argument to more integrated insertions, one finds the following
identities:

〈

ψa0ψa1P

∫

ψ(1)
a2
. . .

∫

ψ(1)
am−1

ψam

〉

= (−1)ã1+...+ãm−2
〈

ψa0P

∫

ψ(1)
a1
. . .

∫

ψ(1)
am−2

ψam−1ψam

〉

(7.22)
and:

〈

φiψa0 P

∫

ψ(1)
a1
. . .

∫

ψ(1)
am

〉

= (−1)ã0+...+ãm−1
〈

φi P

∫

ψ(1)
a0
. . .

∫

ψ(1)
am−1

ψam

〉

. (7.23)

Additional bulk perturbations do not change these results.
We conclude that the fundamental disk amplitudes Ba0...am;i1...in with m,n ≥ 0

and 2n+m > 1 are cyclically symmetric in the boundary indices:

Ba0...am;i1...in = (−1)ãm(ã0+...+ãm−1)Bama0...am−1;i1...in . (7.24)

And as already pointed out at the end of section 7.2, all such amplitudes are totally
symmetric in the bulk indices (the argument is the same as for the pure bulk case [5]).

7.7 Deformed amplitudes and the boundary met-

ric

The very last statement of the previous section implies that we can integrate all
bulk perturbations to produce deformed disk amplitudes:

Fa0...am
(t) for m ≥ 0 (7.25)

which generate deformed open-closed amplitudes:

Ba0...am;i1...in(t) = ∂i1 . . . ∂inFa0...am
(t) . (7.26)

And we obtain the undeformed amplitudes (7.11) by setting t = 0. For m ≥ 2, the
generating functions are given by the expressions:

Fa0...am
(t) = (−1)s 〈ψa0ψa1P

∫

ψa2 . . .

∫

ψam−1ψam
e

P

p tp
R

D2 φ
(2)
p 〉 ,

which are understood as the formal power series:

Fa0...am
(t) = (−1)s

∞
∑

N0...Nhc−1=0

hc−1
∏

p=0

t
Np
p

Np!
〈ψa0ψa1P

∫

ψa2 . . .

∫

ψam−1ψam

[
∫

φ(2)
p

]Np

〉 ,
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where s = ã1 + · · · + ãm−1. The cases m = 0 and m = 1 of (7.6) are special,
because one bulk operator is not integrated. However, through the Ward identity
for G, such correlators are again totally symmetric in the bulk indices. Thus one
can define Fa(t) and Fab(t) through the relations:

∂iFa(t) = −〈φi ψa e
P

p tp
R

D2 φ
(2)
p 〉 ,

∂iFab(t) = −〈φi ψaP

∫

ψ
(1)
b e

P

p tp
R

D2 φ
(2)
p 〉 ,

which determine these quantities up to t-independent terms.
Notice that Fa(t) and Fab(t) need not vanish, though they must be of order at

least one in ti (cf. equations (7.12)). In particular, this means that deformations of
the closed string background will generally induce tadpoles:

Fa(t) := 〈ψa〉t ,

where 〈. . . 〉t stands for the expectation value on the disk taken in the deformed
theory. Such tadpoles must of course be cancelled (for example by performing a
shift of the boundary topological vacuum) if the deformed theory is to be conformal
(and generally a meaningful string background). This means that deformations
of the bulk and boundary sectors must be locked together in order to solve the
obstructions, a phenomenon well-known from joint deformation theory. We shall
further discuss this phenomenon in Subsection 8.3, and exemplify it for concrete
physical models in Section 9.

Cyclicity of disk amplitudes with respect to boundary insertions (equation (7.24))
implies the invariance of the deformed amplitudes under cyclic permutations of the
indices:

Fa0...am
(t) = (−1)ãm(ã0+...+ãm−1)Fama0...am−1(t) . (7.27)

Equations (7.18) gives rise to the restrictions:

F0a1...am
(t) = 0 for m 6= 2 . (7.28)

and
ωa1a2 = F0a1a2(t) = independent of t . (7.29)

ωab represents a non-degenerate topological metric for the physical boundary fields
and equation (7.29) amounts to the statement that the metric is invariant under de-
formations of the theory. Equipped with metrics on the physical bulk and boundary
operators we can define the quantities:

Ba
a1...am;i1...in := ωabBba1...am;i1...in ,

Bi
a0...am;i2...in := ηijBa0...am;ji2...in . (7.30)

In view of relation (7.29), the selection rule (7.13) becomes:

ωab = 0 unless ã + b̃ = ω̃ + 1 (mod 2) . (7.31)

Moreover, the topological boundary metric fulfils the graded symmetry property:

ωab = (−1)ω̃(−1)ãb̃ωba . (7.32)



CHAPTER 7. DISK AMPLITUDES AND THE SUPERPOTENTIAL 79

7.8 The formal generating function and the effec-

tive superpotential

It is possible to package the cyclic amplitudes Fa0...am
(t) defined in (7.25) into a

single formal generating function as follows. Consider the free associative (but non-
commutative) superalgebra Â generated by a set of formal variables ŝa of degrees
ã ∈ Z2 , where a runs from 0 to ho − 1. Then we define the formal generating
function Ŵ(ŝ, t) through the expression:

Ŵ(ŝ, t) =
∑

m≥1

1

m
ŝam

. . . ŝa1Fa1...am
(t) . (7.33)

It can be viewed as an element of the associative superalgebra C[[t0 . . . thc−1]] ⊗
Â, where C[[t0 . . . thc−1]] is the commutative algebra of formal power series in the
variables ti.

Since the parameters ŝa are non-commuting, the quantity Ŵ(ŝ, t) has no obvious
physical interpretation, so the reader might wonder what is the use of considering
non-commuting parameters in the first place. To understand this, let us introduce
(super-)commuting parameters sa instead, whose degrees are given by ã (such formal
variables generate a free commutative superalgebra denoted by A). Then we define
a quantity W(s, t) by the same formula as above, but with ŝa replaced by sa:

W(s, t) =
∑

m≥1

1

m
sam

. . . sa1Fa1...am
(t) . (7.34)

Since sa super-commute and have the same Z2-degree as the boundary descendants
ψ

(1)
a , they can be viewed as honest boundary deformation parameters of the world-

sheet theory. In physics terms, W(s, t) will coincide with the spacetime effective
superpotential of the untwisted N = 2 model, when such an interpretation of the
world-sheet theory is available.

Since sa super-commute, one finds that monomials in these variables which differ
by a permutation are related through:

saσ(m)
. . . saσ(1)

= η(σ; a1 . . . am)sam
. . . sa1 .

Here σ is a permutation on n elements and η(σ; a1 . . . am) is defined as the sign
produced when permuting sa to relate the left and right hand sides. Using this
relation, W(s, t) reduces to:

W(s, t) =
∑

m≥1

1

m!
sam

. . . sa1A(a1...am)(t) , (7.35)



CHAPTER 7. DISK AMPLITUDES AND THE SUPERPOTENTIAL 80

where:1

Aa1...am
(t) := (m− 1)!F(a1...am)(t) :=

1

m

∑

σ∈Sm

η(σ; a1 . . . am)Faσ(1)...aσ(m)
(7.36)

are (super-)symmetrised combinations of the cyclic amplitudes Fa1...am
and Sm is the

group of permutations of m objects. These are the relevant, physically observable
quantities, because tree-level scattering amplitudes are summed over permutations
of indistinguishable incoming states. By construction these functions are integrable
with respect to the boundary deformation parameters, namely they are given by
partial derivatives of W:

Aa1...am
= ∂a1 . . . ∂am

W(s, t)
∣

∣

∣

s=0
, (7.37)

where ∂a :=
~∂

∂sa
.

It is clear that W(s, t) carries less information than the full set of disk ampli-
tudes. In other words, one cannot package the entire information of the topological
string theory in this quantity alone. As explained above, one way to encode tree-
level world-sheet data without loosing any information is to consider the generating
function Ŵ(ŝ, t) in (7.33), which is defined on a formal non-commutative parameter
space.

The relation between the formal generating function Ŵ(ŝ, t) and effective super-
potential W(s, t) can be stated more precisely as follows. Notice that the commu-
tative superalgebra A can be obtained from Â upon dividing through the ideal J
generated by the elements:

ŝaŝb − (−1)ãb̃ŝbŝa .

In this presentation, sa can be identified with the equivalence classes of ŝa modulo
this ideal. If we let π : Â → A denote the natural surjective morphism, then the
precise relation between the two quantities takes the form:

W(π(ŝ), t) = π(Ŵ(ŝ, t)) .

1In a general set-up, when boundary condition changing operators are included, the right hand
side of (7.36) contains terms, where the boundary condition labels do not match. Equation (7.36)
makes still sense when we set these terms to zero by hand.



Chapter 8

Consistency conditions for disk
amplitudes

After the preparations in chapter 7 we are now ready to discuss the consistency
constraints, including the A∞ algebra, for both boundary amplitudes and mixed
bulk-boundary amplitudes on the disk. A∞ algebras were originally introduced by
J. Stasheff [38,39], while A∞ categories were first discussed by K. Fukaya [44]. The
relevance of A∞ algebras in string theory was originally pointed out in [40] in the
context of open string field theory. They play a central role in the homological
mirror symmetry program [27,36,44,84–87], where they arise via topological string
theory [35, 46].

As a warm-up and as a confirmation of the string field theory approach of [35]
we derive the cyclic, unital, minimal A∞ algebra of (pure) boundary amplitudes
in section 8.1, where we take advantage of a Ward identity associated to the Q-
symmetry. Moreover, we give an explicit definition of A∞ algebras (as well as
the notions: minimal, strong, weak, cyclic, unital) in the standard terminology of
mathematical literature and express our results in this language.

Thereafter, in section 8.2 we derive the generalisation of the minimal A∞ con-
straints for deformed boundary amplitudes (7.25). As we shall see, the relevant
consistency conditions take the form of a weak, cyclic and unital A∞ algebra, which
can be viewed as an all-order deformation of the minimal A∞ algebra of section 8.1.
The strategy of the derivation is as follows: we consider first linear bulk deforma-
tions of the boundary amplitudes by inserting a single bulk physical operator on the
disk and generalise afterwards to general deformations.

Rewriting the resulting weak A∞ algebra in standard mathematical terminology
allows us to interpret the topological disk amplitudes in terms of open string field
theory amplitudes in section 8.3. The appearance of a weak A∞ algebra under
deformations of the closed string background generates an open string tadpole, which
must be cancelled by a shift of the open string vacuum. This encodes interlocking of
open and closed string deformation parameters when solving the joint deformation
problem for the bulk and boundary sectors. At the end of section 8.3 we give a brief

81
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account on the algebraic interpretation of deformations of boundary amplitudes in
terms of a cyclic complex. The latter is the subcomplex of the Hochschild complex
for deformations of A∞ algebras [88], which respects cyclic invariance.

Finally, in sections 8.4 and 8.5 we investigate the remaining constraints, which
encode the stringy generalisation of the second bulk-boundary sewing condition and
of the Cardy relation [82]. This completes the set of consistency conditions, which
constrain open-closed amplitudes on the disk.

8.1 Minimal A∞ constraints on boundary ampli-

tudes

In this section, we discuss a countable set of algebraic constraints on tree-level
boundary amplitudes on the disk, which can be viewed as the Ward identities of the
Q-symmetry. These constraints arise from the relations [42]:

〈[Q,ψa0ψa1P

∫

ψ(1)
a2
. . .

∫

ψ(1)
am−1

ψam
]〉 = 0 (m ≥ 2) , (8.1)

which encode Q-invariance of the topological vacuum. They are due to equation
(4.30), which induces nontrivial contributions when taking the commutator with Q
on the left hand side of (8.1). From (4.30), it is clear that the resulting terms will
involve amplitudes in which two boundary insertions approach each other in the
limit when the regulator ǫ is removed. Therefore, the contribution on the left hand
side of (8.1) is due entirely to contact singularities, and hence it can be factorised
into amplitudes with lower numbers of insertions. Performing the computation, one
finds that the Ward identity can be brought to a form known in the mathematics
literature as a ”minimal A∞ algebra”.

Acting explicitly with the operator Q on the left hand side of equation (8.1) and

using the descent relation [Q,ψ
(1)
ak ] = [Q, [G,ψak

]] = ∂τk
ψak

produces an integration
over the boundary of the moduli space of the boundary-punctured disk, i.e., where
two or more punctures get together very closely. The discussion of the resulting
terms involves the regularisation of section 7.1 in an essential manner.

For clarity, we first discuss the case m = 4. The regularised configuration space
and its boundary components are shown in Figure 8.1. The left hand side of equation
(8.1) becomes:
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Figure 8.1: The integration domain S5(τ2, τ5) and its boundary
components (through a magnifying glass) for the correlation func-

tion
〈

ψa(τ0)ψb(τ1) P
∫

ψ
(1)
c (τ2)

∫

ψ
(1)
d (τ3) ψe(τ4)

〉

.

m−1
∑

k=2

(−1)sk
〈

ψa0ψa1P

∫

ψ(1)
a2
. . .

∫

∂τk
ψak

. . .

∫

ψ(1)
am−1

ψam

〉

= (8.2)

=
m−1
∑

k=2

(

(−1)sk

τm
∫

τ1

dτk ∂τk

〈

ψa0ψa1

τk
∫

τ1

ψ(1)
a2

τk
∫

τ2

ψ(1)
a3
. . .

τk
∫

τk−2

ψ(1)
ak−1

ψak

τk+2
∫

τk

ψ(1)
ak+1

. . .

τm
∫

τk

ψ(1)
am−1

ψam

〉

−
k−1
∑

l=2

〈

ψa0ψa1

τk
∫

τ1

ψ(1)
a2
. . .
[

ψ(1)
al

∣

∣

τl→τk

τk
∫

τl

ψ(1)
al+1

. . . ψak

]

τk+2
∫

τk

ψ(1)
ak+1

. . .

τm
∫

τk

ψ(1)
am−1

ψam

〉

+

m−1
∑

l=k+1

〈

ψa0ψa1

τk
∫

τ1

ψ(1)
a2
. . .
[

ψak
. . .

τl
∫

τk

ψ(1)
al−1

ψ(1)
al

∣

∣

τk←τl

]

. . .

τm
∫

τk

ψ(1)
am−1

ψam

〉

)

=

=

m−1
∑

k=2

(

(−1)sk
〈

ψa0ψa1P

∫

ψ(1)
a1
. . .

∫

ψ(1)
ak−1

[

ψak

∣

∣

τk→τm
P

∫

ψ(1)
ak+1

. . .

∫

ψ(1)
am−1

ψam

]

〉

−
〈

ψa0

[

ψa1P

∫

ψ(1)
a2
. . .

∫

ψ(1)
ak−1

ψak

∣

∣

τ1←τk

]

P

∫

ψ(1)
ak+1

. . .

∫

ψ(1)
am−1

ψam

〉

−
k−1
∑

l=2

〈

ψa0ψa1P

∫

ψ(1)
a2
. . .

∫

[

ψal

∣

∣

τl→τk
P

∫

ψ(1)
al+1

. . . ψak

](1)

. . .

∫

ψ(1)
am−1

ψam

〉

)

,

where the sign is given by sk = ã0 + . . . + ãk−1. In the second step we used the
fact that the regularised configuration space is a simplex, which means that we
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have nested integration domains 1. For notational simplicity, we do not indicate the
cut-off ǫ in the integrals.

In the last form of (8.2), the terms in square brackets are products of boundary
operators. In the limit ǫ→ 0, we can factorise the result by pulling these terms out
while inserting the sum

∑

a,b ψcω
cdψd over a basis of physical boundary operators.

We conclude that the following expression must vanish:

m−1
∑

k=2

(−1)sk

(

〈

ψa0ψa1P

∫

ψ(1)
a1
. . .

∫

ψ(1)
ak−1

ψc

〉

ωcd
〈

ψdψak
P

∫

ψ(1)
ak+1

. . .

∫

ψ(1)
am−1

ψam

〉

−
〈

ψa0ψcP

∫

ψ(1)
ak+1

. . .

∫

ψ(1)
am−1

ψam

〉

ωcd
〈

ψdψa1P

∫

ψ(1)
a2
. . .

∫

ψ(1)
ak−1

ψak

〉

−
k−1
∑

l=2

〈

ψa0ψa1P

∫

ψ(1)
a2
. . .

∫

ψ(1)
c . . .

∫

ψ(1)
am−1

ψam

〉

ωcd
〈

ψdψal
P

∫

ψ(1)
al+1

. . . ψak

〉

)

.

We next rewrite this equation in terms of the quantities defined in equation (7.30).
Using (7.11), we find:

m
∑

k, l = 2
k−m+2<l≤k

(−1)ã1+...+ãl−2Bb
a1...al−2cak+1...am

Bc
al−1...ak

= 0 for m ≥ 3 . (8.3)

In deriving (8.3) we used the selection rules b̃ = ã1 + . . . + ãl + 1 for Bb
a1...al

and
ω̃ = ã0 + . . . + ãl for Ba0...al

. The restrictions in the sum account for the fact that
the amplitudes Ba0...al

are considered only for l ≥ 2 (alternatively, one can remove
these constraints and use definitions (7.12)).

The first equation in (8.3) is obtained for m = 3, and can be interpreted as
associativity condition for the topological boundary product:

Bb
ca3B

c
a1a2 + (−1)ã1Bb

a1cB
c
a2a3 = 0 .

All other relations (for m > 3) include also boundary products Bb
a1...al

with l > 2.

Algebraic description

To make contact with expressions found in the mathematics literature, let us bring
(8.3) to a more familiar form. For this, we define tree-level boundary scattering
products rm : H⊗m

o → Ho to be the multilinear maps determined by the equations:

rm(ψa1 . . . ψam
) = Ba0

a1...am
ψa0 , (8.4)

where, as usual, we use implicit summation over repeated indices. The selection rule
for Ba0

a1...am
gives:

deg rm(ψa1 . . . ψam
) = 1 +

m
∑

j=1

ãj ,

1For sake of easier reading, the nested integrals over τk+1 to τm−1 are partly written in the
‘wrong’ order.
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so all maps rm have degree one when Ho is endowed with the suspended grading.
Equation (8.3) takes the form:

m
∑

k + l = m + 1
j = 0 . . . k − 1

(−1)ã1+...+ãjrk(ψa1 . . . ψaj
, rl(ψaj+1

. . . ψaj+l
), ψaj+l+1

. . . ψam
) = 0 , (8.5)

where we set r0 = r1 = 0. Relations (8.5) define an A∞ algebra [38, 39], in conven-
tions in which all products have degree one. For reader’s convenience, we summarise
the standard terminology concerning such algebras:

(1) A collection of multilinear maps rm : H⊗m
o → Ho of degree +1 satisfying

(8.5) is called a weak A∞ algebra if m is allowed to run from 0 to ∞.
(2) Such a collection is called a strong A∞ algebra (or simply an A∞ algebra) if

m runs from 1 to infinity.
(3) Such a collection is a minimal A∞ algebra if m runs from 2 to infinity.
Thus a (strong) A∞ algebra is a weak A∞ algebra for which r0 = 0, while a

minimal A∞ algebra is a (strong) A∞ algebra for which r1 = 0. The algebra obtained
above is a minimal A∞ algebra. As we shall see below, bulk perturbations will
generically deform this to a weak A∞ algebra. This corresponds to the appearance
of a tadpole induced by deformations of the closed string background.

Due to the cyclicity property (7.24) of disk amplitudes, our minimal A∞ algebra
is in fact cyclic with respect to the bilinear form on Ho, which is defined by the
boundary topological metric:

ω(ψa, ψb) = ωab (8.6)

Writing:
Ba0...am

= ω(ψa0 , rm(ψa1 . . . ψam
)) ,

cyclicity is simply the condition (7.24) expressed in terms of string scattering prod-
ucts:

ω(ψa0 , rm(ψa1 . . . ψam
)) = (−1)ãm(ã0+···+ãm−1)ω(ψam

, rm(ψa0 . . . ψam−1)) . (8.7)

A further constraint follows from equations (7.18), which imply:

Bc
a1...ai−10ai+1...am

= 0 for m ≥ 3 and all i = 1 . . .m ,

i.e.:

rm(ψa1 . . . ψai−1
, 1o, ψai+1

. . . ψam
) = 0 for m ≥ 3 and all i = 1 . . .m . (8.8)

On the other hand, we have:

r2(ψa, ψb) = Bc
abψc .

Using the fact that 1o is a unit for the boundary algebra, this gives:

r2(1o, ψa) = (−1)ãr2(ψa, 1o) = ψa . (8.9)

Equations (8.8) and (8.9) mean that (Ho, r∗) is unital, so that in total we have a
unital, cyclic, minimal A∞ algebra (see, for example, [87]).
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Remark: The whole analysis of Ward identities remains true if we include bound-
ary condition changing operators (4.26) in our considerations. In fact, the indices
labelling the boundary conditions were just suppressed for notational convenience
and can be recast in all amplitudes. The reason is the cyclic invariance of the
boundary amplitudes. This observation is also true in subsequent sectors. When
considering boundary condition changing sectors, the A∞ algebra discussed above
generalises to an A∞ category [44].

8.2 Weak A∞ constraints for deformed amplitudes

In the present subsection, we extend the discussion of A∞ constraints to general
open-closed amplitudes on the disk. We shall show that the A∞ structure exhibited
in Section 8.1 is promoted to a so-called weak A∞ algebra, which is again cyclic
and unital. For simplicity we start by discussing the case of a single boundary
insertion. As we shall see below, these amplitudes can be used to define a first
order deformation of the A∞ algebra of Section 8.1, a deformation which preserves
cyclicity and unitality but need not preserve minimality. We shall also discuss the
general case of multiple insertions, which defines an all-order (formal) deformation
in the bulk parameters ti.

Disk amplitudes with a single bulk insertion

Insertions of bulk operators perturb the minimal A∞ algebra extracted in Section
8.1. We first consider linear perturbations, which amount to inserting just one bulk
operator in the disk amplitudes:

〈

[Q, φiψa0P

∫

ψ(1)
a1
. . .

∫

ψ(1)
am

]
〉

= 0 . (8.10)

As in Section 8.1, acting with Q on the integrated descendants on the left hand
side produces terms in which several boundary fields approach each other. In the
limit ǫ→ 0, we can factorise the result by inserting complete systems of open string
physical states. Notice that the integration domain for equation (8.10) differs from
that of equation (8.1), because we have only one fixed boundary operator. This
makes the computation more involved.

Let us illustrate this with the simplest non-trivial case, namely m = 2. The
integration domain and its boundary components are shown in Figure 8.2. Using
the descent equation (4.27), the left hand side of (8.10) becomes:

(−1)a0
〈

φiψa0

τ−
0 −3ǫ
∫

τ+
0 +ǫ

∂τ1ψa1

R2(τ0,τ1)
∫

L2(τ0,τ1)

ψ(1)
a2

〉

+ (−1)a0+a1+1
〈

φiψa0

R1(τ0,τ2)
∫

L1(τ0,τ2)

ψ(1)
a1

τ−
0 −ǫ
∫

τ+
0 +3ǫ

∂τ2ψa2

〉

.

(8.11)
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Figure 8.2: The integration domain S3(τ1) and its boundary com-
ponents (through a magnifying glass) for the correlation function
〈

φi(w, w̄) ψa(τ1) P
∫

ψb(τ2)
∫

ψc(τ3)
〉

. The real line, as boundary of
the disk, was compactified to a circle by identifying τ+

1 and τ−1 .

The boundary of the integration domain can be inferred from (7.7) and is shown in
Figure 8.2. Its components are given by:

R2(τ0, τ1) =
{

τ−0 − ǫ for τ1 > τ+
0 + 2ǫ

τ−0 − 3ǫ+ (τ1 − τ+
0 ) for τ1 < τ+

0 + 2ǫ

L2(τ0, τ1) =
{

τ1 + ǫ for τ1 > τ+
0 + 2ǫ

τ+
0 + 3ǫ for τ1 < τ+

0 + 2ǫ
,

with similar expressions for R1 and L1. As in the derivation of Section 8.1, we
use partial integration taking into account all boundary contributions. Compared
to Section 8.1, we have an additional contribution from the upper right corner of
the regularised configuration space in Figure 8.2, which comes from the boundary
components R2 for τ+

0 + ǫ < τ1 < τ+
0 + 2ǫ and L1 for τ−0 − ǫ > τ2 > τ−0 − 2ǫ. This

contribution takes the form:

(−1)a0+1+(a2+1)(a0+a1)
〈

φi

τ+
0 +2ǫ
∫

τ+
0 +ǫ

dτ1

(

ψ(1)
a2

(τ1−3ǫ) ψa0(τ0) ψa1(τ1) +

+ (−1)a0+a2 ψa2(τ1−3ǫ) ψa0(τ0) ψ
(1)
a1

(τ1)
)

〉

= − (−1)a0+(a2+1)(a0+a1+1)
〈

φi

(

ψa2(τ1−3ǫ)

τ1−ǫ
∫

τ1−2ǫ

dτ0ψ
(1)
a0

(τ0) ψa1(τ1)
)

〉

,
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Figure 8.3: The two contributions to the factorisations leading to
equation (8.14). Figure (a) shows a summand of the first term in
this equation, while Figure (b) shows a summand of the second
term.

where we used a Ward identity corresponding to the current G to ‘move’ the integral
from τ1 to τ0.

2 Collecting all terms and factorising as in Section 8.1, we find that
relation (8.10) reduces to:

(−1)ã0
〈

φiψc

∫

ψ(1)
a2

〉

ωcd
〈

ψdψa0ψa1

〉

+ (−1)ã0(ã1+ã2)+ã1+ã2
〈

φiψc

〉

ωcd
〈

ψdψa1

∫

ψ(1)
a2
ψa0

〉

+ (−1)ã2(ã0+ã1)+ã2
〈

φiψc

∫

ψ(1)
a1

〉

ωcd
〈

ψdψa2ψa0

〉

(8.12)

+ (−1)ã0+ã1
〈

φiψc

〉

ωcd
〈

ψdψa0

∫

ψ(1)
a1
ψa2

〉

+ (−1)ã0+ã2+ã2(ã0+ã1)
〈

φiψc

〉

ωcd
〈

ψdψa2

∫

ψ(1)
a0
ψa1

〉

+ (−1)ã0+ã1
〈

φiψa0

∫

ψ(1)
c

〉

ωcd
〈

ψdψa1ψa2

〉

= 0 .

When expressed in terms of the quantities defined in (7.11), this equation takes the
form:

Ba0
d;iB

d
a1a2 +Ba0

da2B
d
a1;i + (−1)ã1Ba0

a1dB
d
a2;i (8.13)

+ Ba0
da1a2B

d
i + (−1)ã1Ba0

a1da2B
d
i + (−1)ã1+ã2Ba0

a1a2dB
d
i = 0 .

2More precisely, we used the relation:
∮

ξ(w)
〈

G(w) φi(z, z̄) ψa2
(τ2) ψa0

(τ0) ψa1
(τ1)

〉

= 0 ,

with ξ(w) = (w − z)(w − z̄) as well as the fact that correlators depend only on the cross ratio

ζl = (z−z̄)(τl−τ0)
(z−τl)(z̄−τ0)

for l = 1, 2. In the limit τ2 → τ1 − 3ǫ, we have ζ2 = ζ1 + O(ǫ) and we obtain the

Jacobian
∣

∣

∣

∂τ1

∂τ0

∣

∣

∣
up to terms O(ǫ), which vanish in our limit.
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The general case is a straightforward generalisation, but the computations are
much more tedious. Therefore, we shall give the result without presenting the details
of its proof. It is the natural generalisation of (8.13) for m ≥ 1:

m
∑

j=0

j
∑

k=0

(−1)ã1+...+ãk Ba0
a1...akcaj+1...am

Bc
ak+1...aj ;i + (8.14)

+
m
∑

j=2

j
∑

k=0

(−1)ã1+...+ãk Ba0
a1...akcaj+1...am;i B

c
ak+1...aj

= 0 ,

where we explicitly set Bc
a = Bc = 0, consistent with definitions (7.12). The first

of equations (8.14) is obtained for m = 1 and coincides with the first bulk-boundary
sewing constraint of TFT [82,83]:

Ba0
ca1B

c
;i + (−1)ã1Ba0

a1cB
c
;i = 0 . (8.15)

General disk amplitudes

We now turn to the general case, extending the argument of the previous subsection
to an arbitrary number of bulk insertions.

Consider a general disk amplitude written in the form:

〈

[Q, φi0ψa0P

∫

ψ(1)
a1
. . .

∫

ψ(1)
am

∫

φ
(2)
i1
. . .

∫

φ
(2)
in

]
〉

= 0 . (8.16)

Acting with the Q-commutator on the integrated boundary insertions produces a
sum over the terms appearing in equation (8.14). Additionally, we have all contri-
butions from integrated bulk descendants:

∑

I⊆I0,n

m
∑

k≤j

(−1)ã1+...+ãk Ba0
a1...akcaj+1...am;I0,n\I B

c
ak+1...aj ;I , (8.17)

where Ip,q = {ip, ip+1, . . . , iq−1, iq}. Note that the Q-variation of boundary fields
does not produce terms containing Ba

I\i0 and Ba
b;I\i0 . Instead, these missing terms

arise from the Q-variation of the integrated bulk insertion:

[Q,

∫

φ
(2)
ik

] = lim
ǫ→0

∮

kǫ

φ
(1)
ik

. (8.18)

The integral runs along a loop, which follows the boundary (namely the real axis) at
a distance kǫ. Using equation (8.18), we obtain contributions from a bulk operator
approaching the boundary far away from any boundary operator, and from a bulk
operator approaching a boundary insertion. Due to our regularisation (7.3), the

loop (8.18) cuts the integration domains of the operators φ
(2)
i1
. . . φ

(2)
ik−1

into a part
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near the boundary and a bulk part. On the other hand, the operators φ
(2)
ik+1

. . . φ
(2)
in

are inside the loop and hence they don’t produce more contact terms. In the limit
ǫ → 0, factorisation proceeds by distributing the former operators in all possible
ways on the two emerging disks.

As an example, consider the piece of the boundary sitting between ψal
and ψal+1

.
A typical term generated by the process above has the form:

〈

. . .

∫

ψal

τl+1
∫

τl

φ
(1)
ik

∫

ψal+1
. . .
∏

j 6=k

∫

φ
(2)
ij

〉

.

Its factorisation produces the contributions ±∑I⊆I1,k−1
B...alcal+1...;i0I1,n\{ikI}B

c
ikI ,

where we used the notation {ikI} = {ik} ∪ I. Summing over k leads to a total
contribution:

±
∑

k

∑

I⊆I1,k−1

B...alcal+1...;i0I1,n\{ikI}B
c
ikI = ±

∑

I⊆I1,n

B...alcal+1...;i0I1,n\IB
c
I .

Similarly, the factorisation of a bulk operator approaching an integrated boundary
field gives rise to the terms:

±
∑

I⊆I1,n

B...al−1cal+1...;i0I1,n\IB
c
al;I .

Finally, bulk operators approaching the fixed insertion ψa0 produce:

±
∑

I⊆I1,n

Ba0
c;I1,n\IB

c
a1...an;i0I .

This completes the list of contributions from the boundary of the configuration
space.

Gathering all terms, we find that equation (8.16) can be written in the following
form:

∑

I⊆I0,n

m
∑

k, j = 0
k ≤ j

(−1)ã1+...+ãk Ba0
a1...akcaj+1...am;I0,n\I B

c
ak+1...aj ;I = 0 . (8.19)

For n = 0, this reduces to equation (8.14) extracted in the previous subsection.
Notice that indices distribute in the same manner as would derivatives with

respect to the formal parameters tj . This means that we can concisely write relations
(8.19) as weak A∞ constraints for the perturbed boundary amplitude Fa0...am

(t):

m
∑

k, j = 0
k ≤ j

(−1)ã1+...+ãk Fa0
a1...akcaj+1...am

(t) F c
ak+1...aj

(t) = 0 . (8.20)
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Expanding this as a power series in t reproduces equations (8.19). The first two
deformed amplitudes: Fa and Fab are of order at least one in ti, since Ba and Bab

vanish. The presence of these terms for t 6= 0 promotes the minimal A∞ algebra
of Section 8.1 to a weak A∞ algebra, and corresponds to the generation of non-
vanishing tadpoles, as discussed in section 7.7.

Algebraic formulation

Extending the discussion of Section 8.1, let us define deformed open string scattering
products rt

m : H⊗m
o → Ho through the relations:

rt
m(ψa1 . . . ψam

) = Fa
a1...am

(t)ψa for m ≥ 1 . (8.21)

and:
rt
o(1) := Fa(t)ψa ,

where Fa(t) = ωabFb(t) and we used the fact that the product ro : H⊗0
o ≈ C → Ho

is determined by its value at the complex unit 1 ∈ C . As in Section 8.1, equations
(8.20) become:

m
∑

k + l = m + 1
j = 0 . . . k − 1

(−1)ã1+...+ãjrt
k(ψa1 . . . ψaj

, rt
l(ψaj+1

. . . ψaj+l
), ψaj+l+1

. . . ψam
) = 0 , (8.22)

which are the standard relations defining a weak A∞ algebra.
Remembering equation (7.27), we find that this weak A∞ algebra is cyclic:

ω(ψa0 , r
t
m(ψa1 . . . ψam

)) = (−1)ãm(ã0+···+ãm−1)ω(ψam
, rt

m(ψa0 . . . ψam−1)) for m ≥ 1 .
(8.23)

Moreover, equations (7.28) and (7.29) show that (Ho, r
t
∗) is unital:

rt
m(ψa1 . . . ψai−1

, 1o, ψai+1
. . . ψam

) = 0 for (m = 1 or m ≥ 3) and all i = 1 . . .m
(8.24)

and:
rt
2(1o, ψa) = (−1)ãrt

2(ψa, 1o) = ψa . (8.25)

To arrive at the last equation, we used relation (7.29) and non-degeneracy of ω.

8.3 Interpretation in terms of open string field

theory

The algebraic formulation given above allows us to give an alternate description of
the effective superpotential, which makes contact with open string field theory as
formulated by Zwiebach (see [89] and references therein). Let us consider the object:

ψ :=
∑

a

saψa , (8.26)
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viewed as an element of the graded vector space He
o := A ⊗ Ho. When Ho is

endowed with the suspended grading, the quantity ψ is even as an element of He
o .

Using definition (8.21), we find the following expression for the deformed boundary
amplitudes:

Fa0...am
(t) = ω(ψa0 , r

t
m(ψa1 . . . ψam

)) .

We would like to express this in terms of ψ. For this, consider the natural
extension of ω to He

o , which we shall denote by the same letter. This is a bilinear
form on He

o given as follows on decomposable elements:

ω(f ⊗ ψa, g ⊗ ψb) = (−1)ãg̃fgωab ,

where f, g are homogeneous elements of A of degrees f̃ and g̃. We also extend rt
m

to multilinear products on He
o (again denoted by the same symbol) through:

rt
m(f1ψa1 . . . fmψam

) = (−1)
Pm

j=2 (ã1+···+ãj−1)f̃jf1 . . . fmr
t
m(ψa1 . . . ψam

) .

With these definitions, we have:

rt
m(ψ . . . ψ) = sam

. . . sa1r
t
m(ψa1 . . . ψam

)

and:
sam

. . . sa0Fa0...am
(t) = ω(ψ, rm(ψ . . . ψ)) .

Thus equation (7.34) becomes:

W(s, t) =
∑

m≥0

1

m+ 1
ω(ψ, rt

m(ψ⊗m)) .

This is the standard form [40] of an open string field action, though built around a
background which need not satisfy the open string equations of motion (as reflected
by the presence of the product rt

0). In this interpretation, the object ψ is identified
with the string field. As expected, the parameters t encode a deformation of this
action, parameterised by a choice of the closed string background.

Fixing the closed string background (i.e. treating ti as fixed parameters), the
open string equations of motion take the form:

∂aW(s, t) = 0 ⇐⇒
∞
∑

m=0

rt
m(ψ⊗m) = 0 , (8.27)

where ∂a = ∂
∂sa . This algebraic condition is known as the Maurer-Cartan equation

for a weak A∞ algebra. The presence of rt
0 signals the fact that the reference point

s = 0 does not satisfy this equation. Indeed, the left hand side of (8.27) at s = 0
equals r0(ψ

⊗0) := r0(1).
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Cancelling the tadpole

As mentioned above, deformations of the closed string background will generally
produce a tadpole which must be cancelled if the deformed theory is to have a
chance of being conformal. In this subsection, we explain how this can be achieved by
shifting the open string vacuum, thereby making contact with previous mathematical
work.

Consider a shift:
sa → sa + σa , (8.28)

of the formal variables sa. Here σa are finite variations of sa, i.e. formal supercom-
muting parameters of degree ã, which are taken to supercommute with sa:

[σa, sb] = 0 .

In terms of the string field (8.26), this operation amounts to:

ψ → ψ + α ,

where α :=
∑

a σaψa is an even element of He
o .

It is not hard to check by substitution of this shift into the string field action
(8.27) that the deformed scattering products change as:

rt
m → rt;σ

m

where:
rt;σ
m (u1 . . . um) = rt(eα, u1, e

α, u2, . . . , e
α, um, e

α) (8.29)

for all u1 . . . um ∈ He
o .

In equation (8.29), we used the notations:

eα :=

∞
∑

k=0

α⊗k

and:

rt :=

∞
∑

m=0

rt
m .

Notice that rt is a map from ⊕∞m=0(H
e
o)
⊗m to He

o .
In particular, the product rt

0 becomes:

rt;σ
0 = rt(eα) =

∞
∑

m=0

rt
m(α . . . α) .

Hence the tadpole amplitude Fa(t) = ω(ψa, r
t
0(1)) vanishes if and only if:

∞
∑

m=0

rt
m(α . . . α) = 0 ⇐⇒ (∂aW)(σ, t) = 0 . (8.30)
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This amounts to the well-known fact that the equations of motion for (open) string
theory amount to the tadpole cancellation condition. It is not hard to check by
direct computation that the products rt;σ

m with m ≥ 1 form a strong A∞ algebra
provided that this equation is satisfied. Hence the Maurer-Cartan condition (8.30)
describes possible transformations of a weak A∞ algebra into a (strong) A∞ algebra
obtained by shifts of the form (8.28).

Given a solution σ of (8.30), the expansion of W around the new open string
vacuum takes the form:

W(s, t) =
∑

m≥2

1

m+ 1
ω(ψ, rt,σ

m (ψ⊗m)) + W(σ, t) .

Up to the last term (which is s-independent), this is the standard form of the open
string field action in the formulation of [40].

We mention that condition (8.30) plays a crucial role in the work of [44,84,86,87],
where it originates in a very similar manner (see [43] for a detailed discussion).

Relation to the deformation theory of cyclic A∞ algebras

The results deduced in this subsection are intimately related to the deformation the-
ory of cyclic A∞ algebras as developed in [88]. This interpretation is quite obvious,
so we can be brief.

It is clear from the discussion above that insertion of bulk operators realizes an
all-order deformation of the A∞ algebra of Section 8.1, viewed as a weak A∞ algebra
which happens to be minimal for the particular value t = 0 of the deformation
parameters. Moreover, such deformations preserve cyclicity and unitality.

To make contact with the work of [88], let us consider the case of infinitesimal
deformations discussed in Subsection 8.2. This can be recovered from the more
general results of the previous subsection by expanding the products rt

m to first oder
in t. Writing:

rt
m = rm + tiΦ

i
m + O(t2) ,

we extract morphisms:

Φi
m =

∂rt
m

∂ti

∣

∣

∣

t=0
: H⊗m

o → Ho . (8.31)

The objects Φi :=
∑∞

m=0 Φi
m belong to the so-called (weak) Hochschild complex

C = ⊕∞m=0C
m(Ho) of Ho, whose graded subspaces are defined through:

Cm(Ho) := Hom(H⊗m
o , Ho)

and whose differential is given by the first order variation of the weak A∞ constraints
(8.22):

(δΦi)m(ψa1 . . . ψam
) =

∂Am(t)

∂t

∣

∣

∣

t=0
, (8.32)
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where Am(t) is the left hand side of (8.22). In equation (8.32), it is understood that

we replace ∂rt
m

∂ti

∣

∣

∣

t=0
by Φi

m through relation (8.31) and view the result δΦi as the

action of an algebraic operator δ on Φi.3 The fact that δ squares to zero follows
from the A∞ constraints.

Because our A∞ algebras are cyclic, one has further restrictions on Φi which
amount to the statement that they are elements of a certain subcomplex CC(Ho)
known as the cyclic complex. This can be defined as the set of elements Φ =

∑

m Φm

in C(Ho) with the property that the quantities ω(ψa0 ,Φm(ψa1 . . . ψam
)) obey the

cyclicity constraints:

ω(ψa0 ,Φm(ψa1 . . . ψam
)) = (−1)ãm(ã0+···+ãm−1)ω(ψam

,Φm(ψa1 . . . ψam−1)) .

For our maps Φi, these conditions follow by differentiating (8.23) with respect to ti
at t = 0. The Hochschild differential δ preserves the subspace CC(Ho). Denoting its
restriction by the same letter, one obtains the cyclic complex (CC(Ho), δ) considered
in [88].4

Since the deformed products (8.21) obey weak A∞ constraints for all t, differen-
tiation of (8.22) at t = 0 shows that Φi are δ-closed:

δΦi = 0 .

Thus Φi define elements [Φi] of the cohomology of (CC(Ho), δ), known as the (weak)
cyclic cohomology of the A∞ algebra (Ho, r∗). Comparing with Subsection 8.2, it is
easy to see that Φi can be written as:

Φi
m(ψa1 . . . ψam

) = Ba
a1...am;iψa .

This shows that they are completely determined by the disk amplitudes Ba0...am;i

with a single bulk insertion. Thus one has a map:

φi → [Φi]

fromQ-closed bulk zero-form observables to the cyclic cohomology of the A∞ algebra
(Ho, r∗). A similar statement was proposed in [42] in a particular case.

8.4 Bulk-boundary crossing symmetry

The second bulk-boundary crossing constraint of two-dimensional topological field
theory [82, 83] states that the bulk-boundary map is a morphism from the bulk to

3Strictly speaking, this specifies δ only for elements Φ of C(Ho) such that each Φm has degree
one as a map fromH⊗m

o toHo. However the definition generalises to the entire Hochschild complex.
4Our sign conventions differ from those of [88] by suspension. Moreover, we allow for the

subspace C0(H0) = CC(H0) = C in the Hochschild and cyclic complexes, since we consider
deformations of weak and cyclic A∞ algebras.
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the boundary algebra [82]. In this section, we discuss the ‘stringy’ generalisation of
this constraint.

It is clear that the relevant property arises from factorisation of the amplitude:

〈

φiφj ψa0P

∫

ψ(1)
a1
. . .

∫

ψ(1)
am

〉

, (8.33)

into the channel where the two bulk fields approach each other and the channel
where both bulk fields approach the boundary. In contrast to the A∞ constraints,
this factorisation follows from explicit movement of the bulk operators rather than
from the Ward identities of the Q-symmetry. This is similar to the mechanism
leading to the WDVV equations (6.8). In the case at hand we have to deal with
a subtlety which requires closer examination: we know from section 7 that only
the fundamental amplitudes (7.11) are independent of the positions of unintegrated
insertions. This is not the case for the amplitude (8.33), since it contains two bulk
and one boundary unintegrated insertions. Therefore, it is not immediately clear
that factorising (8.33) makes sense. The naive guess for the factorisation takes the
form:

C l
ij

〈

φl ψa0P

∫

ψ(1)
a1
. . .

∫

ψ(1)
am

〉

= (8.34)

=
∑

0≤m1≤...m4≤m

〈

ψa0P

∫

ψ(1)
a1
. . .

∫

ψ(1)
am1

ψb P

∫

ψ(1)
am2+1

. . .

∫

ψ(1)
am3

ψc P

∫

ψ(1)
am4+1

. . .

∫

ψ(1)
am

〉

×

× ωbd ωce
〈

φi ψdP

∫

ψ(1)
am1+1

. . .

∫

ψ(1)
am2

〉 〈

φj ψeP

∫

ψ(1)
am3+1

. . .

∫

ψ(1)
am4

〉

,

where C l
ij are the usual bulk ring structure constants. Since the correlation function

(8.33) is not independent of the positions of the fixed insertions, we shall give an
independent argument for why this relation holds. In the following, we shall denote
the left hand side of (8.34) simply by (lhs), and the right hand side by (rhs).

To establish equation (8.34), we consider the amplitude (8.33) for the configu-
rations (A) and (B) of bulk operators on the upper half plane shown in Figure 8.4.
Let us denote the distance between the bulk operators by t ∈ R and assume that
the two bulk operators sit on a line parallel at a distance b to the boundary. In the
limit t → 0, configuration (A) corresponds to the left hand side of equation (8.33),
while the right hand side of this equation arises in the limit b → 0 of configuration
(B).

For configuration (A), we have t = t0 with |t0| << 1 and we can perform a bulk
operator product expansion in t0, so that (8.33) becomes (lhs) + g1(t0, b), where
g1(t0, b) = O(t0) denotes contributions from higher terms in the OPE. Moving along
the path pA down toward configuration (C), the function g1(t0, b) changes with
b and becomes g1(t0, b0). On the other hand, configuration (B) shows the bulk
operators at the distance b = b0 << 1 from the boundary. According to the bulk-
boundary operator product the amplitude (8.33) takes the form (rhs) + g2(t, b0),
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ψa0

jφiφ

iφ jφ

pA

p
B

p
Biφ jφ

(A)

(B)(B)

t

b

(C)

Figure 8.4: The factorisation associated with the stringy version of
the second bulk-boundary crossing constraint. Configuration (A)
corresponds to the topological bulk product and (B) to the factori-
sation at the boundary. Configuration (C) connects these channels.
The quantity b is the equal distance of the bulk fields from the
boundary, while t is the horizontal separation of the bulk fields.

where g2(t, b0) = O(b0). Following the path pB we reach again the point (C). At
(C) we have (lhs) + g1(t0, b0) = (rhs) + g2(t0, b0), which implies that g1(t0, b0) and
g2(t0, b0) are non-singular for b0 → 0 and t0 → 0, respectively. Hence we can
safely take the factorisation limit t0, b0 → 0, in which g1 and g2 vanish, so that
(lhs) = (rhs). This shows that equation (8.34) holds.

Using the Ward identity (7.22) to move the integral contours, and taking into
account definition (7.11), equation (8.34) gives:

Ba0
a1...am;l C

l
ij = (8.35)

=
∑

0≤m1≤...m4≤m

(−1)sm1m3Ba0
a1...am1 bam2+1...am3 cam4+1...am

Bb
am1+1...am2 ;iB

c
am3+1...am4 ;j ,

where sm1m3 = ãm1+1+. . .+ãm3 . Note that the left hand side is manifestly symmetric
in i and j whereas this symmetry is not manifest in the right hand side. This reflects
the fact that one can also accomplish the factorisation of Figure 8.4 after exchanging
i and j.

Additional integrated bulk insertions spread in the usual way when we factorise,
so we can treat them as derivatives and combine all relations into a single equation
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involving the quantities Fa0...am
(t) for m ≥ 0 and the bulk WDVV potential F(t):

∂i∂j∂kF ηkl ∂lFa0a1...am
= (8.36)

=
∑

0≤m1≤...m4≤m

(−1)sm1m3Fa0...am1 bam2+1...am3 cam4+1...am
∂iF b

am1+1...am2
∂jF c

am3+1...am4
.

For m = 0 and m = 1, these equations take the form:

∂i∂j∂kF ηkl ∂lFa0 = Fa0bc ∂iF b ∂jF c , (8.37)

∂i∂j∂kF ηkl ∂lFa0a1 = Fa0bca1 ∂iF b ∂jF c + Fa0bc ∂iF b ∂jF c
a1 (8.38)

+ (−1)ã1 Fa0ba1c ∂iF b ∂jF c + (−1)ã1 Fa0bc ∂iF b
a1 ∂jF c

+ Fa0a1bc ∂iF b ∂jF c .

Notice that the undeformed version of (8.37) coincides with the second bulk-boundary
crossing constraint of two-dimensional TFT [82,83].

8.5 Cardy conditions

The Cardy condition is probably the most interesting sewing constraint of 2d TFT
[82,83,90], since it connects the exchange of closed strings between D-branes at the
tree level with a one-loop open string amplitude. Allowing for insertions of both bulk
and boundary fields in the corresponding cylinder amplitude leads to the following
factorisation:

〈

φiψa0P

∫

ψa1 . . .

∫

ψan

〉

ηij
〈

φjψb0P

∫

ψb1 . . .

∫

ψbm

〉

= (8.39)

=
∑

0 ≤ n1 ≤ n2 ≤ n

0 ≤ m1 ≤ m2 ≤ m

(−1)s ωc1d1ωc2d2

〈

ψa0 P

∫

ψa1 . . .

∫

ψan1
ψd1P

∫

ψbm1+1 . . .

∫

ψbm2
ψc2P

∫

ψan2+1 . . .

∫

ψan

〉

〈

ψb0 P

∫

ψb1 . . .

∫

ψbm1
ψc1P

∫

ψan1+1 . . .

∫

ψan2
ψd2P

∫

ψbm2+1 . . .

∫

ψbm

〉

,

where the sign s accounts for reshuffling of the boundary fields. The left hand
side of (8.39) is the factorisation in the closed string channel, in which the cylinder
becomes infinitely long. The right hand side corresponds to the generalisation of
the double-twist diagram [90] of the open string channel.

Taking into account further integrated bulk insertions, equations (8.39) become:

∂iFa0...an
ηij∂jFb0...bm

= (8.40)

=
∑

0 ≤ n1 ≤ n2 ≤ n

0 ≤ m1 ≤ m2 ≤ m

(−1)s+c̃1+c̃2ωc1d1ωc2d2Fa0...an1d1bm1+1...bm2 c2an2+1...an
Fb0...bm1 c1an1+1...an2d2bm2+1...bm

.
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The simplest relations in this hierarchy of constraints take the form:

∂iFa0η
ij∂jFb0 = (−1)s+c̃1+c̃2 ωc1d1 ωc2d2 Fa0d1c2 Fb0c1d2 ,

∂iFa0a1η
ij∂jFb0 = (−1)s+c̃1+c̃2 ωc1d1 ωc2d2 Fa0d1c2a1 Fb0c1d2 (8.41)

+ (−1)s+c̃1+c̃2 ωc1d1 ωc2d2 Fa0d1c2 Fb0c1a1d2

+ (−1)s+c̃1+c̃2 ωc1d1 ωc2d2 Fa0a1d1c2 Fb0c1d2 .

Taking the limit t = 0 in the first equation recovers the Cardy constraint of two-
dimensional TFT [82,83]. Notice that the left hand side of the first equation vanishes
identically if we consider insertions of the identity operator, and if the suspended
degree ω̃ of the symplectic structure vanishes; this reflects vanishing of the Witten
index in that case.

It is worth pointing out that the arguments of chapter 7 cannot be used to
show that the annulus amplitude is independent of the world-sheet metric and of
the positions of unintegrated boundary insertions. In fact, experience with the
bulk theory [6] suggests that there are anomalies in the Q-symmetry in open string
correlators beyond tree level, so there is indeed no a priori reason why the annulus
amplitude should be metric-independent. However, we will take the point of view
that when imposing the Cardy condition (8.40), one focuses by definition on the
topological part of the amplitude. It is not clear to us whether the Cardy relation
is satisfied by the complete amplitude, which potentially involves supplementary
anomalous contributions.

In the present work we will be concerned only with the topological part of the
annulus amplitude.5 To capture the full amplitude including possible holomorphic
anomalies would require the analogue of t − t∗ equations [6] for open strings, a
subject which is beyond the scope of the present work.

5For the Landau-Ginzburg examples described in chapter 9, we shall find that imposing the
generalised Cardy condition as written above agrees with independently known results (namely,
with the factorisation property of the Landau-Ginzburg potential).



Chapter 9

Application: Landau–Ginzburg
minimal models

In this chapter we demonstrate the power of the consistency conditions derived in
chapter 8, which include cyclicity (7.24), weak A∞ structure (8.20), bulk-boundary
sewing constraint (8.36) and Cardy relation (8.40)), by applying them to certain
families of D-branes in B-type topological minimal models. In the examples consid-
ered below, we shall find that the totality of these constraints suffices to determine
the effective superpotential uniquely.

In sections 9.2 and 9.3 we present the proposal of [46, 48] for the superpotential
in minimal Landau–Ginzburg models on a single brane and a general composite
brane, respectively. We provide some non-trivial tests for this conjecture [48]. Note
that there does not exist a closed expression for the bulk prepotential of these
models. The existence of a closed expression for the superpotential is therefore a
quite surprising fact. Finally, in section 9.4 we point out an interpretation of the
superpotential in terms of a classical action for a holomorphic matrix model [91].

9.1 Experimental evidence

According to section 5.6 the bulk sector of minimal Landau–Ginzburg models of
the A-series is characterised by the level k, while D-brane boundary sectors are
labelled by ℓ = 0, 1, ...[k/2]. The bulk sector is described by a univariate polynomial
WLG(φ) of degree k + 2 in the complex variable φ, which gives the world-sheet
superpotential. On the other hand, ‘non-multiple’ B-type D-branes in the boundary
sector ℓ correspond to factorisations of the bulk superpotential:

WLG(φ) = J (ℓ)(φ)E(ℓ)(φ) , ℓ = 0, 1, ...[k/2] (9.1)

where J (ℓ)(φ) is a polynomial of degree ℓ+1 [47,60] (cf. the end of section 5.6). The
open string spectrum consists of boundary condition preserving and changing sectors
and is given in tables (5.2) and (5.3) together with the U(1) charges, respectively.
We focus first on boundary condition preserving sectors, each of which corresponds

100
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to a degree label ℓ. For later reference we introduce the following labelling for a
basis of physical boundary operators:

R(ℓ)
B ≡

{

ψa

}

=
{

φα, ωφα
}

, a = 0, ..., 2ℓ+ 1, α = 0, ..., ℓ . (9.2)

For completeness let us recall that the bulk algebra is given by the Newton ring
R = C[φ]/〈∂φWLG(φ)〉, which admits the following basis when viewed as a complex
vector space:

R ≡
{

φi
}

, i = 0, ..., k.

When suitably integrated, each of the fields can be used to deform the theory.
In the bulk sector we have the infinitesimal deformation

δS =
k
∑

i=0

tk+2−i

∫

d2z[G−1, [Ḡ−1, φ
i] ,

while in the boundary sector we have:

δS∂ =

(

ℓ
∑

α=0

uℓ+1−α

∫

dxG(ωφα)

)

+

(

ℓ
∑

α=0

vk/2+1−α

∫

dxGφα

)

. (9.3)

In this equation, we divided the boundary deformation parameters sa into even and
odd variables, uα and vα, respectively. These parameters can be formally assigned
U(1) charges, which can be used as labels; this is the convention employed in equa-
tion (9.3). Notice that super-integration over the moduli of boundary punctures flips
the Z2 degree, so that odd ring elements (=topological tachyon excitations ωφα) are
associated with the bosonic deformation parameters u, and vice versa.

We are now ready to present some computations. We consider a few explicit
examples and determine their effective superpotentials. As a rule, we shall find that
the consistency conditions of chapter 8 lead to a unique solution, but only once all
constraints are imposed on the open-closed amplitudes. For example, fixing t = 0
and imposing only the A∞ conditions (8.3) leaves some parameters undetermined
in the effective superpotential W(0, s) = W(0, u, v). It is only after considering
both open and closed deformations and imposing the bulk-boundary constraints
(8.36) and Cardy conditions (8.40) that all coefficients of W(s, t) become uniquely
determined.1

For the example (k, ℓ) = (3, 1), we find the following expressions for the per-

1Strictly speaking, this is true only up to choosing the normalisation of the 3-point boundary
and 2-point bulk-boundary correlators. In the computations below, we normalised these correlators
in a manner which is natural in the LG description. Notice that the sign in the Cardy condition

(8.40) is given by: (−1)s = (−1)(c̃1+ã0)(c̃2+b̃0) in the present case.
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turbed boundary correlators (7.25) on the disk:

F021 = −F003 = −F012 = −F1213 = 1,

F222 = F2233 = F2323 = F23333 = F333333 = −1/5,

F22 = F233 = F3333 = t2, (9.4)

F23 = F333 = t3,

F2 = F33 = t4 − t2
2,

F3 = t5 − t2 t3.

Our notation was explained after equations (9.2), namely a = 0, 1 and a = 2, 3
label even and odd boundary ring elements, respectively. Moreover, we listed one
representative per cyclic orbit, and only the non-vanishing amplitudes. The value of
−1/5 for the correlators which contain three unintegrated fermionic insertions arises
from our normalisation, which is ω2 = −φ

5
. Notice that ordering of boundary indices

is indeed important; for example F1123 = 0 while F1213 = −1. In this example, the
effective superpotential takes the form:

−W(t, u) =
1

5

(u1
6

6
+ u1

4u2 +
3

2
u1

2u2
2 +

u2
3

3

)

+

+t2

(−u1
4

4
− u1

2u2 −
u2

2

2

)

− t3

(u1
3

3
+ u1u2

)

+ (9.5)

+
(

t4 − t2
2
)(−u1

2

2
− u2

)

−
(

t5 − t2t3

)

u1 .

Since the parameters v are odd while appearing only in anti-commutators, they
drop out from the effective superpotential, even though the corresponding non-
symmetrised amplitudes are non-zero and have to be taken into account when solving
the constraint equations.

The effective superpotentials for some other examples are as follows. For (k, ℓ) =
(4, 2) we find:

−W(t, u) =
1

6

(u1
7

7
+ u1

5u2 + 2u1
3u2

2 + u1u2
3 +

+u1
4u3 + 3u1

2u2u3 + u2
2u3 + u1u3

2
)

−

−t2
(u1

5

5
+ u1

3u2 + u1u2
2 + u1

2u3 + u2u3

)

+

+t3

(−u1
4

4
− u1

2u2 −
u2

2

2
− u1u3

)

+

+
(t4 − 3t2

2

2

)(−u1
3

3
− u1u2 − u3

)

+
(

t5 − 2t2t3

)(−u1
2

2
− u2

)

−

−
(

t6 +
t2

3

3
− t3

2

2
− t2t4

)

u1 ,
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while for (k, ℓ) = (5, 2) we obtain:

−W(t, u) =
1

7

(u1
8

8
+u1

6u2+
5u1

4u2
2

2
+2u1

2u2
3+

u2
4

4
+u1

5u3+

+4u1
3u2u3+3u1u2

2u3+
3u1

2u3
2

2
+u2u3

2
)

−t2
(u1

6

6
+ u1

4u2 +
3u1

2u2
2

2
+
u2

3

3
+ u1

3u3 + 2u1u2u3 +
u3

2

2

)

+t3

(−u1
5

5
− u1

3u2 − u1u2
2 − u1

2u3 − u2u3

)

+
(

t4 − 2t2
2
)(−u1

4

4
− u1

2u2 −
u2

2

2
− u1u3

)

+
(

t5 − 3t2t3

)(−u1
3

3
− u1u2 − u3

)

+
(

t6 + t2
3 − t3

2 − 2t2t4

)(−u1
2

2
− u2

)

−
(

t7 + t2
2t3 − t3t4 − t2t5

)

u1 .

Notice that W(t, u) has U(1) charge equal to k + 3, which is one-half of the charge
of the effective prepotential F(t) of the bulk sector.

Finally, let us give an example of effective superpotentials for the boundary
changing sector of minimal models. For simplicity we will not turn on bulk defor-
mations. In this situation we can study the formation of D-brane composites in
a fixed conformal bulk background. Let us consider the minimal model at level
k = 3 with a bound state of two D-branes, ℓ = 0 and ℓ = 1. In this setting, one
has fermionic boundary operators, (ω(00), ω(01), ω(10), ω(11), φω(11)), associated with

the deformation parameters (u
(00)
1 , u

(01)
3/2 , u

(10)
3/2 , u

(11)
2 , u

(11)
1 ) (see section 5.6). The con-

sistency conditions again determine all amplitudes, giving the following effective
superpotential for the bosonic deformation parameters:

W(t=0, u) = − 1

15
u

(11)
2

3 − 3

10
u

(11)
2

2 u
(11)
1

2 − 1

5
u

(11)
2 u

(11)
1

4 − 1

30
u

(11)
1

6 −

− 1

30
u

(00)
1

6 − 1

5
u

(00)
1

3 u
(01)
3/2 u

(10)
3/2 − 1

5
u

(00)
1 u

(11)
2 u

(01)
3/2 u

(10)
3/2 − (9.6)

−1

5
u

(00)
1

2 u
(11)
1 u

(01)
3/2 u

(10)
3/2 − 2

5
u

(11)
2 u

(11)
1 u

(01)
3/2 u

(10)
3/2 −

−1

5
u

(00)
1 u

(11)
1

2 u
(01)
3/2 u

(10)
3/2 − 1

5
u

(11)
1

3 u
(01)
3/2 u

(10)
3/2 − 1

10
u

(01)
3/2

2 u
(10)
3/2

2 .



CHAPTER 9. LANDAU–GINZBURG MINIMAL MODELS 104

9.2 The effective potential for a single B-brane

The results of the previous section, obtained by painstakingly solving the consistency
conditions, suggest the following closed formula for the effective superpotential in
the general boundary preserving sector labelled by (k, ℓ) [46]:

W(t, u) = −
k+2
∑

i=0

gk+2−i(t) hi+1(u) , (9.7)

where hi(u) are defined as symmetric Newton polynomials by:

log
[

1 −
ℓ+1
∑

n=1

un y
n
]

:=
∞
∑

i=1

hi(u) y
i (9.8)

and gk+2−i(t) are the coefficients of φi in the bulk LG superpotential:

WLG(t) = −
k+2
∑

i=0

gk+2−i(t)φ
i ,

whose explicit form can be found for example in [5] (here g0 = −1/(k + 2) and
g1 = 0). Equation (9.7) implies the following expression for the deformed one-point
correlators on the disk:

Fℓ+1−α(t) ≡ ∂uα
W(t, u)|u=0 = gk+3−α(t) .

It is possible to cast (9.7) into a more elegant form. For this, notice that the
substitution y = 1/φ reduces (9.8) (up to an u-independent logarithmic term) to:

log J(φ; u) = (l + 1) logφ+
∞
∑

m=1

hm φ
−m , (9.9)

where J(φ; u) is the boundary superpotential, parametrised linearly in u, i.e.,

J(φ; u) = φℓ+1 −
ℓ
∑

α=0

uℓ+1−α φ
α , ℓ = 0 . . . [k/2] . (9.10)

The effective potential (9.7) can thus be written as [48]:

W(t, u) = −
∮

C

dφ

2πi
WLG(φ; t) logJ(φ; u) , (9.11)

where C is a closed counterclockwise contour encircling all D0-branes (i.e. all zeroes
xi(u) of J(φ; u)) and all cuts of the logarithm. Relation (9.11) is ambiguous due
to the need of choosing appropriate branch cuts, but the ambiguity amounts to the
freedom of adding an inessential constant to W(t, u).
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From the interpretation of W(t, u) as a deformation potential [35,46], we expect
that its u-critical set, defined by:2

Zcrit = {(t, u)|∂uW(t, u) = 0} (9.12)

should agree locally with the total joint deformation locus:

Zfact = {(u, t) ∈ C
ℓ+1 × C

k+1|E−(φ; t, u) = 0} ,

where E−(x; t, u) denotes the singular part of

E(φ; t, u) =
WLG(φ; t)

J(φ; u)
. (9.13)

More precisely, in [48] it was shown that Zfact splits into various branches of dif-
ferent D-brane content. Therefore, Zcrit should locally coincide with Zfact, provided
that we restrict both to a small enough vicinity of a point (t, u) which lies on such
a branch. Thus we are interested in polynomials J(φ; u), which lie in the vicinity of
a polynomial J0(φ; u(t)) that divides WLG(φ; t).

This expectation is in fact easy to check by writing J(φ; u) =
∏ℓ

i=0 (φ− xi(u)),
which implies:

∂uα
W(t, u) =

∮

C

dφ

2πi

[

WLG(φ; t)

ℓ
∑

i=0

∂uα
xi(u)

φ− xi(u)

]

=

ℓ
∑

i=0

WLG(xi(u); t)∂uα
xi(u) .

(9.14)
Thus the u-critical set of W(t, u) is described by the linear system

ℓ
∑

i=0

∂uα
xi(u)WLG(xi(u); t) = 0 (9.15)

for the ℓ + 1 unknowns WLG(xi(u)). Now notice that the ℓ + 1 parameters u in
9.10 suffice to specify the roots of the monic degree ℓ + 1 polynomial J(φ; u). As a
consequence, the discriminant:

∆(u) := det(∂uα
xi(u)) (9.16)

is generically non-vanishing. Hence the only solution of (9.15) is WLG(xi(u)) = 0 for
all i = 0 . . . ℓ. Thus each root of the polynomial J(φ; u) is also a root of WLG(φ; t).
Since J is close to J0, which divides WLG(φ; t), the only possibility is that the
multiplicities of the roots are smaller in J(φ; u) than in WLG(φ; t). Thus J(φ; u)
must divide WLG(φ; t), and Zcrit must coincide with the J0-branch of Zfact when
restricted to a small enough vicinity of J0.

2We treat bulk deformations as non-dynamical background fields, which is warranted at weak
string coupling.
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Notice that this is a purely local statement. The variety Zcrit contains compo-
nents associated with polynomials J that do not divide W . However, such compo-
nents do not intersect the factorisation locus Zfact, so agreement is guaranteed in
the vicinity of any true solution of the factorisation problem (which, of course, is all
that can be expected from the local analysis of [35, 46]).

Although the factorisation W = JE persists along the u-critical set Zcrit, the
cohomology in the boundary sector may change along this locus. In the remainder of
this subsection, we discuss the condition on W(t, u) which ensures the preservation
of a non-trivial spectrum. On this account we differentiate equation (9.14) a second
time and obtain:

∂uα
∂uβ

W(t, u) =
ℓ
∑

i=0

WLG(xi(u); t)
(

∂uα
∂uβ

xi

)

+
ℓ
∑

i=0

∂xi
WLG(xi(u); t)

(

∂uα
xi∂uβ

xi

)

.

(9.17)
Suppose we stay at a point on the factorisation locus, and we require, in addition,
that J |E, i.e., that we are on the sub-locus:

Zspec := {(t, u) | WLG = JE, J |E} ⊂ Zfact . (9.18)

Since the boundary ring R(ℓ)
B , given in (5.72), is governed by the greatest common

divisor of J and E, the number of odd (and even) cohomology classes takes the
maximal value, ℓ + 1 along Zspec. Note that Zspec can equivalently be described by
Zspec = {(t, u) | J |WLG, J |W ′

LG}. Therefore, we see from (9.17) that

∂uα
W(t, u) = ∂uα

∂uβ
W(t, u) = 0 on Zspec . (9.19)

In order to show that (9.19) is true only on Zspec, we look at the vicinity of a point
(t0, u0) ∈ Zspec, with J0 and E0 = hJ0. Then, by the same line of argumentation as
above, the non-vanishing discriminant ∆(u) ensures that

Zspec = {(t, u) | ∂uα
W(t, u) = ∂uα

∂uβ
W(t, u) = 0} . (9.20)

An analogous argument can be made for the situation where J and E share a
common factor G, whose degree is smaller than that of J (cf. (5.69)). Then only a
corresponding subset of the cohomology survives, and this is reflected in an increased
rank of ∂uα

∂uβ
W.

In physical terms this finding can be interpreted as follows: On the factorisation
locus Zfact where WLG = JE, the boundary preserving parameters uα do not have
tadpoles and thus the theory has a stable, supersymmetric vacuum; however a non-
trivial spectrum of boundary operators is not guaranteed. Only on the sub-locus
Zspec ⊂ Zfact one has a non-trivial spectrum, and this is reflected in zero eigenvalues
of the ‘mass-matrix’ ∂uα

∂uβ
W.

In the untwisted model, the physical interpretation is as follows. Generic bulk (t)
and boundary (u) perturbations break supersymmetry, a phenomenon which can be
traced back to the boundary terms (4.24) and (4.30) in the Q variation of integrated
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descendants. Thus t and u ‘feel’ a potential which represents an obstruction against
such deformations. The effects of the boundary terms cancel and supersymmetry is
maintained only when bulk and boundary deformations are locked together through
the relation WLG = J E – this cancellation was indeed precisely why one had to
introduce a boundary potential in the first place [47, 55, 60, 77, 92]. Thus it is no
surprise, though a welcome check on our computations, that the critical set Zcrit

of W(t, u) with respect to the boundary deformation parameters u corresponds to
the factorisation locus of the world-sheet LG superpotential in the combined, bulk
and boundary parameter space. As expected, this is precisely the locus along which
the boundary data preserve half of the supersymmetry of the world-sheet action,
thereby allowing for a meaningful coupling to B-type D-branes. This is similar
in spirit to [93], where, in a different physical context, critical points of effective
superpotentials were associated with factorisation loci in the target space geometry.

If E(φ; u, t◦) is generic, its greatest common denominator with J(φ; u) is trivial,
hence according to (5.72) no physical open string states survive after turning on
bulk and boundary deformations by allowing for general t, u. This reflects tachyon
condensation of the D2D2 system [60,94], leading to the trivial open string vacuum.
Only upon appropriately specialising E(φ; u, t◦) such that it has a non-trivial com-
mon factor G(φ; u) with J(φ; u), does one find that some open string states remain
in the physical spectrum. Such sub-loci of the factorisation variety Zfact correspond
to (a topological model of) tachyon condensation with non-trivial endpoint. In this
version of tachyon condensation, the open string spectrum gets truncated while mov-
ing between different strata of the supersymmetry preserving locus of the effective
superpotential. A very similar picture was found in [95] for the case of the open A
model close to a large radius point of a Calabi-Yau compactification (see figure 2
of that paper). The topological version of tachyon condensation was discussed in
detail in [95–100] in the context of open string field theory. It also plays a central
role in the work of [84, 87].

9.3 The effective potential for general B-branes

Explicit computations in the spirit of section 9.1 of some low-k models with several
branes suggest that we can extend the proposal (9.11) for the superpotential of a
single brane to the following expression for arbitrary brane composites [48]:

W(t, u) = −
∮

C

dφ

2πi
log(det J(φ; u)

)

W (φ; t) . (9.21)

This amounts to replacing J by det J in 9.11. For instance, for the deformation
of the bound state of two D-branes of types ℓ1 and ℓ2 at the conformal point, the
matrix J reads:

J ℓ1,ℓ2(φ; u) =





φℓ1+1 −∑ℓ1
α=0 u

[11]
ℓ1+1−αφ

α −∑ℓ12
γ=0 u

[12]
1
2
(ℓ1+ℓ2)+1−γ

φγ

−∑ℓ21
γ=0 u

[21]
1
2
(ℓ1+ℓ2)+1−γ

φγ φℓ2+1 −∑ℓ2
α=0 u

[22]
ℓ2+1−αφ

α



 . (9.22)
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The diagonal entries correspond to deformations by boundary condition preserving
operators, whereas the off-diagonal entries correspond to deformations by boundary
condition changing operators. Note that all entries in J ℓ1,ℓ2(φ; u) are linear in the

deformation parameters u
[AB]
α . The expression for r× r factorisations is the natural

generalisation of (9.22).
The proof of local agreement of the critical locus of W with the deformation space

is similar to the case of a single brane. Let us parameterise deformations of the r×r
matrix J by u = (u

[AB]
α ) with α = 0 . . .H , and write det J(φ; u) =

∏L
i=0 (φ− xi(u))

as a monic polynomial in φ, where L+ 1 is the degree of det J(φ). We also assume
that H ≥ L and that the H + 1 by L+ 1 matrix:

A(u) := (∂αxi(u)) . (9.23)

has maximal rank. Then:

∂uα
W(t, u) =

∮

C

dφ

2πi

[

W (φ; t)
L
∑

i=0

∂uα
xi(u)

φ− xi(u)

]

=
L
∑

i=0

W (xi(u); t)∂uα
xi(u) , (9.24)

and we find that the u-critical locus Zcrit of Weff is characterised by the condition
that all roots of det J must also be roots of W . This is obviously the case along the
joint deformation space

Zfact = {(t, u)|E−(φ; t, u) = 0} ,

where E(φ; t, u) is now the matrix defined by

E(φ; t, u) = W (φ; t)J−1(φ; u) .

Therefore, the inclusion Zfact ⊂ Zcrit is immediate. Local agreement of Zcrit with
Zfact after restriction to a sufficiently small vicinity of a point lying on Zfact follows
by a simple continuity argument as in the previous section. We note that the
inclusion Zfact ⊂ Zcrit also follows directly from (9.21), which implies:3

∂uα
W(t, u) = −

∮

C

dφ

2πi
Tr[E(φ; t, u)∂uα

J(φ; u)] =

∮

C

dφ

2πi
Tr[J(φ; u)∂uα

E(φ; t, u)] .

(9.25)
The right hand side of this identity vanishes along Zfact, since by definition the
matrix E(φ; t, u) has no singular terms there. Thus the boundary critical set of
W(t, u) agrees with the matrix factorisation locus. This provides further evidence
for our general ansatz 9.21.

3The sign change in the last equation reflects the fact that swapping J and E exchanges branes
with antibranes.
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9.4 The superpotential as action for a holomor-

phic matrix model

Our proposal (9.21) for the effective potential admits a matrix model interpretation.
For this we integrate WLG(φ) to a polynomial V (φ; t) in φ, i.e.:

∂φV (φ; t) = W (φ; t) (9.26)

(clearly V is defined only up to addition of a function c(t) which is independent of
φ). Then integration by parts casts (9.11) into the form:

W(t, u) =

∮

C

dφ

2πi
V (φ; t)

L
∑

i=0

1

φ− xi(u)
=

L
∑

i=0

V (xi(u), t) ,

where det J(φ; u) =
∏L

i=0 (φ− xi(u)) as before. Viewing the zeros xi(u) of det J(φ; u)
as eigenvalues of a complex (L+1)× (L+1) matrix X(u), we can write the effective
potential as:

W(t, u) = Tr V (X(u), t) . (9.27)

Thus W(t, u) coincides with the classical action4 of a holomorphic matrix model as
defined and studied in [91] (the matrix model is holomorphic rather than Hermi-
tian because the eigenvalues xi(u) are complex). The zeroes xi(u) of det J can be
viewed as the locations of D0-branes in the complex plane (=the target space of the
Landau-Ginzburg model). Equation 9.27 shows that W(t, u) is the ‘potential en-
ergy’ of this system of D0 branes when the latter is placed in the external ‘complex
potential’ V (φ). Each critical configuration of this D0-brane system corresponds to
a deformation of the underlying Landau-Ginzburg brane.

It has been known for a long time that the generalised Kontsevich model [101] is
closely related to closed string minimal models coupled to topological gravity, but the
open string version of this correspondence is not well understood. A link between
certain topological D-branes and the auxiliary (Miwa) matrix of the Kontsevich
model was proposed in [102], in the context of a non-compact Calabi-Yau realization
of the underlying closed string model.

Our Landau-Ginzburg description gives a direct relation, which differs in spirit
from that proposed in [102]: in the presence of several D-branes, the bulk Landau-
Ginzburg field φ is effectively promoted to a matrixX(u). In [102], D-brane positions
were mapped to the auxiliary matrix of the generalised Kontsevich model, so they
parameterise backgrounds for the model’s dynamics. In our case, D-brane positions
are truly dynamical, being encoded by the matrix variable itself. The reason for this
difference is that we study the D-brane potential (i.e. the generating function of

4Here, we consider only the “small phase space”. It would be interesting to extend the corre-
spondence by coupling to topological gravity and including gravitational descendants. Presumably
this involves the full dynamics of the holomorphic matrix model, rather than simply its classical
action.
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scattering amplitudes for strings stretching between D-branes) rather than the flux
superpotential (the contribution from RR flux couplings to the closed string sector)
considered in [102].5

5Since D-branes carry RR charges, they can be viewed as backgrounds inducing a flux super-
potential, which explains the different point of view used in [102]. Our interest, however, is in
D-brane dynamics as dictated by tree-level scattering amplitudes of open strings.
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